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DISTURBANCES IN THE CONTROL OF A DYNAM IC SYSTEM  
TRACK-RAILW AY VEHICLE

In the paper is presented an application of theory of wave disturbances to the problems of dynamic 
interactions between the tracks and rail vehicles. In the given wave description of unknown disturbances. 
The present applications theory wave disturbances for projection of optimum system “engine-driver “ .

ZAKŁÓCENIA W  STEROW ANIU UKŁADU DYNAM ICZNEGO  
TOR-POJAZD SZYNOW Y

W referacie przedstawiono alternatywne podejście do opisu zakłóceń w sterowaniu systemów 
transportowych. Zdefiniowano pojęcie zakłóceń falowych i dano ich matematyczną interpretację. 
Pokazano przykłady modeli realnych zakłóceń falowych, występujących w realnych układach 
dynamicznych tor-pojazd szynowy.

1. INTRODUCTION

The disturbances are an indispensable and often underestimated elem ent o f transport 
system control. Instances of typical disturbances occurring in real track-railway vehicle 
interactions are: wind blows and other aerodynamic forces influencing the vehicle, frictions 
and clearances in the suspension system, uneven railway tracks, moved weight center, 
eccentric traction force in the movement along a curve and other undefined effects of 
dislocations within the mechanical vehicle system.

The classic control methods are based on either determ inistic or random interpretation 
o f disturbing signals. If  the first approach represents an all-too-simplified understanding of 
the nature o f disturbances, the second one renders it overcomplicated.

This paper proposes an alternative approach to the description of disturbance signals, 
based on a theory of wave disturbances and enabling description o f a large range of 
disturbances occurring in the real track-railway vehicle systems.
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2. W AVE INTERPRETATION OF DISTURBANCES 
IN TH E TRACK-RAILW AY VEHICLE SYSTEM

The disturbances featuring a wave structure may be described in a m athem atical way 
using sem i-determ inistic analytic equations o f the following type [1]:

MO = w[f/t),f2(t),...lf M(t);.cv.,cL\, (1)

where f ( t ) ,  i= l,2 , a  finite value) -  known tim e functions, c*, k= ],...,L  -  unknown 
parameters that may discreetly change their m eaning in a partially fixed way. M athem atical 
models o f type (1) will be further on referred as the „wave” interpretation o f a disturbance
MO-

The linear description (1) may be considered as an interpretation o f MO within a 
functional space, where the set o f functions {ffO.-fMO} constitutes a basis and c, -  are 
partially fixed weight factors. In other words, disturbances w(t) represent a linear weight 
com bination o f known basic function fi(t) and unknown w eight factor c,- that random ly and in 
a partially fixed way change their m eaning [3].

An instance illustration o f the equation (1) is shown on F ig .l.

Fig.l. Disturbances with wave structure

The proposed interpretation o f disturbances vvffj considerably differs from its 
traditional, random  interpretation. Specifically the scope o f inform ation contained in the 
equation ( I)  is o f another quality than the inform ation contained in traditional statistical 
terms, such as mean value, variance, spectral density and other. M eaning o f c, factors in the 
equation ( I)  are perfectly unknown (except o f the fact that they are changing in a partially 
fixed way). Wave interpretation does not use the traditional statistical properties o f  
disturbances and does no t define them.

In case o f disturbances, an efficient control requires inform ation about their effect on a 
current basis. Statistical inform ation based on a long-term  observation does not fulfill the 
criteria for current inform ation and becomes quite superfluous in the operation control.

Thus, interpretation (1) fills in the „information void” in the description o f disturbances 
actually occurring in the dynamic track-railway vehicle system.
In particular, equation (1) enables description o f a  w ide range o f likely wave forms covering 
any unknown realization o f a disturbance w(t) at the m om ent t. W hat is more, each separate 
realization w(t) in the wave interpretation may have its "own” set o f statistical properties, and
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thus may be used for description of non-ergodic disturbance functions w(t), especially in the 
case when each realization w(t) is a fixed random value.

3. MODELS OF W AVE DISTURBANCE STATES

Determ ination o f a system o f basic functions f f( t) ) ,  is the first step in use of wave 
interpretation o f disturbances as an instrument o f regulation system. It may be done using 
visual and m athem atical analysis o f experimental records o f w(t) or through an analysis of 
dynam ic characteristics o f a physical process generating the w(t).

