Piotr GUSTOF, Marcin SEKUŁA

MODELOWANIE ROZKŁADU TEMPERATUR W GNIEŹDZIE ZAWORU WYLOTOWEGO W DOŁADOWANYM SILNIKU ZS

Streszczenie. W pracy wyznaczono rozkłady temperatur w gnieździe zaworu wylotowego w doładowanym silniku z zapłonem samoczynnym w stanie nieustalonym przy zastosowaniu dwustrefowego modelu procesu spalania oraz metody elementów skończonych (MES) za pomocą programu Cosmos/M.

DETERMINES DISTRIBUTION OF TEMPERATURES THE EXIT VALVE NEST OF DIESEL TURBO ENGINE IN AN UNSTEADY STATE

Summary. The thesis determines distribution of temperatures the exit valve nest of Diesel turbo engine in an unsteady state performed using model of process of two-zone combustion and the finite elements method (MES) with support of programme Cosmos/M.

1. MODELOWANIE OBCIĄŻEŃ CIEPLNYCH GNIAZDA WYLOTOWEGO

Do zamodelowania obciążeń cieplnych w gnieździe zaworu wylotowego wykorzystano warunki brzegowe III rodzaju, które charakteryzuje współczynnik przejmowania ciepła α oraz temperatura *T* czynnika roboczego wyznaczona na podstawie dwustrefowego modelu procesu spalania w silniku [1,2]. Modelowanie rozkładu temperatur w gnieździe zaworu przeprowadzone zastało od momentu uruchomienia silnika do czasu, kiedy rozkład ten zmieniał się w niewielkim zakresie. Przy analizie obciążeń cieplnych przyjęto jako materiał gniazda brąz aluminiowy Cu95Al5. W obliczeniach przepływu ciepła wykorzystano znajomość takich własności fizycznych materiału, jak: gęstość ρ , pojemność cieplna właściwa c_p i współczynnik przewodności cieplnej λ w funkcji temperatury. Ponadto w czasie modelowania obciążeń cieplnych założono, że na początku rozkład temperatur w gnieździe zaworu wylotowego jest stały i równy temperaturze otoczenia.

2. ANALIZA WARUNKÓW BRZEGOWYCH

W gnieździe zaworu wylotowego wybrano pięć charakterystycznych powierzchni, którym przypisano odpowiednie wartości warunków brzegowych III rodzaju.

Powierzchnia:

- 1 czołowa omywana przez czynnik roboczy,
- 2 przylgni gniazda zaworowego,
- 3 ścianki gniazda w kanale wylotowym,
- 4 styku gniazda z głowicą,
- 5 styku gniazda z głowicą od strony zewnętrznej gniazda.

Rys. 1. Szkic gniazda zaworu wylotowego na tle głowicy silnika [1], Fig. 1. Drawing of the exit valve nest against the engine head [1].

Ponieważ obciążenia cieplne powierzchni (1), (2), (3) gniazda zmieniają się w czasie pełnego cyklu pracy silnika przypisano im okresowo zmienne warunki brzegowe w fazie otwarcia zaworu i w fazie jego zamknięcia. Natomiast dla powierzchni (4) i (5) przyjęto średnie warunki wymiany ciepła.

2.1. Powierzchnia czołowa gniazda omywana przez czynnik roboczy od strony komory spalania (1)

Na powierzchni czołowej gniazda wylotowego przyjęto warunki wymiany ciepła równoważne warunkom panującym w komorze spalania [1]:

$$T_1(\varphi_i) = T(\varphi_i) \quad [K] \tag{1}$$

$$\alpha_1(\varphi_i) = \alpha(\varphi_i) \quad \left[\frac{W}{m^2 K}\right] \tag{2}$$

gdzie:

 $T(\varphi_i)$ – temperatura czynnika roboczego w cylindrze [K], $\alpha(\varphi_i)$ – współczynnik przejmowania ciepła [W/m²K].

