
ZESZYTY NAUKOWE
INTERNATIONAL CONFERENCE POLITECHNIKI ŚLĄSKIEJ 2005

?g£fl§pO R T SYSTEMS TELEMATICS TST’05 TRANSPORT z. 59, nr kol. 1691

Multi-agent, NetLogo, complex system,
model, simulation, level crossing

MULTI-AGENT APPROACH TO TRAFFIC SIMULATION IN NETLOGO
ENVIRONMENT - LEVEL CROSSING MODEL

NetLogo [1] is a multi-agent program m ing language and cross platform m odelling environm ent
for simulation o f com plex phenom ena and is designed for both research and education. It is used across
a wide range o f disciplines and education levels. In this paper, though, w e focus on N etLogo as a tool for
creating traffic m odels and their sim ulation and. present a level crossing example.

WIELOCZYNNIKOWE PODEJŚCIE DO SYMULACJI RUCHU W ŚRODOWISKU
NETLOGO - MODEL PRZEJAZDU

NetLogo [1] je s t to w ielo-czynnikow y języ k oprogram ow ania i m iędzyplatform ow e środowisko
modelowania pozw alające na m odelowanie skom plikowanych zjawisk, przew idziane zarów no dla badań,
jak i dla celów edukacyjnych. W ykorzystywany je s t w szerokim zakresie dziedzin i poziom ów edukacji.
W niniejszym referacie jednak skupiamy się na N etLogo jak o na narzędziu do tw orzenia modeli ruchu
drogowego i ich sym ulacji oraz prezentujem y przykład przejazdu.

1. INTRODUCTION

Modelling is a powerful tool that allows a programmer or engineer to observe cause-
and-effect relationships in occurrences that happen too slowly or quickly to see; involve
danger or safety concerns; occur on a scale too large or too small for study; are not a common
occurrence or simply can hardly be realised in real environment with real entities. Multi-agent
systems (or agent-based models) are composed of collections o f synthetic, autonomous,
interacting entities and have their origins in computer science, where they are used in the
design of Artificial Intelligence, and in Information Communications Technology as bots and
webcrawlers. Agent-based models can be used to simulate mobile entities (vehicles,
Pedestrians, migrating households) in spatial simulations. Agents are pieces of software code

Department o f Control and Information Systems, Faculty o f Electrical Engineering, University o f Zilina,
niverzitnâ 8215/1, SK-010 26 Zilina, Slovakia.
one. +421-41-513 3301, Email: {ales.janota | karol.rastocny |jiri.zahradnik}@ fel.utc.sk

Aleś JANOTA'
Karol RASTOĆNY
jifiZAHRADNIK

182 Aleś JANOTA. Karol RASTOĆNY. Jiri ZAHRADNfr

with attributes that describe their condition and characteristics that govern their behavior
(a very simplified characterization of agents).

NetLogo is a multi-agent programming language and cross platform modelling
environment for simulation of complex natural and social phenomena. It is particularly well
suited for modelling complex systems evolving over time. Modellers can give instructions to
hundreds or thousands o f independent “agents” all operating concurrently, in order to expl0re
connections between micro-level behaviours of individuals and macro-level patterns that
emerge from their interactions. NetLogo enables users to open simulations and “play” with
them, exploring their behaviour under various conditions [2], There are three types of agents'
turtles, patches, and the observer. Turtles are agents that move around in the world. The world
is two dimensional and is divided up into a grid o f patches. Each patch is a square piece of
"ground" over which turtles can move.

NetLogo was created by Northwestern University's Center for Connected Learning and
Computer-Based Modeling and is freeware - anyone can download it for free and build
models without restrictions. It comes packaged with extensive documentation and tutorials
and a large collection o f sample models (a library with over 150 sample models) for easy
access. NetLogo has been under development since 1999. More on a history of NetLogo’s
origins including a tour of the NetLogo interface, an introduction to the NetLogo language
and other details can be found in the less technical paper [3] recommended by the authors for
background reading. The example discussed hereafter was created using the NetLogo3.0 beta]
version available at the time of writing the paper (June 2005). As a language, NetLogo is a
member of the Lisp family that supports agents and concurrency.

