Seria: TRANSPORT z. 15

Nr kol. 1094

Marian SZYMANSKI

Ośrodek Badawczo-Rozwojowy Pojazdów Szynowych – Poznań

NPŁYW KONSTRUKCJI WAGONU TOWAROWEGO NA WIELKOŚĆ SIŁ W PUNKCIE KONTAKTU KOŁO-SZYNA W CZASIE JAZDY PO TORZE WICHROWATYM

Streszczenie. W pracy przedstawiono wpływ parametrów konstrukcyjnych wagonu towarowego ze szczególnym uwzględnieniem układów biegowych (wózków) na wielkość sił w punkcie styku koła z szyną. Wykszano wpływ odmian układów biegowych na zmniejszenie tych sił, a tym samym zmniejszenie sił tarcia, co w konsekwencji prowadzi do ograniczenia zużycia koła (obręczy) i szyny. W świetle przedstawionych rozważań podkreśla się konieczność konty-

nuwacji badań mając na uwadze tak ważny problem jakim jest zużycie.

1. Wprowadzenie

Sfera projektowania oraz wykonania wagonów towarowych wymaga stałej kontynuacji badań tak teoretycznych jak i praktycznych.

Szczególną uwagę kieruje się na badenia bezpieczeństwa jazdy w warunkach skatremalnie niekorzystnych, do których zalicza się pojawiajęcą w skeploatacji wichrowatość toru [1].

Rozważania koncentrują się na współpracy koło z szyną determinowaną układem biegowym, nadwoziem wagonu oraz stanem toru. Następstwem tego są Pojawiające się w czasie jazdy zmiany nacisku kół wagonu na szyny.

Sumowanie się przyczyn negatywnych sprzyja powstawaniu wielkości sił * punkcie styku koła z szynę, których wartości oscylują w strefie nieko-^{rzy}stnych stanów krytycznych.

Siły występujące w punkcie kontaktu koła z szyną i będące przedmiotem ^{rozwa}żań zobrazowano na rys. 1. Model wagonu towarowego 4-osiowego (wóz-^{kowego}) z wybranymi parametrami przedstawiono na rys. 2.

Na wielkość sił w punkcie styku koła z szyną wpływają określone cachy ^{specy}ficzne dla toru i pojazdu.

Siły prowadzące kół nabiegających na szynę sę determinowane nie tylko mpływem parametrów toru i pojazdu ale również stanem załadowania oraz Prędkościę jego jazdy [2]. Odchyłki szerokości toru, nachylenia w budowie ułożenia szyn oraz profil główki szyny i koła wywołuję zmiany geometrii kontaktu pomiędzy kołem i szyną powodujące znaczne zmiany sił kontaktowych.

Rys. 1. Rozkład sił na styku koła z szyną

Fig. 1. Distribution of forces at the contact point of the wheel with the rail

Y_a, Y_i - siły prowadząca, Q_a, Q_i - naciski, N_a, N_i - siły normalne, μ_a , μ_i - współczynniki tarcia μ_a N_a, μ_i N_i - siły tarcia, Y_a, Y_i - kąty jakie tworzą styczne do koła i szyny z poziomem, β_a , β_i - kąty jakie tworzą siły normalne z naciskami ρ_a , ρ_i - kąty jakie tworzą siły normalne z wypadkowymi sił Y i Q

Poszczególne parametry oznaczają:

28	(==)	- rozstaw czopów skrętu
2a ⁺	(==)	- rozstaw zestawów kolejowych w wózku
2b,	(mm)	- baza poprzeczna w usprężynowaniu wózka (wynosi - 2000)
26A	(mm)	- baza punktów podparcia zestawu kołowego (wynosi - 1500)
2bG	(mm)	- rozstaw ślizgów bocznych (wynosi - 1700)
dzG	(mm)	- luz ślizgu bocznego
bF	(mm)	- promień koła (wynosi - 460)
C,	(kn mm²)	- sztywność skrętna nadwozia
c ⁺ t	(<u>kN ma²</u>)	- sztywność skrętna ramy wózka
CG	(<u>kN</u>)	- sztywność usprężynowania ślizgu bocznego
C _z	(<u>kN</u>)	- sztywność usprężynowania przyosiowego
Ya	(kN)	- siła prowadząca na kole nabiegającym
Y	(kN)	- siła prowadząca na kole nienabiegjącym
F	(kN)	- siła poprzeczna w łożysku zestawu kołowego
Qa	(kN)	- średni nacisk koła na szynę na poziomym torze.

