
II INTERNATIONAL CONFERENCE__________
TRANSPORT SYSTEMS TELEMATICS TST'02

ZESZYTY NAUKOW E
POLITECHNIKI ŚLĄSKIEJ 2002

TRANSPORT z.45, nr kol. 1570

discrete-event simulation,
transport systems,

Petri nets

Ewa OCHM AŃSKA1

AN IM P L E M E N T A T IO N O F T IM E AND C O N TR O L IN SIM U LA TIO N
M O D ELS O F TR A N SPO R T SYSTEM S

The paper deals with an approach to computer implementation of discrete event simulation models
of transport systems. For that purpose Petri net modelling tool was applied, enriched by timing and
control. Timing, based on timestamps and planning of events, has been integrated with control
mechanism based on predicates. Programmatic implementation of those mechanisms in object-oriented
RAD environment is described and illustrated by two categories of simulation models: with operation- or
task-oriented structure. The rules for timing and control are discussed in the context of multi-thread
realization of simulation models.

W P R O W A D Z E N IE A SPEK TU CZASU I STER OW A NIA W M O D ELA C H
SY M U L A C JI SY STEM Ó W TR A N SPO R TO W Y C H

Referat dotyczy pewnego podejścia do symulacyjnego modelowania systemów zdarzeń
dyskretnych. Metoda symulacji jest oparta na sieciach Petriego, powszechnie stosowanym formalizmie
sieciowego opisu modeli symulacyjnych. To narzędzie zostało wzbogacone przez rozszerzenia
semantyczne pozwalające wyrazić w modelach aspekty czasu i sterowania, niezbędne dla odwzorowania
procesów realizowanych przez systemy transportowe. Głównym celem referatu jest opisanie zasad
komputerowej implementacji tych mechanizmów w Delphi - obiektowo zorientowanym środowisku
RAD.

Przedstawione rozwiązania były użyte do definiowania dwóch kategorii modeli symulacyjnych,
określonych na podstawie różnych interpretacji semantycznych modelowanych systemów -
zorientowanych na operacje lub zadania. Pierwsze z tych podejść semantycznych było stosowane w
modelowaniu procesów transportowych i logistycznych, drugie było użyteczne przy tworzeniu modeli
rozproszonych kolejowych systemów sterowania. Krótko wyjaśniono zasady konstruowania modeli
symulacyjnych tych dwóch typów.

Przedyskutowano mechanizmy czasowe i sterujące w kontekście wielowątkowego wykonania
symulacji. Podział modelu symulacyjnego na szereg współbieżnie wykonywanych wątków
programowych nakłada dodatkowe wymagania na procedury sterujące przebiegiem symulacji oraz
wprowadza zagadnienia komunikacji i synchronizacji między procesami realizowanymi w oddzielnych
wątkach.

Proponowane jest zastosowanie opisanych narzędzi symulacyjnych do tworzenia modeli
interaktywnych obliczeń w transportowych systemach tclcmatycznych.

1 Faculty of Transport, Warsaw University of Technology, Koszykowa 75,00-262 Warsaw, och@it.pw.edu.pl

mailto:och@it.pw.edu.pl

270 Ewa OCHMAŃSKA

1. INTRODUCTION

The paper deals with som e approach to com puter implementation o f discrete-event
sim ulation models o f processes performed in transport systems. The method o f simulation is
based on Petri nets, com monly used net description form alism for sim ulation models [7],
enriched by sem antic extensions necessary to express timing and control aspects of
modelling. Suitability o f Petri nets for discrete events sim ulation purpose arises from the fact
that their formal “behaviours” naturally represent dynamics o f sim ulated processes, viewed as
successive or concurrent occurrences o f causally related events.

The implem entation o f tim ing and control mechanism, presented in the paper, derives
from som e known approaches [1, 2], which consist in representing time by timestamps and
control by logical predicates enabling activation of dynamic net elements - transitions during
sim ulation o f modelled process.

The paper is com posed as follows: In Section 2 basic Petri net (PN) definition is given
and its timing and control extension is described together with an additional, supervisory
control mechanism used in sim ulation modelling. The PN extension com prises data structures
with tim estamps bound to tokens, as well as enabling predicates and actions related to
transitions. Token data structures, including timestamps, describe actual states o f a process
being executed by modelled system. Hierarchical control predicates are defined on data
included in tokens.

