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TIME CONTROL
OF ANONSTATIONARY DISCRETE ACCUMULATION PROCESS

An accumulation process of transport elements with nonstationarity in arrival patterns is studied in
the paper. Arrival rates vary periodically in time within a cycle. A method to divide the cycle into
accumulation periods is suggested with respect to some optimisation criteria.

KONTROLA CZASU
W NIESTACJONARNYCH DYSKRETNYCH PROCESACH AKUMULACIJI

Referat rozpatruje proces akumulacji elementéw transporty z brakiem stacjonamosci wzorcow
przyjazdéw. Przyjazdy okresowo ulegajg zmianie w sposéb cykliczny. Zasugerowano metode podzielenia
cyklu na okresy akumulacji w odniesieniu do pewnych kryteriow optymalizacji.

1. INTRODUCTION

When transporting elements such as containers, a naturally convenient way is to gather
them first and then transport in groups. Rules to control accumulation process of transport
elements are expected to economise transportation. The rules usually form a compromise
between transporting frequently with a poorly utilised capacity of transport means and letting
elements waiting relatively long to increase capacity utilisation. As elements arrive at an
accumulation site at random, the accumulation process is a stochastic process. Supposing an
arrival process with independent increments, the evolution of the accumulation process can be
represented by a discrete-time Markov chain, where the process state is a discrete random
variable. A time control problem for the discrete accumulation process is analysed in the
paper. If a stationary Poisson process represents arrivals of transport elements to the place of
their accumulation, an optimal duration of the accumulation period can be determined. Each
time when the period of accumulation is over, a group of elements not exceeding
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transportation capacity is sent to be transported. In the case of a nonstationary Poisson arrival
stream where few distinct arrival patterns are periodically repeated in a cycle, a method to
obtain an approximate solution to the optimal time control problem is designed.

2. DISCRETE ACCUMULATION PROCESS

The state of the accumulation process at any time is the number of elements waiting on
the accumulation site. State values important for decision-making are those at the ends of
accumulation periods. Let t0,tl,t2,... denote the ends of accumulation periods, where time
t0 =0 is the beginning ofthe accumulation process. Then the duration of the Zthaccumulation
period is given by 71 = ti , z=1,2,.... Let M, be the transportation capacity of transport
means available at the end of the Zth period to carry elements away. Denoting by S, the state

of the accumulation process at the end of the Zth period just before starting the transport of
elements, it is clear that the quantity Aj = min{.Sj, A7,} represents the portion of elements

transported. Then the number of elements remaining to wait on the accumulation site is
represented by Z(=S'- A{=S. —min{SI,Mi}= max{0,Sj - ATI}. Let X: be a random
variable representing the number of elements that arrive during the zth accumulation period.
The behaviour of the discrete accumulation process can be described, for i=0,1,2,..., by the
following transition equation

SM =St- A, +XM =S'- min{S,.,M,}+ XM =Z, +XM =max{0,S, - M, }+ XM (1)

3. STATIONARY ARRIVALS

If a stationary Poisson process {x{t),t > 0}, where X{t) is the number of arrivals up to
time t, represents the arrival stream of elements and the transportation capacity available at
the end of any accumulation period is M >0 elements, then the lengths 71 of accumulation

periods are equal and each of them is therefore the duration T of the accumulation cycle, i.e.
71 =T,i=1.2,... The number of elements that arrive during the accumulation period T is

Poisson distributed. Hence, nk =p {x (t )= k}= e~AT(ATf /k\,T >0, A=0,1,2,..., where the

parameter A> 0 is the arrival rate of the process. In case the period length T >0 satisfies
the stabilisation condition

the accumulation process eventually reaches the steady-state mode of operation when the
limits pk =1lim ,» P{S' =k),k =0,1,2,..., exist such that pk>0,V&, and Pk =1 (the
proofbased on the use of embedded discrete-time Markov chains is given in [3]). The limiting
probability distribution {pk,k =0,1,2,..} can be obtained as the solution to the set of
equations
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PO={p0+Pi+-+PM)x0 3)
Pk ={Po+P\ +.:+PMk +PMA*k:\ + -+ /W *0.*=12,..

together with the condition * pk =1. The probability generating functions F[z) for

process state probabilities and dc(z) for arrival probabilities will be used to solve the system
3).