1.1. BRIEF SURVEY OF EXISTING TRAFFIC MODELS

Traffic domain is one of prospective domains where NetLogo can successfully be
applied and bring novel views at solving everyday traffic problems. Several NetLogo
examples devoted to traffic that have been published so far can be summarised as follows:

- “Traffic Basic” model [4] is included in the NetLogo’s models library and models the
movement o f cars on a highway where each car follows a simple set o f rules: it slows down if
it sees a car close ahead and, speeds up if it doesn't see a car ahead (a newer version is also
available in [5]);

- “Traffic 2 Lanes” model [6] is a more sophisticated two-lane version o f the "Traffic
Basic" model that demonstrates how traffic jams can form and gives drivers a new option
(they can react by changing lanes);

- “Traffic” model [7] presents a one-lane traffic model that includes adjustments of
speed, settings of police, a special driver ticking to the maximum official speed limit and
several monitors useful for numerical experiments;

- “TrafficMode” model [8] uses 3 lanes and enable us to effectively study effect of
different conditions (traffic lights, human curiosity) on the flow of traffic;

- “Gridlock” model [9] enables us to control traffic lights and overall variables, such as
the speed limit and the number o f cars, in a real-time traffic simulation and thus explore
traffic dynamics;

- “HubNet Gridlock” model [10] represents extension of the previous model and solves
traffic as an adaptation problem (since traffic flows and densities change constantly);

- Model based on the paper [11], which consists of a simulator to model traffic at
intersections and three different intersection control policies: overpass, traffic light, and

nront aPProac^ t0 traffic simulation in NetLogo environm ent... 183

rvation system. For certain the given survey is not complete, however, at least the main
^p'cal examples are mentioned.

2. LEVEL CROSSING EXAMPLE

C reation o f a model that is presented in this paper has been inspired by some o f models
m e n t io n e d above. It enables us to model rules commonly accepted at crossings of roads and
railway lines and study effects o f different conditions on the flow of traffic. The NetLogo
e n v i r o n m e n t provides three main screens called Interface, Information and Procedures.

2.1 INTERFACE

F ig.l shows NetLogo’s user interface after opening and running a model. The graphic
window makes the two-dimensional “world” of the model visible. It is divided up into a grid
of patches that have coordinates pxcor and pycor. The patch in the centre of the world has
coordinates (0,0) and the total number of patches is determined by the settings screen-edge-x and
screen-edge-y. In our model the grid consists o f 41 x 17 patches (horizontally from - screen-edge-x

= - 20 to screen-edge-x = 20 with 0 in the middle; vertically from - screen-edge-y = - 8 to screen-edge-

v = 8 with 0 in the middle).

Ffa tdt TOOK ¿oom
Herface I Wormaton \ Procedures

m m m

* (| ' | * • * Button i P f Sider tfot Swtcti f S n Chooser ** "• Mordor * Plot S OutpU S a * Text

Level C rossng Example

Total cars passed (from left)

155

Car throufftxi (from left)

00386

Oarer* cars from right

9

Told cars passed (from right)

21

Car tfrocirpii (from riĵ *)

00052

Current cars from left

9

Total cars passed

178

Car trou(*ipU

0 0438

Total cuter* cars on screen

18

J K 2 5 E 3 I

»Zwinino; 24.6.2005 6:01 Vefcotf: 22,7 kS 22,7 kfl ^ Tentopofitaf

Fig. 1. N etLogo’s user interface, with model Level Crossing

184 AleS JANOTA. Karol RASTOCNY. Jifi ZAHRADNifr

Turtles (cars, train, traffic signs, barriers etc.) have coordinates too: xcor and ycor.
Generally, when a turtle moves past the edge of the world, it disappears and reappears on the
opposite edge. This way has been used for creating an agent “train”, however, the “car”
agents are “created” and “killed” in a more controlled way. Observer as the third kind of
NetLogo’s agents doesn’t have a location and is as looking out over the world o f turtles and
patches.

Model controls (on the left) quickly adjust the settings of the initial environment. They
are represented by the following buttons, sliders and switches:

- “Setup” button is used to initialise the model, it is a “once-button” that runs its code
once, then stops and pops back up;

- “Go” button is used to run the model, it is a “forever-button” that keeps running its
code over and over again, until either the code hits the stop command, or we press the button
again to stop it;

- “Go-step” button is a “once-button” that runs only one step of the code and then stops;
- “T im einterval“ slider is used to set a time interval for generating new cars (the higher

time the greater distances between cars);
- “Max car speed” slider is used to set the maximum speed for cars going in both

directions;
- “No_of_train_units” slider is used to set a number of units (locomotives) forming the

train - in our model only 1, 2 or 3 are available;
- “Train_speed” slider enables the user to set a current speed of the train (here from 0 to

100 k m h '1);
- “TrafFicSignL?“ switch enables the user to create a traffic sign for cars approaching

the level crossing from the left; its existence forces all these cars to slow-down. Another
switch “TrainSignR?“ is used analogically and has the same effects on cars going in the
opposed direction.

In the bottom part, above the Command Center box, there are “monitors” that allow
the user to quickly examine variables (e.g. current number o f cars in the world, total number
of cars passed in either or both directions, throughput etc.), even as the simulation runs, and
graphical output providing a quantitative way for the user to observe, record and compare
data.

