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AN HYBRID SYSTEM FOR THE RECOGNITION OF "QUASI-PLANAR" OBJECTS, 
BASED ON FOURIER DESCRIPTORS, BY MEANS OF NEURAL AND THE 
DISTANCES METHOD

Summary. This paper presents an object recognition hybrid system capable of 
recognizing quasi-flat objects with invariance with respect to translation, rotation and scale. 
Obiects which present themselves in different configurations (such as pliers and callipers, 
which may be opened or closed) are also recognized. This system is obtained by merging 
conventional techniques of image-processing such as boundary detection and Fourier 
descriptors with neurocomputing techniques and the distances method.

Introduction: object description

This paper deals with the recognition of objects for which the thickness is small in comparison 
with the other two dimensions (pliers, callipers, spanners placed on a flat surface), allowing 
them to be identified with sufficient precision by a planar view .
In order to characterize such objects the polar contour descriptor, described in recent literature
[1], [4] and used by the authors [6], [7], [9], is employed.
The digitalized image of the object under consideration comes from a video camera and is 
shown on a two-level display. Its contour is found by a following contour algorithm [13], 
starting from the first point where the raster scan meets the object (the highest point on the left 
of the displayed image).
The origin of the curvilineard abscissa s on the contour is assumed in this first point; the 
distance between contiguous 4-connected pixels is taken as I unit, the distance between 
diagonally contiguous pixels is taken as V2 units. The barycentre is assumed as the pole.
Each point o f the contour is therefore defined by the curvilinear abscissa and by its distance 
from the pole d=d(s).
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Fig 1. Reference system for the polar diagram d=d(s) of the image contour

The translation invariance is already inherent in this approach as every image is described with 
respect to the barycentre o f its contour. The scaling invariance is achieved for two images by 
extracting 256 equidistant samples from the d=d(s) diagram of each image and changing the 
distance d(s) o f an image by a factor equal to the square root o f the ratio between the areas 
subtended by the two diagrams.
Rotational invariance can be achieved by considering the diagrams as circular lists and rotating 
them until the best match is found.
This procedure can, by itself, be considered a recognition system [6], [9],
A second way for obtaining rotational invariance consists in orienting each object according to 
its main axes of inertia: in this case the contour description starts at a point, where one of these 
axes intersects the contour in the maximum (or minimum) distance from the pole [11],
In the present paper the rotational invariance is achieved by carrying out the Fast Fourier 
Transform (FFT, [19]) o f the diagram d=d(s) after sampling, scaling, and calculating its 
module.
This procedure can be crucial in regard to the intrinsic description o f the contour, via the 
'sampled values' because of the presence of high frequencies which may not be well represented 
by the values assumed by the transformation components.
The first problem is resolved by using a sampling frequency about ten times higher than the 
maximum one. As for the second problem, it has been resolved by checking that for all the 
examined objects, the eleventh and higher modules are significantly neglegible, and by deciding 
not to use components higher than the sixteenth for the recognition.
With these limitations the procedure, while allowing precise recognition o f the examined 
objects on the basis o f FFT, can not be generalized for reconstruction o f the object. Therefore 
for reconstruction extraction of geometrical descriptors is preferable [ 12].
On the basis o f the FFT we tackled the problem o f the objects recognition by using two 
different approaches:

1) the neural paradigm

2) the fuzzy sets theory.
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^ A pproach by m eans o f  the neural paradium

The task of recognizing an object on the basis o f Fourier descriptors was handled by an 
adaptive artificial supervised neural network (Multilayered Back Propagation Network, 
M .B.PN ).
This was not an a-priori choice: as far as the authors are concerned, there is no a general 
theory which allows the designer to choose the network architecture, for the particular 
problem to be solved, on the basis o f rigorous criteria. However, the many experiences 
reported in literature [3], [5], [8] and [10] show that the M.B.P N. architecture is well suited 
for problems concerning visual pattern recognition and classification (after an appropriate 
preprocessing of the patterns).

1.1,The M.B.P.N.: special features

The strength point o f the B.P.N. network lies in the possibility to build inside it the mapping 
function f  between the input vectors Xi (i=l,2,3..n) and the output vectors Yi (i=l,2,..m). 
Xi belong to a subset o f an Euclidean space with n dimensions whereas the vectors Yi belong 
to a mapped subset f[A] of an m-dimensional Euclidean space (1).

f :  A c R "  => f [ A ] c R " ' 0 )

The building process for the function f  (i.e. the training of the network) takes place on the basis 
of an assigned learning rule [2], an assigned activation function S and the repeated presentation 
of K correct association (the "training set") between Xi and Yi (2).

