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A M U LT IO BJE C TIV E  IN TER M OD AL SH O RTEST PATH (MOISP)

The paper  begins by  an introduction,  the  description o f  the  treated problematic  and some 
definitions o f  the  different concepts  (e.g. intermodality, transshipments,  travel and waiting times.. .) used 
in the following (section 2). A br ie f  survey presents some related works  (section 3). The  proposed 
contribution is expla ined in three main points: the model used to formulate  the  problem (section 4), the 
descript ion o f  a  given solution (section 5), and the basic principles o f  the solving algori thm (section 6). 
The correctness  and the  complexi ty  o f  this contribution are discussed (section 7) and its performances  are 
presented (section 8). Finally, the paper  is concluded by  some prospects (section 9).

W IE L O Z A D A N IO W A  N AJK RÓ TSZ A  ŚCIEŻKA IN T ER M O D AL N A

W  artykule  badany je s t  problem odnajdowania  najkrótszej ścieżki na  trasie p unkt  Wyjścia  -  punkt 
Przeznaczenia  (O-D ) w  in te rmodalnych sieciach transportowych,  mających na celu min imalizację  czasu 
podróży i liczby pośrednich przesy łek dla  wymaganej ścieżki. Sieć transportowa oraz odnośne dane  są 
modelowane za pom ocą  wie loetykie towych grafów. Problem intermodalnych najkró tszych  ścieżek i jego  
definicja zostały om ów ione  pokrótce. Zaprezentowano algorytm opracowany do  znajdowania  ścieżki. 
Istotnym jes t  zw łaszcza  zwrócenie  uwagi na wdrożenie tego podejśc ia  oraz  wyników, jakich ono 
dostarcza.

1. INTRODUCTION

G round transportation is a field in w hich m any problem s that can be m odelled and 
solved by m athem atical optim ization techniques occur. H owever, the existing w orks in this 
field often deal w ith sim plified m odels, which are far from the com plexity o f  the practice [9], 
In particular, shortest path problem s (SP) are am ong the m ost studied netw ork flow 
optimization problem s [19]. They all aim  at finding the shortest path betw een som e points, 
called "sources" and "destinations", in a given netw ork but they differ according to the
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netw ork characteristics (e.g. w ith or w ithout cycle) and the criterion to  be optim ized (e.g. the 
tim e and/or the cost o f  a travel). The variation o f  these param eters is linked to  the nature of 
the tackled applications. For instance, i f  the studied application involves several sources and 
several destinations in a static netw ork (i.e. w ith fixed travel tim es), the problem  is known as 
an all-to-all static problem . W hereas an instance with a single source and a single destination 
w here travel tim es are functions o f  tim e belongs to the class o f  one-to-one dynam ic problems. 
In m any cases, solving a problem  requires the developm ent o f  adequate solving procedures, in 
order to take into account its specific constraints w hile keeping reasonable com putation time 
and m em ory space. C onsequently , this kind o f  problem  has been the subject o f  m any research 
w orks, according to  the various considered assum ptions and constraints [2], The m ost recent 
works take into account a new  concept, called interm odality, that brings new  interesting 
constraints to  the SP problem s. O ver and above the dynam ic com portm ent o f  the network, 
other param eters are considered, such as w aiting tim es and transshipm ents betw een modes. 
C onsequently, the last generation o f  w orks tends to  solve this type o f  problem  and to  propose 
a m ultiobjective solution.