230

M. Szymański

(3)

Zmiany siły, prowadzącej i pionowego nacisku koła [3] w punkcie kontaktu (koło-szyna) wywołują zmiany sił tarcia (rys. 1), których z kolei praca jest przyczynkiem postępującego procesu zużycia pary koło-szyna.

Wielkość sił tarcia w ujęciu ogólnym determinowana jest poziomem sił Y i Q.

Celem opracowania jest wskazanie wpływu rozwiązań konstrukcyjnych wagonu towarowego wózkowego na zmienność (zmniejszenie) powyższych sił.

Zwrócono szczególną uwagę na rolę jako mogę spełnić w tym zakresie zastosowane odzienne układy biegowe (wózki).

Rozważania przeprowadzono wykorzystując w tym celu stosowaną metodę badania bezpieczeństwa jazdy na torach wichrowatych, której podlegaję nowo budowane wsgony towarowe.

Wichrowatość torów, do których przejeżdżania musi być przystosowany wagon przedstawiono na rys. 3.

Ze przedmiot dyskusji przyjęto wagon towarowy typu 414W z następujęcymi wózkami:

 wózki standardowe typu Y25Cs (25TNs) z zestawami kół prowadzonymi sztywno,

- wózki typu 661D8 z zestawami kół prowadzonymi redielnie.

Bezpieczeństwo ze względu na wykolejenie stosowane dla koła prowadzęcego jest zdefiniowane zależnością:

$$lim (Y Q^{-1})a \leq 1,2 \tag{1}$$

Wagon bezpiecznie pokonuje krytyczne stany, gdy siły Y_a i Q_a na kole prowadzącym nieprzerwanie spełniają warunak:

$$(Y \quad Q^{-1})_{0} \leq \lim (f \quad Q^{-1})_{0}$$

$$(2)$$

Przejazd bezpieczny przez zwichrowany tor zależy przede wszystkim od:

- siły prowadzącej Y układu biegowego,

odchyłek pionowych nacieków koła AQ na poziomym i wichrowatym torze.

 siły poprzecznej F_y, działejącej między łożyskiem zestawu kołowego i zestawem kołowym.

Sę one przyczynkiem powstawania sił tarcia (rys. 1) powodujących zużycie tak obręczy koła jak i główki szyny.

Zależności analityczne określające zmienność siż w punkcie styku koła z szyną

Dopuszczalna ze względu na bezpieczeństwo przed wykolejeniem zmiana nacisku koła spowodowana zwichrowaniem toru

$$\Delta Q_{t}(d) = \lim \Delta Q - \Delta Q_{f_{zo}} - \Delta Q_{F_{y}},$$

232

Wpływ konstrukcji wagonu...

przy czym

$$\lim \Delta Q = \frac{(\Upsilon \ Q^{-1}) \lim - t_Q(\Upsilon + \Upsilon)}{(\Upsilon \ Q^{-1}) \lim + t_Q)\chi + \gamma} \cdot Q_j$$
(4)

$$\Delta Q_{f_{zo}} = \Delta q_{o} \quad Q_{j},$$
$$\Delta Q_{F_{v}} = F_{v}, \frac{b_{F_{v}}}{2b_{A}},$$

$$F_{y} = \overline{Y}_{a} + \overline{Y}_{1}, \qquad (7)$$

gdzie:

1.1.1.1.2.2.2.5	
lim ∆Q	- dopuszczalna całkowita zmiana nacisku koła na pozionym
	i wichrowatym torze (kN),
ΔQ.	- odchyłka nacisków kół na poziozym torze zależna od spe-
zo	cyficznych cech polazdu (konstrukcyjnych i werunków
A State Brook	
ΔQ _f	G(T2ymania),
$\Delta q_0 = \frac{20}{0}$	- względna odchyłka nacisku koła na poziomym torze,
Δ0_ ⁻ J	- odchyłke nacieku kołe spowodowenego dziełeniem siły
*Fy	
	poprzecznej (F) w rozysku zestawu korowego (kw),
tg(J + 9)	- parametr charakterystyczny dla siły prowadzącej Y i
	typu wózka, a więc zależny między innymi od rozstawu
	osi, luzów podłużnych i poprzecznych prowadzenia zesta-
	wu kołowego w prowadnicach łożysk oraz rodzaju zawie-
	ezenie
Ÿ	desdate weeksti still newsdanest as hele achtereterur
8	- sreenis wartosc sity prowadzącej na kole nabiegającym
- Washer	(kN),
Yi	- średnia wartość siły prowadzącej na kole nie nabiega-
	jęcym (kN),
Q,	- średni nacisk koła i-tego zestawu kołowego (kN).
	and and a statement of the second statement of the sec

