BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A., II.—Organic Chemistry

SEPTEMBER, 1939.

Laboratory experiments in organic chemistry. N. D. CHERONIS (J. Chem. Educ., 1939, **16**, 165— 170; cf. A., 1938, II, 122). L. S. T.

Colour and constitution of organic compounds from the viewpoint of modern physical theory. T. FÖRSTER (Z. Elektrochem., 1939, 45, 548-573).—A review. J. W. S.

Thermal decomposition of petroleum hydrocarbons into free radicals. B. L. EVERING (J. Amer. Chem. Soc., 1939, 61, 1400—1405).—The thermal decomp. of petroleum hydrocarbons in an apparatus essentially that of Rice *et al.* (A., 1932, 1108) gives free radicals, which are allowed to react with Pb mirrors, freshly formed by condensation of Pb vapour. The concn. of free radicals formed was determined by determination of Pb in the Pb alkyl. In the pressure range 0.25—6.0 mm. the concn. of free radicals decreases with pressure but is not affected by the mol. wt. of the hydrocarbon which is decomposed, by dilution of the hydrocarbon stream with N₂, or by increasing the surface to vol. ratio.

W. R. A.

Halogenation in reactive solvents. II. Addition of halogen and acetoxyl to ethylene. F. C. WEBER, G. F. HENNION, and R. R. VOGT (J. Amer. Chem. Soc., 1939, **61**, 1457—1458; cf. A., 1938, II, 388).—Chlorination of C_2H_4 in AcOH or MeOAc, using low concess. of Cl_2 , gives $C_2H_4Cl_2$ and 29.6— 44.7% of $CH_2Cl\cdot CH_2 \cdot OAc$ (I). In Ac₂O the yield of (I) is 16.9% at $10-15^\circ$ and 87.1% at $40-43^\circ$. Byproducts are $(CH_2 \cdot OAc)_2$ (in AcOH), AcCl (in Ac₂O), or $CCl_3 \cdot CH_2 \cdot OAc + MeCl$ (in MeOAc). R. S. C.

Reaction of propylene with isoolefines in the presence of sulphuric acid. V. N. IPATIEV, H. PINES, and B. S. FRIEDMAN (J. Amer. Chem. Soc., 1939, 61, 1825—1826).—C₃H₆ in 96% H₂SO₄ at 0° or 25°, with or without CuSO₄ or HgSO₄, gives Pr^βHSO₄ and only traces of hydrocarbons. However, passage of mixed C₃H₆ and CH₂:CMe₂ into H₂SO₄ gives 8—35% of hydrocarbons utilising C₃H₆, the exact amount depending on the concn. of the acid, temp., and mode of addition of the gas; the products are shown by hydrogenation, followed by fractionation and identification by b.p., n, d, and Raman spectra, to be CH₂:CH·CH₂Bu^γ and CH₂:CMeBu^γ (from 2Pr^βHSO₄), and a βγ-dimethylpentene (formed by isomerisation of the other products); the H₂SO₄ contains Pr^βHSO₄, but no Bu^γHSO₄. C₃H₆ and isopentenes give, when mixed, similarly 16% of C₈H₁₆ and 17% of C₁₃H₂₆, but admixture with n-butenes is ineffective. Passage of the olefine mixture into Pr^βHSO₄ is more effective than into H₂SO₄.

Stereoisomerism of unsaturated compounds. IV. Identification of *cis-trans* isomerides by rate studies. W. G. YOUNG, D. PRESSMAN, and C. D. CORYELL. V. Mechanism for the formation of butenes from $\beta\gamma$ -dibromobutanes by the action of iodide ion. S. WINSTEIN, D. PRESSMAN, and W. G. YOUNG (J. Amer. Chem. Soc., 1939, 61, 1640—1644, 1645—1647; cf. A., 1937, II, 132).— IV. The kinetics of the reaction CHRBr-CHR'Br+ $3I^- \rightarrow$ CHR:CHR' + $I_3^- + 2Br^-$ at ~59° and ~75° are reported and discussed in detail for the dibromides from *cis-* and *trans-*(:CHMe)₂, -CHMe:CHEt, -(:CHEt)₂, and -(:CHPr[°])₂, maleic and fumaric acids. In all cases in which R = or is similar to R', the *trans-*derivative reacts faster than the *cis* and has a smaller heat of activation.

V. Elimination of Br from $(CHMeBr)_2$ (I) by I in aq. PrOH at ~95° or $O(CH_2 \cdot CH_2 \cdot OH)_2$ at ~200° is largely trans. Thus, meso-(I) gives 96%-pure trans- C_4H_8 , and dl-(I) gives 91%-pure cis- C_4H_8 ; the nature of the C_4H_8 is proved by conversion into the dibromide and measurement of its rate of reaction with I. Details of the reaction mechanism are discussed.

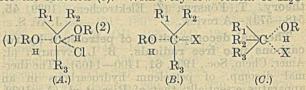
R. S. C.

Addition of hydrogen halides to cis- and trans- Δ^{β} -pentene. M. S. KHARASCH, C. WALLING, and F. R. MAYO (J. Amer. Chem. Soc., 1939, 61, 1559-1564).-trans- (prepared from CHMePr^aBr or CHEt₂Br), $n_{\rm D}^{20}$ 1.3797, and $cis - \Delta^{\beta}$ -pentene (prepared from CMe:CEt by H2-Pd-BaSO4 in MeOH at 0°), $n_{\rm p}^{20}$ 1.3823, add HBr alone, in AcOH, or in presence of NHPh₂, PhSH, C₆H₄Me·SH, FeBr₃, ascaridole, or Bz_2O_2 to give a 1:1 mixture of CHMePr^aBr and CHEt₂Br. A similar mixture of chlorides is obtained by HCl in AcOH or in presence of FeCl₃. This mode of addition is due to the nearly equal activation energies of the two reactions, caused by the similarity of the Me and Et substituents on the C.C. The halide mixtures are analysed by n and formation of the anilides (mixed m.p. curves given). CH:CEt, b.p. 10-20°, is obtained in 64% yield from C_2H_2 , Na, and Et_2SO_4 in liquid NH₃, and is converted into CMe:CEt by treatment in Et₂O first with MgEtBr and then with Me.SO4. R. S. C.

Conjugated hexadienes. C. PRÉVOST (Compt. rend., 1939, 208, 1589—1591).—Propylvinyl- (I) and ethylpropenyl-carbinol when heated with Al_2O_3 at 360° or NaHSO₄ at 170° give mixtures of hexa- $\Delta^{a\delta}$ -diene (II), hexa- $\Delta^{a\gamma}$ -diene (III), and hexa- $\Delta^{\beta\delta}$ -diene (IV). In each case a trace to 2% of (II) is formed. When (I) is heated with NaHSO₄, mainly (III) (85%) is formed, although the total yield is low (45%). In the other reactions 83—94% of (IV) is formed. When (IV) is heated with Al₂O₃ at 360°,

some (III) is formed; at $450-480^{\circ}$, (III) (15%), (II) (20%), and penta- $\Delta^{a\gamma}$ -diene (8%) are formed. J. L. D.

Substituted acetylenes and their derivatives. XXXII. Halogenation in reactive solvents. III. Chlorination of vinylacetylene in methanol. A. A. BAUM, R. R. VOGT, and G. F. HENNION. XXXIII and IV. Chlorination of Δ^{a} -hexinene in reactive solvents. R. O. NORRIS, R. R. VOGT, and G. F. HENNION (J. Amer. Chem. Soc., 1939, 61, 1458—1460, 1460—1461; cf. A., 1939, II, 197).— XXXII. Passage of CH₂:CH-C;CH (I) into MeOH at 30° and of Cl₂ over the surface so that only a slight excess of Cl₂ is present causes the following reactions: (I) $\rightarrow \alpha$ -chloro- β -methoxy- $\Delta^{a\gamma}$ -butadiene (II) (10%), b.p. 57:4—57:6°/48 mm. \rightarrow


CH₂:CH·C(OMe)₂·CHCl₂ \rightarrow (+HCl) ααδ-trichloro-ββdimethoxybutane (III) (20%), b.p. 103°/3 mm.; (II) \rightarrow CH₂:CH·CCl(OMe)·CHCl₂ \rightarrow MeCl +

CH₂:CH·CÕ·CHCl₂ $\rightarrow \alpha \alpha \delta$ -trichlorobutan-2-one (IV) (8%), b.p. 81·5—82·5°/18 mm. Only (II), (III), (IV), and MeCl were isolated. (IV) does not give CO: reactions and gives the haloform reaction slowly. (III) is not readily hydrolysed, but hot AcOH containing a little H₂O and H₂SO₄ produces MeOAc. *n* and *d* of the products are given.