2.2 INFORM ATION

According to conventions applied to NetLogo models, this informative part usually
consists of nine sections and helps the user to find quick answers to the following answers:

- “What is it?” - a general understanding of what the model is trying to show or explain;
- “How it works” - what rules the agents use to create the overall behaviour of the

model;
- “How to use it” - how to use the model, including a description o f each o f the items in

the interface table;
- “Things to notice” - some ideas of things for the user to notice while running the

model;

^[iti-apent approach to traffic simulation in NetLogo environment 185

- “NetLogo features” - possible pointing out any especially interesting or unusual
features of NetLogo that the model makes use of, particularly in the procedures table; it might
also point out places where workarounds were needed because o f missing features;

- “Related models” - the names of models in the NetLogo models library or elsewhere
which are of related interest;

- “Credits and references” - a reference to the model's url on the web if it has one, as
well as any other necessary credits or references.

The “Level Crossing” model enables the user to model different operation modes of
level crossing installation and to see what are their effects on traffic. According to Fig.2
totally four different phases of a train movement across the level crossing can be identified:

Phase 1 - a train is approaching the level crossing, the equipment is in a default mode
(no warning, possibly active signalling of vacated crossing and fault-free state o f the
equipment);

Phase 2 - a train has entered an approaching section what is detected by a proper track-
side equipment (in reality a technical means such as track circuits, balises etc.); this results in
activation of warning lights;

Phase 1 Phase 2 Phase 3 Phase 4

Fig.2. Train m ovem ent across the level crossing

Phase 3 - the warning period goes on, the barriers fall down to protect cars from
entering the hazardous area and the train passes the level crossing what would be normally
recorded by a proper technical means;

Phase 4 - the train has left the crossing and finds itself in an annulation’s section
(warning lights become of, active signalling is still off since the level crossing installation is
in the annulation’s state).

After the train has left the annulation’s section the whole cycle is over and the
equipment enters again the Phase 1.

Another function that can be modelled is setting a variable time period whose size
depends on the current speed o f the train approaching the level crossing. In our model this
feature is modelled in a simplified way. We distinct only two categories of train speeds
trough different positions used to activate the red warning lights. Trains running with the
current train_speed <= 40 krn.h'1 activate red warning lights when occupying the patch with

coordinates [-1,-4], and barriers at the patch with coordinates [-1,-3]. All trains running with
the current train_speed > 40 km.h'1 activate both warning lights and barriers earlier (i.e. at the
patch [-1,-6] and [-1,-5]).

186______________________________ AleS JANOTA. Karol RASTOCNY. Jifi ZAHRADNly

i j j ^ TrafflcSigrt?

Fig.3. Setting o f the T raffic Sign for cars going from left

The setting must enable the longest and slowest road vehicle, which is at the crossing
just at the moment o f activating warning lights, to leave the hazardous area before the train
coming (falling the barriers down).

Name sign|

Color that changes:

_Gray v
Delete

Duplicate

Bring to ti ont

; Send to hack

Undo

0 Rotatable

Rotate Left

Rotate Right

Flip Horizontal

Flip Vertical

OK] c Cancel

Fig.4. Creating a shape o f the agent “sign”

Shapes o f individual turtles-agents can be selected from a library, imported from
other model or newly created (see Fig.4). Editor for turtle shapes makes it easier to

cu stom ize how a model looks. This is important for data visualization.
Another feature respected in the model is a different length o f the train. To be sure that

train left the crossing and the barriers may be taken up, different patches (patches with
different coordinates) are used to finish the annulation’s state for trains with a different
length- A sample o f the corresponding code is given in Fig.5.

The user may also decide if a traffic sign reducing a traffic speed for cars will be
installed prior to the level crossing, individually for either of directions (see Fig.3). What’s
more, setting the time interval may influence frequency of creating cars (created together for
both directions), and the “ Max_car_speed” button may be used to set cars’ maximum speed (their
current speed depends on many conditions).

2.3 PROCEDURES

In the section “Procedures” the source code of the model can be seen and edited. To
show how it looks like, a sample o f the code corresponding to the described function of
setting a variable time for warning lights activation as well as considerations of different
lengths of train is given in Fig.5.

pfypnt approach to traffic simulation in NetLogo environm ent...__________________ ¡_87

NetLogo: LevelCrossing {D:\Program Files\NetLogo 3.0beta1}

File Edit Tools Zoom Tabs Help

InterfaceJ Information [Procedures]

