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ON CHOOSING A GENERATING MODEL
FOR STRONGLY NON-LINEAR VIBRATING SYSTEMS
COMPUTATION

Summary. The generating model for analyzing strongly non-linear vibra-
tions of mechanical systems is discussed. The corresponding analytical tech-

nique, that has been proposed in previous papers, is illustrated on essentially
non-linear elastic systems.

0 BHBOPE nOPOQIIIAIOIUEft MODEM DM PACDETA CHIIbHO
HEMHEHHHX KOJIEBATEJIbHHX CHCTEM

Pe3P»e. OOcyscnaeTCH nopoxaamafl Moneiib iljih
aHann3a chiibho HennHeoHHx KOJie6aHHft MexammecKHXx
CHCTeM. CooTBeTCTBytuuafl aHanHTHuecKaH TexHHica,
npejtno*eHHafl b npenHnyutHX pa6oTax, HJin»CTpnpyeTCfl Ha
cymecTBeHHo HenHHeftHHX ynpyrHx cHCTeMax.

O WYBORZE MODELU TWORZACEGO
DO OBLICZEN SILNIE NIELINIOWYCH UKLADOW
DRGAJACYCH

Streszczenie. Przedyskutowany jest model tworzacy do analizy silnie nie-
liniowych drgan uktadéw mechanicznych. Zwigzana z nim technika analityczna

- zaproponowana w poprzednich pracach - jest zilustrowana na przyktadzie
nieliniowych uktadéw sprezystych.

1. INTRODUCTION

There exist numerous quantitative techniques for computing nonlinear dynamic re-
sponses. The majority of these techniques are carried out under the assumption of weak
nonlinearity. Assuming that the nonlinear system ”neighbors” a linear one, a pertur-
bation parameter is introduced to denote the small magnitudes of the nonlinear terms,
and the nonlinear response is constructed "close” to a linear generating solution. Since the
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generating functions are harmonic, the weakly nonlinear responses are constructed using
complete bases of trigonometric functions. An obvious disadvantage of such techniques
is that they can not be applied to strongly nonlinear or non-linearizable oscillators. To
circumvent this deficiency of weakly nonlinear techniques, an alternative class of strongly
nonlinear ones was developed. These techniques relax the assumption of weak nonlinearity
by utilizing nonlinear generating solutions, thereby assuming that the strongly nonlinear
systems under consideration neighbor simplified, but otherwise, nonlinear systems. These
strongly nonlinear techniques are highly specialized and can not be employed for the ana-
lysis of general classes of nonlinear problems. The main reason is that multi-dimensional
nonlinear systems are generically non-integrable, and, hence, the nonlinear generating
solutions are seldom available in closed-form [1].

From the above remarks it is concluded, that a strongly nonlinear analytical technique
with wide range of applicability must employ nonlinear generating systems which,

(i) are sufficiently general so that can be used in a broad range of nonlinear applications

(ii) possess a sufficiently simple structure in order to enable the correction of efficient
iterative perturbation schemes for computing the nonlinear response

(iii) possess an additional with reference to linear generating system properties.

It must be noted that, especially requirement (i) seems to contradict the well-known
“individuality" of nonlinear systems, which generally prohibits the concievement of analy-
tical methodologies which are applicable to general classes of strongly nonlinear systems.

The harmonic oscillator (the linear generating system) is probably the most funda-
mental model in vibrating analysis. The reason for the wide applicability of this simple
mechanical model is that the generated trigonometric functions {smt,cost} possesses a
number of convenient mathematical properties associated with the group of motions in
Euclidean space, such as, rotation-subgroup. In the same spirit, one could consider an
additional pair of (non-smooth) functions, which have relative simple forms associated
with translation- and reflection- subgroups in the group of Euclidean motions. These
functions will be termed the saw-tooth sine r(t) and right-angled cosine e(i), respectively,
and are defined as, r(t) = (2/n)arcsin[sin(vt/2)] and e(t) = r'(i), where prime denotes
the generalized derivative. The mechanical model which generates these functions is the
vibro-impact oscillator moving with constant velocity between two rigid barriers.

