
5th INTERNATIONAL CONFERENCE
TRANSPORT SYSTEMS TELEM ATICS TST’05

ZESZYTY NAUKOWE
POLITECHNIKI ŚLĄSKIEJ 2005

TRANSPORT z.59, nr kol. 1691

Logic Linker,
diagnostic scripts,

XML file s

Markus BREGULLA1
Tomasz JANIK2
Leszek CZAPKOWSKI3

AUTOM ATIC GENERATION OF DIAGNOSTIC SCRIPTS
FOR THE DISTRIBUTED SYSTEMS BASED ON COM PONENT TEM PLATES

AND RELATIONS BETW EEN THEM

During introduction and implementation new technologies into the modem industry including the
vehicle engineering, the previous and already verified solutions and components are very often to be used.
That may be difficult though especially for the outer designers, who might not know these structures.
Thus, the modification and adaptation o f the previous projects into the new requirements and needs is
annoying and may cause lots o f problems. What is more, further analysis and diagnostic o f such systems
may also cause some problems. The article deals with pointing the method and showing a tool to solve
such problems. Therefore, the authors will introduce a program called Logic Linker. The application
automatically generates the diagnostic scripts for the distributed systems basing on the component
templates and relations between these components.

AUTOMATYCZNE GENEROW ANIE SKRYPTÓW DIAGNOSTYCZNYCH
DLA SYSTEM ÓW ROZPROSZONYCH W OPARCIU O W ZORCE

KOM PONENTÓW I RELACJE POM IĘDZY NIM I

Podczas wdrażania nowych technologii w dzisiejszym przemyśle, w tym również przemyśle
samochodowym, bardzo często stosuje się wcześniejsze i sprawdzone rozwiązania i komponenty. Jest to
czasami kłopotliwe, szczególnie dla projektantów z zewnątrz, którzy nie zawsze znają poprzednie
struktury. Modyfikacja wcześniejszych projektów i ich przystosowanie do nowych potrzeb może
stanowić pewne problemy. Problemem może być również późniejsza analiza i diagnostyka tych
systemów. Tematem artykułu jest zatem wskazanie sposobu i pokazanie narzędzia, które te problemy
rozwiązuje - Logic Linker. Aplikacja ta automatycznie generuje skrypty diagnostyczne dla systemów
rozproszonych w oparciu o wzorce komponentów oraz relacje pomiędzy tymi komponentami.

University o f Applied Sciences, Esplanade 10, 85049 Ingolstadt, Germany, markus.bregulla@fh-ingolstadt.de,
j tel :+49 841 9348 389

University o f Applied Sciences, Esplanade 10, 85049 Ingolstadt, Germany, tomasz.janik.wi@fh-ingolstadt.de,
3 tel.:+49 841 9348 594

University o f Applied Sciences, Esplanade 10, 85049 Ingolstadt, Germany,
leszek.czapkowski.wi@fh-ingolstadt.de, tel.:+49 841 9348 594

mailto:markus.bregulla@fh-ingolstadt.de
mailto:tomasz.janik.wi@fh-ingolstadt.de
mailto:leszek.czapkowski.wi@fh-ingolstadt.de

48 Markus BREGULLA. Tomasz JANIK. Leszek CZAPKOWSKI

1. INTRODUCTION

New technologies for the modem transport industry, vehicle engineering, as well as
industry in general, are very often applied and implemented basing on the previous and
already verified components and solutions. That may cause of course some complications
especially for the engineers who might not know those structures at all, or would not get with
them well. Therefore, modification and adaptation o f the previous projects into the new needs
and requirements is demanding and may cause lots o f problems. Moreover the further analysis
and diagnostic o f such systems may also be problematic.

The article deals with pointing the method and showing a tool to solve such problems.
Therefore, a program called Logic Linker will be brought in, and a general methodology of
implementation will be introduced.

Logic Linker makes an application for the automatic generation o f the diagnostic scripts
for the distributed systems, also for the transport needs. This is made basing on the templates
of components and relations between these components. The application, in general, fulfills
the gap in the engineering process between the planning layout and diagnostic server.

The figure below (Fig.l.) shows the general idea of how the method works.

Fig. 1. General idea o f the method

2. SYSTEM ARCHITECTURE

The system architecture contains o f the application itself, two income files and one
outcome file. All files need to be of the XML type hence, all components and rules describing
dependencies between these components must be described as XML-files.

One o f the income files is the Plant Layout Plan, which comes from the Layout
Planning Tool. It encloses a structural description o f all components belonging to the system
as well as their performance and mutual layout in the structure. The second income file is the
Library of Rules. This library holds descriptions of cooperation and dependencies between
two or more elements.

