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REINFO RCEM ENT LEARNING IN VESSELS TR A FFIC  ENGINEERING

Reinforcement learning is applied when agent or operator interacts with or tries to control more or 
less random environment. In reinforcement learning there are: a policy, a state or action value function, 
and a model o f the environment involved. A policy specifies set o f actions applied for controlling the 
traffic flow.

UCZENIE ZE WZMOCNIENIEM W INŻYNIERII RUCHU MORSKIEGO

Uczenie ze wzmocnieniem ma zastosowanie w przypadku, kiedy agent albo operator steruje mniej 
lub bardziej losowym środowiskiem. W uczeniu ze wzmocnieniem występują: polityka, funkcja 
definiująca nagrody, funkcja oceny wartości stanów lub akcji oraz model sterowanego procesu. Polityka 
określa zbiór możliwych do podjęcia, w ramach sterowania ruchem statków, akcji.

1. INTRODUCTION

In reinforcement learning there are: a policy, a reward function, a value function, and a 
model o f the environment involved. A  policy defines the agent's way o f behaving at a given 
state o f the environment. It specifies set o f actions applied for controlling the environment. 
The agent can receive reward or punishment -  both called reinforcement. The reinforcement 
assigns values to states o f the environment, indicating the quality o f the state. An agent's 
objective is to maximize the total reward it receives in the long term [3],

A reinforcement function indicates immediate rewards and usually is supplemented by a 
state value function. The last specifies how good is to take particular action being in given 
state. The value o f a state is the total amount o f reward an agent can expect to accumulate 
over the future states.

Important part o f reinforcement learning systems is a model o f the environment. This is 
something that imitates the behavior o f the environment. Given a state and action, the model 
might be used to predict the next state and next reward. The incorporation o f models and 
planning into reinforcement learning systems makes the whole approach more flexible.

A model o f the environment enables to simulate o f a set o f states. Transition to a new 
state is a result o f an agent action. In Markov model important is that the probability o f 
Performing some action w ill result in transitioning to some other state, and the reinforcement
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the agent might receive from that transition, do not depend on any previous actions the agent 
has made, or the previous states. In Markov model history doesn’t matter most important is 
the state the environment is at any moment, and the action the agent is performing.

Reinforcement learning can also be seen as a family o f algorithms, which enable to 
generate optimal solutions to Markov models. Reinforcement learning can be applied to 
continual process-control tasks as well as to episodic processes. Such tasks arise while dealing 
with traffic control. VTS operator interacts with the traffic within given area, he probably also 
face a problem o f suggesting best route for particular vessel. W ithin scope o f his activity he 
follows up certain policy, which objective is aimed at improvement o f safety standards within 
the area. Maximizing overall rewards expressed as best safety conditions is his final aim. To 
make his decisions he is supposed to use an environment model. The fuzzy model, which 
enables estimation o f a proposed set o f parameters w ill be discussed in the presentation. 
Decision-making is multicriteria one so some hints regarding the approach w ill be also 
presented.

2. REINFORCEMENT LEARNING CONCEPT

The agent and environment interact at each moment o f a sequence o f discrete time 
t e {ti, t2, t„, }. A t each time step, the agent receives some representation o f the environment's 
state, st eS, where S is the set o f possible states, and on that basis selects an action, at e A(st), 
where A(st) is the set o f  actions available in state st. One step later, as a consequence o f its 
action, the agent receives a numerical reward, rt+ie R  and the environment transits to a new 
state, st+i = s’ = 8(st, at). The new state depends on the current state st and taken decision at. In 
deterministic case the new state is always known since it merely determined by the action. 
Many real life cases contradict this simple assumption.

Fig. 1. General concept o f the reinforcement learning

A t each time step, the agent implements a mapping from state representations to 
probabilities o f selecting each possible action. This mapping is called the policy and denoted 
7tt, where 7it(s, a) is the probability that at = a i f  st =s [3]. Reinforcement learning methods 
specify how the agent changes its policy as a result o f its experience. The agent's goal is to
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maximize the total amount o f reward it receives over the long run. Profits can be estimated 
using environment’s model. Adequate model is o f great value in many real life applications 
where the discussed methodology could be applied. Basic dilemma o f reinforcement learning 
of exploitation and exploration can be differently perceived when good model is available.

Fig.2. The reinforcement learning scheme with the environment model included

In the reinforcement learning framework, the agent makes its decisions on the basis o f 
the environment's state. A state characteristic that embraces all relevant information is said to 
be Markov, or the environment that enables such characteristic is said to posses the Markov 
property. For example, the current configuration o f all pieces on the chessboard would serve 
as a Markov state because it includes everything important about the player situation and its 
future success or failure. Information about the previous actions, which resulted in a particular 
configuration, is lost but this does not matter. I f  an environment has the Markov property, 
then its one-step dynamics enables to predict the next state and expected future rewards 
starting from the current state and taking one o f possible action.

