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OF ON TIME DEPARTURES

The main focus o f the considerations o f  this paper is to provide constant time intervals between 
buses departing from bus stops. Therefore, relations between characteristics o f  regularly scheduled urban 
bus lines are studied. A buffer time between the scheduled arrival time and the departure to the next trip is 
considered in a deterministic as well in a stochastic framework.
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1. INTRODUCTION

Clearly, the quality o f public transport systems with respect to the comfort o f the 
passengers has to be increased [3]. This is an evident consequence o f the strong competition 
o f public transport systems to private car traffic. There are several aspects o f quality in 
transport systems. The main focus here is to provide constant time intervals between the buses 
departing from the bus stops [1, 2]. We consider a regularly scheduled urban bus line. For 
such a bus line we want to create a time table 

which is easy to recognise,
which contains a reasonable compromise between economical profitability and
passenger service [1] and
which has a high reliability against tardiness.

The two first aims we will investigate by a deterministic modelling and the last aim -  
the reliability -  we will consider within a stochastic framework.

2. DETERMINISTIC MODELLING

A time table is called easy recognised if  the departure times at the same station have a 
fixed distance and recur in each hour. To describe the situation we use the following symbols 
and terms:
L - the length o f the considered bus line given in km, i. e. the length of a tour o f the bus

from one terminal stop over all other stations o f the line back to the same terminal 
stop,

v - the average velocity o f  a bus on this line given in km/h,
h - the tact time o f buses, this means the time intervals between two one after another

following buses given in minutes, 
n - the number o f buses which are operating on the considered line.
2tp - the buffer time per round trip given in minutes, this means that the scheduled

waiting time o f the bus on the both terminal stops o f the line between the arrival at 
the stop and the start o f the next trip is tp at each terminal stop.

The scheduled time interval between two one after another starts o f the same bus in the

same terminal stop is then given by + 21 [2, 3]. This time interval is the same as n ■ h ,
v

the time interval o f two buses following each other multiplied with the number of operating 
buses on the line. Therefore we have the equation

i 60Z, „ .. .
n h  = ------+ 2 iP - (!)

v

The number n o f  buses is an integer number, the time interval h (given in minutes) 
conveniently too. An easy recognised time table as it is defined above means that h as an 
integer number is a divisor o f 60 (the departure times reiterate after 60 minutes). If we 
eliminate the divisors 1, 2, 3 ,4  because they are to small then h can take one of the values
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h e  {5,6 ,10,12,15,20,30,60}=  H  (2)

Each bus has a capacity denoted by cap, i. e. the maximum number o f  passengers 
which can be carried by the bus. All the buses on the line have the same capacity because they 
are o f  the same type. Denotes p  the number o f passengers which enter the bus line in one 
hour and is h fixed then 60/h is the number o f  buses per hour and 60 cap/h is the 
maximum number o f passengers which can be carried by the buses per hour.

Passenger service means that all passengers which want to enter the line can be carried. 
It means

6 0 c a p /h > p  or h < 60 cap /p  = hu, (3)

where hu =60 cap /p  is an upper bound for h.
Analogously we get a lower bound h/ if  we consider the value eff  as the minimal 

number o f  passengers for which a bus can operate profitable,

h > 60 e f f / p  = h , . (4)

Remarks:
(a) I f  p  is too small, for example p  < e f f  then follows from the above formula hi > 60. This 

shows that the considered bus line can not work profitably in a one hour rhythm.
(b) The value p  as number o f passengers which enter the line per hour is introduced 

intuitively. It can be stated more precisely in various manner. The stops of the line may be 
numbered by 0, 1, 2, ... , k ,  where 0 and k  are the terminal stops. Denotes p(i,j) the 
number o f passengers per hour which enter the bus in stop i and leave the bus in stop j  
and if  we assume that on an terminal stop all passengers leave the bus then the number of 
passengers which are inside the bus when the bus departs from the station q is given by