(X 1.Y 1),(X2,Y2) (XK,YK) ove Xj c  A c  R" ; Yj c  f[A] c  R ,n (2)

The network learns by memorizing the partial corrections AWij in its processing elements (p.e.) 
at each presentation and only at the end of the K presentations does it updates the weights 
based of the average o f the partial corrections AWij (eq. 3).

Wji.new = "ji.old + K * ^ wji (3)

The network is trained with N cycles of K presentations. The values N and K depend on the 
required performance as well as on the information environment. The values of N and K are 
stated by the project team leader.
A further strenght point o f the M B P.N., inherent in the rule for determining the changes in 
the weights (eq. 4, 6, 7 and 8), is that the global error (eq. 5) generally diminishes more and 
more as the learning process goes on (some exceptions exist and are documented in [5]).
The learning algorithm is based on the formulas shown below, where AWij is the change in the 
weight connecting the generic element i with the generic element j  o f the adjacent layer, a  (by 
definition positive) is the learning rate, yO and yO' are, respectively, the desired and the actual 
answers o f the network, F is the error (mean square error, m.s.e.) calculated over the K 
presentations o f the training set, f(Si) is the gradient o f the transfer function for the i-th 
element, dj(L) is a dummy variable useful for defining the recurrence formulae.



F = £ i K[22 o(yo-yo')2] (5)

AWji (L) = -a  yj(L-l) dj(L) (6)

dj(L) = (y0j-yoj') * f (sj) => (output layer) (7)

dj(L) = f(Sj)'* Lr [dr(L+1) * Wrj] (hidden layer L . (8)

The equations (6), (7), and (8) above are based on condition (4), which imposes that the 
changes AWij applied at the weights Wij must be proportional to, and have opposite sign from 
the derivative of the error- F with respect to the weight. The proportionality factor a  (learning 
rate) can be modified during the training by the operator.

1.2.Applied training strategies

It is helpful to consider the g actual synaptic connections (i.e. weights) o f the network as 
vector elements (the vector o f the weights) in a p-dimensional space. Each weight vector is 
associated with a value o f the global error F of the network in a (p+l)-dimensional space. The 
error points form a (p+l)-dimensional hypersurface (error hypersurface) which, so to say, 
spans over the p-dimensional space o f the weight vectors.
Generally, nothing is known of the topology of this hypersurface However the recent technical 
literature [5] and [8] reports the results o f extensive experimentations, on the basis o f which 
one can make some general considerations which can be used as guidelines for the practical 
training of the network.
- The hypersuface can contain quasi-flat, extended zones characterized by a very small slope. 
In these zones learning is slow and therefore, in order to accelerate the convergence speed, it is 
advisable to increase the learning rate value a . On the other hand it has to be kept in mind that 
an increase of a  also increases the downhill step along the error hypersurface and therefore 
bears the risk of "jumping" over a minimum.
- In most practical cases it has been found that the error hypersurface has a manifold of global 
minima (corresponding to the different permutations of the same weight vector element values)
- The error hypersurface is ragged and therefore has a lot o f local minima. The presence of 
local minima can be a serious obstacle for reaching a global minimum: in fact, if one enters into 
the "attraction basin" of a local minimum during the training, the condition (eq. 4) which 
imposes progress in the direction of decreasing error prevents to exit from this zone.
It can be determined (however with some uncertainty) whether a minimum is local or global. 
The values of the weights are randomly changed and the resulting behaviour o f the network is 
studied. A random perturbation of the weights translates into a random move on the error 
hypersurface. In the first case, if the basin is not too large this may suffice for leaving this 
"valley" and learning can be successfully continued until another minimum is encountered. In 
the second case the minimum remains stationary even after several perturbations o f the weights 
and it can be assumed that a global minimum or a probable optimum condition for this network 
topology has been reached.