XXXIII. Passage of Cl₂ over CH;CBu^a in H₂O at $45\pm5^{\circ}$ gives trans- $\alpha\beta$ -dichloro- Δ^{a} -n-hexene (V) (20%), b.p. 55—57°/25 mm., $\alpha\alpha\beta$ -trichloro-n-hexane (VI) (20%), b.p. 90—93°/10 mm., $\alpha\alpha\beta\beta$ -tetrachloro-nhexane (VII) (28%), b.p. 108—110°/10 mm., and CHCl₂ Bu^a ketone (VIII) (20%), b.p. 63—65°/11 mm. In AcOH cis- $\alpha\beta$ -dichloro- Δ^{a} -n-hexene (IX) (23%), b.p. 80—82°/25 mm., (VI) (18%), (VII) (7%), (VIII) (34%), and AcCl (20%) [produced with (VIII) by fission of OAc·CBu^eCl·CHCl₂] are formed. In Ac₂O (IX) (5%), (VI) (12%), (VII) (26%), (VIII) (43%), and AcCl (100%) (produced by fission of the primary additive product, Ac₂O→CBu^a:CH→Cl₂) are formed. No oxygenated products are obtained in Bu^oOH or MeOAc. In Bu^oOH some Bu^oOCl must be formed to act as source of HCl, the products being (V) (102%) and (VI) (23%). In MeOAc the products are (IX) (35%), (I) (7%), (VI) (19%), (VII) (28%), and $\alpha\alpha\alpha\beta\beta$ -pentachloro-n-hexane (48%), b.p. 129—131°/10 mm. The factors influencing production of (V) and/or (IX) are obscure. The structures of (V) and (IX) are determined by dipole moments, which are 0.57 and 1.993 × 10⁻¹⁸ e.s.u., respectively. n and d of the products are given. R. S. C.

Solvolysis of tert.-butyl chloride. Solvolytic reactions and the Walden inversion. S. WIN-STEIN (J. Amer. Chem. Soc., 1939, 61, 1635—1640).— Ingold's S_N 1 mechanism for the reaction, RHal + R'OH \rightarrow ROR' + HHal, is held to be inherently improbable, because, inter alia, the halogen ion split off would not protect the R⁺ ion sufficiently to force reaction to occur at the back of the C. The solvent (H₂O) is considered to play an essential part in such reactions, the mechanism being : (a) H₂O + \rightarrow C·X \rightarrow H₂O-C \leq + X⁻; (b) \rightarrow C·X + OH₂ \rightarrow C-OH₂ + X⁻; (c) H₂O + \rightarrow C·OH₂ \rightarrow H₂O-C \leq + OH₂; (d) \rightarrow C-OH₂ \rightarrow \rightarrow C·OH + H⁺; (e) H₂O-C \leq \rightarrow OH·C \leq + H⁺.

Reaction (a) involves reversal of configuration, whereas (b) involves its retention. (c) is racemisation. The rates and products of hydrolysis of Bu^γCl in aq. COMe₂ and aq. dioxan and of its alcoholysis (MeOH, EtOH) are accounted for by equations, based on fugacities, involving either 2 or 3 solvent mols. (cf. Olson et al., A., 1938, I, 86; Bateman et al., A., 1938, II, 304). Reaction is thus essentially multimol. (cf. Hammett et al., A., 1938, II, 86, 87), the usual transition state being (A); solvent mol. (1) finds its place by attack away from the Cl; solvent mol. (2) becomes attached because of the tendency to form H-Cl linkings. Removal of mol. (2) results in inversion, and removal of mol. (1) results in retention of configuration. Formation of (A) accounts for the reaction (c). With very low conen. of H₂O

in, e.g., $COMe_2$, reaction becomes bimol., the transition states for inversion and retention of configuration being (B) and (C), respectively. Other first-order reactions are briefly discussed from a similar viewpoint. Solvolysis of CHPh₂Cl and CHPhMeCl is similar to that of Bu^{γ}Cl. R.S.C.

Peroxide effect in the addition of reagents to unsaturated compounds. XX. Addition of hydrogen bromide to Δ^{β} -butinene and β -bromo- Δ^{β} -butene. C. WALLING, M. S. KHARASCH, and F. R. MAYO (J. Amer. Chem. Soc., 1939, 61, 1711-1713).-Abnormal addition to a non-terminal ethylenic linking is achieved by unsymmetrical distribution around it. (:CMe)₂ (prep. modified), b.p. 27-0— $27\cdot4^{\circ}$, m.p. -28° to -27° , adds HBr (no solvent) only normally to give CMeEtBr₂, whether peroxides or antioxidants are present. With ascaridole in C₅H₁₂ only abnormal addition occurs, giving (CHMeBr)₂. In AcOH presence of peroxides or antioxidants controls the results. The unsymmetrical loading occurs at the intermediate stage, CHMe:CMeBr. The effect of the presence and nature of the solvent is remarkable. R. S. C.

Treatment of neopentyl halides with mercury di-p-tolyl. F. C. WHITMORE and E. ROHRMANN (J. Amer. Chem. Soc., 1939, 61, 1591—1592).—CH₂Bu^yBr and Hg(C₆H₄Me-p)₂ at 200° (20 hr.) react only very slightly, giving ~5% of olefines, mainly CHMe:CMe₂. CH₂Bu^yI also reacts very slightly (7—9%), but gives only 0.7% of olefines. CH₂Bu^yI and HgCl₂ in Et₂O-N₂ give 23.5% of Hg dineopentyl, m.p. 31—33°, b.p. 67—69°/3 mm., and some HgCl·CH₂Bu^y. R. S. C.

Reaction of neopentyl chloride with sodium. F. C. WHITMORE, A. H. POPKIN, and J. R. PFISTER (J. Amer. Chem. Soc., 1939, **61**, 1616—1617).— CH₂Bu^{γ}Cl and Na (1 atom) give 36% of CMe₄, 25% of 1 : 1-dimethyl*cyclo*propane, b.p. 19·8°/740 mm., and 13% of (CH₂Bu^{γ})₂. R. S. C.

Preparation of neopentyl iodide and bromide. F. C. WHITMORE, E. L. WITTLE, and B. R. HARRIMAN (J. Amer. Chem. Soc., 1939, 61, 1585-1586).-- CH₂Bu^{γ}·OH, red P, and I give only 4—9% of iodide (cf. Ingold *et al.*, A., 1933, 262). CH₂Bu^{γ}Cl (prep. in 30% yield from CMe₄ by Cl₂), b.p. 83·3°/740 mm., readily gives the Mg derivative, which with HgCl₂ in Et₂O yields 90% of MgCl·CH₂Bu^{γ}, m.p. 117—118°. With aq. I–KI this gives 92% of CH₂Bu^{γ}I, b.p. 132·6°/ 734 mm., stable, and with Br gives 82% of CH₂Bu^{γ}Br, b.p. 105°/732 mm. No rearrangement occurs. MgCl·CH₂Bu^{γ} and I in Et₂O give CH₂Bu^{γ}I contaminated with the alcohol and hydrocarbons. CH₂Bu^{γ}I is much less reactive than Bu^{α}I. R. S. C.

