Seria: MECHANIKA z.122

Nr kol. 1267

Anatoliusz JAKOWLUK Katedra Mechaniki Stosowanej Politechnika Białostocka

ISTOTNOŚĆ ODKSZTAŁCEŃ MIKROPOLARNYCH PEŁZANIA MATERIAŁÓW PRZY OBCIĄŻENIACH STATYCZNYCH I DYNAMICZNYCH

<u>Streszczenię</u>. Na pełzanie badano odkształcenia klasyczne ε_{ij} i mikropolarne l_{ij} lignostonu i stopów metali na próbkach rurkowych przy rozciąganiu lub skręcaniu. Dla lignostonu otrzymano 2 l₁₂/ $\varepsilon_{11} = 0,2$, natomiast stosunek l₁₁/2 ε_{12} był o dwa rzędy mniejszy. Dla metali odkształcenia mikropolarne 2 l₁₂ i l₁₁ były około dwóch rzędów mniejsze w stosunku do ε_{11} , 2 ε_{12} , natomiast stosunki ich prędkości . 1 _{ij}/ ε_{ij} w funkcji naprężenia były malejące. Dla pełzania dynamicznego stosunki 2 l₁₂/ ε_{11} w funkcji naprężenia σ_{11}^{m} były rosnące. Jest to efekt działania fal mikropolarnych na strukturę stopu.

SIGNIFICANCE OF CREEP MICROPOLAR STRAINS IN MATERIALS FOR STATIC AND DYNAMIC LOADINGS

Summary. Recent research on creep of classical strains ε_{ij} and micropolar strains l_{ij} of lignostone and metal alloys on tubular specimens for tension or torsion was carried out. For lignostone received $2l_{12}/\varepsilon_{11} \approx 0.2$, whereas $l_{11}/2 \varepsilon_{12}$ was smaller of two rank. For metals the micropolar strains $2 l_{12}$ and l_{11} were smaller approximately of two rank in ratio to ε_{11} , $2\varepsilon_{12}$ whereas ratios their velocities of $1 l_{ij}/\varepsilon_{ij}$ in function of stress were decreased. For dynamic creep ratios of $2 l_{12}/\varepsilon_{11}$ in function mean stress σ_{11}^{m} were increased. This is effect of the micropolar waves action on structure of metal alloy.

ЗИАЧЕНИЕ МИКРОПОЛЯРНЫХ ДЕФОРМАЦИИ ПОЛЗУЧЕСТИ В МАТЕРИАЛАХ ПРИ СТАТИЧЕСКИХ И ДИНАМИЧЕСКИХ НАГРУЗКАХ

<u>Резюме</u>. Исследованы деформации классические \mathcal{E}_{i1} и микрополярное 1_{i1} ползучести лигиостона и сплавов металлов. На растряжение либо кручение трубчатых образцов. Для лигностона получено $21_{12}/\mathcal{E}_{11} \sim 0.2$, тогда как $1_{11}/2$ \mathcal{E}_{12} на два порядка меньше. Для металлов микрополярные деформации 21_{12} или 1_{11} были приблизительно на два порядка меньше по стношения с \mathcal{E}_{12} , погда как их отношения скоростей $1_{ij}/\mathcal{E}_{11}$ в функции напряжения были уменьшающимися. Для линамической ползучести отношения 2 1 $_{12}/\mathcal{E}_{11}$ в функции \mathcal{E}_{12} были возрастающими. Это еффект действия микрополярных волн на

1. WSTĘP

A.C. Eringen [1] w 1962 r. podał ogólną nieliniową teorię ośrodków ciągłych, a w 1966 r. uproszczony model mikropolarnych materiałów sprężystych [2]. Model ten stanowią klasyczne materiały z dodatkowymi niezależnymi stopniami swobody, wynikającymi z lokalnych obrotów sztywnej cząsteczki - mikroelementu. Do takich zalicza Eringen materiały z włóknistymi i wydłużonymi ziarnami. Materiały takie reagują na bezwładność i momenty powierzchniowe i objętościowe. To wywołuje nowe efekty statyczne i dynamiczne w postaci np. naprężeń momentowych i nowych rodzajów fal. Jednakże odkształcenia mikropolarne występują nie tylko w materiałach włóknistych w zakresie sprężystym, ale również w procesach pełzania i pełzania dynamicznego metali i ich stopów, zwłaszcza w podwyższonych temperaturach.