2. PR O B LEM A TIC  A ND  D EFINITIO NS

An interm odal transportation can be defined as the serial use o f  different transport 
modes to m ove passengers and/or freight from a place to  another [11]. In a w ider sense, the 
term  in termodal  is used to  describe a transport system  in w hich at least tw o m odes are 
required to  m ake a travel betw een tw o points. This characteristic, interm odality , involves 
some additional constraints in the shortest path problem  : travel tim es and/or travel costs do 
not only depend on source and destination points (in particular on the distance betw een them) 
but they also depend on the chosen departure tim e and the used transport m ode. This relation 
between travel tim e and departure tim e m akes the transportation netw ork be a dynamic 
netw ork. W ith several transport m odes, each transfer tim e (also called sw itching tim e) from a 
m ode to another m ust be considered. In the rem ainder o f  the paper, w e use a variable called 
waiting time  to represent this param eter. These constraints m ake the SP  problem  be more 
com plex, so it belongs to the class o f  dynam ic shortest path problem , [ 1, 18 and 19], or the 
class o f  tim e-dependent interm odal optim um  path problem s [18, 20]. The solution complexity 
varies according to the chosen m odel and the considered constraints. In this paper w e consider 
three transport m odes: bus, car and train. Som e m odes w ork on various transport way 
connections (or lines), and then w e m ust consider each o f  these lines as a com plete m ode. The 
studied netw ork is no t a first-in-first-out (FIFO) netw ork, as the travel tim e on each arc 
depends on the departure tim e and on the transport m ode used. The departure tim es, the 
transport m odes available on each node and the corresponding travel tim es are fixed. The 
starting tim e and the finishing tim e o f  the travel are also specified before the path research. 
They represent respectively  the m inim um  departure tim e from the source point Tds and the 
m axim um  arrival tim e to  the destination point TaD. The m axim um  num ber o f  transshipm ents 
for the w ished path is also specified before the research. The path is accepted if  and only i f  its 
travel tim e is less than or equals the difference betw een Tds and Ta„ and i f  its num ber of 
transshipm ents is less than the specified num ber. The proposed approach aim s at minim izing 
the travel tim e and the num ber o f  transshipm ents for the required paths betw een s  and D . The 
m otivation consists in the m ulti-objective nature o f  the problem  and the lack o f  a general 
solution for this problem  in the interm odal netw ork case. Indeed, this kind o f  problem  is
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known to be a N P-hard problem  [19]. So, the developed algorithm s generally treat sim ple 
network m odels, as it will be shown in the next section, that gives an overview  o f  the 
literature dedicated to the SPs problem s.

3. RELATED W ORKS

Most o f  the m ain solving algorithm s developed to  solve shortest path problem s [3, 10, 
12 and 17] can rarely  be directly applied to  com plicated cases. They deal w ith the simplest 
cases o f the problem , in w hich there is a single transport m ode and travel tim es are static. 
Other recent w orks focus on the dynam ic SP on tim e-dependent graphs [2, 7, 19 and 20], 
Since travel tim es on th is type o f  netw orks depend on the departure tim e in each point, m any 
networks exhibit th is kind o f  dynam ic behaviour [8 , 19 and 20], Finally, over the past few 
years, there has been an increasing interest in the combination o f  different transportation 
means to m ake interm odal transportation system s be m ore efficient [4, 5, 16 and 20], Thus, a 
new class o f  solution is developed to treat interm odal netw ork problem s with specific 
constraints. The paths are generally  characterized by two or m ore attributes. So, some 
researches focus on multi objective shortest path problems (SPs) [4, 14, 15 and 19], with goals 
o f relevant interest, like the m inim ization o f  cost, tim e and num ber o f  transshipm ents. 
Pallotino and Scutella indicate that such problem s are N P-H ard problem s [19]. These authors 
particularly focus on the bicriterion problem (travel tim e and num ber o f  transshipm ents). 
They suppose that, when the list o f  possible values for one o f  the tw o criteria is finite or a 
priori know n, the criterion can be bounded by a m axim al value. And so, the solution approach 
consists in m inim izing the second criterion w hile the first criterion is used as an attribute. In 
this paper, we propose to  solve in the sam e w ay the one-to-one interm odal shortest path 
problem that aim s at m inim izing the sam e criteria. The solving approach that we propose 
differs from [19] in tw o m ain points. Firstly, it uses several constraints linked to the problem 
specification (such as the departure tim e and the arrival tim e) to reduce the search space. 
Secondly, it uses a bidirectional strategy to treat the graph (Section 6 ).

4. IN TER M O D A L TRA N SPO RTA TIO N  NETW ORK M ODEL

The studied transportation netw ork is represented by a graph G = (N.v.T.X) w here N is 
the set o f  nodes, N = {l...«) representing the stations, v is the set o f  arcs, V = {(i,j) e N x N ) , and 
each arc represents the route segm ent betw een each pair o f  stations (nodes), x  = UA'(i) is the set 
of the transport m odes that serve the netw ork stations and finally  T = u r **0 is the set o f 
departure tim es for all transport modes. Let 17 (respectively r* ) denote the predecessor set 

(resp. successor set) o f  1. Practically, in each node / eA 'the set o f  data X(i) is defined. It 
represents the transport m odes available on the node ; (i.e. that can be used to link it with its 
successor points vei}*). This set is represented by X(i) = UX"(i) w here for each vs r f  w e have