<7 k k q- 1

X  X M ' j )  and X Z M *>./)>  respectively. (5)
/=0 j= q+1 i=q y =0

The first term stands for the journey from 0 to k, the other term for the return journey 
from k  to 0. The value

/
p  = max

k q- 1

(6)X  X  /»(*'.J ) > max X X J )
\  ’ 1=0 j= 1+1 ’ ' i=q j =0 /

is then a more precise definition o f the passenger number. It guarantees that the bus is not 
overloaded on some parts o f the journey and can be used in the formula for the upper 
bound hu given above. In the formula for the lower bound h, this definition is 
disadvantageously. Here it is better to calculate with

'  1 -1  q k  k  k q - 1 ^

Z Z Z ^ J ) + Z Z Z / > ( W )  (7)
\ q =  o 1=0 j=q+1 <7=1 i=q j=0 ,

1

p  = Y k

as an averaged passenger number on all parts o f the journey.
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The question is now, how to determine the values o f h, n and 2tp for given L and v. 
If we require in addition that the buffer time in one terminal stop tp does not exceed the tact 
time h then we have the following system o f requirements -  equations ( 1), (2 ) and:

h, < h < hu ( 8)

0 < 2 tp < 2h (9)

If we choose a value h from H  we can always determine an integer number m and a 
real number r  with

= m -h  + r ,  where 0  < r < h .  ( 10)
v

From the equations (1) and (10) we get

2tp =  ( n - m ) h - r , (11)

and from (9) and (11):

0 <{n — m)-h  — r < 2h, i.e . m + — < n < m  + — + 2. ( 12)
h h

These formulas allow to determine 2tp and n in an easy way if  h is fixed at one value
o f H.

Example: Assume Z. = 15 [km], v = 20 [km/h] , h, = 5, hu = 20 then it follows 
60L I v  = 45 and we get the solutions shown in Table 1.

Table 1
Values for h , m ,r  ,n  and 2 1 in the parameter setting o f the example

h [min] m r  [min] n 2 tp [min]

5 9 0 9 0
10 5

6 7 3 8 3
9 9

10 4 5 5 5
6 15

12 3 9 4 3
5 15

15 3 0 3 0
4 15

20 2 5 3 15
4 35
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3. EFFICIENCY OF DELAY COMPENSATION EFFECTS

In this chapter, the efficiency o f  delay compensation effects is studied in a stochastic
framework. Therefore, one bus and a fixed scheduled departure time o f it (called the initial
time) at one o f the terminal stops is considered.

Assume, that the bus is behind schedule and for this reason not able to start the trip on 
time. The initial delay is denoted by d, d  > 0. The travel times 7) (7=7, 2,...) o f  the bus in the 
i -th trip (counted from the initial time) are modelled as random variables, where the 
expectation ETj is chosen according to Section 2 as m=30L/v (note, that 77 is the travel 
time from the from one terminal stop to the other one). For the sake o f simplicity it is
assumed, that these travel times are stochastically independent and identical distributed.
Deviations from this assumption may be implemented, however the main focus o f interest 
shall be here to study delay compensation effects in principle and to support the decision of 
the choice of the parameters described in the previous section.

The event, that the initial delay vanishes after 7 trips (7 > 1) can be described with the 
help of the random events A,-, which are defined as
Aj - after the i -th trip a departure at scheduled time is realised for the first time after the

initial time.
Written as formulas, this means

A  = [d + T \< m  + tp \ ,  (13)

A2 = [d + T̂  > m + tp )r \  [d +Tt +T2 < 2{m + tp)\, ' (14)

a  = n j c /+ Z 7’* > j i m + t p ) \ n \ d + i L Tk -  Am + tP)
j .  i [ *=i

Obviously, it holds

[ j A i = 3 y  :d  + Ÿ j Tk < j{ m  + tp) \ ,

(15)

(16)

which is the event, that the initial delay vanishes somewhere in the future, admittedly an event 
of more theoretical than practical interest (in practical situations especially the events A / and 
A2 will be o f interest). However, from the mathematical point o f view, clearly it holds