Multiplying the Ath equation (k = 0,1,...) in (3) by the corresponding power zk and
summing the modified equations on k, we get (see e.g. [3])

® (z)f(z* -z'K iV -z'k
f(z)j r»--(z) - A« » . rn
with the notation F(z) ="'_uprzr and <I>=" “nrzr= where |z| <1. Since the
series Pr2' ~as t0 be convergent for |z| <1, the roots of the polynomial in the

numerator of the fraction in (4) must coincide with the zeros of denominator, zk,in the circle
|z| < 1+ ¢> where S> 0 is an arbitrary small real number. After some manipulations (like

those in [3, 4]) we get from (4) the probability generating function F[z) in the form

r=1 **
z MepM('-*)_!

Computing the first derivative of the function (5) at point z = 1 enables us to obtain the
mean value of the process state at the end of any accumulation period in the steady-state mode
of operation. Thus,

Us). 201 Y|
2(M-AT) o ’

As in the steady-state operation mode the transition equation (1) can be written in the form
S =Z +X(r), the mean value of the number of elements remaining on the accumulation site
immediately after transport at the end of any accumulation period is given by

e(z)=e(s)-e{x {t))=E(S)-AT. (7
The expected consumption of time, co, spent by elements waiting onthe accumulation

site during an accumulation period of length T can be expressedinspecified time units
according to [3] as follows

o=E{zY +" T =[efs)-" \t. (8)
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For M> 2, we need to know the roots =zr,r=01—M —I, of the so-called
characteristic equation zM— =0 representing the relation, in which the denominator
of the fraction on the right side of (5) equals zero. The root z0O= 1 obviously satisfies the
characteristic equation. A method to find out the other roots is described in [3, 4], The method
is based on the numerical technique from [1], After computing the roots for various
combinations of the values of the accumulation process parameters M and p =AT/M , we

can approximate the expression "(I- zr) ' by an appropriate function f{M, p). A linear

approximation turns out to be accurate enough and rather simple to be used for optimisation
purposes. The resulting form of the approximation is given, for M >2 and p e (0,1), by

X (l-zr)-*»f{M,p)=a {M)p +a0(m)= (0.4045M - 0.6609)/? + 0.525M - 0.5114 (9)

r=1

Using this formula, the values of expectations (6), (7), and (8) explicitly depend on the
parameters A,T,M ofthe accumulation process even if M >2.

3.1. OPTIMISATION OF ACCUMULATION PERIOD

Optimisation criteria for determining an optimal length T* of the accumulation period
can reflect the costs associated with the accumulation process or the waiting time
consumption. The cost criterion uses the transportation cost per element, ¢, >0, the fixed
cost of the accumulation process per period, c2 > 0, and the waiting cost per element per unit
time, ¢3>0. Since the equilibrium equation AT =pM with the transportation capacity
utilisation p e (0,1) holds in the steady-state mode of operation, the expected cost per period
incurred to carry out the accumulation process, when the accumulation period is long T time
units, is given by C(T)=c, AT +c2 +c30j. The corresponding expected cost per element is
stated by

N{p)=£ ~ lac +-£% +£] M-(M-pM)2 pM /o
v

\ M > 2. (10)
AT pM A 2(M-pM)

The formulae (8), (6), and (9) have been used to obtain (10) for the case with the disposable
transportation capacity greater than one element, which is more likely to occur in practice.

Differentiating function N(p) and letting the thirst derivative equal zero yields the
equation pd4-2pl +[(Mc3- 21c,)/(2Malc})+ I1p2+ [(2Ac2)/(A70lcl)])/?- (Ac2)/(Malci)=0
with a{ written instead of a, (m) for short. A feasible solution p ', lying in the interval (0,l),
can be calculated using a proper numerical technique. Then the optimal length of the
accumulation period is givenby T” =p'M /A.

The waiting time criterion takes into account the expected time that an element,
remaining on the accumulation site after the end of the accumulation period, spends waiting
to be transported later. Using Little’s formula, it follows that the expected waiting time per
element is stated by the function
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The formulae (7), (6), and (9) have been used to obtain (11) for the transportation capacity
greater than one element. Letting the first derivative of the function W(p) equal zero leads to
the equation I/[2/I(I- pf] - M/(2A)+at(M)/A =0, where solution p" satisfying the
constraint 0 < p <1 is given by p" =1- "M - 2a, (Af). The expression within the radical
sign is positive for M >2 since a, (M )= 0.4045AT- 0.6609. The optimal length of the
accumulation period is then prescribed by the formula T' = (1-1j~M - 2a,(m))m 2 as it

follows from the relation T* =p 'M /T .