V

Xv(i) = (x'(i) x\(i)}. Each transport m ode x'j(i) has a set o f  departure tim es

H'Jft1]= PiV/')\■■■• ' < « •  The latter defines the possible departure tim es to  travel from  node i to 

node v e r f  w ith the m ode .<■)(/). 7"'[x(/)] = U )■ (/)j is the set o f  possible departure tim es on
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the node / to go tow ards the node v using any o f  the transport m odes available in node /. 
Finally, the param eter Tx{,) = L)7'l'[jc(/)] defines the set o f  all departure dates possible at node ; to

v
go to its successors. T he label 7>(/,y) associated with node ; equals 1 i f  a transshipm ent is 

needed to  go from i to  / ,  j  e , it equals 0 otherwise. The difference betw een the departure 
tim e and the arrival tim e on a given node o f  the graph defines the w aiting tim e on this node. 
This value, the w aiting tim e, is also represented by the needed tim e to perform  transshipment 
betw een tw o m odes. In destination node D  this value equals zero as well as i f  the departure 
and the arrival m odes on the node are the sam e. However, on origin S  it is equal to  the 
difference betw een the tim e i at which the user really leaves s  and the w ished departure 
tim e Tds . In the defined m odel this value represents another label associated w ith each node. 

The notation Vff (i) w here x e X J\ t ) ,  y e x '( j )  and / e r f ) ]  is used to represent it. More 

precisely, r f i (r) represents the needed tim e to change from m ode * to m ode y , on node j  when 

one travels from node / to  node /, via j  and leaving ; at tim e i . A value o f  the travel time 
(%(*,/) is assigned to each couple (x,t) (w here x e X J(i) and t e r[x]). It is represented by  a label 

o f  arc (i,j) and it defines the tim e needed to travel from node i to node j  with the transport 
m ode x leaving / at tim e t . Thus, each arc carries as m any labels as the num ber o f  possible 
m odes and starting dates. To illustrate this, the figure 1 represents an intermodal 
transportation netw ork w here the different available m odes * = xf(i) = x{(i), y  = xj'(k) and 

z = x((i) = x*(i) are represented  by  different arcs.

Transport Modes: x  ______*■

y ------ ►
z  ----------►

Fig. 1. G raph ic  representation o f  the transportat ion network
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5. D ESCRIPTIO N  OF A GIVEN SOLUTION

A solution o f  the problem , i.e. a given path connecting the origin node s  to the
destination node d by  leaving from  5 at the date /, consists o f  a sequence o f  nodes / for

which the couples (x.i) o f  departure, w ith x e X ' ( i  ) and t e  r[jr], are fixed.

Thus, the values o f  </>y(x,t) and can directly be deduced from this path

description. The follow ing form ulation illustrates this:

The length n iDp ,)o f  this path, i.e. the travel tim e, is com puted by adding the value o f  

<jmim*\(xiju)and (/,)for all o f  its nodes. The formulation (1) w hich represents the path

allows to specify from the node its successor nM and its predecessor and the 

corresponding m odes and dates. Thus, the travel tim e value </>mm*\(xi,n) , the w aiting tim e 
value (tt) and the num ber o f  transhipm ent Tr(nitnM ) can be respectively represented by

¥(/!,■)a n d Tr(nt) .  C onsequently, the calculation o f  n iD(r,) can be represented by the 
following form ulation:

Thus, the studied SP problem  can be form ulated as follows: in a graph G(N,V), 
determine the solution path which m inim izes the total travel tim e (including w aiting times) 
n so('i) com puted from the values «!(«,), >?(«,•) and 7>(«,)for each node belonging to path. In 
case o f  equality, the num ber o f  transshipm ents Tr(s.d) is used as a second level o f  decision 
Using the above notations, this results in the following formulation:

Path = { (n , = S ,x 1, t1) ,(n 2 ,x 2 , t2 ) ,...,(n j ,x j , t j ) ,(n f = D ,x f , t f ))} 

where n ; e  N, Xj e  X n'+I( n j ) , t e  T f x ja n d  n e r*
( 1)

n s D ( t i ) -  {( ] -  S) + T(n ,)) + (<t>(n 2) + T(n 2)) + ... + <)>(nf = D)} (2)

M inim ize f  (path) = ^  ( ^ ( n  f ) + <}>(n j )) 

M inim ize h(path) = ^ T r ( n f) (4)

(3)

w here n f e p a th / n j  = S ...D .

