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TIM E CONTROL  
OF A NO NSTATIO NARY DISCRETE ACCUM ULATION PROCESS

An accumulation process o f transport elements with nonstationarity in arrival patterns is studied in 
the paper. Arrival rates vary periodically in time within a cycle. A method to divide the cycle into 
accumulation periods is suggested with respect to some optimisation criteria.

KONTRO LA CZASU  
W  NIESTACJO NARNYCH  DYSKRETNYCH PROCESACH AKUMULACJI

Referat rozpatruje proces akumulacji elementów transporty z brakiem stacjonamości wzorców 
przyjazdów. Przyjazdy okresowo ulegają zmianie w sposób cykliczny. Zasugerowano metodę podzielenia 
cyklu na okresy akumulacji w odniesieniu do pewnych kryteriów optymalizacji.

1. INTRODUCTION

W hen transporting elem ents such as containers, a naturally convenient way is to gather 
them  first and then transport in groups. Rules to control accum ulation process o f transport 
elements are expected to economise transportation. The rules usually form a compromise 
between transporting frequently w ith a poorly utilised capacity o f  transport means and letting 
elem ents waiting relatively long to increase capacity utilisation. As elements arrive at an 
accum ulation site at random, the accum ulation process is a stochastic process. Supposing an 
arrival process w ith independent increments, the evolution o f  the accum ulation process can be 
represented by a discrete-tim e M arkov chain, where the process state is a discrete random  
variable. A tim e control problem  for the discrete accum ulation process is analysed in the 
paper. I f  a stationary Poisson process represents arrivals o f  transport elements to the place o f  
their accum ulation, an optimal duration o f  the accumulation period can be determined. Each 
tim e when the period o f  accum ulation is over, a group o f  elements not exceeding
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transportation capacity is sent to be transported. In the case o f  a nonstationary Poisson arrival 
stream  w here few distinct arrival patterns are periodically repeated in a cycle, a m ethod to 
obtain an approxim ate solution to the optim al time control problem  is designed.

2. DISCRETE ACCUM ULATION PROCESS

The state o f  the accum ulation process at any tim e is the num ber o f  elements waiting on 
the accum ulation site. State values im portant for decision-m aking are those at the ends of 
accum ulation periods. Let t0, t l , t 2,... denote the ends o f  accum ulation periods, where time 

t0 = 0 is the beginning o f  the accum ulation process. Then the duration o f  the z'th accumulation 

period is given by 71 =  ti , z =  1,2,.... Let M , be the transportation capacity o f  transport 

means available at the end o f  the z'th period to carry elem ents away. Denoting by S, the state 

o f  the accum ulation process at the end o f  the z'th period ju st before starting the transport of 
elem ents, it is clear that the quantity Aj = min{.Sj, A7,} represents the portion o f  elements 

transported. Then the num ber o f  elements rem aining to w ait on the accum ulation site is 
represented by Z ( = S ' -  A{ =  S. — m in{Sl, M i } =  max{0, Sj -  ATI}. Let X : be a random 

variable representing the num ber o f  elements that arrive during the z'th accum ulation period. 
The behaviour o f  the discrete accum ulation process can be described, for i =  0,1,2,..., by the 
follow ing transition equation

S M = S t -  A, + X M =  S ' -  min{S,. ,M ,}+  X M = Z, + X M = m ax{0,S, -  M , }+ X M (1)

3. STATIONARY ARRIVALS

If  a stationary Poisson process {x{t),t > 0}, where X{ t )  is the number o f  arrivals up to 
tim e t, represents the arrival stream o f  elements and the transportation capacity available at 
the end o f  any accum ulation period is M  > 0 elements, then the lengths 71 o f  accumulation 

periods are equal and each o f  them  is therefore the duration T  o f  the accum ulation cycle, i.e. 
71 = T , i  =  1,2,.... The num ber o f  elements that arrive during the accum ulation period T  is

Poisson distributed. Hence, n k = p {x (t )=  k }=  e~AT (AT f  / k \ , T  > 0, A: = 0,1,2,..., where the 

param eter A > 0 is the arrival rate o f  the process. In case the period length T  > 0 satisfies 
the stabilisation condition

the accum ulation process eventually reaches the steady-state m ode o f  operation when the 

lim its p k = l i m ,^  P {S' = k), k  =  0,1,2,..., exist such that p k > 0 ,V&, and Pk = 1  (the

p roo f based on the use o f  em bedded discrete-tim e M arkov chains is given in [3]). The limiting 
probability distribution {pk, k  =  0 ,1,2 ,...} can be obtained as the solution to the set of 

equations
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P 0 = { p 0 + P i + -  + P M) x 0 (3)