^ (  > \  ( \  < d
Lk =P \ d  +  i L T k > j ( m + t p )  V7 =P -Z  Tk > m  + tp —r V/

v ;=i J  V *=1 )  \ J  k=\ J

From the Law o f large numbers it follows
\

l i m - Z 7;  * m =  0

(17)

(18)
J k=1
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and therefore P I k
\i=i

1 for tp > 0 , i. e. every delay can and will be compensated

> 0somewhere in the future by a buffer time t

O f course this mathematical result is not very useful for practical applications, one is 
more interested in statements like “With probability p  the initial delay d  can be 
compensated after i trips (/ = 1, 2, If the distribution o f the travel times is known, for 
such calculations on the one hand the way of Monte Carlo methods stands open. On the other 
hand analytical results are available. Under the assumption o f a normal distribution, 
7) ~  N ( m , a 2) ,  such results are presented in the next sections.

3.1 PROBABILITY P ( ^ , )  

Under the assumption o f normal distribution it holds

P {A ,)= p(d  + Tl < m  + tp)=p(Tl <m  + tp -d)=<X> (19)

where <1> denotes the CDF (cumulative distribution function) o f a standard normal distribution. 
Table 2 shows values o f P(Ai) for the parameter situation of the example in Section 2.

Example: Given L = 15 [km], v =  20 [km/h], a  = 4 [min], the following probabilities 
to compensate a delay o f  d  = 5 [min] can be calculated for different buffer times (see the 
example in Section 2). Moreover, the values calculated by the above formula are compared 
with the result o f a Monte Carlo simulation (10.000.000 realisations). Here, for instance the 
value P (^ , )=  0.4503 means, that with probability 45,03 % an initial delay o f  5 minutes can 
be compensated by the buffer time 21 o f 9 minutes after one trip.

Probability P (A i ) for different buffer times
Table 2

buffer time 2 1 0 3 5 9 15 35
P(v4, ) (exact) 0.1056 0.1908 0.2660 0.4503 0.7340 0.9991
P(At ) (Monte Carlo) 0.1056 0.1908 0.2662 0.4502 0.7339 0.9991
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3.2. PROBABILITY P (A2)

It holds

P O O =  P({r, > m + t p - d \ r \ \ f ] +T2 < 2 (m + tp ) - d \ )
Mr 2(m+lp )-d-t

= | j  /?, (s ) f Tl ( 0  ds d t ,
(20)

-® m+t-d

where f T and f T denote the probability density functions o f  T{ and T2, respectively. Using 

the property o f normal distribution, straightforward calculation gives

Vc
P {A2) =

2tn —d  - a t  
< D |  p dt-<& V (21)

with the probability density function qi o f the standard normal distribution.
Example: Given the same values for L , v and a  as in the example in Section 3.1, the 

following probabilities to compensate a delay o f d  = 5 [min] can be calculated for different 
buffer times. Here, for instance the value P(A2 ) = 0.3316 means, that with probability 33,16 
% the initial delay of 5 minutes can not be compensated by the buffer time 2tpo f  9 minutes 

after one trip, but after two trips (that means, after one round trip).

Probability P (A2 ) for different buffer times

Table 3

buffer time 21 0 3 5 9 15 35

P(A2 ) (exact) 0.1178 0.2093 0.2694 0.3316 0.2318 0.0009
P (A2) (MonteCarlo) 0.1178 0.2095 0.2692 0.3316 0.2319 0.0009

3.3 PROBABILITIES P(Al ) , i >  3 

The probabilities P (Ai ), / > 3, can be written as

PU)=P '[\\d + ±Tk>ji™ + t M d  + ±Tk <Km + tp)
V H I *=l J I *=l

(22)