4. NONSTATIONARY ARRIVALS

If the arrival stream of elements is represented by a nonstationary Poisson arrival
process {x(t),t > 0}, then the arrival rate, i.e. the expected number of arrivals per unit time, is

not a constant. An intensity function X(t\ t> 0, describes arrival rates for particular time

instants t. As random variable X(t) is the number of arrivals up to time t, the expected
number of arrivals up to time t is given by the quantity M(t)= £[x(/)] = j*A(u)du,t >0. The

number of arrivals in the time interval (t,t+ ] is Poisson distributed. The probability of k
arrivals between times t and t+s is stated by
pk{t,s)=P{x(t+s)-x(t)= k}= [z.(f,8)]*/&! for any t,s> 0 and k = 0,1,2,..., where

L(t,s)= £ A(u)du, see e.g. [2], We will suppose that the intensity function is a periodic

function with period T>0. Then A(t+IT)=A.(t) for /=0,12,.. and ie[0,r]. The
disposable transportation capacity is also supposed to vary periodically with the same cycle
duration T. Periodicity in arrival rates and in transportation capacities justifies periodicity in
rules for time control of the accumulation process. Thus, we need to divide the accumulation
cycle T somehow into a proper number of accumulation periods with respect to a criterion of
interest chosen for optimisation purposes. The way we suggest provides an approximate
solution to the problem.

The starting step is to partition the cycle length T into disjoint subintervals that
correspond to particular arrival patterns. Let m >0 denote the number of subintervals

(bj_xbj\ splitting the interval (0,7'] to match arrival patterns. The border points of
subintervals are such that 0=hb0<b{<..<bmt<bm=T. A constant arrival rate Ij >0

relates to the /th subinterval, /e ./ ={l2,...,/n}, being determined as the average arrival
intensity on the y'th subinterval according to A.()dtJtj with tj=b]l-bH,jeJ.

Let M j be the disposable transportation capacity for every transport of elements within the

yth subinterval. As an approximation to the original nonstationary optimal time control
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problem, we can determine an optimal length Tj of the accumulation period autonomously
for each pair of parameters A,,M ® j e J, using the techniques for stationary accumulation
processes described before. Then we find a proper number kj ofaccumulation periods Tj to
match the length z, of theyth subinterval for each j e J so that kjTj * r.. The resulting

total number of accumulation periods per accumulation cycle is n =k{+k2+— kkm. The
corresponding duration of the accumulation cycle turns out to be T° = kjTj. We

compare this calculated length ofthe accumulation cycle with the required length T associated
with the periodicity in arrival rates, and after finding any difference, we have to modulate the
lengths of ti accumulation periods to hold the required duration T of the accumulation cycle.

4.1. COORDINATION OF ACCUMULATION PERIODS WITH CYCLE LENGTH

Let us suppose that we have n accumulation periods with lengths T j , T j j that
form an accumulation cycle, whose calculated duration is T°® = ]Tj . Let AT® =T~T°

denote the difference between a required cycle duration T and the calculated duration T°. To
refer to accumulation periods Tj, ie |l =il2,..,«}, we use the term stage for short. The

function a: | —J defined by a(i)=min|/ e J :'J'j k, >/j,ie |, can be used to specify the

arrival pattern related to each stage within the accumulation cycle. Recall that J = {l,2

is the set of subscripts denoting arrival patterns and kl is the number of accumulation periods
for the /th arrival pattern, /e J, in each accumulation cycle. The duration of the /'th stage is
then given by the equality Tj = TjU), ie 7. The equalities Aj = Aa{i), Mj = Ma(i), pj =p'e)
specify the respective arrival rate, transportation capacity and utilisation of the transportation
capacity for any stage i e / in the accumulation cycle. If the difference ATO0 equals zero, then
no recalculation of the stage lengths Tj,i e I, is made implying that the change ATj of the

stage length is equal to zero for each stage ie | . In the case of a positive difference we have
to enlarge the lengths of stages, whilst we must shorten the lengths of stages in the case ofa
negative difference.

Anyway, we need to determine proper values of the stage length changes ATj, so that

the new lengths of stages, Tj =Tj +ATj,iel , will satisfy the required duration T of the
accumulation cycle, i.e. J'j T,0=T . Each stage can have changed its duration in such extent

only, that the new stage length will not violate the stabilisation condition for the respective
autonomous stationary accumulation process, i.e. pj =A°Tj/Mj <1, iel. Then the
expected number of elements arriving per accumulation cycle is less than the disposable

transportation capacity per cycle, i.e. ~ A(t)dt < (Mj , which ensures the stabilisation of

the original nonstationary accumulation process into the steady-state mode of operation
provided that there exists a periodicity in the process parameters represented by arrival rates,
transportation capacities and lengths of accumulation periods.
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If it is not possible to find such changes AT)0,/si, in the lengths of stage; that all
stabilisation conditions are satisfied, a new partition of the accumulation cycle 7 into its
subintervals .] with a modified number m of subintervals should be tried. Tlis return

to the starting step of the procedure for the time control optimisation of a nonstatioiary (but
periodic) accumulation process brings a new setting of the process parameters. It miy enable

one to obtain feasible lengths 7)° of accumulation periods within the accumulatioi cycle T
with a modified number n of periods.