The second step includes determination o f „state model” for the equation (1). This 
model is a differential equation fulfilled by function (1). In other words, equation (1) shall be 
considered as a known „general solution” o f the differential equation needed. L et’s assume 
that each chosen function f ( t )  features Laplace transform /(T), in the following form:

/ , ^  (2) 
Q„,(s)

where Pm (s), Q n (s) - polynomials o f m-th and n-th degree, wi, <n,. If we assume momentarily 

c-, as fixed values, the Laplace transform of equation (2) takes the following form:

m p  (s )
w( s) = c , f ,( s )  + c2f 2(s) + ... + c „  f j s )  = £  c, , (3)

finally

w(s) = f ^ - ,  (4)
Q(s)

where the num erator’s polynomial P(s) contain c; factors, while the denom inator’s 
polynom ial Q(s) is the lowest general denom inator in the set o f denom inator’s polynomials 
{Q„1(s),Q „2(s)„ ..,Q nM(s)} o f equation (3). This interpretation guarantees a minimum size of

the final state model o f w(t), which is very important from the point o f view of costs and 
com plexity of equipment. Thus, we may assume that the denom inator’s polynomial Q(s) in 
the equation (4) has the following form:

Q(s) = s p + qpsp-' + qp_,sp~2 + ... + q 2s + q, (5)

M
where p < ^T n* . Equation (4) shows that the disturbances w(t) may be treated as „output

i
variable” o f a fictional linear dynamic system with the operational transmittance:
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G( s )  = — —  , (6)
Q( s )

at the initial conditions equal to (w(o), w(o), w(0),...}. Then disturbances (1) with 
consideration to (3)-(5), fulfill the following uniform  linear differential equation with fixed 
parameters:

d pw d p~'w d p~2w dw
— + ------- r  + <?„ ;  r  + —+ <?2 —  + q ,w  = 0 ,  (7)d , P  'I ?  d t P-> * P - >  d t P -2  * *  d t  * /

where factors i- l ,2 ,. . . ,p ,  are known, as they are independent o f c, and determined by the 
set o f basic functions ff( t) ) ,  assumed as known.

In order to take into account discreet changes o f c, factors in the equation (7) we will 
add to it an external enforcing function cu(t), being a sequence of unknown and appearing and 
random pulse functions with random intensity (single, double, triple etc Dirac function type). 

Thus the state model w(t) will finally take the following form:

d pw d p~'w d p~2w dw

W e have to em phasize that the pulse enforcing function a(t), is unknown and 
introduced to the state model (8) in a symbolic way only to describe the c, leaps in the 
equation (1) m athem atically. M oreover, moments of appearance o f neighbor pulse functions 
are separates from  one another with a certain minimum positive interval p  > 0.
Thus, if the basic functions f ( t )  in the equation (1) feature the Laplace transform o f type (2), 
then in order to establish a state model for equation (1) we have but to determ ine the factors 
(qi, q2,—,qp} from equations (1) and (5), and subsequently use the general state model (8).
A differential equation of p  -th degree (8) may be represented as a system o f differential 
linear equations. For instance, equation (8) may be written in an equivalent way as a known 
and „fully traceable” canonical form. .

w = z,,

ZI = z 2 + d , ( t ) ,

Z2 =  Zj  + a 2( t ) ,

(9)

ZP-l  = Z p + C J p_; ( / j ,

Zp = - q , z , - q 2Z2 - . . . - q llZp + ^ f ( t )
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where the symbolic influence o f w(t) in the equation (8) is in the equation (9) replaced by the 
functions a,(t), i= l,2 ,...,p , constituting sequences o f unknown, random Dirac functions, while 
the dot means d/dt operator.

In the general case we may expect that the differential equation (8) or a system of 
differential equations (9) will contain variable factors q, and/or non-linear terms in relation to 
vv, dw /dt etc. Thus, the searched „state model” for disturbances w(t), having a wave structure 
may be represented as a single differential high degree equation:

d pw dw d p~'w  . . .  / im
 +  f (  vv,— ,...,------ - , r )  = co (ij, (10)
d tp J dt d f

or as a system o f differential linear equations:

co = W {z,t),
Z =  (Zl. Z2, . . .Zp). ( I I )

L et’s em phasize that the model ( l l )  has certain advantages over that o f (10), as it uses 
state variable methods. I f  w(t) is a m ulti-dimensional disturbance containing p  components 
vv =  (wj,W2,...,wp), then the state model shall be determined for each independent com ponent
W i(t).