Uwaga

Dla wagonów towarowych z wózkami standardowymi Y25Cs (25TN) i wózkami typu 661DB przeciętna wartość parametru $\Delta q_0 = 0.2$; wartość ta jest wynikiem badań dokonanych w ramach ORE na wielu wagonach towarowych z wyżej wymienionymi wózkami.

Wartości parametrów \overline{Y}_{g} i \overline{Y}_{1} dla wagonu towarowego 414W z wózkami Y25Cs (25TNa) wyznacza się wykorzystując algorytm zamieszczony w tabeli 1.

233

(5)

(6)

Rys. 3. Kryteria wichrowatości budowanych pojazdów Fig. 3. Criteria of the track twiat for the manufactured vehieles

			Sit	y prowo	dzące	Dia i		Tabe	la 1	
1	2	3	4	5	6	7	8	9	10	
1a.	Dane doty	czące układ	lu biegowego					ana l		
1	Typ uktadu biegowego wózek wagonu towarowego z dwoma zestawami kół									
2	Zasada typu zestawy kołowe prowadzone sztywno								rollen	
3	Uktad biego	owy		typ wozka	Y 25 (25	TN)	a and a	11.1. (A.)	6127 243	
4	Profil koła,	, rozstaw ko	st	DBII, 2at	= 1,8 m	Section 20		/ ·	STAR A	
1b.	Wielkości	-	8. 47	17 18	13 and		to Palley	Presente	1000	
L.p.		Ok	reslenie	A STATE OF	T	Oznac	zenie	Jednostko	miary	
5	Sila prowad:	zaca /warta	osc srednia/	112.63-	21210	Ÿ		kN		
6	Sita prowad	zaca na kol	e zewnętrzn	m	Sec.	Y	1	kN	1215255	
7	Sita prowad	zaca na kol	e wewnętrzn	уm	Sections	Y	I	kN		
8	Sredni nac	isk	and the second	No. Contractor	1.000	Ō		kN	20225	
9	Promień tuk	ku toru			Star 1	г	1242	m	2012	
10	Przyspiesze	enie boczne		100	A. A. A. She	a	9	ms-2		
11	Wielkość pr	omocnicza			10	>	A STREET	1. S. S. S. S 1	125-18-	
1c.	Podstawy	-dane stat	ystyczne		2439	PKHOO	A A THE A	19 93 94 94 94 94 94 94 94 94 94 94 94 94 94	New Par	
L.p.	Określenie Oznaczenie									
12	Prawdopodobieństwo wypowiedzi						P = 95 %			
13	Zakres prób losowych 21 4 n 4 43									
14	Zakres współczynników korelacji 0,60 s r _k s 0,86							and the second		
15						225m € r ≤ 929m				
16	inter corre	Zakres	sy pomiaró	W		$-0.5ms^{-2} \le a_q \le +0.85ms^{-2}$				
17	-	- Andrews				25.0 < Q < 100kN				
1d.	Uktad ró	wnań	Y _{a/i} =	f(x, aq ,ā)	z potrojno	regresja	Strength Strength	avera a	1239 Jul	
L.p.	Wielkość	5.87×10-1	12,000	Wspołcz	ynniki reg	resji	-			
10	pomiarowa	<u>m</u> 1	m2	m3	m4	C1	C2	^{C3}	4	
10	Ta Vi	5,716	-25,700	-89, 623	846,625	-1/0,593	7,837	3609,753	1010,277	
20	TI	- 5,506	20,586	210,489	-/44,386	252,765	-158,/84	-0125,259	1/93,55/	
20	Wielland h	ym	T={U[X(mag+m2++	130g+m41+	A (C10 n +C2)	+c30g+C4)			
10	Winnies	nunsior mowo	nu: Promien		cownunie Tr	unstormowar	e : x = YF		27.3	
L.B	Wielkost no	miarowa		nie standard	0.46		Oren	0.0		
22	V.		oucryter	S.	VIIC		- 0.0650	+ 0.67		
23	Y		-	sya su		Sv = 0.0590 + 0.23				