Interestingly enough, there is a remarkable relation between the harmonic oscillator
and the vibroimpact one, since both can be viewed as limiting cases of the same nonlinear
oscillator:

i +xm=0; XxE€R, (1)
t=0, x=0, x=1, 7

where m is an arbitrary positive odd integer; over dot denotes differentiation with respect
to time t.

The exact solution of the initial problem (1),(2) can be expressed in closed form w
sing the special Ljapunov’s functions [2] or cam-functions [3], but these expressions are too
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mathematically complicated to provide aforementioned requirement (ii). Considering the
range 1 < m < 00, one obtains the following limiting cases for the solutions:

{x,x} = {stni,cosi}, if m=1 3)

and
{x,x} =» {r(t),e()}> if m -*oa. %)

The last case needs an extended concept of the solution, at the same time this case
can be interpreted by means of the first integral of motion

X2 XM+l 1
2"+ ro+ 1~ 2’

which is satisfied by the functions (4) almost everywhere as m tends to infinity. From
viewpoint of physics the given case corresponds to the classical particle in the square-well
potential or aforementioned vibroimpact system with two rigid barriers. The localized
singularities of (4) occur at time instants {t :r(t) = £1} (i.e., at the instances of contact
of the vibroimpact oscillator with its rigid boundaries), and are the cause of convergen-
ce problems of conventional analyzes based on trigonometric expansions when they are
applied to strongly nonlinear problems.

So it has been shown that the oscillator (1) gives two simple limiting systems genera-
ting two simple pairs of periodic functions.

It should be noted that the oscillator (1) with general and concrete powers m was
considered by number of authors from various viewpoints [2,4-10].

As a second example demonstrating the physical significance of the pair of functions
(x(7), e(i)} consider the Duffing oscillator with negative non-linear stiffness

x -fx —x3=0.

Denote by T — T(E) the period of oscillation, where E is parameter of the total
energy. When the energy is in the interval, 0 < E < 1/4, the system performs periodic
oscillations with amplitude A in the neighborhood of the stable fixed point (x, x) = (0,0).
For this type of motions, the exact solution can be expressed in terms of Jacobian elliptic
functions, and it can be proven to satisfy the following asymptotic relations:

T —*2ir, ——»cos—t+a), if E —»+0;
T —»00, x —»e(t+ a), if E - 0, 5)
where t_= 4t/T isnondimensioned time, and a = const is an arbitrary phase. Solu-

tion (5) is written in terms of right-angled cosine, and corresponds to motion of the
system on a heteroclinic orbit in phase space. In scale of nondimensioned (own)time
the system performs momentary “jumps” between the two unstable equilibrium points
(X, x) = (£1,0). Increasing the energy above the critical value E — 1/4, leads to strongly
nonlinear, non-periodic motions outside the heteroclinic loop. For values of the energy
in the range 0 < 1 —4E « 1, standard perturbation methods based on trigonometric
expansions encounter convergence problems and do not lead to accurate results. It will be
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shown that, by using as generating solutions the non-smooth functions {t (<), e(£)}, one can
analytically study such essentially nonlinear solutions without encountering convergence

problems. The corresponding technique is based on the saw-tooth time transformation
(STTT) [11-14],

Note that the method of non-smooth transformations for coordinates (not for time)
of impact systems has been developed in number of works [15,16]. It should be emphasi-
zed that the corresponding technique is technique of non-smooth spatial transformations
of variables, that can be directly applied to impact or vibro —impact systems only. The
STTT-technique contains a saw-tooth (non-smooth) time transformation, and the corre-
sponding procedures are applied to systems with analytical restoring force characteristics.

2. THE SAW-TOOTH TIME TRANSFORMATIONS TECHNIQUE

The STTT-technique is based on the following propositions [12,14]:
1. The general periodic function X = X(t) with period T = 4 can be expressed as:
x = X(t)+ Y(r)e, (©)
where X (r) = [x(t) + x(2 - r)]/2, Y(r) = [x(r) —x(2 —t)]/2;
e2=1, e= r[t. U

The elements (6) are elements of hyperbolic numbers algebra on account of (7), and,
thus, for any function /(x) we have

f(X+Ye)=R}+ lJe ®
where R, = [f(X +VY) +f{X - Y)]/2, I, =[f(X+Y)~ f(X - Y)}2

3. The result of differentiation remains in the algebra: X = Y'+ X'e under the conditions
Y |t=xi = 0. For continuous functions the conditions are satisfied automatically.

