

SILESIAN UNIVERSITY OF TECHNOLOGY FACULTY OF POWER AND ENVIRONMENTAL ENGINEERING Institute of Power and Turbomachinery

INFLUENCE OF COMBINED COAL AND BIOMASS CO-FIRING IN PULVERIZED FUEL BOILERS

(ABSTRACT)

PhD Thesis Szymon CIUKAJ

Supervisor: Prof. Marek PRONOBIS

Gliwice, 2011

TABLE OF CONTENTS

1.	INTRODUCTION			
2.	PURPOSE AND SCOPE OF WORK			
3.	CURRENT STATE OF ART AND PROSPECTS OF BIOMASS CO-FIRING IN POWER BOILERS			
4.	DEFINIT COMPA	TION OF COMBUSTION KINETICS OF THE BIOMASS PARTICLE RED TO THE COMBUSTION KINETICS OF COAL DUST PARTIC	ES ELES9	
4	.1. The	study of coal and biomass particles combustion kinetics	9	
	4.1.1.	Reaction kinetics of the combustion process	9	
	4.1.2.	Test stand for the combustion rates measurements and methodology	research	
	4.1.3.	Research of the combustion rate of biomass and coal particles	12	
	4.1.4.	Determination of the combustion rate of biomass and coal particles	34	
5.	STUDY	OF COAL AND BIOMASS PROPERTIES AND ITS RELATION TO	36	
5	1 Dror	parties of the fly ash by biomass co firing	38	
5	$\frac{11}{2}$ Stuc	by of the fly ash chemical composition		
5	$\frac{12}{3}$ Stud	lies of the fly ash fineness		
5	.5. Stuc 4 Stuc	lies of the unburnt carbon content in the fly ash	40 43	
5	5 Infl	lence of biomass co-firing on convective heat transfer		
5	551	Examples of ash deposits		
	5.5.1	Influence of biomass co-firing on fouling		
	5.5.3.	Calculation of fouling index by biomass co-firing		
	5.5.4.	Slaging and fouling reducing methods		
	5.5.5.	Self-cleaning tube banks	53	
6.	INFLUE	NCE OF COAL AND BIOMASS CO-MILLING ON PULVERISED F	UEL	
	FINENE	SS	62	
	6.1.1.	General comments	62	
	6.1.2.	Fundamentals of drying and grinding in ring-ball mill	66	
	6.1.3.	Vulnerability assessment of coal milling	67	
	6.1.4.	Dust sampling method and mill grinding quality	68	
	6.1.5.	Pulverised fuel testing method	69	
	6.1.6.	Studies of dust grain changes on the basis of the fly ashes fineness	75	
	6.1.7.	Influence of biomass blending on ring-ball mill operation	79	
	6.1.8.	Method of improving the quality of milling in terms of biomass co-mi	lling82	
7.	INFLUENCE OF COAL AND BIOMASS CO-FIRING ON HIGH-TEMPERATURE CORROSION			
7	.1. Eva	luation of the corrosion potential of selected types of biofuels	86	
7	.2. Met	hodology for assessing the influence of biomass co-firing on high-ter	nperature	
	corr	osion		

7.	.3. Т	The study of high-temperature corrosion hazard in OP-650 boiler	89	
	7.3.1.	Measurement of gas composition on furnace walls by biomass co-firnig	91	
7.	.4. E	Evaluation of corrosion rate based on the wall tubes examination	100	
8.	INFLU	UENCE OF COAL AND BIOMASS CO-FIRING ON LOW-TEMPERATUR	RE	
	CORF	ROSION	104	
8.	.1. I	nfluence of fuel moisture on flue gas dew point	105	
8.	.2. A	Acid dew point measurements	106	
	8.2.1.	Acid dew point measurements in Łaziska Power Plant	108	
	8.2.2.	Acid dew point measurements in Polaniec Power Plant	110	
	8.2.3.	Acid dew point measurements in CHP Wrocław	113	
	8.2.4.	Applications of the obtained results	114	
9.	INFLU	UENCE OF COAL AND BIOMASS CO-FIRING ON NO _X , SO _X EMISSION	N IN	
	BOIL	ERS EQUIPED WITH NO _X REDUCTION INSTALATION	115	
9.	.1. N	NOx formation fundamentals	116	
9.	.2. 0	CO emission as boiler efficiency indicator	118	
9.	.3. I	ndicators of avoided emissions by biomass co-firing	120	
9.	.4. N	NO _x mesurements in OP650 boiler by biomass co-firing	123	
9.	.5. N	New type of low-NO _x burner	128	
10.	CONC	CLUSIONS AND RECOMMENDATIONS	129	
LIT	ITERATURE			

ABSTRACT

The paper presents the identification and technical offer for the following operational problems associated with combined firing of coal and biomass in pulverized fuel boilers:

- definition of combustion kinetics of the biomass particles compared to the combustion kinetics of coal dust particles and scientific description of recommendations for the coal and biomass granulation for PF boilers,
- examine the relationship between properties (grain size, chemical composition) of coal and biomass and the resulting characteristics of the fly ash,
- investigate the influence of coal and biomass co-milling on the granularity of coal dust,
- determine the influence of biomass share on the quality of fly ash from the point of view of their utilization,
- examine the low-temperature and high-temperature corrosion risks,
- determine the effect of co-firing of solid biofuels on PF Boiler efficiency due to slagging and fouling and changes in flue gas composition,
- determine the influence of biomass co-firing on emissions of NOx, SOx and CO in boilers equipped with the NO_x reducing installations.

The solution of listed above operational problems will not only reduce the risks but improve the operation of PF boilers co-firing biomass, both in terms of efficiency and availability. From a scientific point of view it is important and original to understand the differences between the combustion kinetics of coal dust and biomass. Presented research results of the mechanism of the co-milling complex processes of organic substances with coal in a ring-ball mills will be useful for boilers users, as well as the explanation of the corrosion phenomena by biomass co-firing. For the first time were also tested a new type of convective tube banks resistant to non-uniform deposition of ash (from coal and biomass combustion). Practical result of the conducted research in this dissertation is to provide technical recommendations for improving the operation of PF Boilers firing different types of biomass, using both direct and indirect fuel feeding system.