Chemistry of vitamin-E. IX. Preparation of long-chain halides and ketones containing isopentane units. L. I. SMITH, H. E. UNGNADE, F. L. AUSTIN, W. W. PRICHARD, and J. W. OPIE (J. Org. Chem., 1939, 4, 334-341).—The complete hydrogen-ation of geraniol requires a temp. of 200° and initial pressure 2550 lb. Reaction occurs in two well-defined stages. Citronellol, from which the allylic double linking is absent, is much more readily reduced completely (125°/1900 lb.) whilst farnesol requires 200°/ 2700 lb. for complete reduction. The only methods suitable for the conversion of these unsaturated and saturated alcohols into their halides involve the use of dry H halide. For allylic alcohols good yields are obtained when the alcohol is saturated with dry HBr or HCl, preferably in the presence of a drying agent and kept in the cold, whilst the higher saturated alcohols give the best yields of halides (bromides) by treatment with a current of dry HBr at 150° without a solvent. Aq. HBr adds to the double linking of allylic alcohols so that dihalides are the main product. For the alkylation of CH. Ac. CO. Et with allylic halides dilution with light petroleum appears advantageous but with saturated halides the customary procedure may be followed. Hydrolysis of the esters to ketones is best effected with H₂O alone at 200° under high pressure of H_2 . OEt·[CH₂]₂·Cl does not react with CO(CH₂·CO₂Et)₂, which with OEt·[CH₂]₂·I or preferably OEt·[CH₂]₂·Br gives a modest yield of Et2 ethoxyethylacetonedicarboxylate (I), b.p. 108-114°/ 17 mm. Et_2 perhydrogeranylacetonedicarboxylate has b.p. 145–155°/0·1 mm. (I) and perhydrogeranyl bromide (II) give a non-uniform product. (II) is converted by successive treatments with Mg and OMe·CH₂Cl into α-methoxy-δθ-dimethylnonane, b.p. 94-94.5°/14.5 mm., obtained with greater difficulty but in somewhat better yield from tetrahydrogeranyl chloride; it is best cleaved by dry HBr to the C11 bromide. H. W.

Reaction steps in the conversion of $\beta\gamma$ -diacetoxybutane into $\beta\gamma$ -dibromobutane. S. WIN-STEIN and H. J. LUCAS (J. Amer. Chem. Soc., 1939, **61**, 1581—1584).—Conversion of (CHMe·OAc)₂ into (CHMeBr)₂ by aq. HBr is shown to proceed by way of OAc·CHMe·CHMe·OH (I), OAc·CHMe·CHMeBr (II), and OH·CHMe·CHMeBr, by (a) isolating these intermediates from the reaction mixture and (b) synthesising them and showing them to react with aq. HBr in the desired direction and at the correct speeds. The step (I) \rightarrow (II) is the only one at which inversion occurs, which explains why only one C is inverted during the whole series of changes. dl-threo-(III), b.p. 70·1°/13 mm., and dl-erythro- γ -Bromo- β - acetoxybutane (IV), b.p. $67 \cdot 2^{\circ}/13$ mm., are obtained from the corresponding bromohydrins by Ac₂O. dlerythro- γ -Acetoxybutan- β -ol (V), b.p. $79 \cdot 2^{\circ}/10$ mm., is obtained from the meso-glycol by Ac₂O and a little H₂O or, with an inversion, from trans- $\beta\gamma$ -epoxybutane (VI) by AcOH. meso-(CHMeBr)₂ is obtained from (IV) or (VI). dl-(CHMeBr)₂ is obtained from (III) or (V) (both sources). Reaction mechanisms are discussed. Conversion of (CHMe•OAc)₂ into (CHMeBr)₂ by HBr in AcOH involves much inversion, but the reaction mechanism is obscure. R. S. C.

Intramolecular reaction between neighbouring substituents of vinyl polymerides. P. J. FLORX (J. Amer. Chem. Soc., 1939, 61, 1518—1521).— Statistical analysis shows that when the X of polymerides, $[CH_2 \cdot CHX \cdot CH_2 \cdot CHX]_n$ (I), interact to form rings, 13.53% of the X become isolated; 86.47% is thus the theoretical limit of the reaction. If the polymeride is a random mixture of (I), $[CH_2 \cdot CHX \cdot CH_2 \cdot CH_2]_n$, and $[CHX \cdot CH_2 \cdot CHX]_n$ units, and if reaction of $\alpha\delta$ -substituents is impossible, 18.40% of the substituents become isolated.

R. S. C. Retention of configuration in the reaction of γ -bromobutan- β -ols with hydrogen bromide. S. WINSTEIN and H. J. LUCAS (J. Amer. Chem. Soc., 1939, 61, 1576—1581).—trans-, b.p. 53·5°/742 mm., and cis- $\beta\gamma$ -Epoxybutane (I), b.p. 59·7°/742 mm., give erythro- (II), b.p. 53·1°/13 mm. (3 : 5-dinitrobenzoate, m.p. 85°; α -naphthylurethane, m.p. 133°), and threo- γ -bromobutan- β -ol (III), b.p. 50·5°/10 mm. (3 : 5dinitrobenzoate, m.p. 109°; α -naphthylurethane, m.p. 103°), respectively. (III) is also obtained from cis- Δ^{β} -butene by NHBrAc. Aq. K₂CO₃ reconverts (III) into (I). 48% aq. HBr at 0° converts (II) and (III) into pure meso- and dl-(CHMeBr)₂, respectively. Reaction mechanisms to explain the retention of configuration are discussed. R. S. C.

Hydrogenation of a higher secondary alcohol by nickel catalysts containing manganese, zinc, or thorium. K. KINO (J. Soc. Chem. Ind. Japan, 1939, 42, 188B).—Hydrogenation (Ni) of the alcohol obtained by reducing stearone removes the OH slowly at 200°, rapidly at 250°. The reaction is accelerated by Th, but not by Zn or Mn. A. Li.

Catalytic dehydration of C_6-C_8 aliphatic alcohols. S. GOLDWASSER and H. S. TAYLOR (J. Amer. Chem. Soc., 1939, 61, 1751–1761).—When passed over Al₂O₃ (various samples give the same results) at 398°, n- C_6H_{13} ·OH (I) gives mainly Δ^a -n-hexene, CH₂:CMePr^a, and CHMe:CHPr^{β}; CHEt₂·CH₂·OH (II) gives mainly Δ^a - and Δ^{ν} -n-hexene, CHMe:CMeEt, CH₂:CEt₂, and CHEt:CMe₂; CHPr^a₂·OH (III) gives mainly Δ^{ν} -n-hexene, CH₂:CEtPr^a, and CHPr^a:CMe₂; CHMeBu^{β}·CH₂·OH (IV) gives mainly CHMe:CH·CHMeEt, CHPr^{β}:CMe₂, and CHMe:CMePr^{β}; CHPr^{β}₂·OH (V) gives mainly CHEt:CHPr^{β}, CHPr^{β}:CMe₂, and CHMe:CMePr^{β}; CHEtBu^{α}·CH₂·OH (VI) gives mainly CHBu^{α}:CMe₂, CHMe:CMeBu^{α}, CHEt:CMePr^{α}, and Δ^{ν} -n-octene. The numerous secondary decomp. products are identified, their origin as secondary products being proved by their formation in larger amounts with longer times of contact. Much tar is also formed, the amount

xIV (b)

increasing with the amount of alcohol recovered, i.e., with increasing rate of passage; it is formed in competition with the dehydration, showing that the alcohol is more strongly adsorbed than the olefines and flushes the latter off the surface. The ease of dehydration is (II)>(III)>(I)>(IV)>(V). This order is not connected with the no. of H attached to the C·OH and is unintelligible if dehydration is from a CH₂ next to the C·OH; moreover, it correlates exactly with the no. of other H available sterically. The primary products are precisely accounted for if elimination of H₂O gives a cyclopropane derivative as labile intermediate, all the expected products from fission of the ring being found; moreover, they accord with the view that the ease of removal of H is from $CH > CH_2 > Me$. ThO₂ gives similar results, but ringfission tends to occur more at one place. Cr₂O₃ casues also dehydrogenation, leading to aromatic products. The apparatus is a modification of that previously described (A., 1939, II, 305). R. S. C.

