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MODELLING STATIONARY GAUSSIAN LOADS

Summary. The paper presents information about two methods of digital simulation 
of samples of the stationary Gaussian stochastic processes possessing multi modal 
spectra. They have been developed in order to imitate dynamic loads arising on an 
airplane undergoing gusty flying conditions. Therefore the particular spectra typical for 
an airplane gust study were involved reflecting also elastic properties of the flying 
vehicle. In an essential part the presented details are devoted to the problem of solving 
the system o f algebraic non linear equations describing desired linear filter. At this 
stage the present«! results can be also applied in studying earthquakes, modelling gusty 
winds for civil engineering and other purposes.

MODELOWANIE STACJONARNYCH OBCIĄŻEŃ GAUSSOWSKICH

Streszczenie. Praca zawiera informacje nt. dwóch metod cyfrowej symulacji realizacji 
stacjonarnych gaussowskich funkcji losowych posiadających wielomodalne spektra. 
Metody te opracowano pod kątem symulowania dynamicznych obciążeń powstających 
na samolocie lecącym w burzliwej atmosferze stosując spektra typowe dla tego 
zagadnienia uwzględniające odkształcalność samolotu. Prezentowane tu wyniki dotyczą 
problemu rozwiązywania pewnego układu równań algebraicznych nieliniowych 
drugiego stopnia opisujących liniowy filtr. Z tego punktu widzenia omawiane algorytmy 
numeryczne mogą Dyc stosowane do opisu np. kinematyki trzęsień ziemi, modelowania 
podmuchów wiatru dla celów inżynierii lądowej czy innych matematycznie podobnych 
zagadnień.

MOZIEJIHPOBAHHE rAYCCOBCKHX CTAU.HGHAPHHX 
H A fPYBO K

P e31Q M P - P a Ó O T a  K 8CBOTCH H B yX  M eTO U O B  IIH J p O B O fl CHMyjISlII,HH 
c n y u a f tH H X  ra y c c o B C K H X  c T a u ,H O H a p H n x  < $yH ru ,H H  n M e t3 i i i ,n x  m h o t o  
M O n a n b H L ie  c n e i c T p H .  P a a p a S o T a H o  m p t o z i i i  H B M e p e H H u e  H a h m h t b u , h  io 
z iH ita M H u e c K H X  H a r p y a o K  B 0 3 H H K a c ią H X  bo B p eM H  6 o jJ T a H ic H  c a M o n e T a  c  
y u e T O M  e r o  y n p y r o c T H  -  O T p a s c e H H irx  b  B H A e p a c c M O T p e H H i ix  c n e K T p o B .  
C y T B  p a 6 o T H  c o c t o h t  b  p e m e H H H  H e K O T o p a f l  cH C T eM hi n e j iH H e f tH n x  
a i r e 6 p a H « e c x H X  y p a B H e H H ft  B T o p o r o  n o p a a i c a  c  H H T e p e c H H M H  
C B O flC T B aM H . 3 t h  p e iU eH H H  O ^O pM JlH IO T  f H l I b T p .  P e 3 y j I b T a T U  p a t iO T U  
y n o T p e 6 H M H  n p H  M O z te n H p o B a iiH H  a e M a e T p a c e H H ń ,  B e T p o B w x  H a r p y 3 o x  
b  c T p o H T e j ib C T B e  h  T e M  i i o a o 6 h u x .
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1. INTRODUCTION - MULTI MODAL PROCESSES

A typical spectrum for considered airplanes/gliders looks like the one presented in Fig. 1 
showing the response calculated at the centre of gravity for the PZL M-18 (a Polish 
agricultural airplane) which flies at a speed of 100 km/h horizontally in vertical gusts 
characterised by the scale o f turbulence L = 50  m (which means rather severe conditions). 
W e see for the particular airframe typical peaks associated with the sensitive frequencies 
reflecting its resonances at the particular point chosen on it. We call such spectra - multi 
m odal spectra, and associated with them processes - multi modal processes - accordingly. For 
the Gaussian stochastic processes possessing such spectral densities we developed special 
technique of simulation the appropriate sample functions. It fills a gap in the wide class of 
publications related to this subject (for references see [1]). Below we present the essence of 
two numerical methods aiming at such a purpose. They both have the common origin and we 
begin with showing this origin by stating the numerical problem which has to be solved. 
Then, we show two algorithms solving this problem. In the end we give a summary of the 
numerical results.