Tabela 1

Dla przyjętych warunków brzegowych r = 225 m, a = 0 i po uwzględnieniu ich w powyższym algorytmie parametry \overline{Y}_{i} i \overline{Y}_{i} przyjmę postać:

$$\overline{Y}_{g} = (461, 125 . Q_{o} + 1927, 828) . 10^{-3} (kN)$$
 (8)

$$\overline{Y}_{1} = (-435,596 \cdot Q_{2} - 588,223) \cdot 10^{-3} (kN)$$
 (9)

Natomiast wartości parametrów \overline{Y}_{B} i \overline{Y}_{1} dla wagonu towarowego 414W z wózkami 661DB wyznacza się wykorzystując algorytm zamieszczony w tabeli 2.

Dla przyjętych warunków brzegowych r = 225 m, a = 0 i po uwzględnieniu ich w powyższym algorytmie parametry $\overline{Y}_1 \overline{Y}_1$ przyjmą postać:

$$\overline{Y} = (451, 665', Q - 3301, 817), 10^{-3} (kN)$$
 (10)

$$\overline{Y}_{,} = (-430, 582 . Q_{,} + 3196, 497) . 10^{-3} (kN)$$
 (11)

Przyjęte w pracy warunki brzegowe (r. s_q) sę najbardziej niekorzystne ze względu na wielkość parametrów Y_a i Y_i.

Uzasadniają to wyniki badań eksperymentalnych i teoretycznych z mechaniki nacisku kół wagonu w czasie przejazdu w warunkach quasistatycznych łuku torowego standardowego (r = 150 m) bez przechyłki i wykazującego pionowe nierówności [1].

Potwierdzeniem tego są przedstawione poniżej przykładowa wyniki badań dla dyskutowanych wózków zobrazowane na rys. 4 i 5.

Ocena wielkości sił w punkcie styku koła z szyną dla wagonu typu 414W na wózkach Y25Ca (25ZNa) i 661D3

Podstawowe parametry wagonu 414W są następujące:

$$2\overset{*}{a} = 7200 \ (mm)$$

$$C_{t}^{*} = 4.2 \ 10^{10} \ (kN \ mm^{2}/rod)$$

$$\overline{Q}_{j} = Q_{0} = \begin{cases} 28.0 \ (kN) - wagon \ próżny \\ 100.0 \ (kN) - wagon \ ladown \\ d_{ZG} = 12 \ (mm) \ éllizgi \ sprężyste$$

$$C_{G} = 0.4 \ (kN/mm)$$

		- Contraction	ALC: N				1002010			
	Sity prowadzące Tabela 2									
1	2	3	4	5	6	7	8	9	10	
1a.	Dane dat	yczące ukła	du biegowego		C SUBDY	Contraction of the	Valle hory	The state of the	2	
1	Typ układu	biegowego		wozek wag	onu towarow	ego z dwom	a zestawami	kół	a traine	
2	Zasada typ	U	1997 - 19	zestawy ko	Nowe prowa	dzone radial	nie	-		
3	Uklad bieg	owy	-	typ wdzko	661 DB	510 141			1.000	
4	Profil koła	, rozstaw k	di	DBII, 2a	t= 1,8 m	100				
16.	Wielkości									
1.p.	1.000	Ok	reślenie	1.15	1.1.1.1	Oznacz	enie	Jednostko	n miary	
5	Sita prowad	zaca / wart	osc srednia	1	C Case	Ÿ		k١		
6	Sita prowad	Izara na kol	e zewnętrza	ym	- Level Ages	Yc	1	ki	4	
7	Sita prowad	Izaca na kol	e wewnętrza	ıym	alex12	Y	í	k	4	
8	Sredni nac	isk	1.15	and the second	J. M.	ā		kN		
9	Promier tul	ku toru	100200	161222	ASE .	r	1000	m		
10	Przyspiesza	enie boczn	e	211112	REFER	a	q	m s -2		
11	Wielkość pomocnicza X -									
10.	Podstawy	-dane stat	ty styczne		The state			15.261	1	
L.p.	Określenie Oznac zenie								123) F	
12	Prawdopodobieństwo wypowiedzi						P = 95 %			
13	Zakres pro	b losowych	NA	C. Cold	Section 1	1. 19. 19	22 < 1	1 4 41		
14	Zaknes ws	połczynnikow	w korelacji	State State	1444	0.55 ≼ r _K ≼ 0.87				
15		1000	162	ALL ST		225m < r < 929m				
16		Zakres	sy pomiard	N		- 0.5ms ⁻² «ag « +0,85ms ⁻²				
17	and the second			1 775		28.3 5 Q \$ 100kN				
1d.	Uktad rd	wnari	Yali =	fix, ag , ā	z potrójna,	regresja,	and the	S. S. S.		
10	Wielkość	10.	69 112 50	Współc z	ynniki regr	re sji				
y.	pomiarowa	mı	m 2	^m 3	m4	C1	¢2	63	4	
18	Ya	-52,975	133,200	169,567	-140,335	635,855	- 881,231	68,820	614,765	
19	Yi	39,662	-134.565	62,978	167, 485	-201,254	984,482	-689,994	1178,979	
20	Algor	ytm	Y={a[X(m1ag +m2)+1	m a aa +m L] +)	((c1 an + c2)	+ (300+(4)	10-3	-	
21	Wielkość tr	ansformown	na : Promien	toru-r. F	Równanie tra	nsformowane	: x=√r		Nontral I	
le.	Wymiar	rozproszer	nia s=t(i	i) a gat		1.1.1.1				
L.p.	Wielkość p	omiarowa	Odchyler	ie standard	owe	Ocena			1	
22	Yo	1	-	Syn	-	syn = 0,133 0 - 1,15				
23	Y	i	10000	syi	$s_{Yi} = 0.117 \bar{0} - 1.82$					

