Aleksander SŁADKOWSKI, Tomasz WOJDYŁA

WPŁYW PARAMETRÓW USPRĘŻYNOWANIA WAGONU NA SIŁY WYSTĘPUJĄCE W KONTAKCIE POMIĘDZY KOŁEM A SZYNĄ

Streszczenie. W celu przeprowadzenia analizy współpracy dynamicznej pomiędzy kołem a szyną opracowano modele numeryczne wagonu 152 Aa. W programach MSC.ADAMS/View, MSC.ADAMS/Rail i UNIVERSAL MECHANISM wykonano weryfikację modeli na modelu testowym o 6 stopniach swobody, co pozwoliło określić optymalny krok obliczeń. Przeanalizowano wpływ parametrów usprężynowania na siły występujące w kontakcie pomiędzy kołem a szyną.

INFLUENCE OF SUSPENSION PARAMETERS OF WAGON ON FORCES OCCURRED IN CONTACT BETWEEN WHEEL AND RAIL

Summary. In order to conduct an analysis of dynamic cooperation between wheel and rail it was elaborated numeric models of wagon 152Aa. In software programmes MSC.ADAMS/View, MSC.ADAMS/Rail and UNIVERSAL MECHANISM it was carried out the verification of these models on the testing model with 6 degrees of freedom that permitted to determine the optimal calculation step. It was analysed the influence of suspension parameters on forces occurred in contact between wheel and rail.

WSTĘP

Problematyka zjawisk dynamicznych zachodzących podczas ruchu pojazdu szynowego była rozpatrywana przez wielu naukowców w kraju i za granicą. W swoich pracach starali się oni rozpatrywać wpływ różnych czynników na zjawiska dynamiczne związane z ruchem pojazdu szynowego.

W pracy zbiorowej pod redakcją J. Kisilowskiego [1] w sposób kompleksowy przedstawiono metody badań dynamiki pojazdu szynowego. Opisano różne modele matematyczne układu pojazd szynowy – tor w zależności od rodzaju modelowanego toru (tor prosty, krzywa przejściowa, łuk toru). Autorzy dość obszernie podają teorię związaną z rozpatrywaniem zjawisk zachodzących w strefie kontaktu pomiędzy kołem a szyną. W pracy omówiono również niekonwencjonalne rozwiązania zastosowane w pojazdach szynowych (rozważania te dotyczą głównie konstrukcji wózków kolejowych i ich elementów). W ramach swoich badań autorzy przeprowadzili analizę wrażliwości przedstawionych modeli matematycznych opisujących dynamikę układu mechanicznego pojazd szynowy – tor.

Model matematyczny pojazdu szynowego przedstawiono również w pracy [2]. Autor zajął się głównie omówieniem metodyki, jaką przyjął przy budowie modelu matematycznego pojazdu szynowego. Praca ta miała być wykorzystana przy budowie stanowiska do badania

pojazdu szynowego pod względem przepustowości dynamicznej i bezpieczeństwa przed wykolejeniem.

Złożoność rozpatrywanych zjawisk dynamicznych, występujących w czasie ruchu pojazdu szynowego, sprawiła, że zaczęto wykorzystywać do tego typu obliczeń specjalistyczne programy komputerowe. Najbardziej znane wśród nich to SIMPAC, DADS, ERDE, MEDYNA i ADAMS/Rail.

Przykładem wykorzystania tego typu oprogramowania w badaniach zachowania się pojazdów szynowych w czasie ruchu mogą być prace [3] i [4], w których autorzy przedstawili wyniki badań symulacyjnych wykonanych w programie ADAMS/Rail. W pracach tych przeprowadzono analizę stateczności ruchu badanych modeli, określono przemieszczenia i przyspieszenia w wybranych punktach pociągu bimodalnego, wpływ poprzecznego tłumienia belki bujakowej względem ramy na prędkość krytyczną modelu pojazdu oraz określono wielkości obciążeń pionowych działających na badany pojazd, powstających w czasie jego ruchu po nierównym torze. Wyniki symulacji porównano z rezultatami otrzymanymi w czasie badań prototypu wagonu bimodalnego na torze doświadczalnym.

