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MODELOWANIE DRGAN UKt ADOW SZYBKOOBROTOWYCH
WALOW

Streszczenie. Przedstawiony jest sposob modelowania drgan sprzezonych watdw,
wykorzystujacy synteze modalng oraz metode elementéw skonczonych. Model
bierze pod uwage zjawiska giroskopowe, bezwtadno$¢ rotacyjna, odksztatcenia
zwigzane ze zginaniem, skrecaniem i $cinaniem oraz przemieszczeniami
osiowymi, jak réwniez sprezystosci i tumienie tozysk.

MODELLING OF HIGH SPEED SHAFT SYSTEMS VIBRATION

Summary The modal synthesis method and FEM based modelling of
vibration of coupled shafts including the effects of gyroscopic forces, rotational
inertia, bending torsional, longitudinal and shearing deformation of shafts,
elasticity and damping of bearings is presented.

MOZIEJIHPOBAHHE KOJIEEAHHTT BHCOKOOBOPOTHHX
BAJIOB

Pe3aDMe. B CTSTbhe pacMBTpHBaeTca npHMSHSHHe wueToaa
MoaanbHoro cHtrreda m MoaenHpoBBHHH ronelfaHHFi cbh3ghhx
BaaoB c yveTOM rHapocKonmiecrHX mombhtob, potbiijhohho0
HHepil,HHt H3rHOHX, KpyTHIbHHX H ItpOEOUbHHX Ae$OpMaU Hfi,
ae$ipMau,Hft caBHra, noaaTiHBocTH h 3BTyxaHHH onop.
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1 INTRODUCTION

We consider the high speed shaft system composed of several shafts with circular
cross-sections with rigid discs supported by rolling-element bearings. The shafts are joined
by flexible couplings or gears. Each shaft will be assumed to rotate stationary.

The presented mathematical modelling of spatial vibration of the shaft systems is
based on the 1D-FEM shaft models [1] and modal synthesis method [2], In comparison
with [1] the shaft models are described in the fixed coordinate systems and include the
effect of shear deformation caused by bending phenomenon.

2. MATRICES OF A SHAFT ELEMENT

The shaft will be assumed to rotate about its theoretical axis X with constant
angular velocity (ot and to execute combined bending, torsional and longitudinal vibration.
The vibration of the shaft element is expressed by displacements u(x), v(x), w(x) of
neutral axis points and by small turn angles $(x), \|[/(x), <o(X) (Fig. 1).

Fig. 1 Scheme of the shaft element in the fixed system
Rys. 1. Schemat elementu watu w uktadzie nieruchomym

Kinetic energy of the shaft element "€ of length lis
ER ="0A (x)vT(x)-v(x)+coT(x)-J(x)co (x)]pdx )
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where A(x) and r are the cross-sectional area and density, respectively. The speed of the
neutral axis points

v(x) = [u(x), v(x),w(x)]T, (2)

the vector cd(x) of the infinitesimal mass element angle velocityin cartesian coordinate
system tj, q

co(x) = [©,, +<p(x), S (x)-ro{v(x), vi/(x) +<o0 (x)]T (3)
at the diagonal matrix of cross-sectional area moments of inertia
J(x) = diag (2J(x), J(x), J(x)) (4)

(4) were introduced in the expression (1).
Potential energy of the shaft element is

E'> = -1JA{EEN(X) + G [y~ (x)+ YA (X)]FA (X)dX, ®)

where E and G are Young modulus and shear modulus, respectively. Components of the
strain vector in (5) are

W du, du, du 9u  dux
==, Ve Tt Ya(x) =— *3-(6)
3X dx <y dx dz

The displacements of an arbitrary point (x,y,z) of the shaft element in direction of the fixed
axis x,y,z are

ux=u(x)-y\j/(x) +zS(x), uy=v(x)- zcp(x),

u, =w(x) +ycp(x). 0
The transversal displacements can be approximated by cubic polynomials
v(x) = <$(x)c,, w(x)=C>(x)c2, ®(x)=[1 x x2 x3], (8)
longitudinal and torsional displacements by linear polynomials
v(x) =T (x)e3, p(x)=Y(x)cd, ¥(x)=[1x] (9)