Tabela 2

	Dane dotyczące ukladu biegowego					
1	Typ układu biegowego	Wozek wagonów towarowych				
2	Zasada typu	Zestawy kołowe ustawione radialnie				
3	Układ wzorcowy	Typ wózka 661 DB				
4	Profil kola; rozstaw kol	DBII; 2a ⁺ = 1,8 [m]				

 $(dla \bar{Q} = 20 \text{ kN})$ Trojaka regresja $\overline{Y} = f(r, a_q, Q)$

Parametry wózków:

- wózek Y25Cs (25TN)
 - $2a^{+} = 1800 (mm)$ $C_{t}^{+} = 1.5 \ 10^{10} (kN mm^{2}/rad)$
 - C_z = 0,83/2,5 (kN/mm)

tg(7+9) = 0,45

- wózek 661DB

 $2a^{+} = 1800 (mm)$ $C_{t}^{+} = 0.89 \ 10^{10} (kN mm^{2}/rad)$ $C_{z}^{-} = 1.47 (kN/mm)$ $tg(\gamma^{+} + \gamma) = 0.25$

3.1. Wagon na wózkach Y25Ca (25TNa)

3.1.1. Wyznaczenie zmiany nacisku koła, spowodowanej zwichrowaniem toru

Zmiana nacisku koła określona zależnością (3) i po uwzględnieniu zależności (4), (5), (6) i (7) przyjmuje postać:

$$\Delta Q_{t}(d) = \frac{(Y \ Q^{-1})\lim_{H \to t} - tq(\gamma' + Q)}{(Y \ Q^{-1})\lim_{H \to t} + tq(\gamma' + Q)} \cdot \overline{Q}_{j} - 0.2 \ \overline{Q}_{j} - (\overline{Y}_{g} + \overline{Y}_{i}) \cdot \frac{bF_{y}}{2b_{A}}$$
(12)

Siły \overline{Y}_{a} 1 \overline{Y}_{1} wyznaczymy z zależności (8) 1 (9): - wagon próżny ($Q_{n} = 28,0 \text{ kN}$)

 $\overline{Y}_{a} = (461,125 \ 28 + 1927,828) \ 10^{-3} = 14,84 \ kN$

 $\overline{Y}_{,} = (-435,596 \ 28 - 588,223) \ 10^{-3} = -12,78 \ \text{kN}$

wprowadzejąc dane do zależności (12) otrzymamy:

$$\Delta Q_{t}(d) = \frac{1.2 - 0.45}{1.2 + 0.45} \ 28 - 0.2 \ 28 - (14.84 - 12.78) \ \frac{0.46}{1.5} = 6.5 \ \text{kN}$$

- wagon ladowny (Q = 100,0 kN)