Istnieją również inne programy, które są mniej znane. Należy do nich między innymi Universal Mechanism (UM). W pracy [5] zostały przedstawione wybrane modele matematyczne elementów pojazdów szynowych modelowanych w programie UM, omówiono tworzenie podsystemów z różnych elementów oraz opisano metody numeryczne zastosowane w programie, które służą do rozwiązania problemów dynamicznych.

Niniejsza praca jest kontynuacją wcześniejszych prac autorów [6, 7 i 8].

MODEL TESTOWY POJAZDU SZYNOWEGO

Do badań symulacyjnych przyjęto wagon typu Z1 – Ap, o oznaczeniu fabrycznym 152 Aa, spełniający wymogi karty UIC 567 – 2. Jest to wagon bezprzedziałowy 1 klasy przeznaczony do ruchu krajowego i międzynarodowego po torach o rozstawie szyn 1435 mm. Wagon ten jest wyposażony w dwuosiowe wózki typu 25Ana przystosowane do jazdy z prędkością 200 km/h.

W celu doboru odpowiedniego kroku obliczeń oraz porównania wyników otrzymywanych w różnych programach komputerowych zdecydowano się na początku na stworzenie prostych modeli (opisujących tylko dynamikę pionową badanego wagonu). Porównano otrzymane rezultaty z wynikami otrzymanymi za pomocą metody analitycznej. Przedstawiony poniżej układ jest jednym z badanych modeli testowych.

Układ o 6 stopniach swobody stworzono w celu opisania dynamiki pionowej badanego modelu wagonu. Założono, że pudło i wózki mają po dwa stopnie swobody. Położenie środków ciężkości pudła i wózków w badanym modelu odpowiada ich usytuowaniu w rzeczywistym wagonie. Połączenie pomiędzy wózkiem a pudłem zredukowano do jednego układu sprężysto-tłumiącego. Podobnie postąpiono z połączeniem wózka i zestawu kołowego. Przyjęty do rozważań model przedstawiono na rys.1.

Rys. 1. Model testowy o 6 stopniach swobody Fig. 1. Testing model with 6 dof

Wykorzystując metodę równań Lagrange'a drugiego rodzaju wyznaczono postać równań ruchu badanego układu

$$\begin{split} \mathbf{m}_{W}\mathbf{x}_{1} + (2c_{1}' + c_{2}')\mathbf{x}_{1} - c_{2}'\frac{1}{2}\varphi_{3} - c_{2}'\mathbf{x}_{3} + (2k_{1}' + k_{2}')\mathbf{x}_{1} - k_{2}'\frac{1}{2}\varphi_{3} - k_{2}'\mathbf{x}_{3} = \\ &= c_{1}'\xi_{1} + c_{1}'\frac{\xi_{2}}{2} + k_{1}'\xi_{1} + k_{1}'\xi_{2} \\ &I_{w}\phi_{1} + c_{1}'\frac{a^{2}}{2}\phi_{1} + k_{1}'\frac{a^{2}}{2}\phi_{1} = c_{1}'\frac{a}{2}\xi_{1} - c_{1}'\frac{a}{2}\xi_{2} + k_{1}'\frac{a}{2}\xi_{1} - k_{1}'\frac{a}{2}\xi_{2} \\ &m_{w}\mathbf{x}_{2} + (2c_{1}' + c_{2}')\mathbf{x}_{2} + c_{2}'\frac{l}{2}\phi_{3} - c_{2}'\mathbf{x}_{3} + (2k_{1}' + k_{2}')\mathbf{x}_{2} + k_{2}'\frac{l}{2}\phi_{3} - k_{2}'\mathbf{x}_{3} = \\ &= c_{1}'\xi_{3} + c_{1}'\xi_{4} + k_{1}'\xi_{3} + k_{1}'\xi_{4} \\ &I_{w}\phi_{2} + c_{1}'\frac{a^{2}}{2}\phi_{2} + k_{1}'\frac{a^{2}}{2}\phi_{2} = c_{1}'\frac{a}{2}\xi_{3} - c_{1}'\frac{a}{2}\xi_{4} + k_{1}'\frac{a}{2}\xi_{3} - k_{1}'\frac{a}{2}\xi_{4} \\ &m_{p}\mathbf{x}_{3} + 2c_{2}'\mathbf{x}_{3} - c_{2}'\mathbf{x}_{1} - c_{2}'\mathbf{x}_{2} + 2k_{2}'\mathbf{x}_{3} - k_{2}'\mathbf{x}_{1} - k_{2}'\mathbf{x}_{2} = 0 \end{split}$$