Spectrographic and chemical examination of some unsaturated alcohols and their dehydration I. β -Methylpentane- $\beta\delta$ -diol. products. DUPONT and (MLLE.) M. DARMON. II. Mesityl oxide and alcohol derivatives. G. DUPONT and (MLLE.) M. L. MENUT (Bull. Soc. chim., 1939, [v], 6, 1208-1214, 1215-1220).-I. Spectrographic examination and selective hydrogenation (NaNH2) are used to determine the constitution of the unsaturated products. OH·CMe2·CH2Ac is hydrogenated (Cu chromite) at $110-120^{\circ}$ to β -methylpentane- $\beta\delta$ diol, b.p. 192° (Raman spectra), which when distilled with NH₂Ph,HBr gives β -methyl- Δ^{α} -penten- δ -ol (I), b.p. 128-130°, a mixture (II), b.p. 75.5-76.5°, of cis- and trans- β -methyl- $\Delta^{\alpha\gamma}$ -pentadiene, and a little β -methyl- $\Delta^{\beta\delta}$ -pentadiene (cf. Diels et al., A., 1929, 819; Bacon *et al.*, A., 1937, II, 395). (II) is hydrogenated (Raney Ni or Pt) to a mixture of *cis*- and *trans*- δ -methyl- Δ^{β} -pentene. (II) · and CHMe:CH·CHO give 5-aldehydo-2: 4-dimethyl- Δ^1 cyclohexene, b.p. 90-91°/20 mm. (semicarbazone, m.p. 182°), which with COMe₂ gives an isomeride, b.p. 134-135°/15 mm., of ionone (Raman spectra examined). (I) is hydrogenated to β-methylpentanδ-ol (III), b.p. 128-130°.

II. Mesityl oxide (III), CHAc:CMe₂, from the dehydration (I, HBr, or CuSO₄) of OH·CMe₂·CH₂Ac, contains some isomeride, CH₂Ac·CMe.CH₂, the amount varying with the method of prep. (III) and MgMeBr afford mainly OH·CMe₂·CH:CMe₂ and $\sim 20\%$ of OH·CMe·CH₂·CMe.CH₂ (Raman spectra examined), readily dehydrated by NH₂Ph,HBr to CMe₂·CH·CMe:CH₂, b.p. 93—95°, hydrogenated (NaNH₂) to CHPr^β·CMe₂, b.p. 83—84°. Pondorff

CMe₂:CH·CMe:CH₂, b.p. 93—95°, hydrogenated (NaNH₂) to CHPr[§]:CMe₂, b.p. 83—84°. Pondorff reduction of (III) gives, through a boric ester, b.p. 130°/15 mm., a mixture of CMe₂:CH·CHMe·OH, with ~20% of CH₂:CMe·CH₂·CHMe·OH, hydrogenated to (III). β -Methyl- Δ^{β} -penten- δ -ol is dehydrated (NH₂Ph,HBr) to β -methyl- $\Delta^{\alpha\gamma}$ -pentadiene.

A. T. P. Reactions relating to carbohydrates and polysaccharides. LVI. Synthesis of higher polyoxyethylene glycols. R. FORDYCE, E. L. LOVELL, and H. HIBBERT. LVII. Synthesis of 90-mem-

bered and 186-membered oxyethylene glycols. R. FORDYCE and H. HIBBERT (J. Amer. Chem. Soc., 1939, 61, 1905—1910, 1910—1911; cf. A., 1938, II, 39).—LVI. Addition of $(CH_2 \cdot OH)_2$ to Na (1 atom) in MeOH at 40°, removal of the MeOH, and heating with $(CH_2Cl)_2$ (1·1 mol.) at 95° gives $48^{\circ}/_0$ of hexaoxyethylene glycol (I), OH·[CH_2 \cdot CH_2 \cdot O]_6 \cdot H, m.p. 2·1°, b.p. 185—185·77/0·015 mm. The cryst. salt, OH·[CH_2]_2 \cdot ONa, + $(CH_2 \cdot OH)_2$, and CPh₃Cl in dioxan at 70° give β -triphenylmethoxyethyl alcohol, m.p. 116—116·5°, constituting a proof of structure. SOCl₂ in C₅H₅N at 45° converts (I) into the dichloride, m.p. $-12\cdot4^{\circ}$, b.p. 168—169°/0·1 mm., which with the K₁ salt of (I) in light petroleum (b.p. 100—110°), first at 65°, then at 135°, and finally at 175°, gives octadecaoxyethylene glycol (II), OH·[CH_2'CH_2'O]_{18} \cdot H, m.p. 23\cdot8°. The dichloride (prep. therefrom by SOCl₂ at 65°), m.p. 22·9°, of (II) with the K₁ salt of (II) [as for (II), but at 135°] gives dotetracontaoxyethylene glycol (III),

dotetracontacxyethylene glycol (III), OH·[CH₂·CH₂·O]₄₂·H, m.p. 33·8°. The derived dichloride has m.p. 33·4°. The purity of (I), (II), and (III) is proved by the regularity of n and, particularly, by the long flat portion of the cooling curve and the abrupt termination thereof.

LVII. The Na salt of (III) and dichloride of (I) give nonacontaoxyethylene glycol (IV),

 $OH \cdot [CH_2 \cdot CH_2 \cdot O]_{90} \cdot H$, birefringent, m.p. 40.6°, the Na salt of which with the dichloride of (I) gives the glycol (V), $OH \cdot [CH_2 \cdot CH_2 \cdot O]_{186} \cdot H$, m.p. 44.1°. The purity of (IV) and (V) is shown by cooling curves. R. S. C.

Reactions relating to carbohydrates and polysaccharides. LVIII. Relation between chain length and viscosity of polyoxyethylene glycols. R. FORDYCE and H. HIBBERT. LIX. Precipitability of pure hemicolloidal polyoxyethylene glycols. E. L. LOVELL and H. HIBBERT (J. Amer. Chem. Soc., 1939, 61, 1912—1915, 1916—1920; cf. preceding abstract).—LXVIII. Staudinger's equation, $\eta_{sp}/c = K_m M$, is shown to hold for the pure glycols, $OH \cdot [CH_2 \cdot CH_2 \cdot O]_n \cdot H$ (n = 6, 18, 42, 90, and 186), except for low n. For low n, particularly, it is better replaced by $\eta_{sp}/c = K_m M + \beta$, β being the η_{sp}/c intercept on the graph. The relations between K_m and the mol. wt. (M) for the pure glycols and for Staudinger's mixed polyoxyethylene oxides are similar, but not identical, the difference being due to the nonhomogeneity of the latter.

LIX. The relation between the "precipitability" (Schulz, A., 1937, I, 510) of the above glycols and n is determined for MeOH-Et₂O and dioxan-Et₂O, and a new quant. equation is postulated. The log of the solubility (%) \propto % Et₂O in the MeOH-Et₂O. The glycol (n = 186) behaves abnormally and indicates that pptn. may not always provide a regularly graded series of products. R. S. C.

d-Arabitol in Fistulina hepatica.—See A., 1939, III, 733.

Tritylation experiments in the sugar alcohol series. M. L. WOLFROM, W. J. BURKE, and S. W. WAISBROT (J. Amer. Chem. Soc., 1939, 61, 1827–1829).—*l*-Fucitol with CPh₃Cl in C_5H_5N at 60°, followed by Ac₂O at 45°, gives l-fucitol 1-CPh₃ ether

403

2:3:4:5-tetra-acetate, m.p. 152° , $[\alpha]_{D}^{30}$ -18° in CHCl₂ (also obtained from the *l*-fucitol CPh₂ ether of Valentin, A., 1932, 42), converted by HBr-AcOH into 1-fucitol 1-bromide 2:3:4:5-tetra-acetate (I), m.p. 142–143°, $[\alpha]_{\rm p}^{\rm 30}$ –9.8° in CHCl3, and by $\rm H_2O$ in hot AcOH into 1-fucitol 2:3:4:5-tetra-acetate, m.p. 92—94°, $[\alpha]_{\rm D}^{30}$ —15° in CHCl₃, which with HBr-AcOH 92-94, $[\alpha]_D = 15$ in CHCl₃, which with HBF-AcOH gives (I) and with Ac₂O gives the *penta-acetate*, m.p. 127° , $[\alpha]_D^{30} + 20.5^{\circ}$ in CHCl₃. Dulcitol and CPh₃Cl (2 mols.) in C₅H₅N give the 1-CPh₃, m.p. 83°, and 1: $6-(CPh_3)_2$ ether (II), m.p. 183–184°; (II) is isolated as its compound (III), $+2C_5H_5N$,HCl, m.p. 182– 184°, and thence as solvate (IV), +EtOH, m.p. 183-184° (sinters at 80°), from which the EtOH is removed by heating at 110°/vac. over P2O5. With $Ac_2O-C_5H_5N$ at 0°, (III) or (IV) gives dulcitol 1:6-(CPh3)2 ether 2:3:4:5-tetra-acetate, m.p. 237-238°, which with HBr-AcOH gives the 1:6-dibromide which with HBF-AcOH gives the 1: 0-*atoromitae* 2:3:4:5-*tetra-acetate*, m.p. 197–198°. With PhCHO and ZnCl₂, (II) gives *dibenzylidenedulcitol* 1:6- $(CPh_3)_2$ ether, m.p. 233–234°. Xylitol with CPh₃Cl, followed by Ac₂O, in C₅H₅N at room temp. gives xylitol 1:5- $(CPh_3)_2$ ether 2:3:4-triacetate, m.p. 206°. *d*-Mannitol in C₅H₅N with CPh₃Cl at 90°, followed by Ac₂O at 0°, gives *d*-mannitol 1- CPh_3 ether 2:3:4-field 4°. ether 2:3:4:5:6-penta-acetate, m.p. 163-164°, $\left[\alpha\right]_{p}^{30} + 35 \cdot 5^{\circ}$ in CHCl₃. R. S. C.