 $\overline{Y}_{B} = (461,125 \ 100 + 1927,828) \ 10^{-3} = 48,04 \text{ kN}$ $\overline{Y}_{1} = (-435,596 \ 100 - 588,223) \ 10^{-3} = -44,15 \text{ kN}$ wprowadzając dane do zależności (12) otrzymamy:

$$\Delta Q_{t(d)} = \frac{1.2 - 0.45}{1.2 + 0.45} 100 - 0.2 100 - (48.04 - 44.15) \frac{0.46}{1.5} = 24.26 \text{ kN}$$

3.2. Wagon na wózkach 661DB

3.2.1. Wyznaczenie zmiany nacisku koła, spowodowanej zwichrowaniem toru

Zmianę nacisku koła wyznaczymy z zależności (12) podanej w punkcie 3.1.1

$$\Delta Q_{t(d)} = \frac{(\gamma \ Q^{-1})\lim_{a \to t} t \ q(\gamma' + Q)}{(\gamma \ Q^{-1})\lim_{a \to t} t \ q(\gamma' + Q)} \overline{Q}_{j} - 0.2 \ \overline{Q}_{j} - (\overline{Y}_{a} + \overline{Y}_{i}) \ \frac{F_{y}}{2bA}$$

Siły Y_a i Y_i wyznaczamy z zależności (10) i (11): - wagon próżny (Q_a = 28,0 kN)

$$\overline{Y}_{p} = (451,665 \ 28 - 3301,817) \ 10^{-3} = 9,34 \ kN$$

$$Y_1 = (-430,582 \ 28 + 3196,497) \ 10^{-3} = -9,86 \ kN$$

wprowadzając dane do zależności (12) otrzymamy:

 $\Delta Q_{t(d)} = \frac{1.2 - 0.25}{1.2 - 0.25} \ 28 - 0.2 \ 28 - (9.34 - 8.86) \frac{0.46}{1.5} = 12.6 \ \text{kN}$ * Wagon kadowny (Q₀ = 100.0 \ kN)

 $\overline{Y}_{g} = (451,665 \ 100 - 3301,817) \ 10^{-3} = 41,86 \ kN$

 $\overline{Y}_{1} = (-430,582 \ 100 + 3196 - 497) \ 10^{-3} = -39,86 \ kN$

wprowadzając dane do zależności (12) otrzymamy:

 $\Delta Q_{t(d)} = \frac{1.2 - 0.25}{1.2 + 0.25} 100 - 0.2 100 - (41,86 - 39,86) \frac{0.46}{1.5} = 44.9 \text{ kN}$

4. Uwagi końcowe

Przeprowadzenie rozważań obejmujących wpływ rozwiązań konstrukcyjnych Wagonu towarowego ze szczególnym uwzględnieniem układów biegowych (wózków) Na zakres zmian sił Y i Q w punktach styku koła z szyną pozwoliło na ^{Uz}yskanie bardzo istotnych informacji determinujących zjawisko zużycia. Rozkład aił w punktach styku koła z szyną (rys. 1 i 2) rozpatrzono na przykładzie wagonu 414W na wózkach typu Y25Ca (25TNa) i 661DB przeprowadzając badania analityczne, z których wyniki przedstawiono w tabeli 3.

Porównanie wyników badań wagonu 414W na wózkach typu Y25Cs (25TNs) z wagonem 414W z wózkami typu 6610B wykazuje przewagę tego ostatniego po nieważ z porównania dyskutowanych parametrów badanych (tabela 3) wyniks, że:

- siła prowadząca na kole nabiegającym (Y_) jest mniejsza, o ~ 37% dla wagonu w stanie próżnym (Q_j = 28 kN), a o ~ 13% dla wagonu w stanie ładownym (Q_j = 100 kN),
- siła prowadząca na kole nie nabiegającym (Y₁) jest mniejsza, o ~31% dla wagonu w stanie próżnym (Q₁ = 28 kN), a o ~10% dla wagonu w stanie ładownym (Q₁ = 100 kN),
- siła poprzeczna w łożysku zestawu kołowego (F) jest mniejsza o ~ 77% dla wagonu w stanie próżnym, a o ~ 49% dla wagonu w stanie ładownym.

Wymienione w tabeli 3 parametry $\lim \Delta Q$ i $\Delta Q_{t(d)}$ dotyczą graniozny wartości zmian parametru Q_j dla zapewnienia bezpieczeństwa jazdy na torach zwichrowanych.

