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1.

A

HE ARTIFICIAL HEAT SOURCE METHOD IN NUMERICAL MODELLING

OF NON-LINEAR CONDUCTION PROBLEM S

Sum m ary. In the paper a certain algorithm which can be called the artificial heat
source method is presented. Proposed approach is useful in the case of non-linear
and non-steady heat conduction problems.

METODA SZTUCZNEGO ZRODLA CIEPLA W MODELOWANIU
NUMERYCZNYM NIELINIOWYCH ZADAN PRZEWODNICTW A

Streszczenie. W pracy przedstawiono pewien algorytm, ktéry nazwano metoda
sztucznego Zzrédta ciepta. Metoda moze byé wykorzystana do numerycznego

modelowanianieliniowych iniestacjonarnych zagadniefn przewodnictwacieplnego.

METOI1 MCKyCCTBEHHOFO HCTCEiHHKA TEILJIA B  WOEHHOM
MOFIEIMPOBAHBM HKJIIMHEMHUX [1POBEEMOB TEIIONPOBOfIHOCTH

Pe~joMg.. UpencTaBlieHU ochobij anropuTMa KOTopuii Ha3BaH
MeronoM HcKycTBeHHoro hctouhhKa Tenna. 3tot MeTon Mo*eT
6 ijtii ripnMOHBH K uHCJiemiOMyYy MoztejiHpoBaHHN HenHHefiHux 3anan
TeiuionpoBonnocTH.

GOVERNING EQUATIONS

1995

1266

homogenous domain D limited by boundary T is considered. The heat conduction

process in this area is described by the following energy equation

and b

c(T)p (T)dT(*" *ym=div[A(r)gradT (X, r)]
ot

oundary-initial conditions of the form (Figure 1)

@)
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Xel\ : T(X, t) =7\(X, t)

Xer2: -AngradTXX, i) =qn(X, t)
Xer3: -A.n-gradr(X, i) =a [T (X, r) - T,]
t =0 : 7 (X, 0) = TO(X)

where ¢, p, X are the thermophysical parameters (specific heat, mass density, thermal
conductivity), T, X, tdenote a temperature, spatial co-ordinates and time, n gradfis a normal
derivative at boundary pointX, gnis a given heat flux, a, T, are the heat transfer coefficient
and ambient temperature, Tt, TO are the boundary and initial tem peratures.

The basic mathematical model can be
rebuilt by the introduction of so-called

Kirchhoffs temperature, it means

U(T) = fX (ti) dp 3)

where Tr is an arbitrary assumed reference

level. Fig 1. Considered domain D

The Kirchhoffs transform ation linearizes Rys. 1. Rozwazany obszar D
the right-hand side of energy equation (1),

namely

div[X(r)gTadr(X, f)] =divigradi/(x, r)] (4)

The left-hand side ofequation (1) can be transformed by introducing to the considerations the

physical enthalpy related to an unit of volume

T
H(T) =lc(p)p(p)dp (5)
r,

Because H and U are the functions of temperature and there are monotone ones so, it is

possible to construct the function //=%$(£/) — comp. Figures 2, 3, 4. Additionally

dH (X, t) _ dH(U) 3t/(X, t) = ,V)dU(X, t) =T (t/)8t/(X, t) (6)
dt du dt dt dt

The final form of considered differential equation is the following

W (u)d U (X jI = )} 0}
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A course of derivative 'i'(U) for considered m aterial is shown in Figure 5.

The boundary and initial conditions should be alsotransformed in adequate way [1]
Xel\ : u(x,o0 = 0
Xer2: -ngmdu(x, t) =qgn(x, t) (8)
Xer3: -ngradi/z(x, ) = a[T{x, t) -Tm
t=0: U(X, 0) = 1/0(X)
Because
T

U-Um=fk(ii)dn km(1-T.,) (9)

where \mis an integral mean of thermal conductivity for [77, T], so the boundary condition

for r 3can be written in the form

-n-gradt/(X, t) = t)y - 1/,] (10)

where am=a/\m. It should be pointed that this non-linearity of condition (10) does not cause

the essential difficulties in num erical realization.
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Fig. 2. Kirchhoffs temperature U -U {T) Fig. 3. Enthalpy function H = H (T)

Rys. 2. Temperatura Kirchhoffa U= U (T) Rys. 3. Funkcja entalpii
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Fig. 4. Function H=H (U) Fig. 5. Funetion 'k = $"'
Rys. 4. Funkcja H=H (U) Rys. 5. Funkcja 4'=%"

2. THE ARTIFICIAL HEAT SOURCE METHOD (AHSM)

Consider now, a function 'i'(U) which is conventionally expressed as a sum of two

components, it means a constant part 4'0 and a certain increment A'k

W(U) =70+ A>P(I/) (11)

The energy equation (7) can be written in the form

y odU(-*’ = div[grad I/(Y, i)] - AY3t/(® 1) (12)

or
TOWwW (5 =div[gradl/(X, 0] + «v(X. O <13>
ot

where qv (X, t) is a source function (a capacity of internal heat sources). The essential feature
of equation (13) consists in a fact, that leaving out the last term one obtains the linear form
of energy equation. Taking into account the possibilities of boundary element method
application in the range of non-steady problems modelling, it is the very convenient form of
basic differential equation (a non-linearity appears only in the component determining the
internal heat sources, and the function describing so-called fundamental solution for
considered problem is well known). The calculation of a source function requires, ofcourse,
the introduction of a certain iterative procedure (the details connected with num erical aspects
of proposed algorithm will be presented in the further part of the paper), but it should be
pointed that if |A 'i[< then the adequate iterative algorithm is convergent. In this paper
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the AHSM wiill supplement a variant of boundary element method called the BEM using

discretisation in time [2, 3, 4, 5].