As already mentioned in the previous paragraph the training cycle number N and the number K 
of correct association examples depend on the specific application. In the presented case the 
target was to evaluate the ability o f the network to learn "by heart" the whole set o f examples
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„resented ("associative memory") as well as the ability o f generalizing knowledge supplied via 
a reduced set o f examples ("intelligent network"). In fact it is this last aspect which makes the 
use of an approach based on non-traditional logic (such as the neural paradigm or the fuzzy 
logics) so interesting [14], [15], [16], [17],

1.3. Experimentation of the system

The recognition system was tested with a set o f 18 bilevel digital images. Six of them represent 
a calliper, six pliers and six a spanner. The objects were taken at various distances and in 
different orientations. The calliper and the pliers were take// with various degrees o f opening, 
for each image the moduls o f the first 16 components o f the FFT [19] o f the normalized polar 
contour diagram (fig. 3, 4 and 5 on the next pages) were calculated The network is trained by 
presenting these moduls to the input layer. Accordingly the network has to classify the object 
as a calliper, pliers or spanner
Therefore the network has an input layer of 16 elements and an output layer of three elements. 
Also, it has one hidden layer of 12 neurons. The activation function S is a parametrized 
sigmoid Each layer is fully connected to the next higher-level layer, resulting in 228 weights 
(fig. 2).

/
1 2 12

Fig. 2. The layout of the network built, trained and tested in this paper

The EXPLORENET package under Windows 3.1 was used for building training and testing 
the network. This package can run independently (version 3000) as well as (version 3001) with 
the special high-performance hardware (BALBOA 860 HNC board with 10 MB RAM) 
installed on a P C. Zenith Z-320/SX in the A.V. laboratory of the D.S.P.E. A. of the Politechnic 
ofTorino.
Explorenet implements 21 network architectures [18], among which is also M.B.P.N. 
(multilayered B.P.N.), as well as a G U I. providing icons and customable windows, which hel 
us monitor the evolution of the network once it has been built (activation status o f the 
elements, values o f the weights, value of the m.s.e. etc.) and to control the training by actions 
(also programmable via "task") on the parameters and run time flags (learning rate, training 
enabling on/off, statistic enabling on/off etc.).

161



Fig. 3. Polar diagrams and FFT modules o f the calliper
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Fig. 4. Polar diagrams and FFT modules o f the spanner
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Fig. 5. Polar diagrams and FFT modules of the pliers
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Fig. 6. Data flow to and from the tested M.B.P.N network: the Explorenet screen

The input data are supplied to the network ("mbpn" icon, type "network" [18]) via ASCII fde 
(“input" icon, type "fde"), and the responses are stored in another ASCII fde ("trainresp" 
icon, type "fde"). The designer can follow the evolution of the network on the display.The 
evolution of the network is shown in numerical as well in graphic format; the windows display 
the values entered in input, the desired response and the actual response of the network 
("train resp" icon, type "form" and "responses" icon, type "graph"). In addition there are two 
windows showing the m s.e at each presentation cycle ("Sc_qu_med" icon, type "form" and 
”Sc_qu_med" icon, type "graph").
The weights were initialized random in the range -4 < Wij < +4 The initial learning rate a  
was set to 0.75. For the activation function S, a sigmoid, with a limited range between 0 and 
1, with a value of 0.5 and a slope o f 1 at the origin was selected.

1 4.Training of an associative memory

In the first phase o f the experimentation the network was trained on all the examples 
(associative memory).

cicli 0-1000 1000-3000 3000-6000 6000 =>
a 0.75 4.0 0.75 0.75
Aw;; come da eq. (4),(6),(7),(8) -0 .1< Awrnf| <+0.1

Table. 1 Training history of an associative memory

The training started from a random point in a quasi flat zone o f the error hypersurface. This 
clearly appeared seeing that the error was decreasing very slowly, in a linear mode 
("Sc_qu_med" window). In order to increase the convergence speed the learning rate value a  
was then set to 4. After about 3000 presentation cycles the m.s.e. started to diminish 
considerably and the learning rate was again set to its initial value o f 0.75. After around 6000 
cycles the m.s.e. became stable. As it is impossible to define the nature o f the minimum, the
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application was paused and the weights were modified with randomly selected values out of a 
small range around zero. Then the application was continued. After about 10000 cycles the 
m.s.e. became stable at very low values (around 2%). Random weights changes, even large 
ones, did not lead to an exit o f the attraction basin of this minimum. This was therefore 
considered to be a global one and the training was stopped. The weights were saved in a file.

1.5.Training of an intelligent network

In the second phase of the experimentation the network was trained so as to acquire a certain 
ability for generalization, hence to respond correctly even if presented with objects slightly 
different to those on which it had been trained. Therefore a metodology as described below 
was used.

1) The set o f 18 examples was subdivided into two sets o f 9 examples each. The 9 examples of 
the first set (the "training set") were directly used in the training phase as well as in the 
evaluating phase, whereas the 9 examples of the second set (the "training test set") were 
directly used only in the network evaluation phase.