According to the Mindlin beam theory including the effect of shear, deformation plane
sections of the shaft remain plane after the déformation but are not perpendicular to the
deformed neutral axis. Hence turn angles j(x), y(x) can be approximated by quadratic
polynomials

y(x) =©(x)b, , S(x)=0(x)b2, 0(x)=[1xx2]. (10)

Vectors bj, b2ofunknown coefficients will be determined from the conditions [3]
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5sv CBw
kG yiyA= Ql=kGYy,A =-EJ~r, (3]

where Qy, Qz are internal shear forces transfered by the cross section in corresponding
directions and
J2 d\ dw

k=- o VTN g +5S (12)
S 4a X

AT pacy)

Here S(y) denotes the statical moment about z axis of the part of the cross-sectional area
cut off by a section of the width b(y) in distance y from axis z.
From the relations (8), (10), (11) and (12) we get

kA G~ r"N-eb.~-EJ <D"C
k AG(i>'c2-0b 2)=-EJ<D",ci
and further
b,=He, , b2=-Hec2, (13)

where

6EJ

0 10
H= 0 0 2 0 and k=
kAGI2
0 0 O

3
Substituting (13) into (10) we get
y(x)=0(x) He, , 9(x)=-0(x)Hc2, (14)

The configuration of the shaft element "e" of length 1 in the fixed coordinate
system x,y,z can be expressed by the vector of displacements of nodes 1 (x = 0) and 2

(x=1
O [H > >l >k ) (15)
where
qt=1[v(0) v(o) v(i) v(i)IT. q2=[w(°) 9(°) wd) 90)]T
q3=[u(0) o(1) f , q4=[(pO) <pO)f .
These nodal displacements satisfy the relations (8), (9), (14) and hence

gi=Sjci, ¢i=S"qj, i=12,3,4, (16)
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where
1 0 0 0
0 1 0 k12
5= 1 12 13
0 1 21 (3+ k)12
1 0 0 0
0 -1 0 - kl2 1 0
5. 1 1 12 3 oAt
0 -1 -21 -(3 +k)12_

Using relations (8), (9), (14) and (16), the displacements of internal points the shaft
element are given by expressions

v(x) = <b(x)S'lg,, H/(x)=0(x)HS;'q,,
w(x) = <t>(x)S2'q2, 9(x)=-0(x)HS!ql, (17)
u(x) =4'(x)S-‘q3, <p(x)=0(x)HS3qg3
The matrices of a shaft element satisfy the Lagrange condition
die ™M, dE[e [ dEE _
dt[GQ(O)\] 099 + (509 (18)
M€ q() +0»0G () &+ (k - (0K'8)q(e)
Substituting (1), (2) into (18) and considering all above presented relations we get the
symmetrical mass matrix M (g), the antisymmetrical matrix of gyroscopic effects Gw, the

symmetrical static stiffness matrix K ) and the symmetrical dynamic stiffness matrix KD
(multiplied by mj) of the shaft element All matrices are of order 12 and have the form

0 0
M@ = sa(i,+i4)s2 0 0
0 S B3 0
0 0 0 s TW
—
o 251,52 0 0
25211,5,1 0 0 0
©= 0 0 0 0
- o 0 0 0
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S(T(17+112)S11 0 0 0
0 s2te(i7+il2s- 0 0
O O S;rnlo 3 0
0 0 0 s;T,,sr J
—
0 0 o |
0 s-Tlkj, 0 0
0 0 0 0
4 © 0 0 ° i
where
i i i
I,=JjHrOTOHpdx, 14=jAd>TOpdx, |, =JAyT\ipdx,
0 0 0
1 | 1
16=2jjv/>pdx,I7=|EJH t©,TO'Hdx , I, =Je Ail/tV'dx,
0 0 0

1 1
I, =2jGJi|/'TV'dx, 112=jGA(d)'T-HTOT)(0’-0H )dx.
0 0

The internal damping matrix Bw of the shaft element can be considered proportional in
form B">=p(>K ",

