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BADANIA NUMERYCZNE ZJAWISKA STICK - SLIP

Streszczenie. Zaproponowano pewien opis tarcia suchego wywotujgcego zjawisko
ruchu przerywanego oraz jego numeryczng implementacje. W celu zbadaniajakos$ci ruchu
wykorzystano nastepujgce techniki dynamiki dyskretnej: wykresy bifurkacyjne i mapy
Poincare.

A NUMERICAL STUDY OF STICK-SLIP PHENOMENON

Summary. A novel formulation of dry friction in simple system, which exhibits "stick-slip"
phenomena, and its numerical implementation has been discussed. Discrete dynamical
analysis such as construction of bifurcation diagrams, Poincare maps has been
implemented in order to ascertain quality of motion.

NUMERISCHE UNTERSUCHUNG DES STICK-SLIP EFFEKTS

Zusammenfassung. Eine Darstellung der trockenen Reibung, die den Stick-slip Effects
zur Folge hat, sowie ihre numerische Implementation wurden vorgeschlagen. Man hat
solche Verfahren der dynamischen digitalen analyse wie: Bifurkationsdiagramme und
Karten von Poincare verwendet, um die Bewegung qualitativ zu bestimmen.

1L INTRODUCTION

Stick-slip phenomenon is defined as a regular motion with single frequency, often occurs
in mechanical systems with differing friction characteristics. This terminology is taken
straight forward from machine tool technology, where unfavorable chosen combination
of sliding materials may produce self sustained vibrations under certain operation
conditions.

The study of stick-slip caused by a variable Coulomb force [1] has attracted
considerable interest, but has suffered from the lack of a generalized model to particular
problems. The main cause of stick-slip is the difference between the static and Kkinetic
friction has been investigated t'pryears [2-8], but only recently brings a connection
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between dry friction force and chaotic vibrations [9-11]. Fig.l shows typical friction
characteristics being used in mathematical modelling of Coulomb phenomena [12].

Figure 1 Different models of dry friction: a)-c) reversible with constant, quadratic and
expotential friction force; d) non-reversible characteristics

Rys. 1 R6zne modele tarcia suchego: a)-c) odwracalne, z sita kwadratowg i wyktadnicza
d) charakterystyka nieodwracalna

Thus the problem of formal description and analysis of the self-sustained (relaxation)
vibration has been approached for many investigators, however they assumed a step dry
friction force ie. the difference between a staticfa and dynamic fcd friction force, which
generally may be written as [6,9]

m =fcs - /«w .

where fc denotes friction force acting on the sliding parts. In fact dynamics of the system
exhibiting stick-slip phenomena cannot be fully characterized by equation as two different
states are demonstrated, which can be successfully described by discontinues functions
[13]. The ambiguity of a description and willingness of showing aforementioned transition
based on the novel approach to the friction force generated on the sliding surfaces
become the main objective of this paper. Moreover, as the considered system is highly

nonlinear, an efficient numerical method hass to be identified/developed and
implemented.
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2. DESCRIPTION OF THE SYSTEM

In order to keep our analysis clear, consider the simplest model exhibiting relaxation
vibration, what is depicted in Fig. 2. Let assume a friction force, which is generated on
the sliding parts as [9,13]

Po~ h

fc =sgn(vnN Pi + h Vr
1 XLivl
where vr = x - v0 is the relative velocity, p2 denotes static and dynamic friction
coefficient respectively, 22 dry fiction model’s constants.

u(t)

Figure 2 Physical model of the system
Rys. 2 Fizyczny model systemu

During the stick portion mass m is moved by a belt conveyer with constant velocity v,,.
so the equation of motion is given as

* =y fe*xfv > ?3)
where

4, =(*© - me *(M0-m k. w

When slip portion lasts, mass motion is governed simply by second Newton’s law, so one
can write

mx + kx +cx =cult) + ku(t) - fc\ fc <fsys,

where u(t) = udcos(cot) is possible kinematic exitation.
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Although the first glance at equations (3) and (5) gives impression that they may
describe fully dynamics of the system, a careful consideration shows that relationship (3)
is only a neccesary condition and will not work numericaly. Therefore, a sufficient
condition for 'switching" to equation (3) has been formulated as

lic- vO| < e, (6)

where e is a small number.

3. NUMERICAL ANALYSIS

As the considered system is both nonlinear and discontinoues, comprehensive dynamic
analysis cannot be accomplished by analytical or aproximate method. Thus a solution is

obtained through numerical integration equations of motion, which are tranformed to the
dimensionless system of autonomous equations

- X, - 21x2 - fc + PcosXj
4 =n;

where fc" = fc/c. Since the system can produce chaotic responces i.e. the system is
sensitive on small perturbations of initial conditions, an employed integration method
must be extremely accurate one. Integration process is conducted with constant time step
until the switch function (a function checks whether stick or slip phase is present) changes
its sign. Then accurate value of time when discontinuity appeared is calculated by
approximation methods in order to set up precisly "initial conditions" for next integration
loop [14,13], From authour’s experience, the best results are obtained using fourth order
Runge-Kutta method combined with bisection routine [13].
The investigated system is defined by nine component parameter’s vectorp = /£ & ],
ixt'Ap Ap N, vQqT. However only three element parameter’s vector p' = [rj, N, v 7
has been chosen to the further analysis.

