
Janusz MADEJSKI

The Institute of Metal Science
The Silesian Technical University, Gliwice, Poland

CONCEPT OF THE OFF-LINE TEXTUAL PROGRAMMING SYSTEM FOR THE
INDUSTRIAL ROBOTS

Summary. The paper presents the concept of a system for an off-line textual programming of
industrial robots. The main assumption justifying the project is the fact that nearly 50% of labour
consumption comes from the program design, mostly of its logical structure. A brief outline of a
proposed Pascal-like programming language is presented along with some considerations how to
implement the idea of its translator in PROLOG. The output of the translator are the ASCII text
files containing the labelled robot instructions with relevant comments. Possible labour time savings
of the robot program design, due to the programming system in question, are likely to reach 80-
90% according to author’s job-shop experience.

1. Introduction

The textual off-line programming of robots is a widely recognized method of cutting the
down time of the robotized manufacturing cells. Thanks to the fact that the most time consuming
tasks may be completed in advance and outside of the manufacturing system the time necessary to
changeover from one production batch to the next one may be decreased. Many robot programming
languages emerged from the real-life needs [1 -t-3,6] that have helped to solve the task of the robot
program generation. The author has noticed a significant gap in the non-complicated programming
tools’group that would assist the robot programmer in a proper design of the program. Figure 1
shows the structure of time consumption of a chain of tasks resulting in development of a debugged
and running robot program albeit not always properly designed. The job-shop practice shows that
the the most time consuming tasks are: designing of the program and its subsequent modifications.
The most of the significant design problems arise when the programmer has to implement the
flexible algorithms enabling the robot to fill the system with raw workpieces, tend the machine

41

Development of the robot program
Total about 14.3 h/program

Legend
^ fu ll testing w ith m achining testing i autom atic m ode ¡|||j m anual testing
! J program entry £J| o ffice work

Figure 1.Structure of the average time necessary to develop a fully functional robot program for
machine tending (data from 5 [11] robot programs developed an run in industry in a turning cell)

cell structure

tools and other technological equipment. Properly designed robot program should first of all be able
to respond to the results of quality inspection of workpieces on various stages of the technological
process, it should also incorporate the capability to shut down the production in the cell when
necessary. The actual input of the robot
program into its memory is not a compli­
cated task, and provided there are no
bugs in it, featuring rather straight­
forward instruction input to the robot
numerical control.

Figure 2 illustrates the attitude
taken towards the off-line programming
of robot. It has been decided that the
designed system’s tasks should include
only those that constitute nearly 45 % of
the time consumption. The expression
“time consumption" does include more
than 15% of the system down time

technology

 y-----------
task definition

generated robot program

translation

1 function a rgum ent co m m en t

1 1
to be entered into \

the Robot NC

during the inevitable program flow Figure 2 .Robot program generation path

42

modifications. This time may be also cut down provided the program logical structure reflects the
system job flow right from the very beginning. This may be achieved when the programmer is
equipped with a relatively high level language enabling him to easily define the robot tasks in the
cell and producing a listing of the crucial robot program fragments in detail. According to the
author’s experience the attempt to produce complete robot program including exact positioning of
the robot’s arm shall result in more time consumption in refining the actual positions than would
be necessary to teach-in them in situ.

2. Analysis of the necessary robot programming language instructions

It has been found [4,5,10] that it is convenient to describe - and subsequently follow up -
the robot program by means of the graphs (see Fig.3). What has been lacking was the convenient
way of coding this logical flow of robot’s task in the cell. Analysis of existing solutions was carried
out [1,3,6,8] and the decision was made to design a language that would enable the programmer
to describe the robot task and would give results reflecting the necessary robot program flow basing
on its instruction set. ASEA IRb robot was chosen as an example as it is still fairly popular and
its instruction set is quite comprehensive.

The mostly used robot program modules
consist of series of instructions intended to check
the status of a number of input circuits (inclu­
ding memory flags), setting output signals’
status, manipulation with the grippers and work­
pieces in the robot’s working enevelope,
movement of the robot’s arm, etc. The robot
programmer has to define its job in the system
by means of the robot instruction set. However
these instructions are rather awkward to use
especially when implementing the non-trivial
programs including the analyses calling for
multiple logical functions like IF ... THEN ...
ELSE. Taking this into consideration and
following the ideas in [7,9] the definition of the robot task definition language has been proposed.
This language consists of simple commands specifying the robot’s tasks’ details more generally,
and what is important, the programmer is free from careful instruction number/label checking that
result often in hard to debug programming errors. Using the instruction set suggested in Table 1
fragment of the robot task description presented in a graph form in Fig.3 is given below:

MTl_status ¡= i // declaration of numeric constants pointing to the input
ISl_status := 12 // circuits' IDs
MTl_chuck := 2
Operator_interrupt := 9

Figure 3. Example of simple robot program
graph. Symbols MT1, MT2 (machine tools),
IS 1, OS2 (input/output storages) and RSI (reo­
rientation stand) denote the system components.