Substituted ethers derived from ethylene chlorohydrin. S. P. LINGO with H. R. HENZE (J. Amer. Chem. Soc., 1939, 61, 1574-1576; cf. A., 1939, II, 299).-Saturating a mixture of CH₂Cl·CH₂·OH and RCHO with HCl at $<0^{\circ}$ gives $CH_2Cl CH_2Cl CH_2$ ether, b.p. 46°/10 mm., $(CH_2Cl CH_2)_2$ ether (prep. from par-acetaldehyde), b.p. 51°/10 mm., $CH_2Cl CH_2 \alpha$ -chloro-n-propyl, b.p. 60°/10 mm., and -n-butyl ether, b.p. 71°/10 mm., all unstable, which with CuCN, Hg(CN)₂ or AgCN (gives no carbimide) (not NaCN or KCN) in C₆H₆ yield CH₂·CN CH₂Cl·CH₂ ether, b.p. 109-110°/27·5 mm., CH2Cl·CH2 α-cyano-ethyl, b.p. 91°/ 10 mm., -n-propyl, b.p. 97·5°/6 mm., and -n-butyl ether, b.p. 105.5°/4.5 mm. With MgRHal in Et₂O these give Me B-chloroethoxymethyl ketone, b.p. 72-73°/8 mm. (semicarbazone, m.p. 103°), β-chloroethoxy-methyl Et, b.p. 82°/5 mm. (semicarbazone, m.p. 92·5°), Pr^{a} , b.p. 88·5—90°/4 mm., Bu^{a} , b.p. 88·2—89°/2 mm., n-amyl, b.p. 96.2-97°/2.5 mm., and isoamyl ketone, b.p. $99.5-100.5^{\circ}/2.5$ mm., Ph β -chloroethoxymethyl ketone, m.p. 26.1° , b.p. $152-155^{\circ}/4.5$ mm. (semicarbazone, m.p. 119.5-120°), Me, b.p. 70-72°/4 mm., and Et α - β' -chloroethoxyethyl ketone, b.p. 71°/3.5 mm. (semicarbazone, m.p. 104°), α-β'-chloroethoxyethyl Pra ketone, b.p. 87.5-88.3°/3 mm. (semicarbazone, m.p. 127°), and Me β-iodoethoxymethyl ketone, b.p. 90-92°, 4 mm. 5-β-Chloroethoxymethyl-5-isoamyl-, m.p. 152.5°, 5-phenyl-5-β-chloroethoxymethyl-, m.p. 159.8°, 5-ethyl- $5-\alpha-\beta'$ -chloroethoxyethyl-, m.p. 168.8°, and $5-\alpha-\beta'$ -chloro-ethoxyethyl-5-n-propyl-, m.p. 140.5°, -hydantoin (but no other hydantoins) were also obtained. B.p. of the ketones and m.p. are corr. n and d are given. R. S. C.

Preparation of ethyl hypochlorite. H. T. COMASTRI (Anal. Asoc. Quím. Argentina, 1939, 27, 41-44).—The instability of EtOCI is attributed to the presence of HCl. After treatment with ice-cold dil. $NaHCO_3$ saturated with NaCl it will keep for several hr. F. R. G.

Sulphurous esters and chlorosulphites. P. CARRÉ and D. LIBERMANN (Bull. Soc. chim., 1939, [v], 6, 1255).—The observations of Gerrard (A., 1939, II, 97) were recorded previously by the authors (A., 1933, 696). J. W. S.

Hydrolysis of α - and β -glycerophosphates. M. C. BAILLY (Compt. rend., 1939, 208, 1820—1822). —Na α - and β -glycerophosphate are hydrolysed without isomerisation (cf. A., 1939, I, 205) by boiling H₂SO₄ at $p_{\rm H}$ 3·62, the β - twice as rapidly as the α -form. Below $p_{\rm H}$ 3 isomerisation accompanies hydrolysis. J. L. D.

X-Ray and thermal examination of the gly-VI. Symmetrical mixed triglycerides cerides. $CH(O \cdot CO \cdot R')(CH_2 \cdot O \cdot COR)_2$ (continued). T. MAL-KIN and M. L. MEARA (J.C.S., 1939, 1141-1144).-The following symmetrical triglycerides have been prepared by the methods used previously (A., 1939, II, 97), and all exist in four solid modifications, vitreous, α , β' , and β , the m.p. of which are in the order given: β -decodimyristin (16°, 37°, 40°, 43.5°), β -laurodipalmitin (34°, 47°, 50°, 53.5°), β -myristo-distearin (47°, 56°, 59°, 62.5°), β -myristodidecoin (3°, 21°, 30°, 34°), β -pulmitedilaurin (1) (10°, 25°, 40.5°) also and (11°, 50°, 50°, 52°), $β_{-palmitodilaurin}$ (I) (19°, 35°, 42·5°, 45·5°), $β_{-stearodimyristin}$ (II) (33°, 47°, 53°, 55·5°), $β_{-decodipalmitin}$ (20°, 42°, 48°, 51·5°), $β_{-laurodi stearin}$ (36°, 52°, 58°, 60·5°), $β_{-palmitodidecoin}$ (6°, 27°, 36°, 40°), β-stearodilaurin (21°, 38°, 43°, 47°), β -stearodidecoin (5°, 34°, 40°, 44.5°), and β -decodi-stearin (30°, 47°, 53°, 57°). In contrast to other glycerides, the long spacings of the β forms of all except (I) and (II) correspond with twice the length of a single mol., but the side spacings do not suggest any fundamental difference in structure. J. D. R.

Autoxidation of organic sulphur compounds. M. DELÉPINE (Bull. Soc. chim., 1939, [v], 6, 1234— 1236; cf. A., 1922, i, 914).—The results obtained (*loc. cit.*) are confirmed, *i.e.*, that action ceases very soon, with a permanent arrest in autoxidation. Experiments performed in 1912, with S compounds, *e.g.*, OMe·CS·SMe, MeCS·OEt, in air or O_2 , are further examined; after 26 years in the tubes, similar results are obtained. A. T. P.

Structural identity of polysulphones prepared by peroxide catalysis and under the influence of ultra-violet light. C. S. MARVEL and W. H. SHARKEY (J. Amer. Chem. Soc., 1939, **61**, 1603).— On irradiation with ultra-violet light for ~1 week Δ^{a} -pentene combines with SO₂; the polysulphone formed in this way is identical with that formed in presence of peroxide catalysts. W. R. A.

pp'-Diaminodiphenylmethane as a reagent for the identification of monobasic, saturated, aliphatic acids. A. W. RALSTON and M. R. MCCORCKLE (J. Amer. Chem. Soc., 1939, **61**, 1604—1605).— $(p-NH_2:C_6H_4)_2CH_2$ and RCO₂H, when heated to boiling, give pp'-di(acet-, m.p. 227—228°, -di(propion-,m.p. 212—213°, -di-(n-butyr-, m.p. 197—198°, -di-(nvaler-, m.p. 188—189°, -di-(n-hex-, m.p. 185—186°, -di-(n-hept-, m.p. 183-184°, -di-(n-oct-, m.p. 182-183°, -di-(n-non-, m.p. 176-177°, -di-(n-dec-, m.p. 178-179°, -di-n-(undec-, m.p. 175-176°, -di(laur-, m.p. 174-175°, -di-(n-tridec-, m.p. 172-173°, -di(myrist-, m.p. 170-171°, -di-(n-pentadec-, m.p. 167-168°, -di(palmit-, m.p. 167-168°, -di(margar-, m.p. 164-165°, and -di-(stear-, m.p. 164-165°, -amido)diphenylmethane, which are useful for characterising the acids. The lower members give good depressions of the m.p. when mixed. R. S. C.

