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MODELLING STATIONARY GAUSSIAN LOADS

Summary. The paper presents information about two methods of digital simulation
of samples of the stationary Gaussian stochastic processes possessing multi modal
spectra. They have been developed in order to imitate dynamic loads arising on an
airplane undergoing gusty flying conditions. Therefore the particular spectra typical for
an airplane gust study were involved reflecting also elastic properties of the flying
vehicle. In an essential part the presented details are devoted to the problem of solving
the system of algebraic non linear equations describing desired linear filter. At this
stage the present«! results can be also applied in studying earthquakes, modelling gusty
winds for civil engineering and other purposes.

MODELOWANIE STACJONARNYCH OBCIAZEN GAUSSOWSKICH

Streszczenie. Praca zawiera informacje nt. dwdch metod cyfrowej symulacji realizacji
stacjonarnych gaussowskich funkcji losowych posiadajacych wielomodalne spektra.
Metody te opracowano pod katem symulowania dynamicznych obcigzen powstajacych
na samolocie lecacym w burzliwej atmosferze stosujgc spektra typowe dla tego
zagadnienia uwzgledniajace odksztatcalno$é samolotu. Prezentowane tu wyniki dotycza
problemu rozwigzywania pewnego ukiadu rownan algebraicznych nieliniowych
drugiego stopnia opisujacych liniowy filtr. Z tego punktu widzenia omawiane algorytmy
numeryczne moga Dyc stosowane do opisu np. kinematyki trzesien ziemi, modelowania
podmuchéw wiatru dla celéw inzynierii lagdowej czy innych matematycznie podobnych
zagadnien.

MOZIEJIHPOBAHHE rAYCCOBCKHX CTAU.HGHAPHHX
HAfPYBOK

Pe31QMP- PaOOTa K8CBOTCH HByX MeTOUOB IIHJpoBOfl CHMyjISIIILHH
cnyuaftHH X rayccoBCKHX c¢Tau,HOHapHnx <$yHru,HH nMet3iii,nx mhoto
MOnanbHLie cneicTpH. PaapaSoTaHo mptoziii HBMepeHHue Ha hmhtbu,h io
ziHitaMHuecKHX HarpyaoK BO3HHKacigHX bo BpeMH 60jlJTaHicH caMoneTa c
yueTOM ero ynpyrocTH - OTpasceHHirx b BHAe paccMOTpeHHiix cneKTpoB.
CyTB pa6oTH <coctoht b pemeHHH HeKOTopafl cHCTeMhi nejiHHeftHnx
aire6paH«ecxH X ypaBHeHH ft BToporo nopaaica c HHTepecHHMH
CBOfICTBaMH. 3th peiUeHHH O”OpMIJIHIOT fHIIbTp. Pe3yjlbTaTuU patiOTU
ynoTpe6HMH npH MOztenHpoBaiiHH aeM aeTpaceHHnA, BeTpoBwx Harpy3ox
b cTpoHTejibCTBe h TeM iioao6hux.
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1. INTRODUCTION - MULTI MODAL PROCESSES

A typical spectrum for considered airplanes/gliders looks like the one presented in Fig. 1
showing the response calculated at the centre of gravity for the PZL M-18 (a Polish
agricultural airplane) which flies at a speed of 100 km/h horizontally in vertical gusts
characterised by the scale of turbulence L=50 m (which means rather severe conditions).
We see for the particular airframe typical peaks associated with the sensitive frequencies
reflecting its resonances at the particular point chosen on it. We call such spectra - multi
modal spectra, and associated with them processes - multi modal processes - accordingly. For
the Gaussian stochastic processes possessing such spectral densities we developed special
technique of simulation the appropriate sample functions. It fills a gap in the wide class of
publications related to this subject (for references see [1]). Below we present the essence of
two numerical methods aiming at such a purpose. They both have the common origin and we
begin with showing this origin by stating the numerical problem which has to be solved.

Then, we show two algorithms solving this problem. In the end we give a summary of the
numerical results.

Fig. 1. Spectral Density of the Gust Response of the PZL M-18 Agricultural A/P at Its
C.G.