Section 3 sketches programmatic implementation of those mechanisms in object-
oriented RAD environm ent. The most part o f the model can be mapped directly to the object
classes representing transitions, places and tokens o f PN. Transition classes have methods
corresponding to their enabling predicates and actions. Aside from enabling predicates
resolving transition local tim e and resource-availability conditions, two m ore control
predicates are implemented in an object class representing general supervisor of simulated
process. One o f them concerns possible resolutions of conflicts between groups o f transitions;
another one chooses among alternative control decisions arising during simulation.

Section 4 illustrates applying o f the described control rules in context of two categories
o f PN sim ulation models following different semantic conceptions: describing modelled
systems in operation- or task-oriented manner. First o f those semantic approaches was applied
in modelling o f transport and logistic processes [3 ,4], the second one was useful in
constructing models o f distributed railway control systems [5, 6].

In section 5 presented tim ing and control mechanisms are discusses in the context of
multi-thread realization of sim ulation models. Several concurrent threads o f simulation
program may correspond to processes performed by co-operating, distributed nodes of
transport systems. This poses additional requirem ents on model construction and introduces
issues of com m unication and synchronization between sim ulated processes.

Final remarks suggest other possible applications of described sim ulation tools such as
models o f interacting computing, and m ention som e problems needing further research, in
particular decisive functions.

An implementation o f tim e and control in simulation models o f transport systems 271

2. PETRI NET AND ITS EXTENSION

2.1. PETRI NET DEFINITION

Regular Petri net PN=(B, So) is defined on a bi-graph B =(PuT , A) with two disjoint sets
of nodes: a set o f passive places P and a set o f active transitions T, and with a set of arcs
A c(PxTc/TxP). Initial state So is a function So'.P^N assigning non-negative numbers of
tokens to places. Places contain token and transitions move tokens between places, changing
actual state S of the net, S:P—>N. A transition te T has a subset of input places
IP(t)={pePI(p,t)eA} and a subset o f output places O P(t)={pePl(t,p)eA). A transition te T is
enabled to perform an action consuming tokens from input places and producing tokens in
output places, if Vpej(t) S(p)>0. An action of a transition t changes a state S o f the net to a new
state S ’ defined as follows:

Sim ulation modelling consists in dynamic execution of processes in abstract models
representing real word systems. Petri nets extensions well suited for that purpose should cover
timing and decision-making aspects o f processes simulated by system models. PN modelling
tool described in the paper introduces time and control to transition enabling rules, basing on
two commonly used approaches:

1. Enriching the nature o f tokens by assigning to them some informative contents including
semantic description o f represented entities and their time parameters. The contents o f all
tokens present in places o f a net describe current state of a process performed by the net
simulation model.

2. Enriching the nature of transitions by assigning to each of them: • individual enabling
rules in the form o f logical functions called enabling predicates, which are defined on
contents o f input and output tokens; • • capability o f transforming information in the form
of procedures associated with actions, which compute the contents of output tokens from
those o f input ones.

A token may contain arbitrary data structure, always including timestamp of its
creation. Enabling predicate o f a transition may express any local condition specific for
modeling purpose, including timing rule:

Max ipeip(o (Min itokcns in P(token timestamp value)) < current simulation time (2)

An action o f enabled transition produces in its output places tokens, equipped with
arbitrary data structures specific for modelling purpose, but always including timestamps with
values not less then current simulation time.

S (p)+ 1 if (pgIP(t))A(p e O P (t)) .

S(p) if (p g IP(t))A(p g OP(t)) v (p e IP(t))A(p e OP(t))

(1)

2.2. PN EXTENSION FOR TIMING AND CONTROL

272 Ewa OCHMAŃSKA

2.3. SUPERVISORY CONTROL OF SIMULATION MODEL

Control mechanism o f described sim ulation modelling tool goes beyond PN extension
above form ulated as “enabling predicate” bound to particular transitions. Such predicate
enables transition activation on the base of local data, available as contents o f tokens on its
input. M aking decisions in situations o f net conflicts needing resolution requires some more
general view o f current state o f modelled process. On the other hand, semantics of a model
may dem and global view o f sim ulated process to decide about alternative ways o f performing
particular actions. This can be achieved by two hierarchical levels o f predicates* built in
supervisory control device o f sim ulation model:

• Operative predicate, enum erating all adm issible resolutions o f conflicts by means of
com binatory operations on the net structure

• Decisive predicate, choosing one among all adm issible resolutions, following any rule
proper for sim ulation purpose. Such rules can be formulated taking into account data
structures o f all tokens describing current state o f sim ulated process (with time horizon
delimited by tim estamps of tokens in PN places).