Xanthates of metals of group VI. L. MALA-TESTA (Gazzetta, 1939, 69, 408-416).-(NH₄)₂MoO₄ and OEt CS2K treated in H2O with SO2 give molybdenyl tetraethylxanthate, new m.p. 118.5° (slight decomp.) (cf. Montequi, A., 1930, 1028) (3C₅H₅N additive product), which with aq. KCN in COMe2 gives Mo₂O₃(CN)₄,4H₂O and KCS₂·OEt; with solid KCN in COMe2, K molybdocyanides are formed. Molybdenyl tetra-methyl-, decomp. 100-120°, -npropyl-, m.p. 89-91° (slight decomp.), -isopropyl-, m.p. 114°, -n-butyl-, m.p. 75°, -isobutyl-, m.p. 106-107.5° (slight decomp.), -isoamyl-, m.p. 105° (decomp.), and -cyclohexyl-xanthate, m.p. 121° (decomp.), are prepared similarly. UO₂(NO₃)₂ and OR•CS₂K give uranyl di-methyl-, -ethyl- (easily hydrolysed), -isoamyl-, and -isopropyl-xanthate, and similar products, all of which decompose at 50-60°. Similar derivatives of W are not obtained. E. W. W.

Preparation of acrylic acid esters. P. P. KOBEKO, M. M. KOTON, and F. S. FLORINSKI (J. Appl. Chem. Russ., 1939, **12**, 313—316).—Esters of CH₂:CH·CO₂H are prepared as follows : CH₂:CH·CHO (+Br) \rightarrow CH₂Br·CHBr·CHO (+HNO₃) \rightarrow CH₂Br·CHBr·CO₂H (+ ROH) \rightarrow CH₂Br·CHBr·CO₂R

 $(+Zn) \rightarrow CH_2: CH \cdot CO_2 R$ (R = Bu, isoamyl). R. T.

Preparation of derivatives of the higher fatty acids. E. OCHIAI and M. SHIMIZU (J. Pharm. Soc. Japan, 1938, 58, 302—303).—An attempt to prepare derivatives of stearic acid having $p_{\rm H}$ 5—8 in aq. solution. The following are described : stearylquinine (Pt salt, m.p. 217° decomp.; hydrochloride, m.p. 69°, $p_{\rm H}$ 2·5), stearyltropine, m.p. 49·8° (picrate, m.p. 96·8°; perchlorate, m.p. 94·5°; hydrochloride, m.p. 144°, $p_{\rm H}$ 4·3), heptadecylamine hydrochloride, $p_{\rm H}$ 4·8, stearhydrazide, m.p. 114°. S. H. H.

Lipins of tubercle bacilli. LVII. Mycolic acids of avian tubercle bacillus wax. R. J. ANDERSON and M. M. CREIGHTON (J. Biol. Chem., 1939, **129**, 57–63).— α - (I), C₃₈H₇₄O₃, m.p. 69–70°, $[\alpha]_{\rm D}$ +5.6° in CHCl₃ (*Br*-derivative, 22.4% Br, m.p. 47–49°), and β- (II), $C_{88}H_{174}O_3$, m.p. 60–61°, $[\alpha]_D$ +5.5° in CHCl₃ (Br-derivative, 22.9% Br, m.p. 43– 49°), -mycolic acid have been obtained from the avian tubercle bacillus wax. These acids differ from the corresponding acids from human tubercle bacilli in not containing OMe-groups. (I) decomposes on heating at 1 mm, to form a branched-chain pentacosanoic acid, C25H50O2, m.p. 78-79°, in 25% yield, whereas (II) similarly yields n-tetracosanoic acid (21%). The non-volatile residues from (I) and (II) are separable into highly unsaturated fractions of varying solubility in Et₂O and mol. wt. 1000-1100 (Rast). P. G. M.

Resonance reaction. II. P. NEOGI and K. L. MONDAL (J. Indian Chem. Soc., 1939, 16, 239–240). —Maleic acid is converted into fumaric and citraconic into mesaconic in presence of MnO₂ by a "resonance reaction" (A., 1930, 550). W. R. A.

cis-trans-Isomerisation with boron fluoride. C. C. PRICE and M. MEISTER (J. Amer. Chem. Soc., 1939, 61, 1595—1597).—BF₃ in CCl₄ or BF₃:Et₂O equilibrates cis- and trans-stilbene (93·1% of trans), probably by forming a complex, ⁺CHPh·CHPh \rightarrow BF₃⁻⁻ (cf. Price et al., A., 1938, II, 478). AlCl₃ in the Friedel-Crafts reaction and H⁺ in the isomerisation of olefines form similar complexes. Et₂ maleate is unaffected by BF₃, probably because the latter forms complexes with the CO₂Et rather than with the C:C. R. S. C.

Hydroxylation of unsaturated substances. V. Catalytic hydroxylation of unsaturated substances with functional groups. N. A. MILAS, S. SUSSMAN, and H. S. MASON (J. Amer. Chem. Soc., 1939, 61, 1845—1847; cf. A., 1938, II, 1).— H_2O_2 -Bu'OH-OSO₄ converts Et crotonate into Me[CH·OH]₂·CO₂Et (56%), Et₂ maleate into Et₂ mesotartrate (41%), Et₂ fumarate into Et₂ r-tartrate (58%), mesityl oxide into β -methyl-n-pentane- $\beta\gamma$ -diol- δ -one (23%), b.p. 104—110°/16 mm. [p-nitrophenylhydrazone, m.p. 251—253° (decomp.)], CH₂·CH·OAc, (CH₂:CH)₂O, or CH₂:CHBr into OH·CH₂·CHO (60, 96, 12·5%), and oleic acid into uc-dihydroxystearic acid. CHPh:CH·CH₂·OH gives 12·2% of OH·CHPh·CH(OH)·CH₂·OH (I), an ether of (I),

OH•CHPh•CH(OH)•CH₂•OH (I), an ether of (I), $C_{18}H_{22}O_5$, m.p. 155·5—156° (tetrabenzoate, m.p. 118— 119°), and (?) another ether (tetrabenzoate, m.p. 217°), but is mostly converted into PhCHO and OH•CH₂•CHO. R. S. C.

M.p. curve of esters of the dihydroxystearic acid from castor oil. S. ISHIKAWA and E. KURODA (Sci. Rep. Tokyo Bunrika Daigaku, 1939, 3, 265— 271).—Me 0:-dihydrostearate, m.p. 110° (corr., Berl), is hydrolysed and the acid is esterified by the requisite alcohol and PhSO₂Cl to the *Et*, m.p. 106°, *Pr*^a, m.p. 100·6°, *Bu*^a, m.p. 93·0°, n-*amyl*, m.p. 93·7°, n-*hexyl*, m.p. 92·2°, n-*heptyl*, m.p. 94·3°, n-*octyl*, m.p. 93·4°, n-*nonyl*, m.p. 95·4°, n-*decyl*, m.p. 94·9°, n*dodecyl*, m.p. 95·6°, n-*tetradecyl*, m.p. 96·6°, n-*hexadecyl*, m.p. 97·4°, and n-*octadecyl*, m.p. 98·2°, ester. H. W.