2) The network was trained only on the training set. During the training the m.s.e. was 
monitored. Every 100 presentation cycles, the training was paused (using the appropriate 
"training enabling on/off flag [18]) and the network was presented with the examples of the 
training test set. At the same time the associated m s.e. was observed. It was found that the 
errors associated with the training set diminished with the progress o f the application, whereas 
those associated with the training test set increased again after an initial decrease.
This happens when the knowledge of the network starts to become too specialized on the 
particular examples and therefore loses its generalization capabilities. Hence the training was 
stopped at the minimum of the m s.e. curve associated to the training test set.
In the evaluation phase all examples were presented and the relative responses were stored. 
Notice that the global error stays under 3% ("Sc_qu_med" window): the network responds to 
all presentations with remarkable precision.

Fig. 7. Final application phase
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•: Approach by means of the fuzzy sets theory

2.1. Distance between sets

\Ve recall [5] that one speaks of distance between two elements X and Y of a set I and 
indicates with d(X,Y) an application of 1 x I on the set R+ of non-negative real numbers 
fulfilling the conditions (9), (10) and (11) as shown below:

The concept o f distance can be extended to sets in various ways In particular the Hamming 
distance between two sets is:

where cA(x) and cB(x) are the membership functions o f the sets A and B, and U is the universe 
under consideration. The distance, as stated, is characterized by the following relations:

if U is a continuum provided its integral is finite, or convergent if U is also infinite.

2.2,Application

For the purpose of separating the three classes o f objects we first used the distance between 
the elements o f the subsets consisting of the first 16 harmonics of the FFT of the polar diagram 
of the contour o f the three objects in question (fig. 3,4 and 5).
FFTi.samp, FFTi,comp shall be the moduls of the i-th component of the FFT for the sample 
object and the one compared with it.

d(X.Y) = d(Y.X) (9)

V X,Y,Z € I , d(X,Z) < d(X,Y) + d(Y,Z) ( 10)

d(X,Y) = 0 o  (X=Y) (11)

A = ( x , c ą ( x ) }  V x  £ U ( 12)

B = {x,cg(x)} V x e  U (13)

n

d(A,B) = I cA(xi) - cB(xi) (14)
i=1

if U is finite and of power n

d(A,B) = £  | CA(xi) - cB(xi) | (15)
1-1

if U is infinite and countable and if the series is convergent

(16)
u
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We also consider the distance d(FFTi,samp , FFTi.comp) and the one obtined by dividing the 
two elements by FFTi,samp., thereby arriving at:

(17)

If FFTi,comp >FFTi,samp, the distance between the two elements is larger than unity. If we 
now consider the 'complement of the distance (eq. 17) as the membership function of the 
compared element to the sample set, the condition d>l means a negative membership function, 
which is not compatible with the fuzzy logic rules We can get rid o f this problem by setting 
c(xi)=0 if d > 1 writing:

where d id the first member of (18)

The interpretation of (10) seems obvious: the element for which d >1 does not belonging to 
the sample set and therefore c(xi)=0.

With the limits described above we can define the membership function c(x) of the compared 
element setting the membership function for the sample element to unity. Then the Hamming 
distance between the sample set and the compared set becomes:

formally equal to (17) but so as to avoid terms with an absolue value greater than unity.

How the sample set assimilates the set o f the means o f the modules o f the FFT for the six 
images of the calliper, the six of the pliers and the six o f the spanner. Here it can be noted in 
particular that the pliers and the calliper are in closed configuration as well as in open 
configuration.
Tables 2,3,and 4 show the Hamming distances, the membership function and the fuzziness 
indices for the three object classes referring to the calliper, pliers and spanner samples 
respectively. One realizes the differentiating power o f the Hamming distance which is 
especially clear for the spanner. This results from the fact that the pliers and the calliper have 
been treated in open and closed configuration as pointed out above. In conclusion, the 
Hamming distance appears as a differentiating element o f a certain effectiveness in quasi-flat 
object classification problems, based on a FFT of the d=d(s) diagram o f the object contour.

3. Guidelines for the continuation of the research

We recognize the following guidelines for the continuation of our research:

- improvement o f the selection of the sample as well as that o f the compared element. This is 
in order to define the validity limits in the choice of the Hamming distance as a discriminating 
factor between object classes;

d > 1 => c(xj) = 0 (18)

16
decamp . Iconfr) 2  ̂ t ' * (19)

i-i
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setting up of a comparison methodology between the performance of a classification system 
based on the neural approach and an analogous system based on the fuzzy approach;
. evaluation of the use of descriptors based on the two dimensional Fourier Transform of the 
rough two level images in order to avoid the calculation of the d=d(s) diagram.