4. The result of integration remains in the algebra, that is the equality f(X + Ye)dt =
1

Q + Pe takes place under the following condition f X(r)dr = 0, where Q = fYdr+
- 0

.
C; P = f Xdr; C s an arbitrary constant.
-1

5. Let the dynamical system is described with the set of second-order equations, which
is written as:

x + /(x,x,t) =0, x£Rn, )

where vector-function / is assumed to be sufficiently smooth, and to either depend

periodically on time t with period equal to T = 4a, or to have no time dependence.
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Taking into account the propositions 1-3,for the X —, andY —components of periodic
solution(s), one obtains the boundary value problem of the following form

X"+ a?Rj =0, X'\T=#l = 0; (10)
Y" fa2f=0 Y [T=%i = 0; (11)

f(x +Y, — nr) +f(x-Y, — 2a - 0Or)

I(x +Y, ot)-/(x-Y , 2a- 0r)

where prime denotes the differentiation with respect to new time variable r = r(t/a).

Remark. Althoughthetransformed equations are formallymore complicated as com-
pared with original equations, they possess certain significant advantages. Indeed, since
the solutions qualitative properties ”is included” in the system due to the “oscillating”
variable r, the solutions of the following simplified equations

X"=0 Y"=0, (12)

as generating solutions, can be employed for the perturbation method of successive ap-
proximations. This leads to simple perturbation solutions for strongly non-linear cases.

3. VIBROIMPACT APPROXIMATION OF A CONSERVATIVE SYSTEM
Let us consider the n-DOF unforced system
x + f{x) —0, x 6 12", (13)

where /(i) is odd analytical vector-function: /(—z) = —/(i). The one-parametric(except
time translation) family of periodic solutions will be constructed.Searchingeven with
respect to quarter of period solutions, one writes

Xx —X(t), Y =0, r =r(t/a). (14)
Then, starting from (10),(11) one obtains the following simplified expressions:
X" +a2f(X) =0, (15)

X|T=L= 0, X (-r) = -X(r).

The solution of the nonlinear boundary value problem (15) can be found in series of
successive approximations [17]:

X = X°(r) + XYT)-FXAr) + -.

a2= M | +7i+ 72+ -mp (1®)
The generating solution is:

X° = A°t, Rn 9 A0 = const.
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This solution describes an n—DOF vibro-impact oscillator with two rigid barriers; in
so doing the lengthof arbitrary vector Ao isequal to the barrier spacing. Directionof the
vector is definedby the following non-linear eigenvector problem relatingthe vector Ao:

/* aOr a0
f(A°r)dr = halA0, hO= @

0 AOTJIF(A°T)dT
0

where ()T denotes the transpose of a vector.
The first successive approximation to the solution is

r AOTf fx(A°T)X 1dT
X1=-ho hr-0/(A°0C T71= 2-1 — . (18)
0 A°T{)/(A°r)dr

4. EXAMPLES OF STRONGLY NON-LINEAR SYSTEMS

Single - mass mechanical system. Consider the transverse free vibrations of a
particle, having mass m, which is clamped to a foundation by means of two horizontal
springs, having the length I and the stiffness c. The corresponding equation for the vertical
displacement of the mass, to, can be written as

? = (2c/™)1/2t/l;  w = w/l. (19

For the approximate solution, w = X(t)> +t = r(i/a), afore presented procedure
gives:

Xo=At; ho= [l/2-(vT+A 2-1)/A3]-1;

) 2A“°> Xal3 + 2X0- X0~ + X1 - In(X0+ y/1+X$) (0)

7i = -~ f(A)Xi\X0=A ~

where the first approximation is expressed in terms of the zero-th one.

A peculiarity is that the system becomes linear for large amplitude but not for small
one. In fact for A —* 00, we obtain: Xi/A ——t3/3, h0O—»2, 71 —» 1/6. The limiting
case corresponds to the harmonic oscillator.