43

while Operator__interrupt = 0 do # do until the operator stops the robot
begin
watch MTl_status/ 0 # wait until the machining operation MT1 is over
move_to 4, go to MT1 # take the workpiece after the 1st operation
take 0, 1.5 # grasp the workpiece and free it from the chuck
output MT1 chuck, on, 20 # open the MT1 chuck
move_to 4 ? go to the neutral point outside of MT1
move_to 3 # go to the reorientation stand
put 0, 1.5 # leave the workpiece for further reorientation
move__to 2 # go to the input storage IS1
watch ISl_status, 1 # check if there are workpieces in the storage

end

Part of the above robot program fragment would be translated to the following fully commented
robot code (bolded items feature the actual robot program text, instruction labels are chosen
arbitrarily as an example only):

910 TEST JUMP 9
920 JUMP 2000
930 TEST WAIT 1
940 PTPC 6
950 PTPC 6
960 PTPC 4
970 PTPF 4
980 GRIPPER 1. 5
990 OUTPUT ON 2

1000 WAIT 20
1010 OUTPUT OFF 2
1020 PTPC 4
1030 PTPC 6
1040 PTPC 6
1050 PTPC 6
1060 PTPC 6
1070 PTPC 6
1080 PTPF 4

do until the operator stops the robot
wait until the machining operation MT1 is over
take the workpiece after the 1st operation

grasp the workpiece and free it from the chuck
open the MT1 chuck

go to the neutral point outside of MT1

go to the reorientation stand

... etc. •
The key time savings result in the efficient translation of the logical interdependencies among the
several robot tasks (see detailed robot program algorithm in Fig.4):

MTl_service := 22 // declaration of numeric constants pointing to the input
MT2_service := 21 // circuits' ID
MTl_operational := 26

move_to 1 # withdraw to the neutral position next to MT1
if MTl_service

then # MT1 tending procedure
begin
end

if MT2_service move_to 1 # adjust arm position
if MT2_operational

then # MT2 tending procedure
begin
end

else

44

1470 PTPC 4 1474 TEST JUMP 21 1478 TEST JIMP
1471 TEST JUMP 22 1475 JUMP 1477 1479 JUMP 1680
1472 JUMP 1474 1476 JUMP 1590 1480 JUMP 1410
1473 JUMP 1480 1477 PTPC 4 etc. .•

note:

21, 22 and 26 are the robot memory flags employed to store intermediate system status data

 v ---------------------1

I rodraw Irom the |
w orking enve lope
of MT1

L ,--------1

/ T \
^ ' should you

f \ sendee MT1 ? J

I move to U

‘ should you \ T
service M T2?) ^

 y ---------

m ove lo M T2

y-
_ / \ _ Y
F / is the M T 1 v T
f ‘ operational? , ►

 J

I

Figure 4.Detailed fragment of the flexible robot program algorithm - note that MT1 and MT2 may
be used by the robot as needed, switching them On and Off is done automatically depending on the
program execution stage

3. Programming language definition

The detailed analysis of many robot programs (machine tools’ tending was taken into
consideration only) has resulted with a proposal of a set of instructions presented in Table 1.
Definitions of some exemplary instructions are given further in a Backus-Naur form. The
instructions’ set may be extended to as needed - nevertheless its most commonly used elements
are included. Fig. 6 presents a listing of one of the PROLOG predicates - solution similar to the
one published in [9] - being one of the crucial tranlator’s elements. The overall translator
program flow is as follows: text file containing the robot program description created using the
proposed language is being processed by the translator written in PROLOG. Processing includes
three main stages: lexical analysis, syntactic analysis and generation of the text file. This text

45

file is in fact a programming instruction for the robot programmer. This instruction contains all
details of the logical structure of the robot program plus indications, along with relevant
comments, as to where should be introduced robot positioning instructions.