Find... | Check | j Procedures

to le v e l_ c r o s s in g
i f T rain_speed <= 40 [ask t r a in - a t -1 -4 [wanning]

ask t r a in - a t -1 -3 [b a r r ie r s]]
i f T rain_speed > 40 [ask t r a in - a t -1 -6 [warning]

ask t r a in - a t -1 -S [b a r r ie r s]]
i f N o _ o f_ tra in _ u n its = 1 [ask t r a in - a t -1 3 [a n n u la tio n]

ask t r a in - a t -1 6 [d e f a u l t _ s t a t e]]
i f N o _ o f_ tra in _ u n its = 2 [ask t r a in - a t -1 4 [a n n u la tio n]

ask t r a in - a t 0 6 [d e f a u l t _ s t a t e]]
i f N o _ o f_ tra in _ u n its = 3 [ask t r a in - a t -1 S [a n n u la tio n]

ask t r a in - a t 1 6 [d e f a u l t _ s t a t e]]
end

Fig.5. Control o f level crossing states

3. CONCLUSIONS

The authors wrote this paper with intention to briefly introduce NetLogo environment,
give a survey o f currently available NetLogo’s traffic-based models and above all to

present their model of level crossing. The model enables the user to give instructions to
^dependent “agents” that are all operating concurrently creating the target behaviour of the
whole system. NetLogo environment is under rapid development and able to support large,

188 AleS JANOTA. Karol RASTOĆNY. Jifí ZAHRADNlV

ambitious modelling efforts. Its use is expected for both research and educational contexts
since it significantly reduces complexity o f the software development process.

This work has been partially supported by the Grant Agency of the Slovak Republic
VEGA, grant No. 1/1044/04 “Theoretical Foundations fo r Implementing e-Safety Principle
into Intelligent Transportation Systems” and partially by the institutional research project No.
07/604/2005 “Transport telematics and tools to improve its quality” solved at the Faculty of
Electrical Engineering, University o f Zilina.

BIBLIOGRAPHY

[1] W ILENSKY U., N etLogo. http://ccl.northw estem .edu/netlogo. Center for Connected Learning and
Com puter-Based M odeling. N orthw estern University, Evanston, IL, 1999.

[2] TISUE S., W ILEN SK Y U., NetLogo: Design and Im plementation o f a M ulti-A gent Modeling
Environm ent, Sw arm Fest, A nn Arbor, 2004.

[3] TISUE S., W ILEN SK Y U., NetLogo: A Simple Environm ent for M odeling Complexity. International
Conference on C om plex Systems, 2004.

[4] W ILENSKY U., N etLogo Traffic B asic model. http://ccl.northwestem .edu/netlogo/m odels/TrafficBasic.
Center for Connected Learning and Com puter-Based M odeling, N orthw estern U niversity, Evanston, IL,
1997.

[5] http://w w w .cs.northw estem .edu/~ade285/Traffic% 20Basicnew 2.nlogo
[6] W ILENSKY U., N etLogo Traffic2 Lanes model. http://ccl.northwestem .edu/netlogo/m odels/Traffic2Lanes.

Center for C onnected Learning and Com puter-Based M odeling, N orthw estern U niversity, Evanston, IL,
1998.

[7] http://sps.nus.edu.sg/~m arim uth/Lab2/traffic.nlogo
[8] http://w eb.cz3.nus.edu.sg/~chenk/gem 2503_3/project/G roup7/trafficM ode.nlogo
[9] W ILENSKY U., N etLogo Gridlock model. http://ccl.northw estem .edu/netlogo/m odels/G ridlock. Center for

Connected Learning and C om puter-Based M odeling, N orthw estern University, Evanston, IL, 2002.
[10] W ILENSKY U ., STROUP, W. N etLogo HubNet G ridlock model.

http://ccl.northw estem .edu/netlogo/m odels/H ubN etG ridlock. Center for Connected Learning and
Com puter-Based M odeling, N orthw estern University, Evanston, IL, 2002.

[11] DRESN ER K., STO N E, P. M ultiagent Traffic M anagement: A Reservation-B ased Intersection Control
M echanism. In Proceedings o f the Third International Joint Conference on Autonom ous Agents and
M ultiA gent System s, p. 530—537, ACM . 2004

Reviewer: Ph. D. Jerzy Mikulski

http://ccl.northwestem.edu/netlogo
http://ccl.northwestem.edu/netlogo/models/TrafficBasic
http://www.cs.northwestem.edu/~ade285/Traffic%20Basicnew2.nlogo
http://ccl.northwestem.edu/netlogo/models/Traffic2Lanes
http://sps.nus.edu.sg/~marimuth/Lab2/traffic.nlogo
http://web.cz3.nus.edu.sg/~chenk/gem2503_3/project/Group7/trafficMode.nlogo
http://ccl.northwestem.edu/netlogo/models/Gridlock
http://ccl.northwestem.edu/netlogo/models/HubNetGridlock