Synthesis of *n*-eicosanedicarboxylic acid, $CO_2H \cdot [CH_2]_{20} \cdot CO_2H$, and *n*-docosanedicarboxylic acid, $CO_2H \cdot [CH_2]_{22} \cdot CO_2H$. S. SHIINA (J. Soc. Chem. Ind. Japan, 1939, 42, 147B; cf. A., 1937, II, 483).— $CO_2Et \cdot [CH_2]_{18} \cdot CO_2Et$ is converted via the glycol, di-iodide, and dicyanide into $CO_2H \cdot [CH_2]_{20} \cdot CO_2H$, m.p. $126 \cdot 9$ — $127 \cdot 1^{\circ}$ (Me₂, m.p. $71 - 71 \cdot 2^{\circ}$, and Et₂ ester, m.p. $61 - 61 \cdot 2^{\circ}$), which by similar reactions yields the glycol, m.p. $105 \cdot 3 - 105 \cdot 5^{\circ}$, di-iodide, m.p. $71 \cdot 9 - 72 \cdot 1^{\circ}$, and $CO_2H \cdot [CH_2]_{22} \cdot CO_2H$, m.p. $126 \cdot 9 - 127 \cdot 1^{\circ}$ (Me₂, m.p. $75 \cdot 0 - 75 \cdot 2^{\circ}$, and Et₂ ester, m.p. $65 \cdot 9 - 66 \cdot 1^{\circ}$).

Structure of vinyl polymerides. III. Polymeride from α -angelicalactone. C. S. MARVEL and C. L. LEVESQUE (J. Amer. Chem. Soc., 1939, 61, 1682—1684; cf. A., 1938, II, 255).—BF₃,Et₂O (0.4

c.c.) (but not peroxides) in CS_2 (40 c.c.) converts α angelicalactone (15 g.) into a polymeride (I), in which

$$\begin{array}{c} \text{CMe=C} & \text{-CMe=C} \\ \text{O·CO·CH}_2 & \text{O·CO·CH}_2 \\ \end{array} \right]_{n}^{-\text{H}} \quad \text{(I.)}$$

n is 7—8 as judged by the mol. wt. in COPh₂ and titration of residual C:C by Br in CCl₄. 75% of the lactone groups appear from the following evidence to be retained. (I) dissolves slowly in aq. NaOH and undergoes 84% reaction with NH₃-dioxan at $150-160^{\circ}$ to give a lactam and $\sim 90\%$ reaction with LiPh to give a polyalcohol. Since BF₃ is a transesterifying reagent, some of the CH2 CO2H are expected to become isolated and the above reactions are consistent with the head-to-tail structure of (I). In presence of Cu chromite at $250^{\circ}/400$ atm., (I) absorbs twice the calc. amount of H₂ and gives only 70% of polymeric product, this having a lower mol. wt.; the reaction is explained on the basis of (I) as due to fission of C·O linkings in O·C·C·C·O leading to some units of types ·CHMe·CH(CH2·CO2H)· and ·CHMe·CH(CH₂·CH₂·OH). Hydrogenation at 175°/ 400 atm. leads to absorption of 0.84 ± 0.05 mol. of H_2 , which agrees with the val. (0.75) calc. by statistical analysis (Flory, A., 1939, II, 401) for C O fission allowing CO linkings to become isolated; little CC cleavage occurred at this temp. Isomerisation to β -angelicalactone prior to polymerisation would give structures not containing O·C·C·C·O and is thus excluded. Ultra-violet light gives a more mobile polymeride of lower mol. wt. R. S. C.

Reduction of *dl*-erythronolactone to *dl*-erythrose. J. W. E. GLATTFELD and B. D. KRIBBEN (J. Amer. Chem. Soc., 1939, **61**, 1720-1725).-dl-Erythronolactone with Ac₂O-HCl or AcCl gives the lactone diacetate, m.p. 52.5-53°, and with KOH or NaOH in MeOH gives K or Na dl-erythronate. The K salt with AcCl gives dl-erythronic acid triacetate (74%), an oil (Ca salt), which with SOCl₂ (must be pure) gives the acid chloride, b.p. 114-116°/2 mm. H₂-Pd-BaSO₄ in xylene reduces and partly deacetylates this, giving dl-erythrose diacetate (I) (20%), b.p. 126—129°/2 mm. Hydrolysis of (I) gives dl-erythrose (identified as phenylosazone), but

 $2:4-(NO_2)_2C_6H_3\cdot NH\cdot NH_2$ gives a substance (? the diacetyltriazine), m.p. 172-173°. R. S. C.

Tetrahydroxyadipic acid. O. VOTOČEK and O. WICHTERLE (Coll. Czech. Chem. Comm., 1939, 11, 266-271).-Ba δ-ketorhamnohexonate and aq. HCN

H.C.OH -CH OH·ĊH **H**C·OH CO,H

CO give a lactonic acid (I), $C_8H_{12}O_8$, m.p. CMe·OH 198°, $[\alpha]_D - 25 \cdot 4^\circ$ (and an oily epimeride), which gives the Ba salt, $C_8H_{12}O_9Ba, +2H_2O$, and by the usual methods an oily methylheptose, which yields a trace of an osazone. Distillation of (I) gives a pyrone. These facts and Hudson's rule indicate the R. S. C.

formula shown for (I).

Relations between rotatory power and structure in the sugar group. XXXII. Rotations of the aldonic γ -lactones. C. S. HUDSON (J. Amer. Chem. Soc., 1939, 61, 1525-1528; cf. A., 1939, II, 300).-The rule of optical superposition applies to

 γ -aldolactones if they are divided into classes of the (A) ribose-aldonic and (B) xylonic-lyxonic pairs of epimerides. Data for class B are, however, scanty. This principle is not always in accord with the qual. lactone rule. It shows D-gulo-L-taloheptolactone to belong to class A. $[\alpha]$ of several unknown hepto- and octo-lactones are calc. L-Epirhamno- and B-L-fucohexolactone are probably &-lactones (speed of mutarotation). D-Gluco-D-idoheptolactone behaves abnormally in solution. R. S. C.

Preparation of mannonolactones from seeds of date palm (Phænix dactylifera). Effect on gastric mucin smears. K. J. GOLDNER and C. H. ROGERS (J. Amer. Pharm. Assoc., 1939, 28, 364-369).-The seeds contain 48.85% of mannan and 0.68% of galactan. The prep. from Ca mannonate of δ -, m.p. 159–165°, $[\alpha]_{\rm p}^{20}$ +114.2° to +41.3° in H₂O (14 days), and γ -lactone, m.p. 151°, $[\alpha]_p^{20} + 51.0°$ in H₂O, Me, m.p. 155°, Et, m.p. 161°, Pr^{β} , m.p. 169°, and Bu" mannonate, m.p. 144°, and mannoethanolamide, m.p. 149-150°, [a]²⁰ -14.4° in H₂O, is described. The efficiency of these substances in dissolving mucin and their non-toxicity indicate their applicability to dental cleaning preps. F. O. H.

Isolation of ketouronic acids as crystalline alkaloidal salts. J. P. HART and M. R. EVERETT (J. Amer. Chem. Soc., 1939, 61, 1822-1824).-1% aq. solutions of sugars are oxidised by Br at ~25°; after removal of the Br and HBr, the ketouronic acids are isolated as Ba salts and crystallised as brucine salts. Brucine 1- (I) (from d-gulolactone), m.p. 165—166°, $[\alpha]_{D}^{25} = -24.5^{\circ}$, and d-fructo-6-uronate (from d-mannose), m.p. 192—192.5° (decomp.), $[\alpha]_{D}^{25}$ (from d-mannosc), m.p. 102 (from d-galactose), m.p. $-15\cdot5^{\circ}$, l-tagato-6-uronate (from d-galactose), m.p. 189–189·5° (decomp.), $[\alpha]_{25}^{25}$ –17°, d-xyloketouronate (from d-xylose), m.p. 168–169°, $[\alpha]_{25}^{25}$ –9°, l-sorbo-6-uronate (from *d*-glucose), m.p. (anhyd.) 174– 175° (decomp.) and $(+2H_2O)$ 182° (decomp.), $[\alpha]_{5}^{35}$ -24°, and 1-deoxy-*l*-fructo-6-uronate [with (I) from *l*-rhamnose], m.p. 128—129°, $[\alpha]_{p}^{25} - 32^{\circ}$ (all in H₂O), are thus obtained. The ketose structure of the acids is shown by their stability to Br. Naphthoresorcinol, orcinol, and Molisch tests of the salts are identical. R. S. C.