$$I_{p}\phi_{3} + c_{2}'\frac{l^{2}}{2}\phi_{3} - c_{2}'\frac{l}{2}\mathbf{x}_{1} + c_{2}'\frac{l}{2}\mathbf{x}_{2} + k_{2}'\frac{l^{2}}{2}\phi_{3} - k_{2}'\frac{l}{2}\mathbf{x}_{1} + k_{2}'\frac{l}{2}\mathbf{x}_{2} = 0 \end{split}$$

gdzie:

 x_1, x_2, x_3 – przemieszczenie pionowe wózków i pudła,

 $\varphi_1, \varphi_2, \varphi_3$ – przemieszczenie kątowe wózków i pudła,

 m_w, m_p – masa wózka, masa pudła,

I_w, I_p – momenty bezwładności wózka i pudła,

 k_1, k_2 – sztywności zredukowane na pierwszym i drugim stopniu usprężynowania,

 c_1, c_2 – zredukowane współczynniki tłumienia na pierwszym i drugim stopniu usprężynowania,

 $\xi_1, \xi_2, \xi_3, \xi_4$ – funkcje opisujące nierówność toru.

Na podstawie wykresów nierówności pionowych toru otrzymanych w czasie badania stanu torów na trasie Katowice – Częstochowa przyjęto funkcję opisującą pionowe przemieszczenie i-tego zestawu kołowego w postaci:

$$\xi_{i}(t) := \begin{vmatrix} 0 & \text{if } t < t_{i} \\ \frac{a}{2} \cdot \sin \cdot \frac{(2 \cdot \pi \cdot v)}{\lambda} \cdot (t - t_{i}) & \text{if } t \ge t_{i} \end{vmatrix}$$
(2)

gdzie:

a – amplituda nierówności,

v – prędkość ruchu,

 λ – długość fali nierówności,

t - czas,

t, – opóźnienie wejścia w nierówność i-tego zestawu kołowego.

Powyższe równania przeniesiono do programu MathCAD celem otrzymania rozwiązań układu równań. Przykładowy rezultat, przemieszczenie pionowe pudła wagonu, przedstawiono na rys. 2.

Następnie model ten wykonano w trzech programach komputerowych: MSC.ADAMS/View, MSC.ADAMS/Rail i UM.

Nadwozie wagonu przedstawiono w formie pudła opartego na dwóch końcach na dwóch wózkach. Każdy z wózków połączony jest układem sprężysto-tłumiącym z dwoma kołowymi. Parametry układów zestawami sprężysto-tłumiących dla obu stopni usprężynowania wyznaczono podczas przeprowadzonej redukcji usprężynowania wagonu. Założono, że pudło wagonu ma dwa stopnie swobody względem wózków (może wykonywać ruch w kierunku pionowym i obracać się względem osi poprzecznej). Podobne założenie wprowadzono dla wózków wagonu odnośnie do zestawów kołowych. Zestawy kołowe względem podłoża mogą jedynie wykonywać ruch w kierunku pionowym, przy czym wielkość ich przemieszczenia pionowego została ograniczona. Ograniczenie to jest związane z nierównością toru modelowaną w programie jako funkcja sinusoidalna. Kształt nierówności występującej na torze opisany jest funkcją (2). Ponieważ programy MSC.ADAMS/View i

MSC.ADAMS/Rail wykorzystują ten sam solver obliczeniowy nie dokonywano porównania rezultatów otrzymanych w obu programach, a jedynie sposób tworzenia modeli. Na rys.3. przedstawiono widok modeli stworzonych w programach komputerowych. Przykładowe wyniki przedstawiono na rys.4.