2.2. Powierzchnia przylgni gniazda zaworu wylotowego (2)

Powierzchnia (2) gniazda zaworowego cyklicznie styka się z przylgnią zaworu. Dla fazy otwarcia zaworu przyjęto następujące warunki brzegowe [1]:

$$T_{2GOW}(\varphi_i) = T(\varphi_i) \quad [K]$$
(3)

$$\alpha_{2GOW}(\varphi_i) = Nu(\varphi_i) \frac{\lambda(\varphi_i)}{d_h} \left[\frac{W}{m^2 K} \right]$$
(4)

gdzie:

- $T_{2GOW}(\varphi_{i})$ temperatura powierzchni przylgni gniazda wylotowego w fazie otwarcia zaworu [K],
- $T(\varphi_i)$ temperatura czynnika roboczego w cylindrze [K],
- $\alpha_{2GOW}(\varphi_i)$ współczynnik przejmowania ciepła przylgni gniazda wylotowego w fazie otwarcia zaworu [W/m²K],
- $Nu(\varphi_i)$ liczba Nusselta,
- $\lambda(\varphi_i)$ przewodność cieplna czynnika [W/mK]
- d_h średnica wewnętrzna gniazda zaworowego d_h [m].

Dla fazy zamknięcia zaworu przyjęto natomiast:

$$T_{2GZW}(\varphi_i) = \overline{T}_{PZW} \quad [K]$$
⁽⁵⁾

gdzie:

- $T_{2GZW}(\varphi_i)$ temperatura powierzchni przylgni gniazda wylotowego w fazie zamknięcia zaworu [K],
- T_{PZW} średnia temperatura przylgni zaworu [K].

Jako współczynnik przejmowania ciepła α_{2GZW} przylgni gniazda zaworu wylotowego przyjęto średni zastępczy współczynnik przejmowania ciepła α_{2GZW} przez styk [1]:

$$\overline{\alpha}_{2GZW} = 5800 \left[\frac{W}{m^2 K} \right]$$
(6)

2.3. Powierzchnia wewnętrzna gniazda w kanale wylotowym (3)

Podobnie jak w przypadku przylgni gniazda, warunki wymiany ciepła na powierzchni wewnętrznej gniazda w kanale wylotowym mają charakter cykliczny [1]. Dla fazy otwarcia zaworu przyjęto następujące warunki wymiany ciepła:

$$T_{3GOW}(\varphi_i) = T(\varphi_i) \quad [K]$$
⁽⁷⁾

$$\alpha_{3GOW}(\varphi_i) = Nu(\varphi_i) \frac{\lambda(\varphi_i)}{d_h} \left[\frac{W}{m^2 K} \right]$$
(8)

gdzie:

$T_{3GOW}(\varphi_i)$	—	temperatura	powierzchni	wewnętrznej	gniazda	W	kanale	wylotowym	W	fazie
otwarcia zaworu [K],										

 $T(\varphi_i)$ – temperatura czynnika roboczego w cylindrze [K],

 $\alpha_{3GOW}(\varphi)$ – współczynnik przejmowania ciepła powierzchni wewnętrznej gniazda w kanale wylotowym w fazie otwarcia zaworu [W/m²K],

 $Nu(\varphi_i)$ – liczba Nusselta,

 $\lambda(\varphi_i)$ – przewodność cieplna czynnika [W/mK],

 d_h – średnica wewnętrzna gniazda zaworowego d_h [m].

Dla gniazda zaworu wylotowego przyjęto liczbę Nusselta według Keysa [3]:

$$Nu(\phi i) = 0.022 \,\mathrm{Re}^{0.8} \,\mathrm{Pr}^{0.6} \tag{9}$$

gdzie: Re – liczba Reynoldsa, Pr – liczba Prandtla.

Dla fazy zamknięcia zaworu jako temperaturę powierzchni wewnętrznej gniazda zaworu $T_{3GZW}(\varphi_i)$ w kanale wylotowym [1] przyjęto:

$$T_{3GZW}(\varphi_i) = T_{KW} \quad [K] \tag{10}$$

gdzie:

 T_{KW} – temperatura końca wydechu [K].