The calculation of these probabilities requires the consideration o f multidimensional integrals 
o f  the corresponding density functions. However, the following estimates hold, which give 
upper bounds for P(/4,-). Examples show, that the estimates have sufficient quality in practical 
situations. It holds
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P U ) < P  ¿  + ¿ 7 ;  > ( z - l ) ( m  + / , )  n  ¿  + ¿ 7 ;  <i{m + tp)

and similar calculations as in Section 0 lead to

itp - d - a t  

cr^l i - 1
dt-<& 0 - 1K

r-v//-l
<D

(23)

(24)

This estimate is the basis o f the example in this section. It should be mentioned, that it follows 
the (much more weaker) estimate

P(4 ) < 0> l - < p 0 - 1)0

a j i - 1
(25)

which can be obtained without large computational efforts.
Example: Given the same values for L ,  v and a  as in the previous examples, the 

following upper bounds for the probabilities to compensate a delay o f d  = 5 [min] firstly after 
i trips can be calculated for different buffer times. Moreover, these upper bounds are 
compared with the result o f a Monte Carlo simulation to check the quality o f  the estimates. 
The estimates work quite sufficiently. Moreover, it can for instance be seen, that with a buffer 
time o f 35 minutes in the given parameter constellation in almost all cases the initial delay is 
compensated after one round trip (compare also the values in Tables 2 and 3).

Upper bounds for the probabilities P(A -), i = 3, 4, 5 for different buffer times
Table 4

buffer time 2 tp 0 3 5 9 15 35
upper bound for P(A} ) 0.0961 0.1599 0.1823 0.1462 0.0339 0.0000

P(A3 ) (Monte Carlo) 0.0864 0.1436 0.1632 0.1302 0.0299 0.0000

upper bound for P(Aa ) 0.0826 0.1282 0.1292 0.0671 0.0051 0.0000
P(A4 ) (Monte Carlo) 0.0642 0.0992 0.0994 0.0512 0.0037 0.0000

upper bound for P(A; ) 0.0733 0.1063 0.0946 0.0318 0.0008 0.0000

P(A5 ) (Monte Carlo) 0.0495 0.0714 0.0631 0.0209 0.0005 0.0000

For summarising the considerations o f Section 3 and for pointing up the influence of 
different buffer times to delay compensation, the results o f the example in Tables 2 - 4 are 
combined in the following Table 5. Here upper bounds for the probability, that the first 
compensation of the initial delay of 5 minutes takes places within the first j  trips

./

O' = 1,2,... ,5) (in other words upper bounds for the sums ^  P(A: ) ) are shown
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Table 5
Upper bounds for the cumulative probabilities for different buffer times

buffer time 2t 0 3 5 9 15 35

P(A) 0.1056 0.1908 0.2660 0.4503 0.7340 0.9991

p U ) + p  M 0.2235 0.4001 0.5354 0.7818 0.9658 1.0000

3
upper bound for ^  P(A: )

J=1
0.3196 0.5600 0.7177 0.9281 0.9996 1.0000

4
upper bound for ^ P (z l ,  )

1=1
0.4021 0.6883 0.8469 0.9952 1.0000 1.0000

5
upper bound for ^ P ( ^ ()

;=i
0.4755 0.7946 0.9415 1.0000 1.0000 1.0000

4. CONCLUDING REMARKS

In our investigations we have assumed that the passenger number is constant over the 
day. Indeed, in the rush-hour it is significantly larger. It is to compensate by additional buses 
which depart t) the same times as the regular buses. The possible increasing of travel times 
we have negletted. However, rush-hour effects can be taken into account by suitable choices 
o f  the standarddeviation cr o f the travel times in the considerations o f Section 3.

The final choose o f a solution will be a compromise between the various evaluations of 
the solutions ir each case. Perhaps it is possible to choose the tact time in such a way that in 
the rush-hour tie additional buses depart in the gaps symmetrically to the normal departures.

The metlod given above is extendable also in the case o f two or more bus lines. Then 
we need additional requirements in connection with the switch stations and with the limited 
num ber o f  avaiable buses for all lines.
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