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DISPLACEMENT AND FORCE ANALYSIS OF THE SPHERICAL PLATFORM MECHANISM
3(SPS)-S WITH COMPLIANCIES OF LINEAR ACTUATORS TAKEN INTO ACCOUNT

Summary. The displacement equations of the 3(SPS)-S spherical platform
mechanism (with three linear actuators and three degrees of freedom) are
derived by using the solutions of the vector tetrahedron equations in the
form of three unit vectors formula [6], The compliancies of the actuator
system are taken into consideration, leading to an algorithm for deter-
mining the mechanism compliant characteristics. Some numerical examples are

solved.

1. Introduction

Solar panels, telescopes, radar and satellite antennas, mirrors for
laser beams and manipulator end-effectors are some of the most outstanding
application of the spherical platform mechanism driven by three linear
actuators with multi-loop kinematic chain of the3(SPS)-S structure
(S-spherical or universal joint, P-prismatlc joint). When a precise
orientation control, high stiffness andfavourable load capacity to
mechanism weight ratios are the majorrequirement with respect to
manoeuverability, platform-type mechanisms with parallel structure of
actuator system can provide higher performances than serial ones.

In spite of their very attractive performances, few spherical platform
mechanism for an orientation of rigid body have » been proposed. In
particular, a fully-parallel three degree-of-freedom spherical wrist with
coaxial actuators has been considered in [2,3] from the viewpoint of the
optimization of some kinematic performance.

An important problem for trajectory planning of parallel manipulators is
represented by direct position analysis (DPA), one of the subjects of this
paper. The DPA consists of finding the orientation of the platform when the

set of actuator displacements is given. The DPA of spherical platform can
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be reduced to the successive solution of two second order trigonometric
equations, hence obtaining four or eight configurations at most [5,8].

When the actuators of the parallel manipulator are all locked, then it
reduces to a statically determined structure, and the solution of the DPA
is equivalent to finding all possible closures of the structure itself.

The compliant characteristics of a robot manipulator to a large extent
determine the limits of its performance. Effects of serial manipulator
compliance are the subject of many investigations. There are, however,
relatively limited previous investigations into the compliance of parallel
manipulator and its matrix representation [4].

In this investigation a payload/manipulator system is modelled as
kinematically constrained rigid body, supported by an elastic system and is

represented by a symmetric 3 x 3 compliance matrices.

2. Direct position analysis by using vector method

The platform (see Fig. 1) is connected to the base through one spherical
joint centered at point Q, and three legs between three base points A" and
platform points B (i = 1, 2, 3), where spherical joints are centered. The
rotational freedom of each leg about the line through its two terminal
joints does not affect the platform orientation; however, it can be

eliminated by substituting a universal joint at the base.

Fig.1l. The 3(SPSu)-S spherical platform mechanism with three linear actua-
tors. Notation: S-spherical joints centered at points Q and B”, S”-univer-

sal joints at A~(i=I,2,3), P-prismatic joints on each leg A"B"
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The geometry of the spherical platform mechanism is given. In particu-
lar, the position of points A" are given in an arbitrary reference system
fixed to the base; the position of points B. are given in an arbitrary re-
ference system fixed to the platform; the lengths d* of legs are
known. Without loss of generality, reference systems are chosen with ori-
gins coincident with point Q, x”"-axis directed from point Q to point A,
X -axis to point BI, yb-axis is in the plane OA1 2a nd yp-axis is in the
plane OB"B".

Let be given: (i=1,2,3) - the position vector of point A. described
in the base reference system; b (i=1,2,3) - the position vector of point
B in the platform reference system; d* = A"B" - the distance between two
respective points of the base and the platform (the actuator”leg length).
The dot products of the corresponding unit vectors can be described as

follows:

o _ ,.7 2 2
By Ay T A A )2,
aj - tla =i(a2i+ bZI - qZ)/Zia.b. (1)
bI : bi+| = (b% * b12+1' ) b12,1’+'?/2bllb1+l
where:

e T G f 0 Py T Pyt By
ai =|a.‘a. , bi =|b.I/b. , i =1 2, 3

If the leg A”B3 is momentarily removed from the platform mechanism, then

the point B” can betreated as the coupler point of a spherical 4-bar
mechanism (A”B"B”A"). The position of this mechanism can be described by an
additional independent variable:

v =a° ¢ b° (2)
It can be used to describe the unit vectors b° of points B. (i=1,2,3) in
the base reference system according to the general formula for three unit

vectors [6]:

bl = {[(31 ' bl) ' V(@? ‘'a2)]al + [V ~(ale a2)(al' bl)Ja2 +

3

Var[a® xa°®)j/[l - [a° - a°)2] (3)