Modelling Stationaiy Gaussian Loads 175

2. STATING THE PROBLEM
We begin with the definition of the correlation function which is related to the properties
of the linear systems while examining their input-output relations. We define the correlation
function for the output stochastic process {y(t)} which left linear devices called filter being
fed by the input stochastic process {x(t)}:
‘N N

*(T)»ar Y,h(k)x(t-k) £ h(n)x(t+x-n) (1)

*=0 n=0

There is now an interesting innovation: we shall look at the output process with the
intention to recover the impulse characteristic of the filter h(t) by assuming that the input was
a White Noise process. Therefore in this particular case (1) is immediately simplified to:

N
K{x) = h(n)h(k) with  k =0,1,.3V 2)

[<

But for practical purposes (2) can be rewritten in a more useful form as:
S-x

K() = h(n)h(n+x) with  x =0,1,....N @)
@0

To see what exactly the problem we shall face in this way it is recommended to expand
(3) into its explicit form as below:

K(0)=h(Q)h(0) +i( )A(L)+h(2)/i(2)+...+h(N)h(N)
K()=h(0)h(I)+h()h(2)+h(2)hQ)+...+h(N-Y)h(N)

A(2)=A0)AR)+A(N(3)+*(2)A(4)+...+h(N-2)A(N)

4)
K(N-2)=h{0)k(N-2)+h()h(N- )+h(2)h(N-2)
K (N-1)=h(0)h(N-1)+h(\)h(N)

K(N)=h(0)h(N)
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Equations (4) represent a system of N algebraic equations order two each. The equations
are linearly independent i.e. their Jacobian is non zero. Therefore in general the system has
2N solutions, say ah ct2....,a2N which can be both real and complex. Each solution of (4)
preserving the form h’(1),h’(2),....h°(N) composes the filter although it is not clear at the
beginning whether each solution of (4) possess physical meaning i.e. can be considered as
the physically realised filter. There are some basic properties of the solutions which have to
be mentioned. Ifh'(l), h’(2) h’(N) is the solution of the system (4) then also h ’(N),h ’(N-
1),...,h°(I) becomes the solution. Also solutions of the form -h'(l),-h’(2),...,-h’(N) and
h’(N).-h’(N-1),...,-h’(l) satisfy equations (4). If we call the solution h’(1),h’(2),....h’(N)

the basic solution we can state that in general there will always be N/2 basic solutions
either real or complex. Each system (4) has its normalised correspondent obtained by
dividing (4) side-by-side with value K(I). It is easy to prove that normalised solutions can
be obtained dividing ordinary solutions by ]

3. SPECIAL CASE

Let us consider special case of (4) i.e. situation when N=2 . For this case one can easily
find the analytical solution. Some details of the procedure are shown below. The system of
equations (4) has now the form:

K(1) = h(Dh(l) + h(2)h(2) (5)
K(2) = h()h(2)
Let us denote:
D, = sJK(\)+2K(?) and D2 = IAT(1)-2AT(2) (6)
With this notation we shall get analytical solutions of (5) in the form:
(M
M2) = \(DX- DJ

It is clear now that once:

iT(1) < 2K(2) (8)
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value £52 becomes imaginary, therefore the corresponding solution of (5) becomes complex.
Such a solution evidently has no physical meaning.
It is also easy to see that with notation given by (7) the system (5) has four solutions:

[AD.AQR)]  [AQAD)] [AD)-AR>], [-AQ2).-A()] )

Let us acknowledge by the way that the condition (8) assessing existence of the real
solutions of (5) can be physically interpreted as a case with sufficiently rapidly decreasing
correlation function K(t) with respect to increasing value of its argument.

4. SPECIAL NUMERICAL EXAMPLES

Testing and debugging stages require reliable and suitable numerical examples. In this case
a special value have examples offering solutions expressed by integers. We enclose below two
such examples.

For the case N=2 we use:

X() =34 and K@) =15 (10)
having the basic solutions as below:
Al =5 A2 =3 (n>
For the case N = 4 we use:
AT =30, K(2) =20, K(3) = 11, 4) = 4 (12)
which possesses a single exact basic solution of the form:
Al =1, AR =2, A3 =3, A@ =14 03)

and another basic solution although this time - approximate - which wegive here in the form
rounded to two decimal digits after coma:

All) * 165 AQ) « 158, A@B) =435 Ad) *2.42 0 4)
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5. ALGORITHM MESORS

In the beginning the algebraic problem stated by (4) is reformulated and transformed into
a geometrical one. To do that we define the norm:

N-x

" £ h(n)h(n+x) (15)

with the different notations for the source process {y(r)> and the simulated one - called the

target process [f(t)} mNow some formal requirement concerning the accuracy can be specified
by demanding :

IK(r) - K(t)« (16)

Therefore N=1 values h(n) can be understood as the arguments of N+ ] - dimensional
function defined by (15) . With the condition (16) we seek for the minima of this multi
dimensional geometrical object. It was done numerically by resorting to the Svejgaard
algorithm, the main idea of which is based on a gradient searching approach and was
developed following the Algol implementation given in [2],

6. ALGORITHM ANNA

The algorithm solving the system (4) that we are going to present now does it in a direct
way. The essence in solving directly system (4) lies in finding such a solution a"e9t" for

which mapping FeSt" x St" becomes zero. Non-linear character of mapping F suggests the
application of an iterative method based upon an algorithm:

Xk = [ (%) F(*) (I7)

where:  J is the Jacobian of the mapping matrix F
x* the ka approximation of the vector x.