Lets start our analysis from the case when the stick-slip phenomena occurs ie. relaxation
vibration takes place. Then the time history of displacement and velocity is periodic, and
phase plane forms a closed loop in a well known manner. Figure 3 confirms our
conjecture, and a limit cycle for steady state vibration on the phase plane is evident,
which is similar to the limit cycle of Van der Pol oscillator. This phenomena which is
accompanied by the existence of a periodic forcef*y S which is depicted in Fig.3c. More
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Figure 3 Relaxation vibration; a) time history of displacement and velocity, b) time
histoty of force fSYS, ¢) phase plane

Rys. 3 Drgania relaksacyjne: a) przebieg czasowy przemieszczenia i predkosci,
b) przebieg czasowy sity/ cjptaszczyzna fazowa

comprehensive understanding of the system responses may be attained by bifurcation
analysis. Figure 4 shows bifurcation diagrams x = /(vq) computed for two differently
excited frequency ratio q. For r| > 1 the analused systems exhibits similar bifurcation

diagrams, which feature in existing of the critical value of the driving velocity ¥ = 1.68
trom which the motion becomes periodicaly stable (see Fig.4b).

b)

Figure 4 Bifurcation diagrams x = /(vq) fora) ti = land b) p = 2

Rys.4 Wykresy bifurkacyjne x=f(v0) dla: a) v=1ib) v=2
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Another parameter which has a large influence on the system dynamics is the normal
force N. Figure 5 shows bifurcation diagrams x = f(N) which were calculated for two
different velocity levels. Although there is expected regularity ie. the amplitude of
ocillatory motion increases with the normal force, there is some odd behaviour. The
existence of irregular motion associated, with a controlled parameter such as N is not
caused by numerical hunting of the zero finder algorithm [13], It could be as a result ef
quasi subharmonic oscillation of the relative velocity around its zero value,

a) b)

10.00 10.00
N

N

Figure 5 Bifurcation diagrams x = f(N) for a) vO= 0.5 and b) v0O= 1.0
Rys. 5 Wykresy bifurkacyjne x=f(N) dla: a) v0=0.5 i b) v0=1.0

4. CONLUSION

A novel formulation of the stick-slip problem using a suitable switch function has been
shown. This approach was tested on the parameter vector for which the system exhibits
selfsustained vibration. Since the system’s behaviour is regular in nature, bifurcation
analysis has been carried out for the controlled parameters such as driving velocity and
normal force. For certain rangas of these parameter values, chotic motion takes place,
howevfer nontypical scenario has been noticed. Implementation of further teechniques to
ascertain quality of motion such as construction of Poincare maps, autocorrelation

function will be dfiscussed on the conference. Figure 6 shows an examplary topology
change for two succesivb Poincare maps.
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b)

Figure 6 Poincare maps for a) vO= 0.75 and b) vO = 0.78
Rys. 6 Mapy Poincarego dla: a) v0=0.75 i b) v0=0.78
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Streszczenie

Zjawisko ruchu przerywanego stick-slip jest wynikiem wystepowania réznicy sit tarcia
spoczynkowego i dynamicznego. Istnieje wiele ré6znorodnych opiséw dynamiki uktadéw
z tarciem suchym. Niektérzy autorzy [1-9] przyjmuja tzw. skokowg site tarcia, ktérg
okreslono zaleznos$cig (1). W rzeczywistosci jednak uktad dynamiczny reaguje na pewng
bezwgledna warto$¢ sity tarcia, a nie na wymieniong réznice. Dlatego tez w niniejszej
pracy sprébowano alternatywnego opisu, polegajagcego na wyréznieniu dwoch stanéw
ruchu w uktadach z tarciem Coulomba tj. stanu sczepienia i stanu poslizgu. Stany te
rozréznia sie zapomocg odpowiednio skonstruowanej funkcji przetaczajacej.

Zaimplementowano i sprawdzono powyzszy sposéb dla przypadku powstawania drgan
stick-slip (patrz rys.3) uzyskujac wysoka stabilo$¢ numeryczng. Nastepnie przeprowadzono
analize bifurkacyjng wptywu parametréw uktadu na uzyskiwane formy ruchu. Zauwazono,
ze od pewnej krytycznej warto$ci predkosci vO uktad jest catkowicie stabilny. Badajac
wplyw sity normalnej N uzyskano takze pewng krytyczng warto$¢ powyzej, ktérej uzyskuje

sie wyltgcznie odpowiedzi chaotyczne. Pokazano takze wplyw predkosci v0 na topologie
map Poincare.