1
—

where - (a° *b°)2 - (a° e a°)2 - y2 +2(a° e+ b°Ha° ' a2”"v

*1m{[(*2"'-2) --ft m-1)]4 * [ft «I) - -ft m‘S)ft *
t vijft x - v2) (1)

where D2 = 1 -(a® *b°)2 -(b° <« b°)2 - v2+2(a° <b°)(b° - b°)v
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where £2 = 1 - (b° « bA)2 ™ 72 b3~ ~ M| b3 A2+
+ 2(b° + b°)(b* + b°)(b° « b°)

The closure equation forthe loop with leg can be written in the form

F(v) = a° «b° - (.J +¢2 -d2)/2a3b3 =0 (6)

where b° is described as a nonlinear function of variable Vv by using
formulas (3j—5). The roots of equation (6) can be found in the range

[-1;+1], by using a numerical method, for example Newton's method.

3. The Jacobian of the 3(SPS)-S manipulator
The input variables d.(t), (i=1,2,3), and the output variables, for
* I

example a.p.y - Euler angles, are related by the following equations:

Z1 =ai + bi *2albi(al " bi)_di =°" (i=1-2-3)* )
where b° - the unit vectors of points B. (i=:,2,3) described in the
base reference system by using formulas (3)—5) or by using the rotation
matrix as follows

b°i =R bj?p (8)
where bip' the wunit vectors of points BI (i=1,2,3) described in the
platform reference system, R - the rotation matrix expressed by Euler

angles. One of the 24 Euler angle set conventions (denoted in [1] by

Rr, ,) is chosen (as given below):
cfi sfSsy spcy
R = sasfS -sacfisy+cacy -sacficy-cccsy (9)

-casfi cacpsy+sacy ca.cfScy-sa.sy

Differentiation of equation (?) with respect to time yields

g = U<\>'9 - W*de 0 ; (10)
where: g = [gj g? g3) = 0, 5 = J
* e o ] ) . o o « H ) .
w= [afSy ] - output variables d = [dj d~ d3) - input variables

r 3g Sg dg 1

w= [T W ow 3 Q=12 12
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[ ag, dghi
L ad! ad2 ad3 )

The diagonal matrix (11) can be written in the form

(i =1,2,3) (lib)

dj 0 0
w=-2 0 d2o (12)
0 0 d.

Differentiation of (8) with respect to time gives

bl =R b‘ip (13)
substituting (8) to (13) one can obtain

b® = R RT b® (14)

It is known (for example from [1]) that

0 —uZ u; ycP + a
- 2 © ~o, where: u = Pea + yspsa (15)
- o psa - yspca

Introducing the diagonal matrix W (12) and the matrix D(J(lla) into equation

(9) we can write

T
[apy 3 =J®* (d. dc._ dJ 1* (16)

i
where the Jacobian matrix of the platform angular velocity is given by:

Y = Yytw (17)
For any position of the mechanism the Jacobian matrix J (17) can be calcu-
lated. With equations (15) and (16) the angular velocityUu = [ wy u)"]T
can be found for any given set of relative velocities of the linear
actuators d = [d" d2 d"JT This result can be used for the determination of
actuator forces if the platform is loaded only by a torque.
The position vector of po;nt P given in the platform reference system

p,=Ip, P P, .1]

p P yp " Zp
can be transformed into the base reference system using the formula
Pb =R Pp (18)

where p&= [p”" pyfc p~]1l.

The Jacobian matrix of the linear velocity of point P can be obtained by
differentiation of (18) with respect to time. According to formula (14) one

can obtain

dp T
Pb = [pxb pyb Pzb] a? =R R pb (19a)
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and [pxb pyb pzb] = JP [dl d2 d3] (19b)
The Jacobian matrix J can be immediately used to determine the actuator
forces acting on the F)plan‘orm f = [fj f2 f3|J if the external load can be
reduced to F - the vector of force acting on the platform at the point P.
The forces F and f are related by the equation

F=1 f 19c
o (19¢)

The equations (16) and (19) follow immediately from the principle of

virtual displacement.