4. INSTANCES OF STATE MODELS FOR ACTUAL DISTURBANCES 
IN TH E TRACK-RAILW AY VEHICLE SYSTEM

The state models expressed by equations: (10) and ( l l)  for the actual disturbances 
appearing in the track-railway vehicle system may be determined based upon experimental 
oscillogram s shown on Fig.2
Instance 1. In the case shown on Fig.2a the disturbances fulfill the following differential 
equation

£  = 0 ,  (12)
dt

where c in this case is a fixed value. In order to take into account random  variables, discreet 
changes o f c, we have to add a(t) term, consisting o f an unknown sequence o f Dirac 
functions, to the equation (12).
State model vv (t) o f disturbances shown on Fig.2a. Finally assumes the follow ing form:

$-4) ( . 3.
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w(t)=C
dw  
dt O(t)

w(t)= ¡ą +cye

u dw 
3 dt + k4w = co(t)

Fig.2. Disturbances with wave structure in the real track-railway vehicle systems
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Instance 2. The disturbances shown on Fig.2b. are described by the following equation w(t) = 
ci + C2t, fulfilling a quadratic differential equation:

d 2w / \
= (14)

where co(t) means an unknown sequence of random single and double pulses with random 
intensity. An equivalent model in the form o f system (9) looks as follows:

05 )

z, = z 2 +cs,(t), z 2 = 0  + <j2{t),

Instance 3. D isturbances w(t), shown on Fig 2c. with the following Laplace transform:

( .7 ,

may be presented as an equation (4) in the following form:

(18)
s{s + a )

In this case Q(s) = s2 + as, and the equation (5) and (8) show that \v(t) fulfills the 
following quadratic differential equation:

d 2w dw

The equivalent state model has the following form:

W - ] (20)

z, = z 2 +cr,(t), Z2 = a z 2 + c r2(f)> (21)

Instance 4. Short wave-type disturbances w(t) as shown on Fig.2d. have the following Laplace 
transform:

» < * )= ~ n — P2 \n  • <22)s(s2 + y  ){s2 + /3  )
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Thus, in accordance with the equations: (5)-(8), w(t) fulfills the following quintic
differential equation:

d 5w
(23)

An equivalent presentation o f equation (23) has the following form:

vv{r)=(;,0,0,0,0)

V

Zj

\ z iJ

¿1 = z 2 + cr.it), z2 = z 3 +cr2{t),
h  = z4 + a 3{t), i 4 = z s + a 4{t),

żs = -irP )2 z2 -  (r2 + P 2 )*< + ̂ (O-

(24)

(25)

Instance 5. Pulse-type disturbances shown on Fig.2e. with the following Laplace transform:

P{s)J s) = _______CSLŁ_______
(s'* + k . s 3 + k 2s 2 + k 3s + k 4)

(26)

where k> -  are functions o f two known parameters a  and /?, and fulfill the following 
differential equation:

d 4w , d 3w , d 2w , dw , 
— t  + k, — r  + k 2 — r  + k , —  + k4w = co(t) 
d t4 ' d t3 2 d t2 3 dt 4 W

or

w(r) = {1,0,0,0)

' z , '

Z-2

Z-3

(27)

(28)

Ż, = Z 2 +cr,(t),  

Z2 = z3 + a 2(t), 

i 3 = Z4 +cr3{t), 

¿4 = - ^ 4 Z , - k 3z2 - k 2z 3 - k , z 4 +<J4{t)

(29)

where k, are known coefficients depending of parameters a  and ¡5.



Disturbances in the control o f a dynam ic system track-railway vehicle 367

BIBLIOGRAPHY

[1 ]  EPAHCOH A ., X o- IO -U Ih , r ip iiK jia ;» ia «  T eop iw  o rro tM a jibH o ro  y iip a n jie m is i.-M .: M n p , 1972.
[2] KBAKEPHAAK X., CHBAH 3., Jlmieimbie oirrHManbHbie citcreMbt ynpaBnemw.-M. Mnp, 1977, -650 c.
[3] JOHNSON C.D., Theory of Disturbance-Accomodating Controllers. Chapter in the book, Control and 

Dynamic Systems; Advances in Theory and Applications, Vol. 12, etited by C. T. Leondes, Academic 
Press., Inc., New York, 1976, p. 627.

[4] JOHNSON C.D., Accomodation of External Disturbances in Linear Regulator and Servomechanism 
Problems, IEEE Trans. Automat. Control, AC-16,pp. 635-643, 1971

Reviewer: Prof. A leksander Sładkowski