The Diagnostic Script File makes the outcome file for the system. It is generated by
Logic Linker according to the input files. Logic Linker reads all needed and relevant data
from the Export File, and links them with the diagnostic rules corresponded to a general

concept. The Diagnostic Script File may be read as a script realization directly in script
processor o f Diagnostic Server. Therefore, data are sent to the Diagnostic Server for the
system diagnostic purposes.

The general idee of how the system works is shown the scheme below (Fig.2.).

Automatic generation of diagnostic scripts for the distributed systems based ...___________ 49

Plant Layout LOGIC LINKER Rules Library
Plan (XML)

\ t

Diagnostic Script
File

Fig.2. General schema o f how system works

2.1. COMPONENTS AND RULES

A component is an object that performs a specific function and is designed to easily
operate with other components. They may be single or included in a container of other
components. Components can be used for assembly o f the system, or make a subsystem. Each
of them must be assigned to the Component Class that characterizes each element belonging
to it. The Component Class makes therefore a class o f all components that may lay in the
system, and is used for instancing the components of this system. All Component Classes are
included in a special library (Component Class Library). This library contains all Classes of
Components that perform specific functions and it is designed to easily operate with other
elements.

A rule describes dependencies between the Classes of Components in order to generate
errors by failed states. When a Rule is related to the one Component Class only, then it is
included in this Class. This is a case of Single Level Logic Rule (SLL Rule). And when a
Rule affects two ore more Component Classes, then it calls these Classes from the
Component Class Library. This is a case of Multi Level Logic Rule (MLL Rule). Therefore,
all the Rules related to more than one Component Class are included in the Library of Rules.

The Library o f Rules makes a collection o f all classes of Rules set for simplicity o f use
that Logic Linker can apply. And the Library is applied to store frequently used Rules. The
linker automatically looks up in the Library to find an adequate and sufficient Rule. The
Library by its nature is Multi Level Logic (MLL) only, and that means that it contains Rules
describing cooperation and dependencies between two or more Component Classes.

Each Component Class Library as well as Rules Library is given as a strictly settled
structure. The architecture o f these structures needs to be kept as it is, in order to the proper
performance o f the Logic Linker and Layout Planning Tool.

50 Markus BREGULLA. Tomasz JANIK. Leszek CZAPKOWSKI

3. LOGIC LINKER

For the automatic implementation of the system diagnosis is used a special application,
called Logic Linker. The application reads all needed and relevant data for the system
diagnosis from the Plant Layout Plan, and links them with the diagnostic rules corresponded
to a general concept. At the output o f the system Logic Linker generates the Diagnostic Script
File that might be read as a scripts realization directly in the script processor o f the Diagnostic
Server.

Logic Linker contains o f two inner elements: Linker and Interpreter. Linker works as
the Single Level Logic, while Interpreter works as the Multi Level Logic. Data that are read
from the Plant Layout Plan are next used to create the outcome XML file. For that reason,
data from the Plant Layout Plan are read out of Linker and Interpreter. Depending whether it
is a component or a relation between the components it will be adequately sent by Logic
Linker to the Linker (SLL) or to the Interpreter (MLL). In case when data are sent to the
Interpreter, the relation between the components is searched in the Library o f Components
and if found, then is instanced. It will receive a real name (ID) of the existing components in
the real system.

The outcome data are generated then based on the rules from the Library o f Rules and
components from the Linker or Interpreter. They might be created either at the SLL level or
MLL level, and are next aggregated as the outcome XML file. Therefore, the file that is
transferred to the Logic Linker is there merged properly with the Library o f Rules. And as a
result, the Diagnostic Script File is generated. This is the outcome file that contains diagnostic
scripts, and is transferred to the Diagnostic Server.

A scheme o f the process for the application is shown on Fig.3.

Automatic generation of diagnostic scripts for the distributed systems based 51

Plant Layout
Plan

Logic Linker

_c
read:
Plant
Layout Pi an

Linker

Create XML
Components (SLL) \

Interpreter

read;
Rules Li b(MLL)

\
Com ponents
Subsystems

Create XML
(MLL)

/

Rules Library
^ *"1Diagnostic Script

File

Fig.3. Logic Linker - scheme o f the process

3.1. REQUIREMENTS

The goal o f the Logic Linker is in general generating the outcome file (Diagnostic
Script File) from the income files (Rules Library and Plant Layout Plan). To perform such a
procedure, the application must fulfil and fulfils the following requirements:

• Technology independence
When reading the income file (Plant Layout Plan) Logic Linker must recognize and
identify the layout o f the system. This is done for the automation components applied
to the forthcoming technologies. Proper data need to be passed on to the Diagnose
Server throughout the Diagnostic Script File. These data are necessary to accomplish
and realize the process o f diagnosis. A technology o f such realization is not
significant for the Logic Linker, and that is because Logic Linker must only pass data
on in a proper and specialized form.