In general, there are several feasible solutions when proper changes A7j° of the lengths
of accumulation periods are looked for. To select the only one, an optimal cocrdination
problem can be formulated using a suitable optimisation criterion. Having new, recalculated
lengths 7)° of accumulation periods as close to the original, calculated lengths 7)° a; possible

seems to be a natural requirement. It means that we need to minimise the mem square
deviation between the new and old stage lengths for a given number n of stags in the
accumulation cycle. The corresponding optimisation problem is stated as follows:

minimise f (a 7)°, AT)0,..., A7)0)=* _( aT)0)2 (12)
subject to a
(AT)° = ATO (13)
=1
AOT0+ATj)< M, iel ={1.2,.,«} (14)

Recall that ATO=T -T° denotes the difference between the required cycle duration T and
the calculated duration T°. The sum of new stage lengths 7)° = 7)° + A7)° will therefore form

the required cycle duration as prescribed by the constraint (13). Each new stage length must
satisfy the stabilisation condition for the related arrival rate and transportation capacity as
required by the set of constraints (14). Since the number of stages is a fixed finite number n,
the objective function (12) representing the total square deviation attains its minimum at the

same points as does the mean square deviation ,(@7)°)2. Note that the optimisation

problem (12), (13) without the stabilisation constraints (14) has the solution in the form
A7) =AT®/n, isl, as followssolving the corresponding unconstrained  minimisation

problemwith the objective function t(a7)®)2+y [IT" (A7j° -AT1  wherey is aLagrange

multiplier. Thus, splitting the difference ATO0 unifonnly among the changes A7j°,ie/, is

optimal in such a case. This fact can encourage one to try a bit different objective function so
that the constraints (13), (14) are accompanied by the objective

minimise g(a7)°,AT2,...,AT°)= M(w,A7j° - w.+HA7j0,)2 + (W, A7;,0- wWIA7I")2 (15)
H
with weights wf € (0,1], i s |, used to assess the importance of each stage length change. The

function G, where all weights equal 1, represents in some sense the variance of the changes.
The problem (15) with unit weights and no restrictions leads to equal changes, which means
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that if the restriction (13) is imposed on the problem then AT® = AT1n, ie |. The function
F with weights, in the form Fj =3'" fw,(A7))2 or F2= (w,A71)2, and the function G

might alternate for each other in the optimisation problem (15), (13), (14).

Should operational conditions prefer having accumulation intervals as equal as possible,
the objective function representing in some sense the variance of stage lengths can be
employed. The corresponding optimisation problem with weights would consist of the
constraints (13), (14) and the objective

min h @T°,...,AT®)=  @)°+ w,AT,°-T°+ WMAT°t {t,+WnAT,>-T°- w,AT®)2 (16)
H

A solution to the problem (16), (13), (14) would approach regular transports of elements with
regularity modified by an impact of weights.
There are various ways how to select the values of coefficients w,,/ e/, if we want

them to differ from 1 (except for few values). For instance, we can let w, = T°/T °m,ie |, or

w,=a/pLx ""e/’ where T<L =max{/j°,ie/} and = max{/?,0,/e/}. In case the
problem (12), (13), (14) is considered, with the objective function F replaced by its weighted
version Fj or F2, it holds that the higher the stage weight, the higher the tendency of the stage
length to stay unchanged. In general, we can experiment with the coefficients w, not only
having their values in the interval (0,lj. Then we can, e.g., let w. =c3a", ie 7, where c3a"

is the waiting cost per element per unit time associated with the a(/)th arrival pattern.

The optimisation problem with the objective (12) or (15) or (16) and the constraints (13)
and (14) is a mathematical programming problem. To solve it, some available techniques can
be used as, for example, Rosen’s gradient projection methods with linear constraints or
W olfe’s quadratic method.

A solution to the optimal coordination problem mentioned above prescribes the changes
ATO of the original stage lengths T° to obtain such new lengths T°® =T° +ATO0,ie |, that
the sum of these recalculated lengths of stages satisfies the required duration T of the
accumulation cycle. If the change ATO is positive, then the duration of the /th accumulation

period within the accumulation cycle will be prolonged. If the change ATO is negative, then

the duration of the /th accumulation period will be shortened. In case no feasible solution
exists, a new iteration of the whole procedure for determining proper lengths of accumulation
periods in a nonstationary accumulation process with periodic operational conditions must be
made.
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