Rys. 3. Model układu o 6 stopniach swobody: a) w programie MSC.ADAMS/View, b) w programie UM MSC.ADAMS/Rail, c) w programie UM

Rys. 4. Przemieszczenie pionowe pudła wagonu otrzymane w programie MSC.ADAMS/View Fig. 4. Vertical displacement of car body received: in MSC.ADAMS/View

W ramach pracy dokonano porównania rezultatów otrzymanych w programach komputerowych z wynikami otrzymanymi metodą analityczną. Stwierdzono, że maksymalna różnica pomiędzy wartościami maksymalnymi przemieszczenia pionowego pudła nie przekracza 0.5%. Maksymalna różnica dla wartości minimalnych nie przekroczyła 0.7%.

Przeprowadzono również badania wpływu kroku obliczeń na dokładność otrzymywanych wyników. Założono dopuszczalny błąd w porównaniu z metodą analityczną 1.5%. W tabeli 1 przedstawiono otrzymane wyniki dla jednego z użytych do badań numerycznych programów komputerowych.

Tabela 1

Porównanie maksymalnych i minimalnych wartości przemieszczeń pionowych pudła w zależności od kroku obliczeń dla programu MSC.ADAMS/Rail

Krok obliczeń	Rezultat		
	Wartość maksymalna	Wartość minimalna	
0.5	0.0067	-0.0033	
0.2	0.0066	-0.0052	
0.1	0.0079	-0.0061	
0.05	0.0074	-0.0065	
0.02	0.0071	-0.0065	
0.01	0.0069	-0.0062	
0.005	0.0071	-0.0064	
0.002*	0.0072	-0.0066	
0.001**	001** 0.0073 -0.0067		
0.0001** 0.0073		-0.0067	

* – krok obliczeń, dla którego otrzymane wartości mieszczą się w granicach założonego błedu.

** – krok obliczeń, dla którego otrzymane wartości są takie same, jak otrzymane metoda analityczną.

MODEL RZECZYWISTEGO WAGONU

Model wagonu rzeczywistego wykonano w programie UM. Model wagonu został wykonany jako połączenie pudła wagonu z dwoma wózkami. Założono, że zestawy kołowe mają średnicę 920 mm i poruszają się po torze kolejowym zbudowanym z szyn typu UIC 60. Szyny zamodelowano jako elementy niezużyte. Na wózku oparta jest belka poprzeczna, która za pomocą czopa skrętu połączona jest z pudłem wagonu. Na obu końcach belki poprzecznej zamodelowano odbijaki. Pierwszy stopień usprężynowania na wózku stanowi układ czterech sprężyn śrubowych i czterech tłumików pionowych. Drugi stopień swobody łączy ze sobą ramę wózka z belką poprzeczną. W modelu połączenie to zamodelowano jako układ dwóch sprężyn, dwóch tłumików pionowych i dwóch tłumików poprzecznych. Tłumik wężykowania łączy ze sobą pudło wagonu i ramę wózka. Belka bujakowa jest połączona z pudłem za pomocą czopa skrętu (w którym jest bezobsługowe łożysko). Stworzony model wagonu przedstawiono na rys.5. Wybrane parametry konstrukcyjne zestawiono w tabeli 2.

