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A PARALLEL REDUNDANT MANIPULATOR
BASED ON THE ASSUR GROUP (3.4)

Summary. Subject of the present paper is a parallel planar manipulator with four degree
of freedoms. Its basic mechanism is an open kinematic normal chain, an Assur group of
class 3 and order 4. The manipulator consists of two mobile rigid bodies, combined by a
revolute joint, each of these bodies is, via two legs, connected with the fixed ground.
The legs activate the motion of the two bodies, to one of which the manipulator's hand
is fixed. Each of the legs is equipped with rotary joints on both ends, their distances are
controlled either by linear actuators (driven P-joints) or rotary actuators (driven R-joints).
An algebraic equation of degree 18 is derived which allows to determine all the possible
positions of the hand corresponding to a given set of leg-lengths, the inputs of the
manipulator. A set of system- and input parameters is found to which correspond 18
real positions of the manipulator.
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Introduction

Parallel manipulators in general avoid some of the disadvantages of the more common
serial manipulators; their greater structural rigidity and the lesser summingup of the
backlashes make them more appropriate if accurate positioning and great load capacity
is demanded; their drawback, however, is a considerably reduced workspace. As the
position of the hand of a planar manipulator is determined by three parameters, any of
its motions is theoretically controllable already with three installed actuators. With the
prescribed motion of the hand, however, the configurations of the whole manipulator
on its way to an end position is, in any position of the hand, clearly determined; moreover
the necessary power input in each position, and therewith the entire expenditure of
work is invariably fixed. With a redundancy on degrees of freedom, i.e., a surplus on
movability of the manipulator over the necessary fundamental degrees of freedom it
becomes possible to choose different sequences of manipulator-configurations for a
prescribed motion of the end effector, and the redundant degrees of freedom can be
used to economize the expenditure of work for a special task, hi other words, a redundant
manipulator is more versatile for the completion of any demanded task. The manipulator
we are going to analyse is a planar parallel (non-serial) manipulator with one redundant
degree of freedom (Fig.l). As parallel manipulators are mechanisms with a number
closed loops, their forward (direct) kinematic becomes more difficult compared with the
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direct kinematics of the serial manipulators with their open chain structure. Main object
the present paper is to establish the relationship between the four input variables La,
respective @ (a =1+4) and the three output variables x,y and <p (Fig.l). The actuator
lengths La or the turning angles <, can be changed only within certain limits and this
limits mark off the workspace of the end-effector. Both types of manipulator shown in
Fig.l can to be treated mathematically in just the way; in the case of rotary actuators the
four input variables {u,have to be exchanched by: La= (ka2+ ha2- 2kahacos0,,),/2.

Fig.l. Redundant Manipulators based on the Assur group 3.4
with linear actuators or with rotary actuators

The Assur group (3.4)

The basic mechanism of both types of the manipulator shown in Fig.l is the Assur
group of class 3 and order 4 according to the classification of the Assur-groups proposed
by L.I. Artobolevski [1], According to the definition given in [2], an Assur group is " the
smallest kinematic chain, which when added to, or substracted from, a mechanism
results in mechanism that has the same mobility as the original ". We are searching for
the possible positions of the end-effector of the manipulator for a given set of input
parameters La. The problem evidentially is identical with the position analysis of the
Assur-group (3.4) (Fig.2): With the system para-meters of the Assur group the angles
i/l t/r,,and ii/2 can be determined and, therewith the cor-responding positions of the
end-effector {x,y,<p) are given too. With the three angles i/z.i/z*and y/2, together with the
system parameters aa,ba,ca (a =12) and L, the positions of the end points (of the
linear actuators) B, C and D can easily be calculated and the three conditions BB = L2,
C,C =L3and DM = L4 then can be written in the form:
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Fig. 2.The Assur group (3.4) with its system parameters and position angles
G, = (X, + L,cosila+ a,cosila, -X 2)2+(Y, + L,sinila+ a,sinila, -YZ)Z- L 2:0,