Rzeczywiste wartości tych parametrów lim $\triangle Q$ 1 $\triangle Q_{t(d)}$ sę zdecydowa nie mniejsze, co zostało przedstawione w pracy [3].

Z oceny parametrów \overline{Y}_{n} i \overline{Y}_{i} oraz F_{y} wynika jak istotne znaczenie zastosowanie wózka typu 661DB dla wagonu 414W zamiast wózka standerdoweg typu Y25Cs (25TNa) celem ich zmniejszenia.

Tebela

Wartości parametrów w punkcie etyku koło-szyna (wagon 414 W)

Parametry badane Typ	, Ģj	Ÿa	Ŷi	Fy = Ya+Yi	lim ΔQ	∆Q t(d)		
HOZNU	kN							
	28,0	14,84	- 12,78	2,06	12,73	6,5		
(standard)	100, 0	48,04	- 44,15	3,89	45,45	24,26		
alanan as an an for high Manan an	28,0	9,34	- 8, 86	0,48	18,34	12,6		
661 UB	100, 0	41,86	- 39,86	2,0	65,52	44,9		

242

Tak znaczna zmiana (minimalizacja) dyskutowanych parametrów ma duże znaczenie w zagadnieniu poszukiwania dróg zmniejszenia zużycia obręczy i szyny w punktach ich kontaktu.

Powyższe należałoby potwierdzić wynikami badań eksploatacyjnych. Pozytywne wyniki badań eksploatacyjnych byłyby podstawą do wszechstronnej analizy badanego zjawiska z uwzględnieniem większych kosztów produkcji wózka typu 661DB w stosunku do kosztów wózka standardowego Y25Cs (25TNa).

LITERATURA

- 1] UIC ORE B55 RP.8; Bezpieczeństwo przed wykolejeniem wagonów towarowych na zwichrowanym torze, Utrecht 1983.
- [2] M. SZYMAŃSKI: Konstrukcyjne zapewnienie bezpiecznej jazdy wagonów towarowych po torze wichrowatym. Praca doktorska, Pol. Poznańska, Poznań 1985.
- [3] W. GĄSOWSKI, M. SZYMAŃSKI: Wpływ zwiększenia nacisku na oś wagonów towarowych na bezpieczeństwo jazdy. ZN PP, ser. MRIP nr 27, 1986.

Recenzent: Doc. dr hab. inż. Ryszard Knosala

Wpłynęło do Redakcji w styczniu 1990

ВЛИЯНИЕ КОНСТРУКЦИИ ГРУЗОВОГО ВАГОНА НА ВЕЛИЧИНУ СИЛ В ТОЧКЕ КОНТАКТА КОЛЕСА И РЕЛЬСА, ВО ВРЕМЯ СЛЕДОВАНИЯ ПО ИЗВИЛИСТОМУ ПУТИ

Резрие

В работе представлено влияние конструктивных параметров грузового вагона со специальным учетом ходовых систем (тележек) на величину сил в точке контакта колеса и рельса.

Показано влияние разновидностей ходовых систем на уменьшение этих сил, и тем же самым, на уменьшение сил трения, что в конструкции приводит к ограничению износа колеса (бандажа) и рельса. На фоне представленных решений, подчеркивается необходимость продолжения исследований, учитывая столь важный вопрос, то есть износ. EFFECT OF THE FREIGHT WAGON DESIGN ON THE MAGNITUDES OF FORCES OCCURING AT THE CONTACT POINT OF THE WHEEL WITH THE RAIL DURING RIDE ON A TWISTED TRACK

Summary

In the paper there presented is the effect of design parameters of the freight wagon on the magnitudes of forces occurring at the contact point of the wheel with the rail with special regarding of the running gears (bogies).

Proved is the effect of same versions of the running gears on decrease of those forces, and by the same on decrease of the friction forces, whic consequently leads to reducing of wear of the wheel (tyre) and of the rai

In result of the presented considerations there pointed out is the necessity of continuing the researches, having on mind so important problem as the wear.

a millio and a water of the contraction of the and an device of the

Assessment vertoiot syst percective list of a closed op minut

во слово продоктори и развите собети нарование собетие собетие собетие и развите и развите и развите и развите собетие собети

ото о олина на розлания ода средне, что в конструкции преболят в

seatasoewala works type 6610 all general at a states of the states of the states of the seates of the states of th