Janusz GARDULSKI, Rafał BURDZIK, Łukasz KONIECZNY

WYKORZYSTANIE TRANSFORMATY WIGNERA-VILLE'A DO IDENTYFIKACJI ILOŚCIOWEJ WYCIEKU PŁYNU AMORTYZATOROWEGO

Streszczenie. W artykule przedstawiono zastosowanie analizy Wignera-Ville'a do identyfikowania ubytku płynu w amortyzatorach samochodów osobowych. Analizowano sygnały drganiowe generowane przez masy nieresorowane i resorowane pobudzane do drgań harmonicznym wymuszeniem kinematycznym. Jako miarę diagnostyczną zaproponowano estymator punktowy.

ANALYSIS OF WIGNER-VILLE DISTRIBUTION TAKE ADWANTAGE IN LEAK OF SHOCK ABSORBER FLUID QUANTITATIVE ANALYSIS

Summary. The paper presents results of Wigner-Ville analysis as leak of shock absorber fluid detection method. It compares results of chosen parts of vibration signals. It have been suggest the point estimator $WVI_{sr.max}$ as the diagnosis measure.

WSTĘP

Bezpieczeństwo poruszającego się w ruchu drogowym samochodu zależy od stanu technicznego układu jezdnego. We współczesnych samochodach klasy średniej powszechnie stosowane są zawieszenia niezależne, w których skład wchodzą: sprężyny mechaniczne, elementy łączące i amortyzatory, których stan techniczny ma istotne znaczenie. Jedną z najczęściej występujących usterek amortyzatorów są wycieki płynu trudno diagnozowalne pod względem ilościowym Powyższe zagadnienie jest przedmiotem przeprowadzonych badań.

METODA BADAŃ

Założeniem opracowanej metody badań jest umiejętność zdiagnozowania usterki amortyzatora bez konieczności wybudowania go z pojazdu. Umożliwi to zaadaptowanie tej metody w stacjach kontroli pojazdów (SKP).

W badaniach wykorzystano samochód marki Skoda Fabia, w którym zabudowywano wcześniej przygotowane amortyzatory o zidentyfikowanym stanie technicznym. Zamodelowano w nich uszkodzenie w postaci ubytku płynu amortyzatorowego, od 0% (nowy) do 40% z 5% stopniowaniem. Identyfikacji ich dokonano na stanowisku indykatorowym, a następnie po zabudowaniu w pojeździe przebadano na stanowisku o wymuszeniu harmonicznym. Stanowisko posiada wzbudnik drgań umożliwiający wymuszenia kinematyczne mas nieresorowanych w sposób ciągły w zakresie 0 ÷ 30 Hz.

Do pomiarów wibroakustycznych wykorzystano pojemnościowe przetworniki przyśpieszeń. Schemat zastosowanego układu pomiarowego przedstawia rysunek 1.

METODY ANALIZY

Analizie poddano sygnały różnicowe przyśpieszeń masy resorowanej i nieresorowane, które są sygnałami niestacjonarnymi (rys. 2.). Narzuciło to metody analizy polegające na obserwacji wielowymiarowej, które pozwalają obserwować rozkład sygnału w dziedzinie czasu i częstotliwości [1]. Autorzy postanowili wykorzystać do tego celu transformatę Wignera-Ville'a (WVD) z funkcją wagową Choi-Williamsa. Matematyczny zapis wykorzystanego przekształcenia jest następujący:

$$WVD(f,\tau) = \int x^* (t - \frac{\tau}{2}) x(t + \frac{\tau}{2}) e^{j2\pi \eta t} e^{-\left(\frac{\theta\tau}{\sigma}\right)^2} dt$$

gdzie:

x*(t) - sygnał urojony sprzężony z x(t),

 τ – przesunięcie w dziedzinie czasu,

 θ – przesunięcie w dziedzinie częstotliwości,

 σ – parametr proporcjonalny do amplitudy przecieku widma.

Pozwala to przekształcić uzyskane przebiegi sygnałów w czasie na widmo czasowoczęstotliwościowe. Zaletą tej metody jest duża rozdzielczość w dziedzinie częstotliwości i czułość na zmiany amplitudowe.

Do analizy wybrano dwa przedziały czasowe. Pierwszy obejmował okres rozpędzania w zakresie od 0 do 21 Hz (od 0 do 10 sekundy), z przejściem przez częstotliwość rezonansową drgań mas resorowanych i nieresorowanych (15 Hz). Drugi przedział obejmuje układ wymuszenia ze stałą częstotliwością (od 10 do 28 sekundy).

Przebiegi czasowe wybranych sygnałów przedstawiają rysunki 3 i 4.