3. BOUNDARY ELEMENT METHOD USING DISCRETISATION IN TIME

The ID problem will be considered, it means the energy equation in the form

vodu(*'o = - ~ + o (14)
tir

o
a%

with assumed boundary conditions for x= xIt x=x2 and initial condition for r=0. It should be
pointed that a generalization o fpresented algorithm on 2D or 3D problem is very simple [5].

At first the Green’s function of the form

exp (15)
2 ylaAt(

is introduced (x is a spatial co-ordinate whereas £ is a point where a concentrated heat source
is applied).
The function (15) fulfills the equation

(16)
dx aAt

where A(£, x) is a Dirac’s function.
The idea of discussed variant of the BEM consists in a substitution of a time derivative by

its first order approxim ation and then the equation (14) is transformed to the form

d2U (x, t+A t) 1

4 -1/ (x, r+Af) =-qy(x, t) - -4-U(x.O0 (17>

dx2 aA t aAt
Multiplying both sides of equation (17) by (/*({, x) and integrating over x2 yields
d2U (x, t+At) 1 ,
1 -—— U(x, t+At) U (Z, x)dx =
aAt
(18)

m/ SQV(x, t)-—— U(x, t) U 'U .x) Ax

aAt
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The last integral equation corresponds to so-called Weighted Residual Method criterion.

Integration by parts the left-hand side of equation (18) and using equation (15) leads to

vEgran 9T i L1 U(XtHAL) +A-A- exp 1 A 'jq.(s,f+Af)
, JjaAt 2 sjaAt)
s/aAt A
/ . qu(x' 0 + — — zu(x,t) expf-itiidx
2 2\faAt sjaAt)
(19)
For {

Xi and £ -* x2 one obtains two following boundary equations

sjaAt sjaAt I*2-*il
exp an(xj, f+Ar)
2 ejaAt ,
sjaAte [ 1xi-*2 s/aAt qn(x2, t+At)
2 I sjrAt 2
K - *il
—exp U(X,, t+At)
(20)
—exp 1 U(x2, t+At)
sjaAt 2
| y/EAT 1 roAR-Xjf
dx
2vNIT7 jaTt
1* X2
/ y/qAf 1 i
2 2s/aAi > i/aAr ,
or
#11 #12 me(*,. *+A0  An *12 I/(X,, r+Ar)  p; 1)

H2 #H2 «,(2> i +HAi 21 22 /(*2- ' +A> p2
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Above system ofequations allows to find the 'missing’ boundary Kirchho ffs temperatures
or heat fluxes, and next applying the equation (19) one can determine a searched function
U (x, t+ At) at the internal points of domain D. The heat flux continuity condition (10) can
be also taken into account.

The iterative process of source function determination is the following.

1. Transition from f°= 0 tot ‘= i+ Af:
— it is assumed that qv(xt, r')= 0, at the same time x, denotes a central point of internal
cells distinguished in considered domain,
— for this assumption the Kirchhoffs temperature field for whole domain is calculated,
— the local cooling rates [t/ (x, tl)-U(x, f)]/Af are estimated,
— a local values of source function qv(x, t*‘) are corrected,
— the iterative process is stopped if required accuracy is obtained.
2. Transition from tf~'to tf,/= 2, 3, ..., F:
— it is assumed that qv (xf, tf) is equal to the last value of qv found during the previous
iterative process (at considered point),
— for this assumption the Kirchhoffs temperature field for whole domain is calculated,
— the local cooling rates [i/(x(, tf)-U(x, tf~')]/At are estimated,
— a local values of source function qv (xf, t/) are corrected,
— the iterative process is stopped if required accuracy is obtained.
The test computations show (and it can be probably proved in analytic way) that the

iterative process is convergent if |A'i\< o

4. EXAMPLE OF NUMERICAL SIMULATION

The steel plate with thickness L = 0.1[m] has been considered. Thermophysical param eters
of the material (C=0.08, Si=0.08, Mn=0.31, S=0.05, P=0.029, Cr=0.045, Ni=0.07,
Mo0o=0.02) have been assumed on the basis of experimental data quoted in [6], The problem
is strongly non-linear because, for example, specific heat (related to an unit of volume)
changes from 3.5106 to 8.7-106[)/m 5], whereas the thermal conductivity from 30 to
50[W/m K], Using the num erical integration methods the functions H (T) and U (T) have been
found - Figures 2 and 3, next function H =H (U ) has been constructed (Figure 4) and finally
its derivative (Figure 5). The following boundary-initial conditions have been assumed: x, =0:
<70, )=0, xt=L: -dUIldx=am(U-U,), at the same time a =300, i/,=0 (comp, equation
(11)), for f=0: U0O=27510 (this value corresponds to r=553°C).

In Figure 6 the cooling curves at selected points of interior D are shown, in particular:
1: x=0.095, 2: x=0.065, 3: x=0.035, 4: x=0.05[m]. The full lines illustrate the num erical
solution obtained on the basis ofrepeatedly verified FD M algorithm for non-linear equations,
whereas the symbols show the num erical solution found by means of artificial heat source
method. The maximum difference between presented num erical solutions does not exceed
0.5%. It seems that proposed method can be very useful in the case of the BEM application

for numerical computations of non-steady and non-linear heat conduction problems.
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Fig. 6. Cooling curves at selected points of domain D

Rys. 6. Krzywe stygniecia w wybranych punktach obszaru D
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