For the case A — 0 we have the asymptotic: ha~ 8/A3, X\/A ——ts/5, 71 -*
3/10. The corresponding limiting oscillator is: iPw/dt2+ us/2 = 0.

It should be noted that the expansion is appropriate both for large and for small
amplitudes of vibrations.
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Two-mass chain with non-linear elastic springs. Consider the two-mass
chain that is shown in the Fig. 1. Let the elastic energy of springs is defined by the
following relationships:

Il = FXXj) + G(xi - x2) + F(x2);

F(s) = a2/l2 + *74 + sg8/6; G(s) = ¢252/2 + ¢c3s4/i + c5s76,

where a (i = 1,3,5) are positive parameters.

The vector-function of the restoring force is: /(x) = {dH/dx-i,dUJdx2)T. It can be
shown that the non-linear eigen-vector problem (17) describes the qualitative dissimilar
situations in the following cases:

a) ¢3 > 1/4, c6> 1/8;
b) ¢3 < 1/4, c¢5> 1/8;3(4c3-1)2-32d(8c5-1) >0;
c) ¢3 < 1/4, cs< 1/8.

Fig.2a,b,c exhibit the solutions at the following quantities: a) Ci = 1/10; ¢c3 = 1/2; ¢5
= 1/4; b) ¢3= 1/10; ¢c3 = 1/8; ¢s = 1/7; c) ¢, = 1/10; ¢c3= 1/8; ¢c5= 1/15.

The solutions corresponding to symmetric mode are not shown in the figures. It should
be noted that numerical procedure used for the eigen-vector problem is unstable about
the symmetric mode. Fig.2b,c presents such cases that the nonlinear localized modes
[13,18,19] can be realized. In the case (b) the oscillators are weakly coupled in the fourth
degrees of potential energy. In the case (c) the oscillators are weakly coupled else in the
fifth degrees.

The infinite chain of nonlinear oscillators. Consider an infinite chain of nonli-
near oscillators, coupled by means of linear springs. The equation of motion of this system
are given as:

un- u, !+ 2u,- un+i+ /(un)=0, n=0,x1,£2,.... (21)
Function f(un) denotes the nonlinear restoring grounding force acting on the n—th o-
scillator. This function is assumed to be analytic and odd, and to possesses a single zero
at the equilibrium position un = 0. Traveling and stationary wave solutions of (21) will
be computed by imposing continuoum approximations, and reducing this infinite set of
equations to a single approximate nonlinear partial differential equation. In the continu-
oum limit, the displacements u,, become continuous function of the spatial and temporal
variables, un —uf(t, n).

So for long-wave motions one has the following Klein-Gordon nonlinear partial diffe-
rential equation [20]:

A A+ /(u)=0 22
3i2” dn2 n() ; (22)
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The travelling wave solutions of (22) are now sought in the form:
u=u<>), %= kn —ut.
Considering $>as a new independent variable, one has the following ordinary differential
equation:

fPIL
(" - + /(«) = 0- (23)

Let /(u) = 7um; 7 = const; m = 2n - 1. Putting a2 = /(w2 —k2) and using the
STTT-technique, one obtains the following dispersion relation for the traveling wave:

Ty (m+ (m + 2)°

where A is related to the maximum amplitude of the wave by the relation, A =

Fig.l. Two-mass chain with non-linear springs
Rys.l. Uktad dwo6ch mas z nieliniowymi sprezynami
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ftl

Fig.2. Numerical analysis of the non-linear eigen-vector problem (at the right of the
figure) and corresponding trajectories in the configuration plane (at the left of the figure):
a) strongly coupled oscillators; b) the coupling stiffness of the 3-rd degree is weak; c)
coupling sniffinesses of the 3-rd and the 5-th degrees are weak

Rys.2. Analiza numeryczna nieliniowego zagadnienia wasnego (po prawej) z odpo-
wiadajacymi trajektoriami na ptaszczyznie konfiguracyjnej (po lewej): a) silnie sprzezone
oscylacje; b) sprzezajaca sztywno$¢ trzeciego stopnia jest staba; c) sprzezajace sztywnosci
trzeciego i pigtego stopnia sg stabe
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