Fig. 1. Spectral Density of the Gust Response of the PZL M-18 Agricultural A /P at Its
C.G.
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2. STATING THE PROBLEM

We begin with the definition of the correlation function which is related to the properties 
of the linear systems while examining their input-output relations. We define the correlation 
function for the output stochastic process {y(t)} which left linear devices called filter being 
fed by the input stochastic process {x(t)}:

*(T)»ar
' N N

Y ,h (k )x (t-k )  £  h(n)x(t+x-n)
* = 0  n = 0

(1)

There is now an interesting innovation: we shall look at the output process with the 
intention to recover the impulse characteristic of the filter h(t) by assuming that the input was 
a White Noise process. Therefore in this particular case (1) is immediately simplified to:

N
K{x) = h(n)h(k) with k  = 0,1,..JV (2)

«■0

But for practical purposes (2) can be rewritten in a more useful form as:

S-x
K (t )  = h(n)h(n+x) with x = 0,1,...,N @)

«■0

To see what exactly the problem we shall face in this way it is recommended to expand
(3) into its explicit form as below:

K(0)=h(Q)h(0) +/i( 1 )A( 1) +h(2)/i(2)+... +h(N)h(N) 

K(l)=h(0)h(l)+h(l)h(2)+h(2)hQ)+...+h(N-Y)h(N) 

A'(2)=A(0)A(2)+A(l)h(3)+*(2)A(4)+...+h(N-2)A(N)

(4)

K(N-2)=h{0)k(N-2)+h( 1 )h(N- l)+h(2)h(N-2)

K (N -1)=h(0)h(N-1) + h(\)h(N)

K(N)=h(0)h(N)
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Equations (4) represent a system of N  algebraic equations order two each. The equations 
are linearly independent i.e. their Jacobian is non zero. Therefore in general the system has 
2N  solutions, say a h ct2, . . . ,a 2N which can be both real and complex. Each solution of (4) 
preserving the form h ’( l ) ,h ’(2 ) , .. . .h ’(N) composes the filter although it is not clear at the 
beginning whether each solution o f (4) possess physical meaning i.e. can be considered as 
the physically realised filter. There are some basic properties of the solutions which have to
be mentioned. If h '(I), h ’(2) h ’(N) is the solution of the system (4) then also h ’(N),h ’(N-
l ) , . . . , h ’( l)  becomes the solution. Also solutions of the form -h '( l) ,-h ’(2 ) ,.. .,-h ’(N) and 
h ’(N ).-h’(N - l) , . . . , -h ’( l)  satisfy equations (4). If we call the solution h ’( l) ,h ’(2 ) ,.. ..h ’(N) 

the basic solution we can state that in general there will always be N/2 basic solutions 
either real or complex. Each system (4) has its normalised correspondent obtained by 
dividing (4) side-by-side with value K (l). It is easy to prove that normalised solutions can 
be obtained dividing ordinary solutions by ■

3. SPECIAL CASE

Let us consider special case o f (4) i.e. situation when N = 2  . For this case one can easily 
find the analytical solution. Some details o f the procedure are shown below. The system of 
equations (4) has now the form:

K( 1) = h (l)h (l)  + h(2)h(2) (5)

K(2) = h(l)h(2)

Let us denote:

D, = sJK(\)+2K(?) and D2 = 1/AT(1)-2AT(2) (6)

With this notation we shall get analytical solutions of (5) in the form:

(7)

M 2) = \ (D X - DJ

It is clear now that once:

ÍT(1) < 2K(2) (8)
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value £>2 becomes imaginary, therefore the corresponding solution of (5) becomes complex. 
Such a solution evidently has no physical meaning.

It is also easy to see that with notation given by (7) the system (5) has fo u r  solutions:

[A(1),A(2)], [A(2),A(1)], [-A(l),-A(2>], [-A(2),-A(l)] (9)

Let us acknowledge by the way that the condition (8) assessing existence of the real 
solutions of (5) can be physically interpreted as a case with sufficiently rapidly decreasing 
correlation function K(t)  with respect to increasing value of its argument.

4. SPECIAL NUMERICAL EXAMPLES

Testing and debugging stages require reliable and suitable numerical examples. In this case 
a special value have examples offering solutions expressed by integers. We enclose below two 
such examples.

For the case N = 2  we use:

X(l) = 34 and K(2) = 15 (10)

having the basic solutions as below:

A( 1) = 5, A(2) = 3  (n >

For the case N  =  4  we use:

AT(1) = 30, K(2) = 20, K(3) = 11, 4) = 4 (12)

which possesses a single exact basic solution of the form:

A(l) = 1, A(2) = 2, A(3) = 3, A(4) = 4 0 3 )

and another basic solution although this time - approximate - which we give here in the form
rounded to two decimal digits after coma:

A(l) * 1.65, A(2) « 1.58, A(3) = 4.35, A(4) * 2.42 0 4)
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5. ALGORITHM MESORS

In the beginning the algebraic problem stated by (4) is reformulated and transformed into 
a geometrical one. To do that we define the norm:

N -x

" £  h(n)h(n+x) (15)

with the different notations for the source process {y(r)> and the simulated one - called the 
target process [f(t)} ■ Now some formal requirement concerning the accuracy can be specified 
by demanding :

|K (r) -  K(t ) « (16)