Practical implementation of the algorithm (17) which we call Anna is based on the
following theorem (see: Fortuna et all. [3]):
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Theorem.

Let the function F(x) becomes differentiable according to Frechet within the neighbourhood
K(a,p) of such a point a that K(a)=0. Moreover the first derivative of F(x) is a continuous
function at the same point a and non singular. With these circumstances the point a becomes
an attractive point of the Newton iterative method:

X4*1 = x “- t ] Ax*)FI(x4)

Strong assumptions imposed upon the function F(x) - continuity, differentiability and non
singularity of its derivative at the point a guarantee the local convergence of the method. The
system (4) satisfies all the requirements mentioned .

Methods based on the above Theorem having the Jacobian given numerically are called
quasi-Newtonian methods. One particular example of such a method offers a hybrid method
of Powell (see for instance: [4] and [5]). Here the Jacobian is calculated by the method of
finite differences. This method in order to improve the convergence supposes moreover:

(18)

(19)

To find p* which is necessary to determine the next iteration x*+/ must be solved the system
of equations given below:

I = F(x) (20)

The idea of the algorithm Anna implementing iterations with respect to k can be briefly
explained as below:
J-St-Sigp; If F(x>) - STOP
2-nd step:  Calculate p* by solving (19)
3-rd  step: If tFXxMN+p*)N < HF(x*)|2 thestep isaccepted resulting in:
X*+i = x* +p* then k <=k+landreturn to step 1 otherwise:
4-th  step:  Calculations are interrupted.
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7. NUMERICAL RESULTS, CONCLUSIONS

The algorithm Mesors was implemented into a program written first in Fortran IV and
widely used in numerous calculations by resorting to the electronic computers of the
generations IBM 360, PDP 11/70 and CDC 6600. They imposed hard restrictions upon the
volume of the problem which related to the speed of computations did not reach at that time
above N=32. Arrival and fast development of Personal Computers gave rise to new
implementations by using Fortran 77 and by using special compilers like the NDP Fortran.
Both implementations: the earlier from the mid 70-ties and the actual one were successful in
the sense that they lead to right solutions - what became completely evident lastly by testing
this algorithm with the examples described above in paragraphs 3 and 4 developed only
now. To complete successful computations foT N=64 by using IBM PC 486-50 requires
about 3-5 minutes. Increase in time goes approximately in such a way that doubling the
volume N leads to about computations ten times longer. It is worth mentioning that the
nature of the calculations within the airplane gust response studies needs even values N=512
or may be some times as big as N= 1024. Completing solution to the system (4) by using
the Svejgaard algorithm became a difficult problem of reaching the desired accuracy for the
results derived in this way. Especially it concerns those distanced (latest) components of the
approximate numerical solution which are usually about hundreds of times smaller than the
greatest initial values. We guess that the accuracy in their estimation may become dramatically
low. The question is: whether they have to be derived exactly? Or in other words - which
level of errors in their estimations can be accepted, and which not? And for these questions
we do not have a satisfying answer untill now.

The algorithm Anna was developed at the end of 1993 and our numerical experience with
its application to the particular aeronautical purposes is jtost at its beginning. There is no
convincing way to compare both algorithms quite literally. Seemingly the direct solution of
Anna goes about ten times faster than geometrical approach which follows Mesors. In both
cases crucial for the successful solution is the choice of the initial point. It is so far only
possible to say that Mesors almost always produces a solution of (4) disregarding the
particular choice of the initial point. There are some doubts - as we said before - about the
accuracy of these solutions. Nevertheless through out long-lasting numerical practice there
were orily few cases of divergent behaviour observed. On the other hand - Anna solves (4)
only when the choice of the initial point becomes extremely luckily done, so - there were only
few cases that the solution was obtained. Moreover the solutions produced by Anna go
significantly faster and their accuracy is high. Therefore both algorithms remain as a potential
field of the further future considerations. Some numerical results will also be shown during
the oral presentation in case of our presence at the Sympozjon.
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