Rys. 5. Model wagonu pasażerskiego 152 Aa wykonany w programie UM: A)model wagonu, B) model wózka typu 25ANa

Fig. 5. Model of passenger wagon type 152 Aa: A)model of wagon, B) model of bogie type 25ANa

Tabela 2

wyorane parametry techniczne wagonu 152Aa				
Nazwa parametru	Jednostka	Wartość		
Masa pudła wagonu	kg	38000		
Moment bezwładności pudła względem osi x	kgm ²	59000		
Moment bezwładności pudła względem osi y	kgm ²	870000		
Moment bezwładności pudła względem osi z	kgm ²	826000		
Masa wózka	kg	3000		
Moment bezwładności wózka względem osi x i y	kgm ²	1540		
Moment bezwładności wózka względem osi z	kgm ²	2720		
Masa zestawu	kg	1500		
Moment bezwładności zestawu względem osi x i z	kgm ²	613		
Moment bezwładności zestawu względem osi y	kgm ²	118		
Sztywność wzdłużna i poprzeczna sprężyn na I	N/m	5.97979e+5		
stopniu usprężynowania				
Sztywność pionowa sprężyn na I stopniu	N/m	7.45364e+5		
usprężynowania				
Sztywność wzdłużna i poprzeczna sprężyn na II	N/m	4.08408e+5		
stopniu usprężynowania				
Sztywność pionowa sprężyn na II stopniu	N/m	5.78507e+5		
usprężynowania				
Współczynnik tłumienia na I stopniu usprężynowania	Ns/m	7000		
Współczynnik tłumienia pionowego i poprzecznego	Ns/m	3e+4		
na II stopniu usprężynowania				

usprężynowania Ruch badanego modelu odbywał się po torze prostym. Zamodelowano w programie UM dwie nierówności toru, na których przeprowadzono badania wpływu usprężynowania wagonu na siły działające na koło kolejowe. W pierwszym przypadku była to nierówność pionowa

$$z = 0.01 \cdot \sin(10.47 \cdot t - t_0) \tag{3}$$

Ns/m

1.68571e+5

W drugim przypadku zamodelowano nierówność poprzeczną w postaci funkcji:

Współczynnik tłumienia weżykowania na II stopniu

$$y = 0.004 \cdot \sin(10.47 \cdot t - t_0) \tag{4}$$

Funkcje (3) i (4) zostały wyprowadzone na podstawie analizy wykresów nierówności pionowych toru na trasie Katowice – Częstochowa.

Sztywność sprężyn na I i II stopniu usprężynowania zmniejszano i zwiększano o 30% celem określenia jej wpływu na wielkość sił działających na koło w czasie ruchu po założonym odcinku toru. Założono stałą prędkość ruchu – 160 km/h.

Przykładowe wyniki przeprowadzonych symulacji pokazano na rys. 6 (nierówność pionowa) i na rys. 7 (nierówność poprzeczna).

W wyniku przeprowadzonych symulacji zaobserwowano, że:

- Zmiana sztywności na pierwszym stopniu usprężynowania o 30% w czasie symulacji ruchu modelu po torze prostym z pionową nierównością spowodowała różnicę wartości sił poprzecznych działających na koło kolejowe nie przekraczającą 5%.
- 2. Zmiana sztywności na drugim stopniu w analogicznym przypadku spowodowała zwiększenie sił poprzecznych działających na koło o wartość około 9%.

12

13

14

15

16

17

opisana funkcja o postaci:

- Przy rozpatrywaniu ruchu po torze z nierównością poprzeczną zmiana sztywności na pierwszym stopniu usprężynowania po ustaleniu się drgań spowodowała spadek sił poprzecznych działających na koło o około 21%.
- 4. Przy rozpatrywaniu ruchu po torze z nierównością poprzeczną zmiana sztywności na drugim stopniu usprężynowania po ustaleniu się drgań spowodowała spadek sił poprzecznych działających na koło o około 22%.