Pk = {P o + P \ + . : + P Mk  +PM+\*k-\ + - + / W * o .  *  = 1,2,...

together with the condition * p k = 1. The probability generating functions F [z )  for 

process state probabilities and cb(z) for arrival probabilities will be used to solve the system

(3).
M ultiplying the Ath equation (k  = 0,1,...) in (3) by the corresponding power zk and 

summ ing the modified equations on k, we get (see e.g. [3])

® ( z ) f ( z “ - z ' K  i V - z ' k

f ( z ) j  r » - - ( z )  - A « » . ,  r n

w ith the notation F ( z )  = ^ ' _ up rz r and <J>(z) = ^  ^ n rz r = where |z| <1. Since the

series Pr2 ' ^as t0  be convergent for |z| < 1 , the roots o f  the polynomial in the 

num erator o f  the fraction in (4) m ust coincide w ith the zeros o f  denom inator, z k, in the circle 

|z| < 1 + ¿>, where S >  0 is an arbitrary small real number. A fter some manipulations (like 

those in [3, 4]) we get from (4) the probability generating function F [z )  in the form

___________ r= 1 * "

z Me pM ( '-*)_!

Com puting the first derivative o f  the function (5) at point z = 1 enables us to obtain the 
m ean value o f  the process state at the end o f  any accum ulation period in the steady-state m ode 
o f  operation. Thus,

U s ) - 2(1 / ' )  |Y,|
r  M > _ 2  

2( M - A T ) ’r=l

As in the steady-state operation m ode the transition equation (1) can be written in the form 
S  = Z  + X ( r ) , the m ean value o f  the num ber o f  elements rem aining on the accumulation site 
im m ediately after transport at the end o f  any accum ulation period is given by

e (z ) = e (s ) - e {x {t ) )= E ( S ) - A T .  (7)

The expected consumption o f  time, co, spent by elements waiting on the accumulation
site during an accum ulation period o f  length T  can be expressed in specified time units
according to [3] as follows

co = E{z Y  + ̂ T  = [ e {s ) - ^ \ t . (8)
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For M >  2 , we need to know the roots z r , r  =  0,1,—, M  — l,  o f  the so-called 

characteristic equation z M — = 0  representing the relation, in which the denominator
o f  the fraction on the right side o f  (5) equals zero. The root z 0 = 1 obviously satisfies the 
characteristic equation. A m ethod to find out the other roots is described in [3, 4], The method 
is based on the num erical technique from  [1], A fter com puting the roots for various 
com binations o f  the values o f  the accum ulation process param eters M  and p  = AT/ M , we

can approxim ate the expression ' (l -  z r ) ' by an appropriate function f { M ,  p ) .  A linear

approxim ation turns out to be accurate enough and rather sim ple to be used for optimisation 
purposes. The resulting form  o f  the approxim ation is given, for M  > 2 and p  e  (0 ,l) ,  by

X ( l - z r )-‘ » f { M ,  p )  = a, { M ) p  + a 0 ( m ) =  (0 .4 0 4 5 M - 0.6609)/? + 0 .5 2 5 M -  0.5114 (9)
r = l

U sing this form ula, the values o f  expectations (6 ), (7), and (8) explicitly depend on the 
param eters A , T , M  o f  the accum ulation process even i f  M  > 2 .

3.1. OPTIMISATION OF ACCUM ULATION PERIOD

O ptim isation criteria for determ ining an optim al length T* o f  the accum ulation period 
can reflect the costs associated w ith the accum ulation process or the w aiting time 
consum ption. The cost criterion uses the transportation cost per elem ent, c, > 0 ,  the fixed 
cost o f  the accum ulation process per period, c 2 > 0 , and the w aiting cost per elem ent per unit 

time, c 3 > 0 .  Since the equilibrium  equation AT = p M  w ith the transportation capacity 

utilisation p  e  (0 , l )  holds in the steady-state m ode o f  operation, the expected cost per period 
incurred to carry out the accum ulation process, w hen the accum ulation period is long T  time 
units, is given by C (T ) = c, AT + c 2 + c 3oj . The corresponding expected cost per elem ent is 

stated by

N {p)  = £ ^ l a  c  + -£ * _  + £ l
v '  A T p M  A

M - ( M - p M )2 p M  / \ / \

2 ( M - p M )
, M >  2. (10)

The form ulae (8), (6 ), and (9) have been used to obtain (10) for the case with the disposable 
transportation capacity greater than one elem ent, w hich is m ore likely to occur in practice.