2.1. VALUE FUNCTIONS, BELLM AN EQUATION AND OPTIMAL POLICY

Reinforcement learning algorithms are based on value functions, functions that estimate 
how good it is for the agent that environment is in a given state. It can also specify quality o f 
performance o f a given action in a given environment state. Quality is expressed in terms o f 
expected future profits. The value o f a state s under a policy n, denoted V is ) ,  is the expected 
reinforcement E* when following policy 7t starting in state s. The state value V It(s) is used to 
determine Qn(s, a), which evaluates taking action a  in state s under policy n. The expected 
return is given by formula (1)

Q*(s,a) = r(s ,a ) + rV *(S (s ,a ))  ( 1)

Q" is called the action-value function for policy 7r, it delivers direct assessment o f the 
agent activity. It denotes the reward for starting in state s, taking action a  and discounting { y <  

) new state value. A  fundamental property o f value functions is that they satisfy particular
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recursive relationships (2). The formula is known as Bellman equation for action-value 
function.

Q* ( j, a) = r(s, a) + yX  a), a ')*Q K (8(s, a), a') (2)
a'

It bridges the value o f given action and the values o f actions available within successor 
states. Recursive Bellman equation means that being at the state s and taking action a  next 
environment state is likely to be 8{s,a) and its immediate reaction, reinforcement is r(s,a). 
For finite Markov Processes, one can define an optimal policy. A  policy 7t is better than or 
equal to a policy 7t’ i f  its expected result is greater than or equal to that o f n' for all states. It 
means that: 7t >7t’ i f  and only i f  V ^s ) S V ^s ) for all seS. There is always one policy that is 
better than or equal to all other policies, this is an optimal policy. Bellman optimality equation 
must express the maximum o f the expected result for any action from given state, formula (3) 
define the relationship.

V’ (s) =maxQ '(s,a )
a

= max(r(j, a) + yV’ (8(s, a))) (3)
a

Q’ (s, a) =  r(s, a) +  y max Q’ (8  (s, a), a')

3. TRAFFIC CONTROL

Vessels traffic is monitored by coastal station wherever it is possible. Monitoring aim is 
to check that everyone obeys imposed rules and traffic separation is not violated. A ll such 
measures available w ithin Vessels Traffic Systems significantly contributed to reduction of 
risk o f collision and improved environment safety standards. Further improvement w ill be 
possible when VTS operator is able to implement and follow adequate policy aimed at traffic 
allocation w ithin the area. Avoiding local congestion one can reduce number o f encounters 
and furthermore potential risk o f collision. To introduce such measures a few assumptions are 
to be made. First there must be decision-making body available within VTS structure. Second 
databases are to be implemented and relevant decision problems to be formulated and solved. 
The last comes along w ith proposal o f the set o f assessment criteria and delivering necessary 
tools to decision maker. Finally legal aspects related to enforcement o f the policy are to be 
overcome.

Ship’s master usually carries out decision-making regarding passage through congested 
area. Such decision process is doomed to be impaired by lack o f actual data regarding other 
traffic. VTS stations plus reporting system are adequate source o f crafts movement data. They 
are supposed to recommend on itinerary as well as best time o f passage.

3.1. ROUTE SELECTION AND ROUTES ASSIGNMENT

Considering vessels traffic there are three main problems to be discussed. First is a route 
selection (RS for short), the problem arises when master has to decide on itinerary during his



sea passage. Second is a routes assignment (RA), the problem appears when dealing with a set 
0f  crafts and alternative routes exist in restricted area [2], The last is a VTS supervisor 

roblem and is related to best possible distribution o f the entire passing traffic. VTS operator 
can be asked for advise on best possible passage for particular vessel, while not interacting 
with the rest o f traffic. Such problem w ill be called route recommendation and abbreviated as 
r r  Ship’s route can be treated as a sequence o f legs join ing turning areas. Whenever a route 
. t0 be selected or routes should be assigned one has to consider a wide variety o f different 
narameters. For particular vessel and each route, she is assumed to take, time o f passage and 
scheduled traffic are presumably known. Apart from these parameters there are forecasts 
regarding local traffic as well as rogues or crafts that do not obey imposed rules. To take 
proper choice, assumed a few options exist one has to compare a handful o f parameters o f 
different nature. There are crisp and fuzzy parameters values, forecast empirical sets and 
probability distribution functions to be dealt with.

