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DETERMINISTIC AND STOCHASTIC MODELLING OF CRACK  
GEOMETRY- A BOUNDARY ELEMENT APPROACH

Summary. Application o f  the boundary element method to numerical analysis o f  cracks 
with deterministic and stochastic geometry is presented. The dependence o f  selected mechanical 
characteristics with respect to shape and position o f  cracks is examined by means o f  the path- 
independent integrals. Numerical results for the deterministic and stochastic shape sensitivity o f  
cracks are presented.

DETERMINISTYCZNE I STOCHASTYCZNE MODELE GEOMETRII 
PĘKNIĘCIA - UJĘCIE BRZEGOWO-ELEMENTOWE

Streszczenie. W  pracy przedstawiono zastosowanie metody elementów brzegowych w 
analizie numerycznej pęknięć, których geometria opisana jest w sposób deterministyczny i 
stochastyczny. Zależność wybranych charakterystyk mechanicznych względem kształtu i 
położenia szczeliny badano za pomocą całek niezależnych od drogi całkowania. Wyniki 
obliczeń przedstawione zostały dla deterministycznej i stochastycznej analizy wrażliwości 
kształtu szczeliny.

DETERMINISTISCHE UND STOCHASTISCHE MODELLE DER 
SPALTGEOMETRIE -EINE RANDELEMENTENAUFFASSUNG

Zusammenfassung. Im Aufsatz hat man die Anwendung der
Randelementenmethode zur numerischen Analysis der Spalten, deren Geometrie auf 
deterministischer und stochastischer Weise beschrieben ist, dargestellt. Die Abhängigkeit der 
gewelten mechanischen Charakteristiken bezogen auf die Form und Lage der Spalte wurde 
mittelst der Integrale, die von der Integrierungsweise unabhängig sind, untersucht. Die 
Ergebnise der zur deterministischen und stochastischen Analysis der Formempfindlichkeit 
der Spalte durch geführten Berechnungen wurden dargestellt.



50
T. Burczyriski

1. INTRODUCTION

During the last years the boundary element method (BEM) turned out to  be an 
appropriate numerical technique for solving fracture mechanics problems. This method is the 
most suitable for crack problems, since it describes the behaviour o f  a body in terms of 
displacements and tractions on the boundaries and is capable o f accuracy modelling the high 
stress gradients near crack (e.g. [1.], [.7]).
There are a few numerical approaches based on BEM for crack analysis problems. The short 
description o f  these approaches is presented in Section 2, The application o f  BEM  to examining 
stresses, strains, displacements and in the general case an arbitrary functional with respect to 
deterministic shape o f  a crack is presented in Sections 3. Crack geometry is often uncertain and 
vary unpredictably during the service life o f the structure. Therefore special attention to the 
uncertainty in the crack geometry is given in Section 4. Numerical examples are described in 
Section 5.

2. CRACKED BODY MODELLING BY BOUNDARY ELEMENTS

Two problems o f  the crack modelling by boundary elements need special consideration. 
One problem concerns the geometrical modelling o f the crack itself. The other problem refers to 
the numerical modelling o f the elastic fields in the vicinity o f the crack tip. Cracks are usually 
modelled as linear cuts (for 2-D problems) or planar cuts (for 3-D problems) with zero 
thickness. Such theoretical formulation is not possible in numerical analysis by means o f 
boundary elements because it would lead to a singular matrix. The second problem involves the 
difficulties o f  adequately modelling singularities in the stress field that occur at crack tip.

Let an elastic body occupy a domain Q  bounded by an external boundary dQ  on which 
fields o f displacements u°(x),x e Fu, and tractions p°(x),x e Tp, are prescribed. The body 

contains an internal crack which is a boundary T0. For the a body which is not subjected to body 
forces, the displacement o f a point x can be represented by the following boundary integral 
equation (cf [4]):

c(x)u(x) = J U(x,y)p(y)dT(y)-  J P(x,y)u(y)dT(y) (1)
r r

where T = Tu ^ T p ^ T 0, U and P are fundamental solutions o f elastostatics, u and p are

displacements and tractions, respectively, at the boundary; c(x) is a constant which depends on 
the position o f  the collocation point x ; y is the boundary point
The discrete version o f  (1) is obtained by discretizing the boundary by series o f  boundary 
elements and approximating boundary displacements and tractions by means o f nodal values and 
interpolating functions, and finally a system o f algebraic equations takes the form:

A X  = BY (2)
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where A and B are coefficient matrices derived from integrals o f U  and P ; X  contains 
unknown nodal displacements and tractions; Y contains prescribed boundary conditions.
If the crack is modelled as a cut and the discretization on the two surface is the same, then the 
application o f equation (1) leads to pairs o f identical columns in A matrix and A is singular.