The objective function (3) m inim izes the total travel tim e, w hile the objective function 
(4) m inim izes the num ber o f  transshipm ents.
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6 . TH E SH O R TEST PATH A LG ORITH M

This section describes the principles o f  the m ultiobjective interm odal shortest path 
algorithm . This one allow s to find the best interm odal path in a directed graph w ith or w ithout 
cycle w here the arcs have positive lengths. The research is perform ed according to the travel 
tim e, to the num ber o f  transshipm ents and also according to the d ifferent constraints o f  the 
problem . D uring the graph exploration, the path is built node-by-node, and the label values 
associated w ith nodes are m odified  using a correcting m ethod based on the sam e principles as 
the algorithm  that D ijkstra proposed in 1959 [13]. Practically, the algorithm  uses a 
bidirectional treatm ent strategy: it begins the search o f  the path from  the source and the 
destination nodes (that w ill be called search departure nodes SDN in the follow ing) iteratively. 
At each iteration, the label correcting m ethod changes the label values to solve the Bellman 
optim ality condition [19]. (i.e. the label value is m odified if  it is greater than the new 
com puted value). It selects, at each iteration, betw een all eligible nodes (i.e. the nodes for 
w hich the path length value is m odified by the label correcting m ethod), the node » for which 
the partial travel length ( n i((/,)orn ,.0 (f)) is the best. The selection is perform ed by exam ining, 
for all the eligible nodes, all the possible couples (transportation m ode, departure tim e) that 
connect these nodes w ith their successor or predecessor nodes (according to  the considered 
s d n ) and by  choosing the node that m inim izes the travel length and the num ber of 
transshipm ents. Thus, the values o f  travel and w aiting tim es that we use to  com pute the path 
length are deduced. All eligible nodes are kept in a successor list™  or in a predecessor 
lis t/5!  according to the sdn  . In the beginning, sl and PL respectively contain the nodes S  and 
D . The first iteration consists in updating all nodes that can be directly  reached from S or 
from w hich D can be d irectly  reached. C onsequently, i f  the considered sdn  is S  the waiting 
tim e is com puted in the departure node (the node that belongs to  SL).  In the second case, 
when the sdn  is D , the w aiting  tim e value is com puted in the updated nodes (i.e. predecessors 
o f  the current node). It is w orthy o f  note that the label denotes the travel tim e betw een the 
considered sdn and the current node in both cases, but it is related to the optim um  path in the 
first case (for a path from  / to S )  w hereas it is sim ply an estim ated value in the second case 
(for a path from  j  to  D ).  A fter these steps, the nodes that are reached respectively 
from s  or d and w hose label values ( rIs, (0  or n /D(/)) are m odified are added to  sl and pl 
respectively. In the nex t step, these nodes are used to update the label value o f  the rem ainder 
nodes o f  the graph and to build  the path. This is perform ed by selecting at each iteration (from 
sl or PL alternatively), the node that has the best path length (i.e. the best label value). The 
policy used in this paper allow s us to treat only the paths for w hich the length value is 
im proved. T hat is, i f  tw o paths are possible to  arrive at any node, then w e store only the one 
that m inim izes global travel tim e and num ber o f  transshipm ents. So, all other possible paths 
that include the node w hich was no t stored are elim inated. Besides, the algorithm  also reduces 
the com binatory o f  the problem  by  checking the follow ing constraints: the travel tim es o f  the 
built (partial o r total) paths m ust be less than the difference betw een TaD and t<is , the arrival 
dates at nodes i e S L  m ust be less than o r equal toTaD< the departure tim e o f  the couples (*,/) 
associated w ith pl m ust be less than the possible arrival dates, the num ber o f  transshipm ents 
m ust be less than the specified m axim um  num ber o f  transhipm ents. If  these constraints 
elim inate all the possib le paths, the algorithm  detects an infeasibility  case. It m ay also 
provides this conclusion w hen no possible path between s and d  exists in the graph (which 
m ay occur i f  the graph is no t connected). O therw ise, the algorithm  stops w hen sl
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(respectivelyp l )  contains D (respectively s ) ,  w hich m eans that the optim al solution has been 
reached.

