
II INTERNATIONAL CONFERENCE__________
TRANSPORT SYSTEMS TELEMATICS TST'02

ZESZYTY NAUKOW E
POLITECHNIKI ŚLĄSKIEJ 2002

TRANSPORT z.45, nr kol. 1570

discrete-event simulation, 
transport systems, 

Petri nets

Ewa OCHM AŃSKA1

AN IM P L E M E N T A T IO N  O F T IM E  AND C O N TR O L IN  SIM U LA TIO N  
M O D ELS O F TR A N SPO R T SYSTEM S

The paper deals with an approach to computer implementation of discrete event simulation models 
of transport systems. For that purpose Petri net modelling tool was applied, enriched by timing and 
control. Timing, based on timestamps and planning of events, has been integrated with control 
mechanism based on predicates. Programmatic implementation of those mechanisms in object-oriented 
RAD environment is described and illustrated by two categories of simulation models: with operation- or 
task-oriented structure. The rules for timing and control are discussed in the context of multi-thread 
realization of simulation models.

W P R O W A D Z E N IE  A SPEK TU  CZASU I STER OW A NIA  W  M O D ELA C H  
SY M U L A C JI SY STEM Ó W  TR A N SPO R TO W Y C H

Referat dotyczy pewnego podejścia do symulacyjnego modelowania systemów zdarzeń 
dyskretnych. Metoda symulacji jest oparta na sieciach Petriego, powszechnie stosowanym formalizmie 
sieciowego opisu modeli symulacyjnych. To narzędzie zostało wzbogacone przez rozszerzenia 
semantyczne pozwalające wyrazić w modelach aspekty czasu i sterowania, niezbędne dla odwzorowania 
procesów realizowanych przez systemy transportowe. Głównym celem referatu jest opisanie zasad 
komputerowej implementacji tych mechanizmów w Delphi - obiektowo zorientowanym środowisku 
RAD.

Przedstawione rozwiązania były użyte do definiowania dwóch kategorii modeli symulacyjnych, 
określonych na podstawie różnych interpretacji semantycznych modelowanych systemów - 
zorientowanych na operacje lub zadania. Pierwsze z tych podejść semantycznych było stosowane w 
modelowaniu procesów transportowych i logistycznych, drugie było użyteczne przy tworzeniu modeli 
rozproszonych kolejowych systemów sterowania. Krótko wyjaśniono zasady konstruowania modeli 
symulacyjnych tych dwóch typów.

Przedyskutowano mechanizmy czasowe i sterujące w kontekście wielowątkowego wykonania 
symulacji. Podział modelu symulacyjnego na szereg współbieżnie wykonywanych wątków 
programowych nakłada dodatkowe wymagania na procedury sterujące przebiegiem symulacji oraz 
wprowadza zagadnienia komunikacji i synchronizacji między procesami realizowanymi w oddzielnych 
wątkach.

Proponowane jest zastosowanie opisanych narzędzi symulacyjnych do tworzenia modeli 
interaktywnych obliczeń w transportowych systemach tclcmatycznych.
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1. INTRODUCTION

The paper deals with som e approach to com puter implementation o f discrete-event 
sim ulation models o f processes performed in transport systems. The method o f simulation is 
based on Petri nets, com monly used net description form alism  for sim ulation models [7], 
enriched by sem antic extensions necessary to express timing and control aspects of 
modelling. Suitability o f Petri nets for discrete events sim ulation purpose arises from the fact 
that their formal “behaviours” naturally represent dynamics o f sim ulated processes, viewed as 
successive or concurrent occurrences o f causally related events.

The implem entation o f tim ing and control mechanism, presented in the paper, derives 
from som e known approaches [1, 2], which consist in representing time by timestamps and 
control by logical predicates enabling activation of dynamic net elements -  transitions during 
sim ulation o f modelled process.

The paper is com posed as follows: In Section 2 basic Petri net (PN) definition is given 
and its timing and control extension is described together with an additional, supervisory 
control mechanism  used in sim ulation modelling. The PN extension com prises data structures 
with tim estamps bound to tokens, as well as enabling predicates and actions related to 
transitions. Token data structures, including timestamps, describe actual states o f a process 
being executed by modelled system. Hierarchical control predicates are defined on data 
included in tokens.