G2= (X, + L,costA *rjcosil, - c,sin il + a2cosila2- X3)2+
(Y, + L,sinils+ b,sinils, + ¢, cos i/, + a2cosila2- Y )2-L =0,

G3= (X, + Ljcosilatb, cosila - c,sin ila + b2cos i/a2 - c2sin ifa2- X4)2+
(Y, + L,sinila+ &sin ila, +¢, cosila, +f02sini/A2+ c2cosila2- Y4)2- L42= 0 . q_)

These conditions lead, with the identity cos2(..)+sin2(..) = 1to three equations which are
linear in the sines and the cosines of the angels i/ Mi and Wi- From these equations we
have to eliminate two of the angles to obtain one equation in only one variable. Doning
this we proceed in the following way. As the equation G, =0 only contains ¥a and i/a
we first eliminate from the equations G2=0 and G3=0 the angle y/2. Writing them in
the form

G2=B,,cosi/@2+ Bnsini/@2+ BB3=0,

G3= B2 cos i/&2 + B2sin il2+ BB= 0, ©

where the coefficients Ggd9are linear functions in the sines and the cosines of the angles
ilaand i/a, we can solve these equations for cosi/a2and sini/A2:

B,2 ! ' N
cosi/a2 = -diet 3 /det Bn B2 sinifa2: det ; B> det B B2 €]

b3 B2 B2 B2 B e B2 B2
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Via the identity cos2y/2+sin2y/2si we obtain therewith an equation G=0 which is
cubic in the sines and the cosines of the angles y/ and yq. The elimination of yq from
the two equations G, =0 and G=0 can then be performed by Sylvesters resultant
method [3]. To find the Sylvester matrix we have to transform the equations G, =0 and
G =0 into algebraic equations. For that reason we introduce new variables X and Y
which are connected with the angles y/ and yq by

X =tan(y//2), Y =tan(yq/2), 4
siny/ = 2X/(1 + X2), cosy/=(1-X 2)/(1 + X2),
and sinyg =2Y /(1 +Y2)/ cosy/! =(1-Y2)/(l +Y2), (5)

and obtain one two algebraic equations, one of order two and the other of order six in
both new variables, for which we write:

gj = ktY 2+ k2 +1f3=0,
and "= K,Y6+ K2Y 5+ KjY4+ K4Y3+ K5 2+ K J + K7=0, 6)

with coefficients ki and X, depending on X and the system parameters. These equations
have common solutions only if their Sylvester matrix M is singular :

0 0 0 K k2 k3
0 0 O K k2 k3 0
0 0 0 k K K 0 o0
0 0 gk k2 k3 0 0 0 0
0 * k2 k2 0o 0 O
K k2 k3 0 0 0 O
0 Kk k2 K K K, K7
K2 *4 K5 k6 k7 0
det(M) = 0. ()

By developing the determinant (8) we finally obtain an algebraic equation of order 18 in
the variable X (with coefficient aa depending only the systemparameters)

XB+a X'7+axXu +a,Xb+ a,7X +aj8 =0, )

which can be solved numerically. This way we get 18 values for X, real or conjugated
complex, and with y/=2arctan(X) the 18 angles y/ are found. To get the values for Y
which correspond to the roots X of (9) one can proceed as follows. With the matrix y :

yT={Y7,Y6,Y5Y4Y3Y2Y,ll the homogeneous Sylvester matrix equation writes:
JA.y =0. Dropping the first row from the matrix M we obtain a 7x 8 matrix N , and
with the 8 column matrices na {a = 1+ 8) of this matrix we can write instead of N.y =0:
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«Y7+nd +nX +nX +nX +nX +nY =-n», (10)

from which follows: M= (1

“det[n®n~nsn”]

and therewith also i/q =2arctan(Y). Finally, with the equations (3) the angle y/2, which
correspond to a pair of angles (/ and I/, is unequivocally determined.