D ifferentiating function N ( p )  and letting the thirst derivative equal zero yields the 

equation p 4 - 2  p l + [(M c3 -  21c, )/(2M alc})+  l ] p 2 + [(2Ac2 )/(A7o1c 1 )]/? -  (Ac2 ) /(M a lc i ) = 0 

w ith a { w ritten instead o f  a, ( m )  for short. A feasible solution p ' , lying in the interval (0 ,l) , 
can be calculated using a proper num erical technique. Then the optim al length o f  the 
accum ulation period is given by T ’ = p '  M / A .

The w aiting tim e criterion takes into account the expected tim e that an element, 
rem aining on the accum ulation site after the end o f  the accum ulation period, spends waiting 
to be transported later. Using Little’s formula, it follows that the expected waiting tim e per 
elem ent is stated by the function
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The form ulae (7), (6 ), and (9) have been used to obtain (11) for the transportation capacity 
greater than one element. Letting the first derivative o f  the function W ( p )  equal zero leads to

the equation l / [ 2 / l ( l - p f  ] -  M / ( 2 A ) + a t ( M ) /A  =  0 , where solution p"  satisfying the 

constraint 0 < p  < 1 is given by p"  =  1 - 1/ ^ M  -  2a, (A f) . The expression within the radical 

sign is positive for M  > 2  since a, ( M  ) = 0.4045 AT -  0 .6609. The optimal length of the 

accum ulation period is then prescribed by the form ula T '  = (l -1 j ^ M  -  2a, ( m ) ) m ¡2 as it 

follows from  the relation T ‘ = p ’M / T .

4. N ONSTATIONARY ARRIVALS

If  the arrival stream o f  elements is represented by a nonstationary Poisson arrival 
process {x ( t ) , t  > 0}, then the arrival rate, i.e. the expected num ber o f  arrivals per unit time, is 
not a constant. A n intensity function X ( t \  t >  0, describes arrival rates for particular tim e 

instants t. As random  variable X ( t ) is the num ber o f  arrivals up to time t, the expected

num ber o f  arrivals up to tim e t is given by the quantity M (t ) =  £ [x ( /) ]  = j^A (u)du ,t >0. The

num ber o f  arrivals in the time interval (t , t  + ,v] is Poisson distributed. The probability o f  k  
arrivals between tim es t and t + s  is stated by  

p k{ t , s )= P{x(t  + s ) - x ( t ) =  k } =  [z.(f,s)]*/&! for any t , s >  0 and k  = 0,1,2,..., where

L( t , s )=  £  A(u)du  , see e.g. [2], W e will suppose that the intensity function is a periodic

function w ith period T > 0 .  Then A(t + IT ) =  A.(t) for / = 0,1,2,... and ie [ 0 , r ] .  The 
disposable transportation capacity is also supposed to vary periodically with the same cycle 
duration T. Periodicity in arrival rates and in transportation capacities justifies periodicity in 
rules for tim e control o f  the accum ulation process. Thus, we need to divide the accumulation 
cycle T  som ehow into a proper num ber o f  accum ulation periods with respect to a criterion o f  
interest chosen for optim isation purposes. The w ay we suggest provides an approximate 
solution to the problem.

The starting step is to partition the cycle length T  into disjoint subintervals that 
correspond to particular arrival patterns. Let m  > 0 denote the num ber o f  subintervals 
(bj_x,b j \  splitting the interval (0,7’] to m atch arrival patterns. The border points o f  

subintervals are such that 0 =  b0 < b{ < ... < bm_t < b m = T . A constant arrival rate l j  > 0 

relates to  the /th  subinterval, /  e ./ = {l,2 ,...,/n} , being determined as the average arrival 

intensity on the y'th subinterval according to A.(t)dt J t j  with t  j = b] - b H , j  e J .