3. M AIN CONCEPTS OF IM PLEM ENTATION

3.1. TIMING AND CONTROL IN OBJECT CLASSES OF PN ELEMENTS

M odel elements are implermcntcd in Delphi RAD environm ent as a library of general
and specilized object classes. T im e behaviour is com mon to all models constructed following
presented method, hence tim ing is built into four general object classes written in bold on
Fig-1.

Properties and m ethods related to control, dependent on model semantics, are redefined
(extended) in descendant specialized, context-specific object classes.

TObject
TM odel

1— > {descendant classes o f models]
T T ranâtion

1 ^ ' ' ' {dexendant classes o f transitions}
I T lare

^ ■■ {descendant classes o f places)
TTokey

{descendant classes o f tokens)

Fig.l. Hierarchy of object classes implementing simulation model

General class o f tokens com prises timestamp and two methods, used by transitions by
consum ing token from input places and producing them on output:

Procedures implementing logical predicates result in subsets of input tokens, for which predicates remain true.

An implementation o f time and control in simulation models of transport systems 273

T T o k e n = class
T im e S ta m p : T T im e ; D a t a S t r u c t u r e : P o i n t e r ; N e x t : T T o k e n ;
procedure R e m o v e F r o m (I P l a c e : T P l a c e) ;
procedure I n s e r t T o (O P l a c e : T P l a c e ; N e w S ta m p : T T im e) ; ...

end;
Tokens are organized in lists ordered by timestamps and assigned to places. General

class o f places play passive role o f token container, hence it defines no methods related to
timing and control. However, its properties reflect net structure of a model and are useful for
manipulating tokens during simulation. Descendant classes o f places redefine types of
contained tokens according to model semantics.

General class o f transitions defines virtual methods implementing common time aspects
of their enabling predicates and actions:

T T r a n s i t i o n = class
I n p u t P l a c e s , O u t p u t P l a c e s : T P l a c e S e t ;
P r e v i o u s T r a n s i t i o n , N e x t T r a n s i t i o n : T T r a n s i t i o n ;
function T i m e F u n c t i o n ;
function G e t C a n d i d a t e T o k e n (P : T P l a c e ; I : W o r d) : T T o k e n ;
property C a n d i d a t e T o k e n [P : T P l a c e ; I : W o r d] : T T o k e n

read G e t C a n d i d a t e T o k e n ;
procedure E n a b l i n g P r e d i c a t e ; virtual;
procedure A c t i o n (I : W o r d) ; virtual;

end;
Descendant classes override these methods to implement context-specific behavior of

active elements o f a sim ulation model. An array read-only property of candidate tokens gives
access to tuples o f tokens - one per each input place, which enable the transition. These token
tuples are beforehand computed by enabling predicate and indexed by I .

Pointer lists o f type T P l a c e S e t implement net structure o f a model. Moreover, for the
sake of tim ing mechanism, general class T T r a n s i t i o n is equipped with pointers to previous
and next transition, used to organize active net elements in second structure: bi-directional list
forming typical queue o f planned events, as shown on Fig.2.

T ra n s it io n s a re o rd e re d a c c o rd in g to tim e e x p ress io n o f th e le ft s id e o f in eq u a lity (2),
c o m p u ted b y a m e th o d T im e F u n c t i o n . K e ep in g th em in o rd e r is e ffe c tiv e ly im p le m e n ted in
A c t i o n m e th o d ; o n ly tra n s itio n s w ith in p u t to k en lis t ch an g ed by th e a c tio n h a v e to be
c o n sid e red fo r re -o rd e r in g .

Fig.2. Dual structure of a model: a) bi-graph, b) bi-directional list

274 Ewa OCHMAŃSKA

3.2. EXECUTING SIMULATION BY OBJECT CLASS TMODEL

General object class o f a model supervises execution o f simulation. It operates on the
timed list o f transitions, taking into account those with sm allest values o f tim e function. Some
non-negative margin for current simulation tim e can be delimited, so that a broader subset of
transitions (with time function values laying within that margin) may candidate for activation.