Therefore N = 1  values h(n) can be understood as the arguments of N+ ] - dimensional 
function defined by (15) . With the condition (16) we seek for the minima o f this multi 
dimensional geometrical object. It was done numerically by resorting to the Svejgaard 
algorithm, the main idea of which is based on a gradient searching approach and was 
developed following the Algol implementation given in [2],

6. ALGORITHM ANNA

The algorithm solving the system (4) that we are going to present now does it in a direct

way. The essence in solving directly system (4) lies in finding such a solution a " e 9 t"  for

which mapping F eS t" x  St" becomes zero. Non-linear character o f mapping F  suggests the 
application of an iterative method based upon an algorithm:

x k*l = * * - [ - r ‘(x*)F(**) (I7)

where: J  is the Jacobian of the mapping matrix F
x* the k_a approximation of the vector x.

Practical implementation of the algorithm (17) which we call Anna  is based on the 
following theorem (see: Fortuna et all. [3]):
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Theorem.
Let the function F(x) becomes differentiable according to Frechet within the neighbourhood 

K(a,p) of such a point a  that K (a)=0. Moreover the first derivative o f F(x) is a continuous 
function at the same point a  and non singular. With these circumstances the point a  becomes 
an attractive point of the Newton iterative method:

Strong assumptions imposed upon the function F(x) - continuity, differentiability and non 
singularity o f its derivative at the point a  guarantee the local convergence of the method. The 
system (4) satisfies all the requirements mentioned .

Methods based on the above Theorem having the Jacobian given numerically are called 
quasi-Newtonian methods. One particular example of such a method offers a hybrid method 
of Powell (see for instance: [4] and [5]). Here the Jacobian is calculated by the method of 
finite differences. This method in order to improve the convergence supposes moreover:

To find p* which is necessary to determine the next iteration x*+/ must be solved the system 
of equations given below:

The idea of the algorithm Anna implementing iterations with respect to k  can be briefly 
explained as below:

J-St-Sigp; If F(x>) -  STOP
2-nd step: Calculate p* by solving (19)

3-rd step: If tFX x^'+p*)^ < HF(x*)|2 the step is accepted resulting in:
x*+i =  x* +p* then k <= k+1  and return to step 1 otherwise:

4-th step: Calculations are interrupted.

x4*1 = x ‘- t / 1(x*)]Fl(x4)

(18)

(19)

J(x*)p* = -F(x*) (20)
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7. NUMERICAL RESULTS, CONCLUSIONS

The algorithm Mesors was implemented into a program written first in Fortran IV and 
widely used in numerous calculations by resorting to the electronic computers of the 
generations IBM 360, PDP 11 /70 and CDC 6600. They imposed hard restrictions upon the 
volume o f the problem which related to the speed of computations did not reach at that time 
above N = 32 .  Arrival and fast development of Personal Computers gave rise to new 
implementations by using Fortran 77 and by using special compilers like the NDP Fortran. 
Both implementations: the earlier from the mid 70-ties and the actual one were successful in 
the sense that they lead to right solutions - what became completely evident lastly by testing 
this algorithm with the examples described above in paragraphs 3 and 4 developed only 
now. To complete successful computations foT N = 64  by using IBM PC 486-50 requires 
about 3-5 minutes. Increase in time goes approximately in such a way that doubling the 
volume N leads to about computations ten times longer. It is worth mentioning that the 
nature o f  the calculations within the airplane gust response studies needs even values N = 5I2  
or may be some times as big as N= 1024. Completing solution to the system (4) by using 
the Svejgaard algorithm became a difficult problem of reaching the desired accuracy for the 
results derived in this way. Especially it concerns those distanced (latest) components of the 
approximate numerical solution which are usually about hundreds o f  times smaller than the 
greatest initial values. We guess that the accuracy in their estimation may become dramatically 
low. The question is: whether they have to be derived exactly? Or in other words - which 
level of errors in their estimations can be accepted, and which not? And for these questions 
we do not have a satisfying answer untill now.

The algorithm Anna was developed at the end o f 1993 and our numerical experience with 
its application to the particular aeronautical purposes is jtost at its beginning. There is no 
convincing way to compare both algorithms quite literally. Seemingly the direct solution of 
Anna goes about ten times faster than geometrical approach which follows Mesors. In both 
cases crucial for the successful solution is the choice of the initial point. It is so far only 
possible to say that Mesors almost always produces a solution of (4) disregarding the 
particular choice of the initial point. There are some doubts - as we said before - about the 
accuracy of these solutions. Nevertheless through out long-lasting numerical practice there 
were orily few cases o f divergent behaviour observed. On the other hand - Anna solves (4) 
only when the choice o f  the initial point becomes extremely luckily done, so - there were only 
few cases that the solution was obtained. Moreover the solutions produced by Anna go 
significantly faster and their accuracy is high. Therefore both algorithms remain as a potential 
field of the further future considerations. Some numerical results will also be shown during 
the oral presentation in case of our presence at the Sympozjon.
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