- Rys. 6. Zmiana wartości sił poprzecznych działających na kolo w czasie ruchu po pionowej nierówności toru:
 A) przy zmianie sztywności sprężyn na I stopniu usprężynowania, B) przy zmianie sztywności sprężyn na II stopniu usprężynowania, wartość nominalna sztywności, zmiejszenie sztywności o 30%, zwiększenie sztywności o 30%
- Fig. 6. The change of values of lateral forces working on wheel during the movement on vertical irregularity of track: A) with change of spring stiffness on the the primary suspension, B) with change of spring stiffness on the secondary suspension, or nominal stiffness value, 30% of stiffness reduction, 30% of stiffness increase

- Rys. 7. Zmiana wartości sił poprzecznych działających na kolo w czasie ruchu po poprzecznej nierówności toru:
 A) przy zmianie sztywności sprężyn na I stopniu usprężynowania, B) przy zmianie sztywności sprężyn na II stopniu usprężynowania, e-e-e wartość nominalna sztywności, zmniejszenie sztywności o 30%, zwiększenie sztywności o 30%
- Fig. 7. The change of values of lateral forces working on wheel during the movement on lateral irregularity of track: A) with change of spring stiffness on the primary suspension, B) with change of spring stiffness on the secondary suspension, nominal stiffness value, 30% of stiffness reduction, 30% of stiffness increase

WNIOSKI

W wyniku przeprowadzonych symulacji stwierdzono, że:

- Przeprowadzony proces doboru kroku obliczeń pozwolił na zminimalizowanie błędu obliczeń numerycznych. Dobór kroku obliczeń powinien zostać przeprowadzony oddzielnie w każdym z programów, w których przeprowadzane będą badania.
- Opracowane modele pozwoliły wyjaśnić wpływ sztywności usprężynowania zawieszenia wagonów na siły oddziałujące na koło.

Literatura

- 1. Kisilowski J.: Dynamika układu mechanicznego pojazd szynowy tor. PWN, Warszawa 1991.
- Zboiński K.: Modelowanie matematyczne pojazdu szynowego pod kątem stanowiskowych badań modalnych. XIII Konferencja Naukowa "Pojazdy Szynowe '98". Katowice – Ustroń 1998 r. Zeszyty Naukowe Politechniki Śląskiej nr 1392, ser. Transport z.31, Gliwice 1998, s. 273 – 283.
- Matej J.: Zastosowanie programu ADAMS RAIL do badania właściwości dynamicznych modelu pociągu bimodalnego. Zeszyty Instytutu Pojazdów Politechniki Warszawskiej, nr 5(35), Warszawa 1999. s 5 – 21.
- Madej J., Matej J., Zaborowski J.: Wybrane wyniki badań symulacyjnych na torze prostym uzyskane w programie Adams/Rail dla modelu prototypowego wagonu bimodalnego. Pojazdy Szynowe nr 4,1999, s. 18 – 24.
- Pogorelov D.: Computer aided modeling railroad vehicle dynamics. International Congress Mechanics and Tribology of Transport Systems "MECHTRIBOTRANS – 2003" Rostov – on – Don. Book 2, s. 171 – 176.
- 6. Wojdyła T.: Porównanie modeli testowych pojazdu szynowego. Zeszyty Naukowe Politechniki Śląskiej, seria Transport z. 44, Gliwice 2002, s.163 168.
- Sładkowski A., Margielewicz J., Wojdyła T.: Influence of vertical dynamic of a coach on wheel pair loading. V Międzynarodowa Konferencja Naukowa Krajów Europy Środkowej i Wschodniej "Kolejowe Zestawy Kołowe". Katowice 2002.
- Sładkowski A. Wojdyła T.: Simplified model of vertical vibrations for passenger car during its moving on irregular track. Scientific proceedings of Riga Technical University, Riga 2003, s. 28 – 36.
- 9. Instrukcja PKP numer D75 O dokonywaniu pomiarów, badań i oceny stanu torów. Warszawa 2000.

Recenzent: Dr hab. inż. Arkadiusz Mężyk, prof. Pol. Śl