Natomiast jako współczynnik przejmowania ciepła α_{3GZW} tej powierzchni gniazda przyjęto średni zastępczy współczynnik przejmowania ciepła $\overline{\alpha}_{3GZW}$ przez styk [1]:

$$\overline{\alpha}_{3GZW} = 400 \left[\frac{W}{m^2 K} \right]$$
(11)

2.4. Powierzchnia styku gniazda z głowicą (4) i (5)

Jako temperaturę powierzchni styku gniazda zaworu wylotowego z głowicą $T_{4,5GWG}$ przyjęto średnią temperaturę powierzchni głowicy $\overline{T}_{4,5PG}$:

$$T_{4,SGWG} = \overline{T}_{4,SPG} \quad [K] \tag{12}$$

W celu wyznaczenia temperatury głowicy wykonano dodatkowe jej modele, które zostały poddane obciążeniom cieplnym zadanym w systemie Cosmos/M przez okres 40 s pracy silnika. Podczas modelowania rejestrowano co 0,5 s średnie temperatury powierzchni głowicy, które wykorzystano do zamodelowania obciążeń powierzchni (4) i (5) gniazda zaworowego. Jako współczynnik przejmowania ciepła $\alpha_{4,3GWG}$ gniazda zaworu wylotowego

przyjęto średni zastępczy współczynnik przejmowania ciepła przez styk $\alpha_{4,5GWG}$ [1]:

$$\overline{\alpha}_{4,5GWG} = 20000 \left[\frac{W}{m^2 K} \right]$$
(13)

3. WYNIKI OBLICZEŃ

W pracy zamodelowano obciążenia cieplne gniazda zaworu wylotowego dla doładowanego silnika ZS z wtryskiem bezpośrednim o pojemności 2390 cm³ i mocy 48 kW, przy prędkości obrotowej 2000 obr/min. Obliczenia wykonano z dokładnością co 5°OWK. Na rysunku 2 przedstawiono kolejne fazy nagrzewania się gniazda wylotowego dla takiego samego położenia tłoka wynoszącego 450°OWK - cykl rozprężanie po 0.5, 10, 20, 30, 40 s pracy silnika.

Rys. 2. Fazy nagrzewania się gniazda wylotowego Fig. 2. Phases of the exit valve nest heating up

W gnieździe wylotowym najbardziej obciążona cieplnie jest powierzchnia przylgni gniazda, co spowodowane jest jej nagrzewaniem się od zaworu w fazie jego zamknięcia, jak również od spalin w fazie wydechu. Ponieważ występują zbliżone średnie warunki termiczne w komorze spalania i kanale wylotowym, rozkład pól temperatury w gnieździe wylotowym jest prawie symetryczny. Maksymalna temperatura gniazda zaworu po 40 s pracy silnika wyniosła około 450 K.

Rys. 3. Wykres zmian średnich temperatur całego gniazda wylotowego i jego powierzchni Fig. 3. The graph of the average temperature variability in the exit valve nest and its surfaces

Na rysunku 3 przedstawiono wykresy średnich temperatur całego gniazda oraz poszczególnych jego powierzchni. W gnieździe najwyższa temperatura panuje na powierzchni przylgni (2), a najniższa na powierzchni styku z głowicą (4).

4. PODSUMOWANIE

Na podstawie przeprowadzonego modelowania rozkładu temperatur stwierdzono, że maksymalna temperatura gniazda zaworu wylotowego po 40 s pracy silnika występuje na środku powierzchni jego przylgni i jest rzędu 450 K. Taki rozkład temperatur spowodowany jest zarówno wysoką temperaturą zaworu, jak również przez zbliżone średnie warunki termiczne panujące w komorze spalania i kolektorze wylotowym. Ponadto przyrost temperatury poszczególnych powierzchni gniazda wylotowego w przedziale 40 s pracy silnika, stopniowo się zmniejszał. Po 10s pracy silnika wyniósł on około 63 K, natomiast po upływie 20, 30, 40 s odpowiednio 37, 24, 17 K.

LITERATURA

- Kwaśniowski S., Sroka Z., Zabłocki W.: Modelowanie obciążeń cieplnych w elementach silników spalinowych. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 1999.
- Gustof P.: Wyznaczanie przebiegu temperatur ładunku dla pełnego cyklu roboczego w cylindrze doładowanego silnika o zapłonie samoczynnym. Zeszyty Naukowe Politechniki Śląskiej, seria: Transport z. 43, Gliwice 2001.
- 3. Wiśniewski S.: Wymiana ciepła. Państwowe Wydawnictwo Naukowe, Warszawa 1987.

Recenzent: Dr hab.inż. Jerzy Jaskólski, Prof. PK