• Flexibility
Logic Linker should have a possibility o f working and cooperating with any XML
structure that describes the rules and the system layout. It must take into account new
solutions, unknown issues, and ones not yet considered.

• Possibility of matching (adaptation)
During the phase of qualifying and succeeding rules to the components or
components to the rules, the possibility of analyzing and processing the Component
Classes is required. The process is being repeated as long as specific and defined
conditions o f matching (adaptation) are fulfilled. Hence, matching the diagnostic
rules with the components related to them is possible and reasonable. As long as the
specifications are fulfilled, Logic Linker must be able to work easily in a loop and try
to match components to the rules as well as rules to the components.

• Alternativeness
The type, size, and realization of the technical device o f automation are variant and
unconventional sometimes, and that may have an impact on deepness o f the
hierarchy o f subsystems. Logic Linker must be then flexible and adaptable that it will
manage any potential kind of the device.

• Expansibility
Logic Linker (Diagnostic Script Generator) should be possibly adaptable to the new
conceptions o f the diagnostic systems as wall as developable ones.

52________________________ Markus BREGULLA. Tomasz JANIK. Leszek CZAPKOWSKI

4. SAMPLE OF USE

On the figure below (Fig.4) is shown a simple of the schematic conveyor belt line. The
line makes an industry transportation system that is being tested by Logic Linker. Therefore,
the line as a real system is built of the following components, belonging to the particular
Component Classes:

• Conveyor belts: Con, Conl, Con2, Con3, Con4, Con5;
• Sensors: SenOl ... Sen52;
• Separators: SP1, SP2, SP3, SP4, SP5, SP6;
• Track switches: SI, S2, S3, S4, S5;
• Trace sensor: TrSen.

Con.., ConS -C c rv e y rs

SenOl... Sen52 -Sensors

S P l . . . ^ -Separators

S I ... S4 -TrackSwttehss

TrSen -TraoeSenscr

ÇCchÇ)

ÇCon> ÇCorp
P SenOZ » TrSan SPS

ÇC onT) .— . C 6ônJ> ÇgorrT >
S en 12 <p Sen11 (SP1) P SenOl i ■>

(s i) S e n 22 P Sen2l(SPZ

S2 ;Sen32

S3 Sen42

Sen52®

Sen31 SP3

Sen41 SP4

Sen51 (SP5

Çc<*Q

Fig.4. Schematic conveyor belt line [3]

For a given layout it is possible to generate many different Rules as well as descriptions
of the Component Classes. The figure below (Fig.5) shows a simple o f the MLL Rule that
describes cooperation between two conveyor belts. The given Rule verifies if Successor is

Automatic generation o f diagnostic scripts for the distributed systems based 53

ready to receive elements conveyed by Predecessor. If not, then returns a message about the
failure.

- <Rule Template="No11 ID="5">
«Target ComponentClass="Ref-Conveyor" Name="Predecessor" />
«Target ComponentClass="Ref-Conveyor" Name="Successor“ />

- «Condition Param="Predecessor.OI\I.OUT.Var_On" Op="=" Value=”l"
ValueIsRef=”0">

- <True>
- <Condition

Param ="Predecessor.Abgabebereit.OUT.Var_Abgabebereit"
Op="=" Value=“l" ValueIsRef="0">

- <True>
- «Condition

Param ="Successor.Aufnam eber6it.OUT.Var_Aufnam ebereit''
Op="=" Value="0" ValueIsRef="0">

- <True>
- <Retum>

- <Var Name="ERROR" Value="">
<Var Name="ID" Value=“" />
<Var Name=,,DESC"

Value="Successor not ready" />
</Var>

Fig. 5. Sample o f the MLL Rule

5. CONCLUSIONS

The system of the automatically generated diagnostic scripts that has been introduced in
this paper is a powerful and universal application. It may be applied to many different fields
of industry where it is possible to see and consider the industry systems by the components of
such systems, and the rules describing cooperation as well as dependencies between these
components. According to this, it needs to be mentioned that transport in general and
transportation systems make such a field of industry.

Logic Linker has been still developed and proved for the transportation systems at the
in-house industry transport (production lines at Audi).

BIBLIOGRAPHY

[1] BREGULLA M., GROßMANN D., Automatische Generierung systemweiter Diagnosenfunktionen auf der
Basis von Layout-Informationen, ATP 47 (2005), Germany

P I BREGULLA M., GROßMANN D., Open interface for distributed access to diagnostic information,
4 International Conference “Transport Systems Telematics”, 4-6.11.2004, Katowice, Poland

[3] DÖBELE M., Konzept zur automatischen Generierung von Diagnosefunktionalität auf Basis von
Layoutinformationen, Diplomawork at ITM, Technical University o f Munich, 2004

Reviewer: Ph. D. Jerzy Mikulski