Let M  j be the disposable transportation capacity for every transport o f  elements within the 

yth subinterval. As an approxim ation to the original nonstationary optimal time control
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problem , we can determ ine an optim al length Tj  o f  the accum ulation period autonomously

for each pair o f  param eters A , , M  ■, j  e J , using the techniques for stationary accumulation

processes described before. Then we find a proper num ber kj  o f  accum ulation periods Tj  to

m atch the length z ,  o f  th ey th  subinterval for each j  e  J  so that k jT j  *  r ..  The resulting

total num ber o f  accum ulation periods per accum ulation cycle is n = k { + k 2 + — I- k m. The

corresponding duration o f  the accum ulation cycle turns out to be T°  =  k j T j . We

com pare this calculated length o f  the accum ulation cycle w ith the required length T  associated 
w ith the periodicity in arrival rates, and after finding any difference, we have to modulate the 
lengths o f  ti accum ulation periods to hold the required duration T  o f  the accum ulation cycle.

4.1. COORDINATION OF ACCUMULATION PERIODS WITH CYCLE LENGTH

Let us suppose that we have n accum ulation periods with lengths T j , T j j that

form  an accum ulation cycle, whose calculated duration is T° = ]T j  . Let AT° = T ~ T °

denote the difference between a required cycle duration T  and the calculated duration T ° . To 
refer to accum ulation periods T j , i e  I  = ¡1,2 ,...,«}, we use the term  stage for short. The

function a :  I  —> J  defined by a(i)=  m in |/ e  J  : ' J ' j  k , > / j, i e  I ,  can be used to specify the

arrival pattern related to each stage w ithin the accum ulation cycle. Recall that J  =  {l,2 

is the set o f  subscripts denoting arrival patterns and k l is the num ber o f  accum ulation periods 

for the /th arrival pattern, / e  J , in each accum ulation cycle. The duration o f  the /'th stage is 
then given by the equality T j  = TjU), i e  7 . The equalities Aj = Aa{i), M j  = M a(i), p j  = p'a{i) 

specify the respective arrival rate, transportation capacity and utilisation o f  the transportation 
capacity for any stage i e  /  in the accum ulation cycle. I f  the difference A T 0 equals zero, then 
no recalculation o f  the stage lengths T j , i  e  I ,  is made im plying that the change A T j  o f  the 

stage length is equal to zero for each stage i e  I . In the case o f  a positive difference we have 
to enlarge the lengths o f  stages, w hilst we m ust shorten the lengths o f  stages in the case o f a 
negative difference.

Anyway, w e need to  determ ine proper values o f  the stage length changes A T j , so that 

the new  lengths o f  stages, T j  = T j  +  A T j , i e  I , w ill satisfy the required duration T  o f  the 

accum ulation cycle, i.e. J ' j  T,0 = T  . Each stage can have changed its duration in such extent 

only, that the new  stage length will not violate the stabilisation condition for the respective 

autonom ous stationary accum ulation process, i.e. p j  = A ° T j / M j  < 1 ,  i e l .  Then the 
expected num ber o f  elem ents arriving per accum ulation cycle is less than the disposable 

transportation capacity per cycle, i.e. ^  A(t)dt < (M j  , which ensures the stabilisation of

the original nonstationary accum ulation process into the steady-state m ode o f  operation 
provided that there exists a periodicity in the process param eters represented by arrival rates, 
transportation capacities and lengths o f  accum ulation periods.
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I f  it is not possible to find such changes AT)0,/ s i ,  in the lengths o f  stage; that all 
stabilisation conditions are satisfied, a new partition o f  the accum ulation cycle 7 into its 

subintervals . ] with a m odified num ber m  o f  subintervals should be tried. Tlis return

to the starting step o f  the procedure for the tim e control optim isation o f  a nonstatioiary (but 
periodic) accum ulation process brings a new  setting o f  the process parameters. It miy enable 

one to obtain feasible lengths 7)° o f  accum ulation periods w ithin the accumulatioi cycle T  

w ith a  m odified num ber n o f  periods.
In general, there are several feasible solutions w hen proper changes A7j° o f  the lengths 

o f  accum ulation periods are looked for. To select the only one, an optimal cocrdination 
problem  can be form ulated using a suitable optim isation criterion. Having new, recalculated 

lengths 7)° o f  accum ulation periods as close to the original, calculated lengths 7)° a; possible 

seems to be a natural requirem ent. It means that we need to m inim ise the mem square 
deviation between the new  and old stage lengths for a given num ber n o f  stags in the 
accum ulation cycle. The corresponding optim isation problem  is stated as follows:

m inim ise f (a 7 ) ° ,  AT);0, . . . ,  A7),0)=  ^ ( a T)0 ) 2 (12)
/=i

subject to

¿ A 7 ) °  =  A T 0 (13)
1=1

A0(7j0 + A 7 j°)<  M f ,  i e l  = { 1,2,...,«} (14)