Table 1 Language instructions set

Instruction Meaning Example

input checking status o f the input circuit or m emory fla g input MT1 status
output setting star us o f the output circuit or memory f la g , rime

span o f activation

output
MT2 chuck_activate

take predefined sequence o f robot instructions, requires two

parameters: output ID and delay rime

take 0, 1.5

put predefined sequence o f robot instructions, requires two

parameters: output ID and delay time

put 0 , 2 . 0

move to predefined sequence o f robot instructions, requires one

parameter: number o f intermediare points on the

trajectory polyline

move to 3

watch testing o f a condition, results in halting the robot until
the condition evaluates true, requires two parameters:

input ID and fo llow ing delay tim e i f needed

watch MT1 status, 1

delay pausing the execution o f robot program fo r a set time

interval

delay 2

if ... then ...
else ...

basic logical func tion em ployed to evaluate the system

status

if ISl_full
then

take 0, 1
else

watch IS_full, 1
while ... do continuous loop carried out provided some logical

condition is met

while OSl_ful1 do
watch OS1 full, 2

b e g i n . . .

e n d
denote program modules

The exemplary instruction definitions (below) may be easily translated by the relevant PROLOG
predicates - each of the instructions may be followed by a comment separated from the
instruction by "ff":

<instruction> <name> := <expression> |
input<name> \
output<name/name> |
move_to<name> J

ifccondition> then cinstruction> else <instruction> \

<condition> ::= <expression> <comparison> ::= <expression>

46

<comparison> ::= > \ < | = \ <>
etc.
Exemplary PROLOG predicate beginning implementing the " i f" instruction is as follows:
DOMAINS

data = reference symbol*

instruction = ... if_(expression,instruction/instruction)...

PREDICATES

expression(integer,data,data,expression)
instruction(data/data,instruction)
instruction_coding(istruction,Robot_instructions_list, integer,integer)

instruction(("if"1 Symbols_list],Tail,i f (Condition,Then,Else))
condition(Symbols_list,["then"¡Taill]/Condition),
instruction(Tail1,["else" \Tail2],Then),
instruction(Tail2,Tail,Else),!.

4. Conluding rem arks

The abovementioned conception of a textual robot programming language may be extended
by a simple text editor and file manager to create a fully functional robot programming system.
The debugging facilities are still to be designed as the input program may not be bug-free so the
resulting robot program generated would neither be correct. It was a definite design decision not
to try to employ any real world scene numerical description data in the resulting robot program
text. What may be saved is the labour consumption at the design stage and at its further
modification. Teaching the robot the exact positions in the real scene has been left to the
operator intentionally. The proposed language may be now easily fully implemented according
to its brief outline presented.

CLAUSES

REFERENCES

[1] C. Blume, W. Jakob - "Programming Languages for Industrial Robots",
Springer-Verlag, Wiirzburg, 1986, pp 31-193
M. Groover - "Automation, Production Systems and Computer Integrated
Manufacturing", Prentice-Hall International, Inc., pp ,319-337
G. Kost - Programowanie robotów przemysłowych IRb wspomagane
komputerowo. III Krajowa konferencja robotyki, Wroclaw 1990, v .l , pp.77t 83.

[2]

[3]

47

[4]

[5]

[6]

[7]

[8]

[9]

[10]

R e v i s e d

M. Lee - "Intelligent Robotics", John Wiley & Sons, New York-Toronto, 1989,
pp 142-147
J. Madejski, R. Zdanowicz - "Computer Supervisory Control o f Small Robotized
Manufacturing System", Proceedings of the International Conference on
Computer Integrated Manufacturing CIM’92, Zakopane, March 24-27 1992, pp
243-251
J. Poblet - "Sistemas CAD/CAM/CAE. Diseho y fabricacion por computador",
Marcombo Boixareu Editores, Barcelona-Mexico, 1986, pp 259-302
H. Schildt - "Advanced Turbo Prolog™: Version 1.1", Osborne McGraw-Hill,
Berkeley, 1987, pp 167-198
B. Skolud, G. Kost - "Computer Aided Detection of Solids Collision in FMS
with Robot by CAD Simulation", Proceedings of the International Conference on
Computer Integrated Manufacturing CIM’92, Zakopane, March 24-27 1992, pp
359-366
J. Szajna, M. Adamski, T. Kozłowski - "Turbo Prolog. Programowanie w języku
logiki", WNT W-wa 1991, pp 108-130
J. Wójcikowski, J .Madejski, R.Zdanowicz - “Zrobotyzowane gniazdo tokarskie o
strukturze elastycznej w ZBMD - Zabrze", "Nowoczesne Technologie w
Fabrykach Maszyn Górniczych" 1/15, Gliwice 1987, pp 1-7

: J a n S z a d k o w s k i

48