Section 3 sketches programmatic implementation of those mechanisms in object- 
oriented RAD environm ent. The most part o f the model can be mapped directly to the object 
classes representing transitions, places and tokens o f PN. Transition classes have methods 
corresponding to their enabling predicates and actions. Aside from  enabling predicates 
resolving transition local tim e and resource-availability conditions, two m ore control 
predicates are implemented in an object class representing general supervisor of simulated 
process. One o f them concerns possible resolutions of conflicts between groups o f transitions; 
another one chooses among alternative control decisions arising during simulation.

Section 4 illustrates applying o f the described control rules in context of two categories 
o f PN  sim ulation models following different semantic conceptions: describing modelled 
systems in operation- or task-oriented manner. First o f those semantic approaches was applied 
in modelling o f transport and logistic processes [3 ,4 ], the second one was useful in 
constructing models o f distributed railway control systems [5, 6].

In section 5 presented tim ing and control mechanisms are discusses in the context of 
multi-thread realization of sim ulation models. Several concurrent threads o f simulation 
program may correspond to processes performed by co-operating, distributed nodes of 
transport systems. This poses additional requirem ents on model construction and introduces 
issues of com m unication and synchronization between sim ulated processes.

Final remarks suggest other possible applications of described sim ulation tools such as 
models o f interacting computing, and m ention som e problems needing further research, in 
particular decisive functions.
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2. PETRI NET AND ITS EXTENSION

2.1. PETRI NET DEFINITION

Regular Petri net PN=(B, So) is defined on a bi-graph B =(PuT , A) with two disjoint sets 
of nodes: a set o f passive places P and a set o f active transitions T, and with a set of arcs 
A c(PxTc/TxP). Initial state So is a function So'.P^N  assigning non-negative numbers of 
tokens to places. Places contain token and transitions move tokens between places, changing 
actual state S of the net, S:P—>N. A transition te T  has a subset of input places 
IP(t)={pePI(p,t)eA} and a subset o f output places O P(t)={pePl(t,p)eA ). A transition te T  is 
enabled to perform an action consuming tokens from input places and producing tokens in 
output places, if  Vpej(t) S(p)>0. An action of a transition t changes a state S  o f the net to a new 
state S ’ defined as follows:

Sim ulation modelling consists in dynamic execution of processes in abstract models 
representing real word systems. Petri nets extensions well suited for that purpose should cover 
timing and decision-making aspects o f processes simulated by system models. PN modelling 
tool described in the paper introduces time and control to transition enabling rules, basing on 
two commonly used approaches:

1. Enriching the nature o f tokens by assigning to them some informative contents including 
semantic description o f represented entities and their time parameters. The contents o f all 
tokens present in places o f a net describe current state of a process performed by the net 
simulation model.

2. Enriching the nature of transitions by assigning to each of them: • individual enabling 
rules in the form o f logical functions called enabling predicates, which are defined on 
contents o f input and output tokens; • •  capability o f transforming information in the form 
of procedures associated with actions, which compute the contents of output tokens from 
those o f input ones.

A token may contain arbitrary data structure, always including timestamp of its 
creation. Enabling predicate o f a transition may express any local condition specific for 
modeling purpose, including timing rule:

Max ipeip(o (Min itokcns in P(token timestamp value)) < current simulation time (2)

An action o f enabled transition produces in its output places tokens, equipped with 
arbitrary data structures specific for modelling purpose, but always including timestamps with 
values not less then current simulation time.

S (p )+ 1  if (pgIP(t))A(p e O P (t)) .