Należy podkreślić, że W. Nowacki [3] już w roku 1963 opublikował pracę o propagacji fal rotacyjnych w ośrodku nazywanym asymetryczno-sprężystym, zaś w 1970 r. ukazała się jego książka o niesymetrycznej sprężystości [4].

Celem niniejszej pracy jest wykazanie, dla jakich klas materiałów i w jakich warunkach obciążeń znajomość wartości odkształceń mikropolarnych jest istotna.

2. WYNIKI BADAŃ PEŁZANIA MIKROPOLARNEGO

2.1. Wyniki badań statycznego pełzania mikropolarnego

Wszystkie próby pełzania mikropolarnego, statycznego i dynamicznego zostały wykonane na cienkościennych próbkach rurkowych, które zapewniły jednorodny stan naprężeń oraz możliwość uzyskiwania, przy rozciaganiu próbki, oprócz odkształceń klasycznych $\varepsilon l1$, również mikropolarnych 2 l_{12} . W próbach statycznych dokonano również prób skręcania, mierząc $2\varepsilon_{12}$ i l_{11} .

2.1.1. Wyniki badań pełzania mikropolarnego lignostonu

Wyniki badań rozciągania próbki, o wymiarach $d_2=19,2$; $d_w=16,0$; $l_0=70$ mm, oś próbki wzdłuż włókien wg badań M. Czecha [5] przedstawiono na rys. 1. oraz skręcania-na rys.2.

Rys. 1. Krzywe izochroniczne pełzania przy rozciąganiu: a) dla ε_{11} , b) dla 21,2

Fig. 1. Isochronaus creep curves on tension: a) for ε_{11} , b) for $2l_{12}$

Rys. 2. Krzywe izochroniczne pełzania przy skręcaniu a) dla ε_{12} , b) dla l_{11}

Fig. 2. Isochronaus creep curves on torsion: a) for ε_{12} , b) for l_{11}

2.1.2. Wyniki badań pełzania mikropolarnego stopów metali

a. Stop AlgSi, T = 293 K; próbki rurkowe: $d_z = 17$, $d_w = 14$, $l_0 = 70$ mm; wyniki wg badań W. Jermolaja [5] przedstawiono na rys. 3-5.

Rys. 3. Krzywe pełzania przy rozciąganiu: a) dla ε_{11} , b) dla $2l_{12}$ Fig. 3. Curves of creep on tension: a) for ε_{11} , b) for $2l_{12}$

Fig. 5. Zmienność stosunków prędkości 2 l $_{12}$ / ε $_{11}$ pełzania ustalonego w funkcji naprężenia σ_{11}

Fig. 5. Mutability of velocity ratios 2 1 $_{12}$ / \dot{e} $_{11}$ of secondary creep as function of stress σ_{11}

b. Stal OH2M, T = 733K; wg badań M. Plewy [5] wyniki zmienności stosunków prędkości l_{ii}/ $\dot{\epsilon}_{ii}$ w funkcji naprężeń σ_{ii} przedstawiono na rys. 6.

Rys. 6. Zmienność stosunku prędkości pełzania ustalonego I_{ij}/ε_{ij} w funkcji naprężeń σ_{ij} :

a) rozciaganie, b) skręcanie, c) ciśnienie wewnętrzne z rozciaganiem

Fig. 6. Mutability of velocity ratios $1 \neq e_{\pm}$ a) tension, b) torsion, c) inside pressure with tension

2.2. Wyniki badań pelzania dynamicznego

2.2.1. Wyniki badań pełzania dynamicznego i zmęczenia

Badania są przykładowo ilustrowane dla stali stopowej 15HM w temperaturze 823K, dla współczynnika amplitudy naprężenia $A_{\sigma} = \sigma_{a}/\sigma_{m} = 0,25$ wykonanych na próbkach o wymiarach jak w p. 2.1.2. Krzywe pełzania klasycznego ε_{11} i mikropolarnego $2I_{12}$ przedstawiono na rys. 7 [6]. Stosunek prędkości 2 I $_{12}/\varepsilon_{11}$ pełzania ustalonego przedstawiono na rys. 8 w funkcji naprężenia średniego σ_{11}^{m} . Funkcja jest rosnąca.