Object Hamming dist. H Memb. function Fuzz. ind. 8
Calliper 1 4.656 0.709 0.291
0alliper2 5.328 0.666 0.333
0alliper3 2.640 0.835 0.165
Calliper4 6.400 0.600 0.400
CalliperS 6.592 0.587 0.412
Calliperó 3.920 0.754 0.245
Spanner 1 7.200 0.550 0.450
Spanner2 7.000 0.562 0.437
Spanner3 7.872 0.492 0.507
Spanner4 8 288 0 481 0 518
Spanner5 7.376 0.538 0.461
Spanneró 7.568 0.526 0.473
Pliers 1 9.776 0.388 0.611
Pliers2 10.51 0.342 0.657
Pliers3 10.10 0.369 0.631
Pliers4 8.128 0.492 0.508
Pliers5 8.816 0 449 0.551
Pliersó 9.296 0.418 0.581

Table 2. Sample calliper: Hamming distances, membership functions, fuzz, indices

Object Hamming dist. H Memb. function Fuzz. ind. 5
Calliper 1 8.296 0.481 0.518
Calliper2 8.480 0.470 0.530
Calliper3 7.392 0.538 0.462
Calliper4 7.760 0.515 0.485
Calliper5 8.640 0.460 0.540
Calliper6 8.128 0.492 0.508
Spanner 1 2.534 0.842 0.158
Spanner2 2.370 0.851 0.148
Spanner3 3.168 0.802 0.198
Spanner4 3.428 0.786 0.214
Spanner5 1.112 0.930 0.069
Spanner6 1.668 0.896 0.104
Pliers 1 11.49 0.282 0.718
Pliers2 11.87 0.257 0.742
Pliers3 11.74 0.266 0.734
Pliers4 9.920 0.380 0.620
Pliers5 10.53 0.342 0.658
Pliers6 10.67 0.338 0.667

Table 3. Spanner sample: Hamming distances, membership functions, fuzz, indices
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Object Hamming dist. II Memb. function Fuzz. ind. 6
Calliper 1 9.931 0.371 0.620
Calliper2 7.193 0.550 0 450
Calliper3 9.304 0 418 0.581
Calliper4 11.49 0.282 0.717
Calliper5 11.35 0.290 0.709
Calliper6 7.757 0.515 0.484
Spannerl 10.67 0.333 0.666
Spanner2 10.67 0.333 0.666
Spanner3 12.12 0.242 0.757
Spanner4 12.12 0.242 0.757
SpannerS 11.22 0.298 0.701
Spanner6 11.35 0.290 0.709
Pliers 1 5.552 0.653 0.347
Pliers2 6.803 0.574 0.425
Pliers3 7.757 0.515 0 484
Pliers4 4.649 0.709 0.290
PliersS 4.880 0.695 0.305
Pliers6 5.984 0.626 0.374

Table 4. Pliers sample: Hamming distances, membership functions, fuzz, indices
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EIN HYBRIDES SYSTEM ZUR ERKENNUNG QUASI PLANARER OBJEKTE MITTELS 
FOURIER DESCRIPTOREN, MIT ANWENDUNG DER NEURONALEN NETZE UND 
DER DISTANZ METHODE.

Inhaltsangabe. Ein hybrides System zur Erkennung quasi planarer Objekte mit Invarianz in 
Bezug auf die Translation, Rotation und Skala wird dargestellt. Die Objekte können 
verschiedene Gestaltungen (zum Beispil: teil - oder ganz geöffnete Zangen oder Kaliber) 
vorstellen.
Das System stammt aus der Anwendung der neuronalen Netze auf konventionelle Verfahren 
des Image Processing (Randaufnahme, Fourier Descriptoren) ab.
Ausserdem, werden die dargestellten Objekte mittels einer Methode klassifiert, die sich auf der 
Hammingdistanz zwischen der Menge der Module der ersten j Oberwellen der F.F T. des 
Mustersignals und der entsprechenden, auf die zu klassieren Signal bezogenen Menge, gründet. 
Die Hammingdistanz wird zur Bestimmung des Zugehörigkeitsgrades des verglichenen Signals 
der von Muster definierten Menge, benutzt.
Schreitet solcher Grad den vorbestimmten Wert über, so wird der Objekt als der 
oberbeschriebenen Klasse zugehörend, erkennt.
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