Recall that A T 0 = T  - T °  denotes the difference between the required cycle duration T  and 

the calculated duration T ° . The sum o f  new stage lengths 7)° = 7)° + A7)° will therefore form 

the required cycle duration as prescribed by the constraint (13). Each new stage length must 
satisfy the stabilisation condition for the related arrival rate and transportation capacity as 
required by the set o f  constraints (14). Since the num ber o f  stages is a fixed finite number n, 
the objective function ( 1 2 ) representing the total square deviation attains its minimum at the

same points as does the mean square deviation , (a 7)° )2 . Note that the optimisation

problem  (12), (13) w ithout the stabilisation constraints (14) has the solution in the form  
A7)° =  A T ° / n , i s l ,  as follows solving the corresponding unconstrained minimisation

problem  with the objective function t(a7) ° ) 2 + y  []T "  (A7j° - A T 11] w herey  is aLagrange

multiplier. Thus, splitting the difference A T 0 unifonnly am ong the changes A 7 j° ,ie /, is 

optim al in such a case. This fact can encourage one to try a bit different objective function so 
that the constraints (13), (14) are accom panied by the objective

m inim ise g (a7 )° , AT2° , . . . , A T ° ) =  ^ (w ,A 7 j°  -  w,.+1A7j0, )2 + (w„A7;0 -  w1A7’i")2 (15)
1=1

w ith weights wf € (0 ,l], i s l , used to assess the importance o f  each stage length change. The 
function G,  where all weights equal 1, represents in some sense the variance o f  the changes. 
The problem  (15) with unit weights and no restrictions leads to equal changes, which means
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that if  the restriction (13) is im posed on the problem  then A T°  = A T 1' / n ,  i e l . The function 

F  w ith weights, in the form Fj = ’J '"  f w,.(A7) ) 2 or F2 =  (w,A7l)2 , and the function G

m ight alternate for each other in the optim isation problem  (15), (13), (14).
Should operational conditions prefer having accum ulation intervals as equal as possible, 

the objective function representing in some sense the variance o f  stage lengths can be 
em ployed. The corresponding optim isation problem  with weights would consist o f the 
constraints (13), (14) and the objective

min h (a T ° , . . . , A T ° )=  (i7)°+ w ,AT,°-T°+i-  wM A T ° t {t„°+ wnAT„°- T ° -  w ,A T ° ) 2 (16)
1=1

A solution to the problem  (16), (13), (14) w ould approach regular transports o f  elements with 
regularity m odified by an im pact o f  weights.

There are various ways how to select the values o f  coefficients w , , / e  / ,  i f  we want

them  to differ from  1 (except for few  values). For instance, w e can let w, =  T° / T °m , i e  I ,  or 

w, = a / p L x  ’ ' e / ’ where T<L = max {/j° , i  e  /}  and = max{/?,0, / e /}.  In case the 
problem  (12), (13), (14) is considered, w ith the objective function F  replaced by  its weighted 
version Fj or F2, it holds that the higher the stage weight, the higher the tendency o f  the stage 

length to stay unchanged. In general, w e can experim ent with the coefficients w, not only 

having their values in the interval (0 ,lj. Then we can, e.g., let w,. =  c3a^ ,  i e  7 ,  where c3a^  

is the w aiting cost per elem ent per unit tim e associated w ith the a ( /) th  arrival pattern.
The optim isation problem  w ith the objective (12) or (15) o r (16) and the constraints (13) 

and (14) is a m athem atical program m ing problem . To solve it, some available techniques can 
be used as, for exam ple, R osen’s gradient projection m ethods w ith linear constraints or 
W olfe’s quadratic method.

A solution to the optim al coordination problem  m entioned above prescribes the changes 

A T .0 o f  the original stage lengths T° to obtain such new lengths T ° = T° + A T 0, i e  I ,  that 

the sum  o f these recalculated lengths o f  stages satisfies the required duration T  o f  the 
accum ulation cycle. I f  the change A T 0 is positive, then the duration o f  the /th accumulation 

period w ithin the accum ulation cycle will be prolonged. I f  the change A T 0 is negative, then 

the duration o f  the /th accum ulation period w ill be shortened. In case no feasible solution 
exists, a new  iteration o f  the whole procedure for determ ining proper lengths o f  accumulation 
periods in a nonstationary accum ulation process with periodic operational conditions m ust be 
made.
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