4. Global stiffness matrix of the 3(SPS)-S manipulator
Stiffness matrix transforms a differential displacement of the platform
into an incremental change in force. The word "global"™ is introduced to
denote that the mapping of stiffness changes and that it is a function of
the manipulator configuration [4].
An external force F is applied to the platform at point P. An applied force
F produces small changes in the platform orientation. The external force is
in static equilibrium with the actuator forces and the manipulator remains
in static equilibrium. Consider now that each actuator has a stiffness k
(i =1,2,3) and form a diagonal matrix [k”] and that SfA = k~Sd", where Sd"
is a small change in the leg length. Repeating for all legs and substitu-
ting into (18) yields:
F=if1 [k.JSd (20)
P 1 lkj 0 O
where Sd = [Sd* Sd Sd”]* and [k?"] = 0 ~ O
o o k*7j
The values of k. are determined experimentally. The work done by all given
leg forces is equal to the work done by the external force acting on the
platform. Equating this two expressions for work, dividing both sides by f?

and repeating for all legs yields the matrix expression
Sd = S 21
J)P p (21)

where Sp = [pr Spy szlT - the small displacement of the point P where the
external force is applied. Equation (21) is the reverse kinematic solution.
Substituting (21) into (20) gives the correlation form representation of
the mapping of stiffnessfor the manipulator
F=J11Tk,)J S 22
b [ I)P p (22)

The stiffness matrix of the manipulator
S = k.] J 23
G (23)
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contains nine independent parameters.

The joint reaction forces are dependent on external forces acting on the
platform and the mechanism position which is dependent on the external
load. Thus the equilibrium position has been determined using the method of
successive approximation, making use of the results of the displacement
analysis.

Having measured the compliance characteristics of the linear actuators
(or legs), it is possible to determine the equilibrium position of the
platform under static load, taking into account small actuator

displacements caused by the compliances of their hydraulic drive system.

5. Numerical example
The numerical data for this example was determinedon the basis of
measurement results of the road building machine (Baukema SHM4-120A). The

geometrical parameters are given below (in metres): a* = [ 2.470 0 O ]T;
a2 = [2.250 1.020 0)T; a3 = [-2.720 0.130-0.460]7

The distances between the corresponding platform points are also given:
bj = 2.400 b2 = 2.400 b3 = 2.635

b12 = 1.030 b23 = 0.240 b13 = 1.070

The input variables as the actuator lengths are taken from the permissible
ranges: dj e (0.530; 1.780), d2 e (0.530; 1.780), d3 € (0.810; 2.060)
As a starting point the following values are taken:

dj = 0.780, d2 = 0.570, d3 = 1.320

Taking the values of v from the range [-1,1] and using a numerical method
all real roots of equation (6)are found. For thestartingpoint
four real roots exist, determined as follows:

v: = 0.98004, v2 = 0.83904, v3 = 0.91463,v = 0.96707

The results of calculations obtained for v3 according to theformulas (2 +
5) correspond to the actual configuration of the machine manipulator. The
respective position vectors b”, b2 and b3 are calculated. The numerical
results are presented below.

bj = [2.278 0.290 -0.698]7; b2 = [2.000 1.250 -0.454]7

b3 [ 2.200 1.345 -0.541]7
The following external force F =[-500 -500 -5000] N was applied to the

platform at point P described by the vector p® = [1.8 1.9 -0.5] m
The stiffness coefficients for the actuators are following:
kx = -7.7292*106; kE = -2.30083-108 ; k3 = -1.0165-107 N/m
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By using the presented procedure the actuator forces corresponding to the
platform equilibrium position are calculated: f = F5378 -11584 4170] N
The stiffness matrix calculated in the given position of the mechanism is

as follows:

-8.614-106 1.861*10" -6.401*10
S = 1.861-107 -4.041-107 1.263*10* N/m
-6.401-107 1.263*107 -1.137*107

6. Conclusion
The vector method of displacement and force analysis presented in the
paper is very efficient and it can be implemented on IBM PC. The resultant

equations are expressed in recursive notation, convenient for programming.
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