3. MATHEMATICAL MODEL OF THE SHAFT SYSTEM

Let the shaft system (Fig. 2) be composed of N shafts (here N = 5) with rigid discs.
The shafts are supported by viscous-elastic bearings and joined by discrete couplings (here
flexible couplings s = 1,2 and gear meshings z = 1,2).
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W= mFcem?n
. “irTT TtT enr
¢2=2

bV = r oY H ™

Fig. 2. Scheme ofthe shaft system
Rys.2. Schemat uktadu napedowego

The equation of motion of the dismembered shaft "j" is described in matrix form

corresponding to (18)
Mjq(t) + (B +coQGj)qj(t)+(Ksj-C);jKra)qj(t) =
fr(t)+ff(t), j=1,2,.....,N,

(20)

where Mj, Bj, Gj, K~, are square mass, damping, gyroscopic, static stiffness and
dynamic stiffness matrices of the isolated shaft "j" and w is its given constant angular
velocity. The generalized coordinate vector gj(t) of dimension n, in this form (i is index of
the node)

qj=1[...,ui,v1\tii,wi,B1,<l,...J

expresses nodal displacements ofthe shaft "j". The structure ofthe matrices Mj, Bj, Gj, K§
and Kpj results from the scheme

S
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m

The cross-hatched submatrices of the order 12 in the first member represent the
transformed shaft element matrices (19) in form Tt XT .where
Xe{M(),G(,), ,Kp }and the transformational matrix T exchanges only rows and

columns of the original element matrices. The cross-hatched submatrices of the order 6 in
the second member correspond to discrete parameters (rigid discs, supports) External
excitation of the shaft by nodal forces is expressed by the vector ff (t). The internal force

effect of the neighbouring shaft connected to the "j" shaft is described by the coupling
force vector fE(t).

The configuration of the whole shaft system is described by the generalized
N

coordinate vector q(t) = [qj(t)] of dimension n=£ ~ . The influence of the elastic
=]

viscous properties and

kinematic errors in couplings (in case of gear meshings) is expressed in mathematical

model ofthe system by stiffness and damping coupling matrices Kc, B¢ and by the internal

excitation force vector f(t) satisfying

fC(*) = 0q 3q=*KCQ(t))-BCQ(t)+f'(t), (21)

where f°(t) =[fc(t)'| is the potential energy and Ed is the dissipative function of the

discrete couplings undergoing the vibration
Every isolated shaft is characterised by spectral and modal matrix - h V) of the
conservative part. These matrices satisfy the orthonormality conditions

XM jVj=1j, V I(k,-«*kJIVvj=Aj, j=1,2,.,N,

and can be devided into submatrices of m, master mode shapes (index m), § slave mode
shapes (index s) and the other shapes (index o), resp.,

V A=V j Vj»vij, Aj=diag(-AJ>"'Aj>*Al).
The mathematical model (20) can be transformed into the condensed mathematical model
N
with the relatively smaller number m=" m” n of degrees of freedom in master modal
=
coordinates of the isolated shafts [2]
rx(t) +(MD+mG+mV tCBcnmv) m(t) +(nA+“V TCKcrav) nx(t) =

mMVT[C f'(t) +(I-C K cH) fE(1)],
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where

-D =diag(mV/ Bj “Vj), mG=dag(o@mJ Gj“V,),
H =diagi’Vj ‘A/ 4J ), “A=diag(-Aj, "V =diag(-Vj),
fE() = [f/(1)], C=(1+KeH) .l

The matrix C expresses approximately an influence of frequentionally higher slave mode
shapes ofuncoupled subsystems. The transformational relations

q(t) = mv mx(t) +H [fc(t) + ()]
fc(t)=-C[Kc“V "x(t)+Bc “V “i(t)-f*(1)+ KcH FE(t)]

enable after integration ofthe condensed model (22) to determine the vector of coupling
forces and generalized coordinates
The conservative part of the condensed model (22) in form

mx(t)+( "A+mVTCKc "V) “x(t) =0 (23)
can be used for calculation of the natural frequencies Q0, u= 1, 2,.., m ofthe whole shaft

system. The corresponding eigenvectors “x0 of the condensed conservative model (23)
have to be transformed by means ofthe relation

go=(I+HKc)" “V “xu

into the space of the generalized coordinates.
Usage of the model (23) for spectral tuning is presented in [4],
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