S(p) if (p g IP(t))A(p g OP(t)) v  (p e  IP(t))A(p e  OP(t))

(1)

2.2. PN EXTENSION FOR TIMING AND CONTROL
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2.3. SUPERVISORY CONTROL OF SIMULATION MODEL

Control mechanism o f described sim ulation modelling tool goes beyond PN  extension 
above form ulated as “enabling predicate” bound to particular transitions. Such predicate 
enables transition activation on the base of local data, available as contents o f tokens on its 
input. M aking decisions in situations o f net conflicts needing resolution requires some more 
general view o f current state o f modelled process. On the other hand, semantics of a model 
may dem and global view o f sim ulated process to decide about alternative ways o f performing 
particular actions. This can be achieved by two hierarchical levels o f predicates* built in 
supervisory control device o f sim ulation model:

• Operative predicate, enum erating all adm issible resolutions o f conflicts by means of 
com binatory operations on the net structure

• Decisive predicate, choosing one among all adm issible resolutions, following any rule 
proper for sim ulation purpose. Such rules can be formulated taking into account data 
structures o f all tokens describing current state o f sim ulated process (with time horizon 
delimited by tim estamps of tokens in PN places).

3. M AIN CONCEPTS OF IM PLEM ENTATION

3.1. TIMING AND CONTROL IN OBJECT CLASSES OF PN ELEMENTS

M odel elements are implermcntcd in Delphi RAD environm ent as a library of general 
and specilized object classes. T im e behaviour is com mon to all models constructed following 
presented method, hence tim ing is built into four general object classes written in bold on 
Fig-1.

Properties and m ethods related to control, dependent on model semantics, are redefined 
(extended) in descendant specialized, context-specific object classes.

TObject
TM odel

1— >  {descendant classes o f  models]
T T ranâtion

1 ^  ' ' ' {dexendant classes o f  transitions}
I T  lare

^  ■■ {descendant classes o f  places)
TTokey

{descendant classes o f  tokens)

Fig.l. Hierarchy of object classes implementing simulation model

General class o f tokens com prises timestamp and two methods, used by transitions by 
consum ing token from  input places and producing them on output:

Procedures implementing logical predicates result in subsets of input tokens, for which predicates remain true.
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T T o k e n  = class
T im e S ta m p :  T T im e ; D a t a S t r u c t u r e : P o i n t e r ;  N e x t :  T T o k e n ;  
procedure R e m o v e F r o m ( I P l a c e : T P l a c e ) ;
procedure I n s e r t T o  ( O P l a c e : T P l a c e ;  N e w S ta m p : T T im e ) ;  ...

end;
Tokens are organized in lists ordered by timestamps and assigned to places. General 

class o f places play passive role o f token container, hence it defines no methods related to 
timing and control. However, its properties reflect net structure of a model and are useful for 
manipulating tokens during simulation. Descendant classes o f places redefine types of 
contained tokens according to model semantics.

General class o f transitions defines virtual methods implementing common time aspects 
of their enabling predicates and actions:

T T r a n s i t i o n  = class
I n p u t P l a c e s ,  O u t p u t P l a c e s : T P l a c e S e t ;
P r e v i o u s T r a n s i t i o n ,  N e x t T r a n s i t i o n :  T T r a n s i t i o n ;  
function T i m e F u n c t i o n ;
function G e t C a n d i d a t e T o k e n ( P : T P l a c e ;  I : W o r d ) :  T T o k e n ;  
property C a n d i d a t e T o k e n [ P : T P l a c e ;  I : W o r d ] :  T T o k e n  

read G e t C a n d i d a t e T o k e n ; 
procedure E n a b l i n g P r e d i c a t e ;  virtual; 
procedure A c t i o n ( I :  W o r d ) ;  virtual;

end;
Descendant classes override these methods to implement context-specific behavior of 

active elements o f a sim ulation model. An array read-only property of candidate tokens gives 
access to tuples o f tokens -  one per each input place, which enable the transition. These token 
tuples are beforehand computed by enabling predicate and indexed by I .

Pointer lists o f type T P l a c e S e t  implement net structure o f a  model. Moreover, for the 
sake of tim ing mechanism, general class T T r a n s i t i o n  is equipped with pointers to previous 
and next transition, used to organize active net elements in second structure: bi-directional list 
forming typical queue o f planned events, as shown on Fig.2.