Class T M odel implements common mechanism o f model execution, basing on higher-
level control predicates; it is provided with a pointer to the head o f transition list and with an
executive method:

T M odel = class
F i r s t T r a n s i t i o n : T T r a n s i t i o n ;
C u r r e n t T i m e , T im e M a r g i n : T T im e;
function. G e t C a n d i d a t e T u p l e (T : T T r a n s i t i o n ; J : W o rd) :W o rd ;
property C a n d i d a t e T u p l e [T : T T r a n s i t i o n ; J : W o r d] : W ord read

G e t C a n d i d a t e T u p l e ;
procedure O p e r a t i v e P r e d i c a t e ;
function D e c i s i v e P r e d i c a t e (var J : W o rd) : T T r a n s i t i o n S e t ;

virtual; abstract;
procedure E x e c u t e S i m u l a t i o n ;

end;
An array read-only property C a n d i d a t e T u p l e gives numbers o f candidate token tuples

for enabled transitions in non-conflict com binations, enum erated by operative predicate and
indexed by j . M ethod for operative predicate defined in general model class is common for all
models. Specialized model classes derived from T M odel define context-specific
implementations o f virtual abstract function for decisive predicate. This function returns a
subset o f transitions to be activated along with an index o f respective set o f enabling token
tuples, chosen according to model semantics.

General executive method has following outline:

procedure T M o d e l . E x e c u t e S i m u l a t i o n ;
var J : W ord ; T : T T r a n s i t i o n ;
begin

T : = F i r s t T r a n s i t i o n ;
while T . T i m e F u n c t i o n <= C u r r e n t T i m e + T im e M a r g i n do

begin T . E n a b l i n g P r e d i c a t e ; T := T . N e x t T r a n s i t i o n ; end;
O p e r a t i v e P r e d i c a t e ;

/ / f o r each T i n D e c i s i v e P r e d i c a t e (J) d o b e g in t im e update;
T . A c t i o n (C a n d i d a t e T u p l e (T , J)) / / e n d ;

end;
Decisive predicate chooses J-th adm issible solution. Activated set o f transitions is

returned as an extra pointer list of type T T r a n s i t i o n S e t , because actions being
successively executed increase timestamps and re-order timed list of transitions. Since a strict
definition o f decisive predicate result type has been omitted, iteration of actions on resulting
set o f transitions is noted informally in com ment line.

Updating current sim ulation time is necessary to preserve tim e m onotonicity in the case
of positive tim e margin. M aximal value o f tim e function of activated transitions (before action
executing) has to be considered.

Having defined a class derived from T M odel with specialized decisive predicate, after
creating an object M o d e l o f that class we can run sim ulation pass by a statement:

An implementation o f time and control in simulation models of transport systems 275

with M o d e l do while F i r s t T r a n s i t i o n . T i m e F u n c t i o n < T i m e L i m i t
do E x e c u t e S i m u l a t i o n ;

4. SEMANTICS OF SIMULATION MODELS

Tim ing and control tools described in previous sections have been applied to simulate
behaviour o f discrete-event systems modelled following two different semantic principles. In
both cases, places o f PN model were treated as containers for available system resources and
objects being served by the system. On the other hand, PN transitions were representing
various interpretations o f system behaviour.

The first approach, which can be called “operation-oriented”, represents detailed view
of simulated process. This approach has been used to define models o f serving trains at
railway freight stations [4], Tasks performed by modelled system are decomposed to partially
ordered sets o f elementary operations, executed by active elements of PN model - transitions.
In that case, specialized implementation of enabling predicate comprises conditions of
executing operation represented by the transition action.

In an exemplary piece of PN model shown on Fig.3, enabling predicates o f operations
may select appropriate resources, dependent on parameters of particular entities being
operated. Operative predicate may enumerate resolutions of conflicts between operation 1 and
2 attempting to use resources A and B. Decisive predicate controls a way of process
performance choosing one o f resolutions.

Another, “task-oriented” approach to construct simulation model perceives simulated
process in more synthetic way. Tasks performed by a system are treated as undividible units,
demanding specific but possibly alternative subsets o f resources. Tokens representing tasks
contain inform ation about possible ways of their execution. Availability o f resources,
represented by other groups o f tokens, changes in time. Tasks are passed between transitions
responsible for executing them in particular configurations o f resources, until demanded
resources are available. Enabling predicates decide of executing tasks or passing them to other
configurations o f resources. Such model construction gives some additional possibility of
controlling execution o f a stream o f tasks, and therefore has been used for modelling railway
control systems [6], An illustration of task-oriented modelling principle is presented on Fig.4.