Traffic is classified taking into account gross tonnage o f a vessel and kind o f cargo she 
has on board. For this reason safety factor has been introduced. Environmentally dangerous 
freight and huge tonnage increase the factor. The factor vary on an integer scale such that the 
higher the number the more serious the consequences o f an accident. There was range from 1 
to 10 suggested [1 ][2], It is assumed that safety factor number is assigned to every ship.

Extended, compared to presented in [2], set o f criteria embraces
• number o f vessels directed to fair „quality”  o f the waterways. Quality o f a 

waterway should be thought o f as excellent, very good, good, fair etc. in other 
words one use linguistic terms to express the quality o f a passage for particular 
class o f vessel. Classes are assumed to be related to safety factors. Criterion is 
abbreviated as NVDF and remains applicable to RA problem

• total passage time (or maximum delay). It is crisp or fuzzy value, fuzziness is 
related to unforeseen deviation from the scheduled trajectory because o f 
collision avoidance manoeuvres or pitching due to bad weather and seas. 
Criterion (TPT) is applicable to RS, RA and RR problems

• total number o f encounters, the parameter is calculated based on simulation. 
Criterion (TNE) is applicable to RA and RR problems

• total number o f crossing encounters. Since any ship presence within any area is 
described by membership function this parameter is to be defuzzified into crisp 
value. Criterion reflects whole group o f crossings, for this reason included 
numbers specify range o f courses difference (example notation TNCE 20, 40). 
Data is applicable to RA and RR problems

• number o f crossing encounters o f ships with safety factor greater than given 
value. Criterion (example o f abbreviation TNE SF>5 20, 60) is applicable to RA 
and RR problems. Meaning o f included numbers is the same as before

• number o f encounters o f ships with safety factor greater than given value which 
w ill occur in the area o f special concern. Value is to be defuzzified. Criterion 
(example o f abbreviation NE SF>5) is applicable to RA and RR problems

• number o f encounters with local traffic forecast for consecutive nodes. This 
parameter w ill be in a form o f sets o f empirical data recorded by the local 
authority. Theoretical density distributions can be used instead. Criterion (FNE 
LT) is applicable to RS, RA and RR problems

• number o f encounters w ith unscheduled traffic forecast for consecutive nodes. 
This parameter w ill be a set o f empirical data recorded by the local authority. 
Criterion (FNE UT) remains applicable to RS, RA and RR problems
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•  maximum sum o f safety factors o f ships present, at the same time, within area A 
that is an example region o f particular concern (such areas are sometimes 
referred to as Safety Zones). Criterion (example abbreviation SSF A ) is mainly 
applicable to RA problem

• maximum number o f ships present, at the same time, within area o f particular 
concern (such areas are sometimes referred to as Safety Zones). Criterion 
(example abbreviation MNS A) is mainly applicable to RA problem

• weather, current and seas condition along each route. Criteria (WC, CC, SC) are 
applicable to RS problem. Criteria should be thought o f in terms o f linguistic 
expression as excellent, very good, good, fair, poor and very poor

3.2. ENVIRONMENT MODEL

To foresee encounter numbers a timetable o f arrival at given points are to be 
constructed for each scheduled vessel. Timetable o f passage, for each vessel, and for given 
area is a vector o f so-called fuzzy slots, which are quads o f values that define so called 
membership or presence in the region function. Latest arrival time in the area ( A l)  and the 
earliest departure time from the area (DE) o f the particular vessel are reference values. From 
them membership function descends to earliest arrival (A E) and latest departure time (DL) 
respectively. Fuzziness can be associated with difference between earliest and latest moment 
primarily depends on sea condition and necessary deviation from the prescribed trajectory. To 
foresee what w ill take place w ithin given area one has to consider all presence functions 
greater than zero w ithin all possible time slots. Formally the membership function can be of 
the form presented by equation (4).

fs k (0 =

/ i (o= ‘ ~ A e

AL
for all (AE <t<,AL) 

for all (Al < t  < De ) 

for all (De < t  < Dl ) 

otherwise

(4)

Some parameters, for example total number o f encounters, can be estimated based on 
simulation. Basic assumptions o f the mathematical model embrace:

• there are ten classes o f ships, each vessel is classified w ith respect o f her 
tonnage and carried cargo

• system o f route within the area is fixed, for some directions o f  flow there are
alternative passages. Model is equipped with interface enabling definition o f the
routes scheme

• interface enabling input o f initial positions and intended routes
• route consists o f legs linking turning areas
• ships trajectory leads from one turning point to the subsequent one. Turning

points are randomly distributed within turning areas
• movement along prescribed trajectory is double screened random Markovian 

process, no collision avoidance is carried out
•  state “ save to file”  ability, for continuity reasons
• interface enabling ship domain(s) definition
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Encounters should be detected when safe lim it is violated and subsequently stored for 
further analysis. Two ships are registered being involved in close approach when it first 
occurs, their subsequent mutual positions are not considered unless category o f encounter is 
changed. Categories list o f encounters embrace: meeting, overtaking and crossing, which is 
further subdivided regarding angle o f crossing.