Conclusions

The position analysis of the Assur group (3.4) shows that there are 18 positions of the
group which corresponds to a given set of system parameters. In an other context, the
redundant manipulators based on the Assur group (3.4) might take 18 different positions
for a given set of input variables La (a =1+4), and we shall show in the next section,
thajt these positions all can be real. Positions in which the manipulator becomes shaky
(and therewith uncontrollable) must be avoided. Shakiness becomes manifest geomet-
rically if the points £2,, £22and K lie on a straight line (Fig. 2), and analytically if two
roots of equation (9) coincide.

If the "actuator” between D and Dc is taken away, the system will be movable; point
Kthen describes a coupler curve which is a tricircular sextic (order =6, circularity
c,=3) and point C describes a circle f, i.e., a monocircular quadric (order N2=2,
circularity c2=1). According to Cayley's theorem the order of the curve 8, which describes
point D then is given by [4]:

N=2ttj(n2- c2)+2n2(nj - c,)- 2¢,c2=2x6(2-1) +2x2(6- 3)- 2x3x1=18.

This is in full agreement with our result. Moreover it has been shown by W. Wunderlich

[5] thatthe circularity of this "higher coupler curve"” 8 is: ¢ —9. This can also be confirmed
by our finding that sets of system parameters can be found for which all the positions of
the Assur groups are real.

The Assur group consists of two compound four bar linkages AGABBO and C,,CDDO,
connected by the rotary joint K (Fig. 2). If the kinematic pair K of the Assur group is

disconnected, each of its parts describes a tricircular sextic k2 and k2 These curves

intersect k2c\k2 each other in 6x6 =36 points and, according to their tricircularity,

2(3 x 3) = 18 of them coincide with the circle points | and/ at infinity, so that at most 18

intersection points of jgand k2can be found by varying the system parameters. In the

following section we give an example of a system parameter set for which all 18 positions

turn out to be real and therefore that the "higher coupler curve" 8 of D intersects the

circle C: 8n £ in 18 real points. But this proves already that the circularity of 8 must be

9, because then of the 18 x2 =36 intersection points 9x 2= 18 points coincide with |

and/ and 18 real point exist.

Numerical Example

To find a system parameter set of the Assur group (3.4) for which all the roots of
equation (9), and therewith the positions of the Assur group are all real, is a difficult

375



problem. The equivalent problem is to find two four-bar linkages AGABBOand COCDDO
whose coupler curves icand «: intersect in 18 real points. On a semigraphical way we
finally found such a system parameter set with the following data:

X, =700 X2=2096 X3= 458 X4=1925«, =1039 a2=1000
Y, = 750 Y2=1300Y,= 458 Y4=955fg= 778 b2= 500
L,=1110 L2=1230 L3=1200 L4=1100c,= 778 c2=866
Following up the procedure described above in details we obtain for this set the position

angels and y- listed in Tab.l. Fig. 3 shows the coupler curves v, and «. and
their 18 real intersection points. Fig. 4 shows the 18 positions of the Assur group (3.4).

Y Ye ¥i
-9.7.445 40.670 4.4163
-58.198 15.527 -109.86
-55.773 14.507 136.00
-49.863 116.15 -73.714
-22.829 -2.9961 -148.97
-7.4148 152.00 22.839
-3.1581 153.86 -86.507

21.005 133.16 -15.072
24.205 -95.836 144.17
33.786 93.803 -147.76
34.888 -110.64 127.01
45.180 68.876 -89.246
59.721 -103.10 -110.27
95.220 -70.730 162.68
109.98 -54.857 175.54
130.94 13.213 -116.10
135.65 -21.171 -55.154
139.95 3.5348 -131.60

Tab. 1.The position angles \j/°,y/° and t/2 Fig. 3. The two coupler curves jc, and ;c2

Fig. 4,The 18 positions of the Assur group (3.4)
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