In order to overcome these problems Snyder and Cruse [12] proposed a very elegant 
method based on the use o f specific Green's functions which include the exact solution for a 
traction-free crack. Unfortunately this approach is restricted to two-dimensional problems.

A second possibility - the multiregion modelling approach proposed by Blandford et al.
[2] is the decoupling o f both crack surfaces by the help of the subregions technique, requiring 
higher discretization expense and bigger systems o f linear equations.

There is a third m ethod, which is refereed to as the displacement discontinuity method, 
was given by Crouch and Stanfield [6], In this formulation the crack is directly treated as a single 
surface across which the displacements are discontinuous. An integral equation written in terms 
of the applied crack surface tractions can be formulated and solved numerically.

Recently a fourth technique, so-called the dual boundary integral equation method, 
which describes two different boundary equations was suggested by Gray et a l  [9], Portela et 
cd. [10], The two boundary equations applied are equation (1) and an additional hypersingular 
tractions integral equation

TPOO =  " T J D (x,y)p(y)dT (y) -  j  S (x ,y)u(y)dT (y) (3)

where n is the outward normal at the collocation point x; and D and S are other fundamental 
solutions o f elastostatics which contain higher-order singularities then in equation (1). The are 
available special techniques for evaluating such hypersingular integrals. The distinct set o f the 
boundary integral equations is obtained by applying the displacement integral equation (1) on 
one side o f  the crack surface and hypersingular traction boundary integral equation (3) on the 
opposite side.

The stress fields at a crack tip are singular and the accurate modelling o f  these 
singularities requires modifications to standard boundary element method. The use o f  a quarter- 
point boundary element on the crack face at the tip is common. It models the r )n dependence o f  
the crack face displacements. Similarly a traction singular quarter-point boundary element ahead 
of the crack tip models the r~l/2 dependence o f  the traction. Similar modelling can be achieved 
by the use o f  special shape functions. These techniques are fully described in [1], [7 ], together 
with the procedures used for the derivation o f the stress intensity factors from the displacements 
or tractions near the crack tip.
Other important means o f  obtaining stress intensity factors is to calculate the path-independent 
J-integral, introduced by Rice [11] which contains work-like terms integrated round an arbitrary 
contour which encloses the crack tip.

All described above boundary element approaches enable to calculate stress intensity 
factors at crack tips for mixed mode conditions for given geometry o f the crack. For each shape 
variation o f  a crack one should solve a new boundary value problem. Determination o f  the effect 
of shape change of a crack geometry is the problem o f shape sensitivity o f  cracks [5].
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3. SHAPE SENSITIVITY ANALYSIS OF CRACKS

It is obvious that state field as stresses, strains or displacements and in the general 
case an arbitrary functional F depend on the location and shape o f  the crack. The problem 
o f  the dependence o f  these quantities with respect to crack geometry can be solved in terms 
o f  shape sensitivity analysis. In fracture mechanics, shape sensitivity analysis can play an 
important role because a crack growth process can be treated as shape variation o f  the 
crack.

Consider the problem o f evaluating first order sensitivity of an arbitrary functional 
o f  the form

J =  J 'P(a,e,u)dQ+ J<i>(u,p)dr (4)
o(.) r(.j

where a is a vector which contains geometrical shape parameters o f  the crack.
The shape variation o f  the crack is introduced by a special kind o f  shape transformation in 
the form of:
-  translation (T ,k) , by prescribing variations 5b*, k=l,2,3, where h* are translation 

parameters (Fig. 1);

Fig.l. Translation o f  crack 
Rys.l. Translacja pęknięcia

- rotation ( R ^ ) ,  by prescribing 6©p, p=l,2,3, where rap are rotation parameters (Fig.2);
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- scale change (expansion or contraction) (E) o f the crack by prescribing 6r|, where r| is a 
scale change parameter (Fig.3);

Fig.3, Expansion o f crack 
Rys.3. Ekspansja pęknięcia

The first variation o f  F is expressed by:

8F = ST8a, (5)

where

8a = col{8a,}, q =  l,2 ,...,Q , (6)

is the vector o f  variation o f  shape parameters, and

S  =  C O l{ ^ } ’ q  =  1 ’2 ’ >Q ’ ( 7 >

is the sensitivity vector.
For 3-D problems there are Q=7 shape parameters:

a = col{a,} = [b1,b j ,b 3,ci)| ) a)J,Q),,ri]T, (8)

and for 2-D problems there are Q=4 shape parameters:

a = c o l{ a ,} s [b 1,b J,co3,ri]T. (9)

Elements o f  the sensitivity vector Sq»DF/Da<, are expressed by path-independent integrals
along an arbitrary closed surface (for 3-D) or contour (for 2-D problems) T. enclosing the
crack (cf. [8], [5]).

DF

Daq r.
= i  Z i(o ,e ,u ,o ‘,e*,u‘)dr„ L=T,R,E; q=l,2,...,Q (10)

Integrands Z J depend on state fields o f  primary and adjoint solutions: 
- for translation (k=l ,2,3):

A = +  0,11^ + a ÿ iu  -O a E ^ J n j , (11)
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- for rotation (p=l,2 ,3):

z r 3 = ekpi(vi ^ i 6 ki - o iqs* x ,5 kj + a lju*kx 1 + a,ju*k +o*jUk +o*ju i>x 1) n j,)  (12)

- for expansion or contraction:

7 7 = s a ° ‘jU‘ _ ( a “ P) T,jU‘ +XkCT‘íU|k - xk°¡ju ‘j5 jk+ x kO¡jU*k Pi> (13)

w here a  is the order o f  ()»=<Ku), (3=1 for 3-D and [3=0 for 2-D and Y=0 in the case of 
equation (13).
It is seen from  equations (11) to (13) that in order to calculate sensitivity information one 
should solve primary and adjoint problems. State fields in the form o f  stresses ct*, strains e* 
and displacements u* are obtained for an adjoint elastic body with prescribed boundary 
conditions in the form o f

u * ° = - at>(«.p) ,c aK«»p) „
~ d T ~  "  p = ^ ~ o n r -

(14)

and with initial strain e " , and stress a "  fields and body forces b‘ within the domain i l

„ = dT'ta.e.u) ¡ _  d T fas.u ) _ 5tF(g,E, u) 
da ’ °  de 5u

e = (15)

The boundary integral equations for the adjoint body have the same form as for the primary 
cracked body.

I f  functional F expresses potential energy then first-order sensitivity o f  F with respect to 
translation o f  a crack determines the J-integral (cf.[8]).

4. STOCHASTIC GEOMETRY OF CRACKS

Boundaries o f  real cracks can be very complicated as far as their geometrical shape is 
concerned. Usually they are uneven and the irregularities do not easily lead to a unique 
deterministic description. Therefore boundaries o f such cracks can be defined stochastically. 
Stochastic geometry o f  the crack can be specified by random shape parameters a(y) which can 
be expressed as follows:

a(y) = a0+8a(y), E5a(y) = 0, (16)

where variation 8 a (y )  represents fluctuation o f random parameters; y is an element o f  a 
sample space (cf. [13]); E indicates expectation; a0 = Ea(y) is the mean value o f  shape 
parameters a(y). I f  a(y) has the Gaussian distribution then it is completely described by the 
mean value a 0 and the covariance matrix [K] which is given as follows:

[K ] = E[8aSaT] (17)
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Because the crack boundary undergoes small random variations then resulting stochastic 
fields of stresses CT(x,y) = [ o T(x,Y)], strains e(x ,y) = [ev (x,y)] and displacements 
u(i,y) = [uq (x, y)] be expressed as follows:

cj( x, y) = ct0( x)+5<^ i , y), ESc^x.y) = 0, (18)

e(x,Y) = e0(x)+6e(x,Y), E5e(x,Y) = 0, (19)

u(x, y) = u0(x) + 5 u(x, y), E 5u(x ,y) = 0, (20)

where q0 = Eqfx.y), q = a , e ,u ,  are identified with the mean value o f  state fields 
calculated for the untransformed shape o f crack boundary T with the deterministic base 
shape parameters a 0 = [a0q], q =  1,2,.....Q .
Due to stochastic shape variation the functional F  can be expressed as follows:

F (a0 + 5 a (Y)) = F (a0)+SF(y), (21)

where the first variation o f the functional 6F(y) can be expressed analytically utilizing the 
adjoint approach:

SF(y) = S T5a(Y) (22)

where elements o f  sensitivity matrix are expressed by (10).
Covariances o f  the stochastic functional F and displacements and stresses for the two fixed 
points x, and x2 are calculated from:

K f = S T[K]S, (23)

K ;(x 1>xJ) = E[8uq(x1>Y)5u1(x 2>Y)] = {s“(xI)}T[K]{sr(xi )}. (24)

and

K ^ ( x„ x2) = E [6av (x„ y )5olh(x J,Y)] =  {s°r(x,)}T[K ]{ s ;(x 2)}. (25)

In order to calculate the sensitivity matrices {Su} and {SCT} one should introduce special 
form of integrands <J> and'F.