Rys. 2. Przebieg czasowy sygnału różnicowego Fig. 2. Time function of all recording signal

Rys. 3. Przebieg czasowy sygnału dla okna czasowego od 2 do 10 sekundy

Rys. 4. Przebieg czasowy sygnału dla okna czasowego od 18 do 23 sekundy Fig. 4. Time function of recording signal for

time window 18-23 seconds

WYNIKI BADAŃ

Z szeregu przeprowadzonych analiz WV wybrano do dalszej analizy trzy rodzaje zamodelowanych usterek amortyzatorów:

- nowy amortyzator (100% płynu),

- z 20% ubytkiem płynu amortyzatorowego,

- z 40% ubytkiem płynu amortyzatorowego,

Wyniki w postaci wykresów (rys. 5 do rys. 16) zestawiono dla dwóch wybranych przedziałów czasowych:

1) od 2 do 10 sekundy,

2) od 18 do 23 sekundy.

• Amortyzator nowy z 100% napelnieniem plynem amortyzatorowym:

- przedział czasowy od 2 do 10 sekundy

Rys. 6. Przestrzenny rozkład czasowoczęstotliwościowy Fig. 6. Three-dimensional time-frequency distribuation

Fig. 5. Time-frequency distribuation

Rys. 7. Rozkład czasowo-częstotliwościowy Fig. 7. Time-frequency distribuation

Rys. 8. Przestrzenny rozkład czasowoczęstotliwościowy

Fig. 8. Three-dimensional time-frequency distribuation

Amortyzator z 80% napelnieniem plynem amortyzatorowym:

Rys. 9. Rozkład czasowo-częstotliwościowy Fig. 9. Time-frequency distribuation

Rys. 10. Przestrzenny rozkład czasowoczęstotliwościowy Fig. 10. Three-dimensional time-frequency

distribuation

przedział czasowy od 18 do 23 sekundy

Rys. 11. Rozkład czasowo-częstotliwościowy Fig. 11. Time-frequency distribuation

Rys. 12. Przestrzenny rozkład czasowoczęstotliwościowy Fig. 12. Three-dimensional time-frequency distribuation

Rys. 13. Rozkład czasowo-częstotliwościowy Fig. 13. Time-frequency distribuation

Rys. 14. Przestrzenny rozkład czasowoczęstotliwościowy Fig. 14. Three-dimensional time-frequency

Rys. 15. Rozkład czasowo-częstotliwościowy Fig. 15. Time-frequency distribuation

distribuation

Rys. 16. Przestrzenny rozkład czasowoczęstotliwościowy

Fig. 16. Three-dimensional time-frequency distribuation

ANALIZA WYNIKÓW

Z analizy wynika, że transformata Wignera-Ville'a może posłużyć do jakościowej oceny i pozwala na zdiagnozowanie wycieku płynu amortyzatorowego. Uzyskane wykresy nie pozwalają jednak na jednoznaczną ocenę ilościową.

Celowe więc jest zastosowanie estymatora do identyfikacji ilości ubytku płynu amortyzatorowego. Autorzy zaproponowali estymator punktowy $WVI_{sr.\ max}$ wyznaczany w następujący sposób: w analizowanym przedziale czasowym obejmującym pasmo częstotliwości od 10 do 20 Hz, w którym występuje rezonans mas nieresorowanych, uśredniono wartości WV w pasmach częstotliwościowych o szerokości $\Delta f = 0,03$ Hz. Dla tak wyznaczonego rozkładu uśrednionych wartości wyznaczana jest maksimum, które nazwano $WVI_{sr.\ max}$.

Poniżej przedstawiono wykresy wartości $WVI_{sr.max}$ dla amortyzatorów z różnym stopniem napełnienia uzyskane dla dwóch rozpatrywanych okien czasowych.

Fig. 17. The values of $WV1_{sr.max}$ for shock absorbers with leak of fluid for time window 2-10 seconds

Fig. 18. The values of $WV1_{sr. max}$ for shock absorbers with leak of fluid for time window 18-230 seconds

Przedstawiony estymator jest czuły na zmiany ilości płynu amortyzatorowego. Dla obu analizowanych przedziałów okazało się, że jego wartość wzrasta wraz ze wzrostem ilości wycieku płynu. W przypadku analizy sygnału generowanego w fazie rozpędzania stanowiska harmonicznego *WV1_{sr. max}* dynamicznie wzrasta dla amortyzatorów z rosnącym ubytkiem płynu. Może być to spowodowane przejściem przez częstotliwości rezonansowe układu w tym czasie. Drugi przedział reprezentuje sygnał drganiowy w czasie wymuszenia ze stałą częstotliwością. Przyjęty wskaźnik osiąga znacznie większe wartości, a dynamika jego wzrostu jest bardziej proporcjonalna do stopnia ubytku cieczy w amortyzatorze.

Literatura

- 1. Gardulski J.: Bezstanowiskowa metoda oceny stanu technicznego zawieszeń samochodów osobowych, Katowice-Radom 2003.
- Gardulski J., Burdzik R., Konieczny Ł.: Identyfikacja uszkodzeń amortyzatorów samochodowych przy wykorzystaniu transformaty Wignera-Ville'a, XXXII Ogólnopolskie Sympozjum Diagnostyka Maszyn, Węgierska Górka 2005.
- 3. Pasko M., Walczak J.: Teoria sygnałów, WPŚ, Gliwice 2003.
- 4. Zalewski A., Cegieła R.: Matlab obliczenia numeryczne i ich zastosowanie, WN, Poznań 1996.