276 Ewa OCHMAŃSKA

Fig.4. Task-oriented modelling approach

In this small part o f a model, executive configurations are represented by pair of
transitions with com mon inputs. Transitions o f type a and b have mutually exclusive enabling
predicates. Predicate o f the type a enables actions executing tasks in case of availibility of
resources. W hen appropriate resources are not available, predicate o f the type b enables
actions of passing tasks to some other configuration.

5. M ULTI-THREAD M ODEL EXECUTION

Executing sim ulation of PN model in multiple simultaneous and possibly distributed
threads requires its decom position into several subnets. Each o f those subnets cooperates with
others according to PN dynamics.

Having in mind passive nature o f places and active one o f transitions, let us assume that
a net model has been reconfigured and partitioned in such a way, that: • no place is on input
o f two transitions belonging to different subnets; • • each subnet contains all input places of
its transitions. Note, that the above assumptions are equivalent to the fact, that all operative
predicates are defined on subsets o f places belonging to com mon subnet.

Then co-operation o f subnets consists in passing tokens by activated transitions to
places in other subnets. This can be implemented by means o f coordination provided by
Delphi for accessing shared memory and synchronizing threads.

Such approach should be valid as long as model structure and behaviour remain those of
Petri net. However, tim ing an control mechanisms described in the previous sections go
beyond PN frame by introducing higher-level object class derived from TM odel, responsible
for controlling execution o f sim ulated process by means o f operational and decisive
predicates working on timed queue of transitions. Some additional rules have to be stated for
synchronization o f those supervising levels.

In the case o f executing multiple threads o f sim ulation on one machine, one model
object synchronizes behaviours o f all PN subnets. W hen sim ulation is simultaneously
executed on several com puters, each of threads demands separate control object deriving from
the class TM odel. Some additional rules have to be stated for synchronization of those
supervising levels to maintain m onotonicity o f sim ulation time. D ifferent strategies for
preserving tim e conditions in distributed environm ent are discussed in [8].

An implementation o f time and control in simulation models o f transport systems 277

6. FINAL REMARKS

The described concepts o f defining and implementing Petri net simulation models of
discrete-event systems have been applied on the field o f organising and controlling o f railway
transport. Gained experience permits to estimate the presented modelling tool as flexible and
powerful. Further efforts on problems needing resolving are planned and new application
scopes in the area o f transport will be developed.

One of areas in which such tools may be used is creating simulation models of transport
telematic systems basing on interacting computing. For that and other purposes, distributed
mode o f sim ulation has to be thoroughly elaborated and investigated.

Further research on specific solutions of derived methods, in particular decisive
predicates, is necessary to provide templates for fast programming of problem-specific model
components.

BIBLIOGRAPHY

[1] DESEL J., REISIG W., Place/Transition Petri Nets. In: Lectures on Petri Nets I; Basic Models,
Vol. 1491 of LNCS, Springer-Verlag 1998

[2] GHEZZI C et al., A General Way to Put Time in Petri Nets. Proceedings of the 5th International Workshop
on Software Specification and Design, 1EEE-CS Press, Pittsburg 1989

[3] OCHMAŃSKA E., Object-oriented PN Models with Storage for Transport and Logistic Processes.
Proceedings of the 9th European Simulation Symposium „Simulation in Industry”, Passau 1997

[4] OCHMAŃSKA E., Simulation o f Serving Trains at Railway Freight Stations. Proceedings o f the 13th
European Simulation Multiconference, Warsaw 1999

[5] OCHMAŃSKA E., Task-oriented Petri Net Models for Discrete Event Simulation. In: Computational
Science - Proceedings of ICCS 2002. Part I. Vol. 2329 of LNCS, Springer-Verlag 2002

[6] OCHMAŃSKA E., WAWRZYŃSKI W., A Simulation Model o f Transport Node Control System.
Archives of Transport. Polish Academy of Science, Committee of Transport. Warsaw 2002 (to appear)

[7] TYSZER J., Symulacja cyfrowa. WNT, Warszawa 1990
[8] YI-BING LIN, FISHWICK P., Asynchronous Parallel Discrete Event Simulation. IEEE Transactions on

Systems, Man and Cybernetics. Vol. XX, No Y, 1995

Reviewer: Ph. D. Jerzy Mikulski