5. NUMERICAL EXAMPLES

The path-independent integrals for sensitivity o f  boundary displacements w ere tested 
numerically for several problems o f  plane elasticity with internal and edge cracks using the 
boundary element method [5], The vector boundary integral equation for primary and 
adjoint problems has the form:

c(x)uw (x) = J [u (x ,y ;e )p "  (y) -  p(x, y; e)uw (y)]dr(y) (26)
r

w ^ p r i m a r y  p r o b l e m  
w - a d j o i n t  p r o b l e m
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where U(x,y;e) and P(x,y;e) are fundamental solutions which include the exact solution for 
a traction-free crack [12]. The surface o f  crack L (x,) = 2e is flat and extends from x,=  -e 
to x,=e, where x, is a local axis (Fig.4)

. 2

-Ck-------- L=2e +e -------- >

Fig.4. Crack geometry 
Rys.4. Geometria pęknięcia

The discrete version o f  equation (22) is obtained by approximating the external boundary T 
by series o f  boundary linear elements. Finally, a system o f  algebraic linear equations is 
obtained:

AXW= B Y W, (27)
w - p r i n w y  p r o b l e m  
w - a d ÿ o t f t  p r o b l e m

where all unknown boundary variables are written in the vector Xw and known from 
boundary conditions in Y*. Square matrices A and B depending on boundary integrals of 
fundamental solutions are the same for primary as well as adjoint problems and therefore are 
calculated only once.
Having boundary variables Xw the displacement and stress fields are calculated along a path- 
independent contour IY

5.1. Deterministic crack geometry

A square plate (2x2) under tension with an internal crack o f  the length L=1 was considered 
(Fig. 5).

Fig. 5. The square plate with internal crack 
Rys5 - Tarcza kwadratowa z wewnętrznym pęknięciem
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The boundary element model had 52 linear elements. Derivatives o f a vertical displacement 
U2, at the point xo, where a load p was applied, with respect to translations TXi and TXj, 
rotation R Xj and expansion E  o f  the crack were calculated for many different internal 

contours such as an ellipse, a circle, a square and a rectangular (cf. [5]). In the Table 1 
numerical results for an ellipse and a square are presented.

Table 1
No Path Du, -i-- -*10 ' Du,

description Dfa, Db, Deo, Dn
T i T*2 R x E

1 ellipse (0.60;0.10) rot 45° 0.407756 0.102535 -0.854890 0.138631

2 square 1.98x1.98 0.408336 0.101790 -0.854059 0.137807

Obtained numerical calculations show a very good agreement for all these types o f  
contours.

5.2. Stochastic crack geometry

A stochastic counterpart o f  previous example was also considered. The problem o f 
an uncertain geometry o f  a crack o f the mean length L=1 in a 2-D square plate (2x2) under 
tension is examined.
Four random shape parameters were chosen as design variables

{5a(y)} =  [Sa,(Y),8 a 2 (Y),8 a 3(Y),8a 4 (y)]T = [ S b ^ ^ M . S o ^ y X S r t f y ) ] 1 

which described translations TX| and TXj, rotation R Xj and expansion E, respectively. 

Prescribed variances o f random shape parameters and calculated coefficients o f  
displacement sensitivity analysis S“ are given in Table 2.

Table 2.
r Sar(y ) shape transformation Varia^xlCT4 S“ x lO -

1 8 b, T-, 1 .0 0.0408

2 8 b 2 T-, 1.0 0 .1 0 2 0

3 8(0 3
s

2.89 -0.0854

4 E 1 .0 0.1380

The mean value and the variance o f  a vertical displacement u2 at the point where a load p 
has been applied are (u 2 ) 0 = E [u 2(y)] = 36.965-10'5 and V ar(u2) = 5.220- 10 '12, 
respectively.
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