T ra n s it io n s  a re  o rd e re d  a c c o rd in g  to  tim e  e x p ress io n  o f  th e  le ft s id e  o f  in eq u a lity  (2 ), 
c o m p u ted  b y  a  m e th o d  T im e F u n c t i o n .  K e ep in g  th em  in o rd e r  is e ffe c tiv e ly  im p le m e n ted  in  
A c t i o n  m e th o d ; o n ly  tra n s itio n s  w ith  in p u t to k en  lis t  ch an g ed  by  th e  a c tio n  h a v e  to  be  
c o n sid e red  fo r  re -o rd e r in g .

Fig.2. Dual structure of a model: a) bi-graph, b) bi-directional list
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3.2. EXECUTING SIMULATION BY OBJECT CLASS TMODEL

General object class o f a model supervises execution o f simulation. It operates on the 
timed list o f transitions, taking into account those with sm allest values o f tim e function. Some 
non-negative margin for current simulation tim e can be delimited, so that a broader subset of 
transitions (with time function values laying within that margin) may candidate for activation.

Class T M odel  implements common mechanism o f model execution, basing on higher- 
level control predicates; it is provided with a pointer to the head o f transition list and with an 
executive method:

T M odel  = class
F i r s t T r a n s i t i o n :  T T r a n s i t i o n ;
C u r r e n t T i m e ,  T im e M a r g i n :  T T im e;
function. G e t C a n d i d a t e T u p l e ( T : T T r a n s i t i o n ;  J : W o rd ) :W o rd ;  
property C a n d i d a t e T u p l e [ T : T T r a n s i t i o n ;  J : W o r d ] :  W ord read 

G e t C a n d i d a t e T u p l e ; 
procedure O p e r a t i v e P r e d i c a t e ;
function D e c i s i v e P r e d i c a t e (var J :  W o rd ) :  T T r a n s i t i o n S e t ;

virtual; abstract; 
procedure E x e c u t e S i m u l a t i o n  ;

end;
An array read-only property C a n d i d a t e T u p l e  gives numbers o f candidate token tuples 

for enabled transitions in non-conflict com binations, enum erated by operative predicate and 
indexed by j .  M ethod for operative predicate defined in general model class is common for all 
models. Specialized model classes derived from T M odel define context-specific 
implementations o f virtual abstract function for decisive predicate. This function returns a 
subset o f transitions to be activated along with an index o f respective set o f enabling token 
tuples, chosen according to model semantics.

General executive method has following outline:

procedure T M o d e l . E x e c u t e S i m u l a t i o n ;
var J :  W ord ; T :  T T r a n s i t i o n ;
begin

T : =  F i r s t T r a n s i t i o n ;
while T . T i m e F u n c t i o n  <= C u r r e n t T i m e  + T im e M a r g i n  do 

begin T . E n a b l i n g P r e d i c a t e ;  T :=  T . N e x t T r a n s i t i o n ;  end; 
O p e r a t i v e P r e d i c a t e ;

/ / f o r  each  T i n  D e c i s i v e P r e d i c a t e ( J )  d o  b e g in  t im e  update;
T . A c t i o n ( C a n d i d a t e T u p l e ( T , J ) ) / / e n d ;

end;
Decisive predicate chooses J-th  adm issible solution. Activated set o f transitions is 

returned as an extra pointer list of type T T r a n s i t i o n S e t ,  because actions being 
successively executed increase timestamps and re-order timed list of transitions. Since a strict 
definition o f decisive predicate result type has been omitted, iteration of actions on resulting 
set o f transitions is noted informally in com ment line.

Updating current sim ulation time is necessary to preserve tim e m onotonicity in the case 
of positive tim e margin. M aximal value o f tim e function of activated transitions (before action 
executing) has to be considered.

Having defined a class derived from T M odel with specialized decisive predicate, after 
creating an object M o d e l  o f that class we can run sim ulation pass by a statement:
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with M o d e l  do while F i r s t T r a n s i t i o n . T i m e F u n c t i o n  < T i m e L i m i t  
do E x e c u t e S i m u l a t i o n ;

4. SEMANTICS OF SIMULATION MODELS

Tim ing and control tools described in previous sections have been applied to simulate 
behaviour o f discrete-event systems modelled following two different semantic principles. In 
both cases, places o f PN model were treated as containers for available system resources and 
objects being served by the system. On the other hand, PN transitions were representing 
various interpretations o f system behaviour.