7. CO M PLEX ITY  AND CORRECTNESS

The proposed approach involves tw o search departure nodes and the num ber o f  iteration 
is strongly related to the considered s d n  . In the first case, the search departure node i s s ,  for 
each node / selected fro m s i ,|7j|Aj iterations are needed to com pute the w aiting and the travel

times on the nodes that belong to r * .  Thus, in the w orst case, all the graph nodes belong to r * ,  
and the algorithm  com plexity  isO(|/v||At||7j ) . Practically, the num ber o f  successors is bounded 

for each node by a fixed value, w hich reduces the com plexity toO(|r,*||A'||7’|). In the second case,

when the search departure node is D, com puting the waiting tim e in the nodes that belong to 
/»¿(and then deducing the travel tim e and selecting the nex t node on the path) requires 
|w| > | > | 2 iterations. Indeed, it is necessary to com pute the possible arrivals tim es on the 

nodes belonging to p l  . This requires the enum eration o f  all the transportation m odes and all 
the departure tim es associated w ith the elem ents o f  r j . Thus, in the w orst case, when all the

graph nodes belong to p l  and r ; , the algorithm  com plexity is 0(|A»|2|A/|2| r | 2) when the considered 

s d n  is D. It m ust be noted  that, in both cases, this estim ation o f  com plexity is an upper bound: 
actually, checking the different constraints o f  the problem  perm its to greatly decrease the 
number o f  variables really  treated (i.e. |a"| a n d |r |), which significantly im proves the 

performances o f  the proposed algorithm .

8 . EXPERIM EN TA L RESULTS

This section presents the tests that have been run on a 2G H z processor to estim ate the 
performances o f  the algorithm . The considered netw orks were random ly generated and they 
contained 100, 500 and 1000 nodes. The num ber o f  successors w as lim ited at three for each 
node, in order to increase the com plexity  o f  the problem: indeed, w ithout this constraint, the 
probability that a direct path from S to D exists is too im portant and consequently  the exam ple 
is not appropriate to run efficient tests. The num ber o f  transportation m odes in each node was 
strictly related to the num ber o f  nodes in the graph. For each m ode, on each node, there w ere 
200 departure tim es. The table 1 presents the environm ent o f  execution: it contains the 
number o f  nodes (N b-N odes), the num ber o f  transportation m odes in each node (N TM ) and 
the num ber o f  stations visited by each transportation m ode (NSM ). The provided results are 
compared w ith those returned by a branch and bound (B& B) method. This m ethod searches 
the local m inim um  at each iteration. It uses a depth-first search strategy to cover thegraph. 
The first com puted travel length is used to evaluate the next solutions. A t each iteration the 
algorithm checks that both the com puted travel length and the num ber o f  transshipm ents are 
less than the m axim um  values specified before the search. The table 2 show s the C PU  tim es 
(in seconds) that represent the results o f  the execution. The provided values w ere obtained by 
averaging the results o f  ten tests for each size o f  graph. Each test was perform ed in a new 
randomly generated graph w hile keeping the sam e source and destination nodes.
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Table I
T he  execution environment

N b-N odes N T M NSM
100 13 8 - 1 3
500 25 15-25
1000 50 2 4 - 3 3

Table 2
The execut ion results

N odes 100 500 1000

M O I S P 1,95 5,37 11,92
B& B 8 ,4 5 13,2 28,4

9. C O N CLU SIO N

The prim ary aim  o f  this w ork w as the coordination betw een different m odes of 
transport. W e have developed an algorithm  that allows to com pute the best interm odal path 
betw een tw o points source and destination w hile specifying the w ished departure and arrival 
tim es and the m axim um  num ber o f  transshipm ents. This is m otivated by several folds. The 
first one is the m ulti-objective nature o f  the shortest path problem . The second one consists in 
the lack o f  a general solution for this problem  in the interm odal netw ork case, in particular 
due to the running tim e and the m em ory space required to solve real instances o f  the problem. 
The proposed approach is based  on a bi-directional search strategy to  explore the graph. 
D ifferent kinds o f  constraints (linked to  the total travel tim e and the total num ber of 
transshipm ents) perm it to reduce the search space. This allows to reach good perform ances in 
com parison w ith a branch and bound m ethod. A lthough the results are satisfying, these works 
can still be im proved by studying over m ultiobjective strategies, such as the search o f the 
pareto optim a.
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