3.3. STATE VALUE IN TRAFFIC CONTROL

Initial positions o f all ships, their gross tonnage cargo intended courses and speeds are 
vital when considering navigational situation in a region. For this reason following definition 
of a state in traffic control is adopted: “ ships positions at the beginning o f a given interval o f 
time, their intention regarding passage itinerary as well as tonnage, speed and kind o f cargo 
characterize condition within the area and consequently environment state as defined in 
reinforcement learning” .

TOPSIS method was adopted for upgrading state values hierarchy. TOPSIS stands for 
technique for order preference by similarity to an ideal solution. Was introduced as a multi­
attribute decision making (M AD M ) method. In itia lly the approach was intended for crisp 
values then extended for fuzzy parameters as well as for sets o f empirical data The extension 
covered fuzziness as well as empirical sets o f data is presented in [4], The method is based on 
a concept that the best alternative among the available alternative set is the closest to the best 
possible solution and the farthest from the worst possible solution at the same time. The final 
TOPSIS ranking is created by sorting, in descending order, the coefficient values assigned to 
each o f the alternatives.

3.4. NUMERICAL EXAMPLE

Let us consider a set o f data presented in table 2. There are six different states 
parameters included. Each state, that characteristic is included in a single row, refers to a 
possible option when deciding on routes assignment. First o f the shaded column contains 
figures generated by procedure with implemented extended [4] TOPSIS method.

Consecutive columns titles conform mentioned notation. Last shaded ones mean: 
ranking output generated by procedure, which implemented TOPSIS method
probability initial probability that particular assignment result in given set o f
parameters, the value w ill be subject to further changes in policy improvement 
hierarchy final hierarchy

Table 1
Set o f  six possible assignments with equal probability o f  occurrence

TNE TNE SF>5 NoVDF TPT SSFX MNS X ranking probability hierarchy
1 10 5 1 150 10 medium 0,42/5 1 5
2 9 5 1 144 10 small 0,46/4 1 4
3 10 4 1 130 10 very small 0,53/1 1 1
4 11 3 2 160 7 negligible 0,50/2 1 2
5 12 4 2 170 5 very small 0,48/3 1 3
6 13 5 1 175 10 large 0,37/6 1 6
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In case o f follow ing greedy policy operator w ill decide on third option with the highest- 
ranking value. Since each state reflects particular assignment o f routes to each o f the vessels 
any lack o f concordance with the calculated scheme leads to different overall situation. While 
trying to enforce assignment number 3 recommendation disobeyed by one vessel resulted in 
creating condition similar to this stated in raw 6 (see table 2). For this reason greedy policy 
must be subject to further modification and improvement based on forecast and real data.

Table 2
Set o f  forecast and real data observed after selecting option 3 (table 1) for execution

TNE TNE SF>5 NVDF TPT SSF X MNS X ranking hierarchy
3 10/13 4/5 1/1 130/175 10/10 very

small/large
0.53/0,37 1/6

Since greedy policy can fail, following policy improvement scheme could be adopted:
•  given state value V* for arbitrary deterministic policy
•  for particular state select adequate action, calculate Q*(s,a), which does conform 

with greedy policy
•  based on available database estimate probability o f occurrence o f  the particular 

assignment recalculate Q’Xs.a)
•  i f  QB(s,a)> Q (s,a) therefore choose new policy n

4. SUMMARY AND CONCLUSIONS

The aim o f the VTS observer activity should be pointed at improvement o f the formal 
safety parameters. The operator is assumed to advise vessels regarding passage details. 
Advises are supposed to be generated based on multi criteria optimization and multi attributes 
decision selection. TOPSIS method with many practical extensions well suits to upgrade 
hierarchy in considered problem. Theory o f artificial intelligence, in particular reinforcement 
learning, is used to deal with similar to traffic control. The method is general one and delivers 
solid theoretical basis for formalization o f the approach. Operator follows policy, which is 
assumed to be a greedy one. This means that best possible solution is to be executed. It is 
likely that from time to time such policy is to be revised. Adjustment o f the policy is inherent 
feature o f the reinforcement learning.
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