The first approach, which can be called “operation-oriented”, represents detailed view 
of simulated process. This approach has been used to define models o f serving trains at 
railway freight stations [4], Tasks performed by modelled system are decomposed to partially 
ordered sets o f elementary operations, executed by active elements of PN model -  transitions. 
In that case, specialized implementation of enabling predicate comprises conditions of 
executing operation represented by the transition action.

In an exemplary piece of PN model shown on Fig.3, enabling predicates o f operations 
may select appropriate resources, dependent on parameters of particular entities being 
operated. Operative predicate may enumerate resolutions of conflicts between operation 1 and 
2 attempting to use resources A and B. Decisive predicate controls a way of process 
performance choosing one o f resolutions.

Another, “task-oriented” approach to construct simulation model perceives simulated 
process in more synthetic way. Tasks performed by a system are treated as undividible units, 
demanding specific but possibly alternative subsets o f resources. Tokens representing tasks 
contain inform ation about possible ways of their execution. Availability o f resources, 
represented by other groups o f tokens, changes in time. Tasks are passed between transitions 
responsible for executing them in particular configurations o f resources, until demanded 
resources are available. Enabling predicates decide of executing tasks or passing them to other 
configurations o f resources. Such model construction gives some additional possibility of 
controlling execution o f a stream o f tasks, and therefore has been used for modelling railway 
control systems [6], An illustration of task-oriented modelling principle is presented on Fig.4.
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Fig.4. Task-oriented modelling approach

In this small part o f a model, executive configurations are represented by pair of 
transitions with com mon inputs. Transitions o f type a and b have mutually exclusive enabling 
predicates. Predicate o f the type a enables actions executing tasks in case of availibility of 
resources. W hen appropriate resources are not available, predicate o f the type b enables 
actions of passing tasks to some other configuration.

5. M ULTI-THREAD M ODEL EXECUTION

Executing sim ulation of PN model in multiple simultaneous and possibly distributed 
threads requires its decom position into several subnets. Each o f those subnets cooperates with 
others according to PN dynamics.

Having in mind passive nature o f places and active one o f transitions, let us assume that 
a net model has been reconfigured and partitioned in such a way, that: •  no place is on input 
o f two transitions belonging to different subnets; • •  each subnet contains all input places of 
its transitions. Note, that the above assumptions are equivalent to the fact, that all operative 
predicates are defined on subsets o f places belonging to com mon subnet.

Then co-operation o f subnets consists in passing tokens by activated transitions to 
places in other subnets. This can be implemented by means o f coordination provided by 
Delphi for accessing shared memory and synchronizing threads.

Such approach should be valid as long as model structure and behaviour remain those of 
Petri net. However, tim ing an control mechanisms described in the previous sections go 
beyond PN frame by introducing higher-level object class derived from  TM odel, responsible 
for controlling execution o f sim ulated process by means o f operational and decisive 
predicates working on timed queue of transitions. Some additional rules have to be stated for 
synchronization o f  those supervising levels.

In the case o f executing multiple threads o f sim ulation on one machine, one model 
object synchronizes behaviours o f all PN  subnets. W hen sim ulation is simultaneously 
executed on several com puters, each of threads demands separate control object deriving from 
the class TM odel. Some additional rules have to be stated for synchronization of those 
supervising levels to maintain m onotonicity o f sim ulation time. D ifferent strategies for 
preserving tim e conditions in distributed environm ent are discussed in [8].
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6. FINAL REMARKS

The described concepts o f defining and implementing Petri net simulation models of 
discrete-event systems have been applied on the field o f organising and controlling o f railway 
transport. Gained experience permits to estimate the presented modelling tool as flexible and 
powerful. Further efforts on problems needing resolving are planned and new application 
scopes in the area o f transport will be developed.

One of areas in which such tools may be used is creating simulation models of transport 
telematic systems basing on interacting computing. For that and other purposes, distributed 
mode o f sim ulation has to be thoroughly elaborated and investigated.

Further research on specific solutions of derived methods, in particular decisive 
predicates, is necessary to provide templates for fast programming of problem-specific model 
components.
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