Rys.8. Zmienność stosunku predkości 2 l $_{12}$ / e_{11} pełzania ustalonego w funkcji napreżenia średniego σ_{11}^{m}

Fig.8. Mutability of velocity ratios 2 1 $_{12}$ / $\dot{\epsilon}$ $_{11}$ of secondary creep as function of mean stress σ_{11}^{m}

- Rys. 7. Krzywe pełzania dynamicznego:
 a) dla ε₁₁, b) dla 2l₁₂
 Fig. 7. Curves of dynamic creep:
 - a) for ε_{11} , b) for $2l_{12}$

Badania powyższe celowo jest uzupelnić zmęczeniowymi wykresami symetrycznymi Haigha, przedstawionymi na rys. 9 [6].

Rys. 9. Wykresy Haigha dla ograniczonej wytrzymałości zmęczeniowej: a) dla stopu AlMgSi, b) dla stali 15HM

Fig. 9. Haigh's diagrams of limited fatigue strenght: a) for AlMgSi alloy, b) for 15HM steed

- 2.2.2. Wnioski z badań dynamicznego pełzania mikropolarnego i zmęczenia
- Mikropolarne odkształcenia pełzania dynamicznego 2 l₁₂ stali 15HM w stosunku ε₁₁ są mniejsze około 1,5 rzędu, a dla stopu AlMgS nawet około jednego rzędu (przy pełzaniu

około dwóch rzędów).

- 2) Stosunki prędkości 2 l $_{12}$ / ε_{11} w funkcji σ_{11}^{m} są rosnące, tj. odwrotnie niż przy pełzaniu statycznym.
- Wykresy Haigha dla stopów AlMgSi i 15HM są diametralnie różne, tj. w pierwszym przypadku widoczne jest osłabienie materiału, w drugim zaś - umocnienie.

Te przeciwstawne efekty można jakościowo interpretować za pomocą fal mikropolarnych [7]: a) dla czystych metali i prostych stopów działania fal mikropolarnych wywołuje wzrost prędkości pełzania i skrócenie żywotności (rys. 9a); b) dla stali stopowych w wysokich temperaturach fale mikropolarne powodują między innymi transport materii i w wyniku dyspersyjne umocnienie, a to prowadzi do zmniejszenia prędkości pełzania i wzrostu żywotności (rys. 9b). Rodzaj fal mikropolarnych ilustruje rys. 10. Fale te są generowane przez impulsy obciążenia cyklicznie zmiennego. Oprócz tego występują jeszcze fale odbite.

Rys.10.Przemieszczenia i mikrorotacje fal M: $\overline{n_1}$ - kierunek propagacji fal, 1 - fala płaska u , 2 - fala płaska rotacji wzdłużnej φ_1 , 3 - fala poprzeczna U i fala poprzeczna mikrorotacji Φ

Fig.10.Displacement and microrotation of waves M: n_1 - direction of wave propagation, $1_{\underline{-}}$ plane wave u_1 , 2 - plane mmikropolar wave φ_1 , 3 - transverse wave U_1 , $\overline{\Phi}$ - transverse micropolar wave

LITERATURA

- [1] Eringen A.C.: Nonlinear theory of continuous media. Mc Graw-Hill, New York 1962.
- [2] Eringen A.C.: Theory of micropolar elasticity In "Fracture, Vol. 2. Mathematical fundamentals" (Liebowitz H., ed), Acedemic Press, New York and London 1968.
- [3] Nowacki W.: Propagation of rotation waves in assymetric elasticity. Bull. Acad. Polon. Sci. Ser. Sci. Tech, 10, 16 (1963), p. 813.
- [4] Nowacki W.: Teoria niesymetrycznej sprężystości, Wyd. PAN im. Ossolińskich, Wrocław - Warszawa - Kraków 1970.
- [5] Jakowluk A., Czech M., Jermołaj W., Plewa M.: Udział odkształceń mikropolarnych w pełzaniu całkowitym różnych klas materiałów. III Symp. Zagad. Pełzania, Białystok 1989, s. 157-164.
- [6] Jermołaj W.: Wpływ prędkości odkształceń mikropolarnych do klasycznych na wytrzymałość zmęczeniową stopów metali. Zesz. N. Pol. Świętok., Mech. 50, 1993, s. 215-222.
- [7] Jakowluk A.: Procesy pełzania i zmęczenia w materiałach, WNT, Warszawa 1993.

Recenzent: prof.dr hab.inż. T. Burczyński

Wpłyneło do Redakcji w grudniu 1994 r.