New water-soluble calcium salt, calcium gluconate-glucoheptonate. A. SALOMON (Pharm. Weekblad, 1939, 76, 914-917).-Ca gluconateglucoheptonate, prepared by mixing solutions of Ca gluconate and Ca glucoheptonate or by neutralising a solution of the two acids with Ca(OH)₂, is very sol. in H₂O (50%) and 11.5% solutions ($p_{\rm H} \sim 7$) are suitable for intravenous injection. S. C.

Structure of alginic acid. E. L. HIRST, J. K. N. JONES, and (MISS) W. O. JONES (Nature, 1939, 143, 857).-High yields of d-mannuronic acid (I) are obtained by the action of MeOH-HCl on alginic acid (II). A partly degraded form of (II) of comparatively low mol. wt. has been isolated by means of the same reagent. With TIOEt and MeI it gives the corresponding fully methylated derivative, which, on hydrolysis (conc. HNO₃) and degradative oxidation, yields mesodimethoxysuccinic acid (III), indicating that in each of the (I) residues the Me groups were attached at $C_{(2)}$ and $C_{(3)}$. This was confirmed as follows. Methylated (II) with MeOH-HCl under pressure gives the Me ester of 2 : 3-dimethylmannuronide, which on hydrolysis and oxidation (aq. Br) yields 2 : 3-dimethylmannosaccharic acid, which is oxidised by HIO₄ to CHO·CO₂H and the semialdehyde of (III). (II) appears to be composed of *d*-mannuronic anhydride residues linked glycosidically. In addition, (II) contains a chain of (I) residues in each of which the OH at C₍₂₎ and C₍₃₎ are free. The glycosidic linkage is either 1:5 or (probably) 1:4. Structural resemblances with cellulose and pectic acid are pointed out. L. S. T.

Condensation of acetaldehyde and vinyl acetate. C. S. MARVEL, J. HARMON, and E. H. RIDDLE (J. Org. Chem., 1939, 4, 252—255).—Successive addition of Na and vinyl acetate (I) to MeCHO gives $\alpha\gamma$ -ethylidenedioxybutyl acetate, b.p. 74—75°/6 mm. Under similar conditions (I) does not react with EtCHO, Pr^aCHO, Pr^βCHO, or PhCHO. Reaction between MeCHO and (I) does not occur in presence of KOH-EtOH, ZnCl₂, Ba(OH)₂, Mg(OMe)₂, NaOEt, NaOPh, anhyd. Na₂CO₃, SnCl₄, AcOH + p-C₆H₄Me·SO₃H, dry HCl, or dry p-C₆H₄Me·SO₃H in

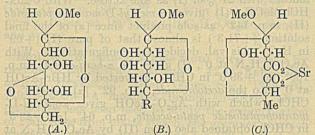
 $C_6H_6^4$. H. W.

Synthesis of acetals of chloro- and bromoacetaldehyde. E. M. FILACHIONE (J. Amer. Chem. Soc., 1939, 61, 1705—1706).—Passage of Cl₂ into CH₂:CH·OAc in abs. EtOH or MeOH cooled in COMe₂-CO₂ gives Et₂ (83%), b.p. 53—54°/16 mm., or Me_2 chloroacetal (53%), b.p. 124·5—126·5°. At -10° air carrying Br gives Et₂ bromoacetal (68%), b.p. 62—63°/15 mm.; CHCl₃-Br, added to the MeOH solution at -40°, gives 46% of Me₂ bromoacetal, b.p. 48—51°/18 mm. Structures are proved by hydrolysis, identification of MeOH or EtOH, and oxidation (H₂O₂) of the aldehyde to the acid. R. S. C.

Aldehydic perfumes. II. Synthesis of pelargonaldehyde. S. ISHIKAWA and A. MIYATA (Sci. Rep. Tokyo Bunrika Daigaku, 1939, 3, 257—263).— The yield of pelargonaldehyde (I) obtained by ozonisation of oleic acid suspended in aq. NaHSO₃ with a little decahydronaphthalene as dispersing agent does not exceed 20%. Oxidation of Me θ_i -dihydroxystearate (II) with Pb(OAc)₄ in AcOH gives (I) in 50% yield accompanied by Me η -aldehydo-octoate (2:4-dinitrophenylhydrazone, m.p. 67—68°). (I) is also obtained in very modest yield by heating (II) with sand at 650° in CO₂. H. W.

 C_{10} , C_{12} , and C_{14} aldehydes from copra oil. R. ESCOURROU (Bull. Soc. chim., 1939, [v], 6, 1173— 1181).—Fatty acids (obtained by saponification of the oil) and PCl₃ give the corresponding chlorides, hydrogenated (Pt) under reduced pressure (not at atm.) to the aldehydes. Lauryl chloride, b.p. 141°/14 mm., at 300—320°/170—180 mm., affords undecane, b.p. 194—195°/760 mm.; at 200—205°/50 mm., lauraldehyde is formed, with some tricosane, $C_{23}H_{48}$ (mechanism of formation discussed). The use of Raney Ni at 160°/50 or 580 mm. gives no aldehyde. Hydrogenation (Pt) of myristyl chloride, b.p. 195°/45— 47 mm., at 220—230°/60—65 mm. affords

Me·[CH2]12·CHO and tridecane, C13H28. Decoyl


chloride, b.p. $115^{\circ}/13$ mm., at $200^{\circ}/80-90$ mm. gives decaldehyde, b.p. $207-210^{\circ}/760$ mm., and polymerised products. Octoyl chloride, b.p. $75-77^{\circ}/8-$ 10 mm., at $195^{\circ}/80-90$ mm. gives octaldehyde, b.p. $72^{\circ}/20$ mm., with some polymerisation. A. T. P.

Reaction of methyl a-chloroethyl ketone with potassium cyanide. R. JUSTONI (Gazzetta, 1939, 69, 378-391).-The product from COMe CHMeCl (I) and aq. KCN is not COMe CHMe CN (cf. Henry (1) and all 1100, i, 537), nor a dimethylisooxazole (II) (cf. Youtz et al., A., 1930, 93), but $\alpha\beta$ -oxido- α -methyl-butyronitrile, CHMe>CMe·CN, (III), b.p. 145°/ 755 mm. With p-NO₂·C₆H₄·NH·NH₂, (II) does not react, but (III) gives (p-NO2·C6H4·NH·N:CMe)2 (and similarly other derivatives of Ac₂). In EtOH, (I) and KCN also give (III), with CHMeAc.CN [which is, however, not obtained from (III) and Na or NaOEt (cf. loc. cit.)]. With liquid HCN, (I) gives Me a-chloroethyl ketone cyanohydrin, b.p. 120-123°/15 mm., which with aq. KOH yields (III), with a very small proportion of (I). With KOH-MeOH, (I) yields acetoin, of which the cyanohydrin, b.p. 120-123°/15-16 mm., with H_2SO_4 or P_2O_5 gives only slight traces E. W. W. of (III).

V. β-Chloroisopropoxymethyl Keto-ethers. ketones derived from propylene chlorohydrin. J. J. SPURLOCK and H. R. HENZE (J. Org. Chem., 1939, 4, 234—241).—CH₂Cl·O·CMe₂Cl (I), b.p. 106— 107°/146 mm., 160—161°/747 mm., is obtained by saturating OH·CHMe·CH₂Cl and 36% CH₂O with HCl at 0° or from BzCl and OH·CHMe·CH₂Cl at 145— 155°. It is best converted into β -chloroisopropoxyacetonitrile (II), b.p. $98-99^{\circ}$ (corr.)/15 mm., by treatment with CuCN in PhMe at 120° with purification by distillation in vac. Alternatively, propylene $\alpha\beta$ -oxide is saturated with HCl and treated with CH₂O and again saturated with HCl, giving di-(β -chloroisopropyl) formal, b.p. 112·5—113·5°/11 mm., which is treated with BzCl, thereby yielding β -chloroisopropyl benzoate, b.p. 106—107°/2—3 mm., and (I), which is then treated with CuCN. Poorer yields of (II) are derived from (I) and Hg(CN)₂ in boiling C₆H₆ whereas (I) and KCN scarcely react. Crude (II) is transformed by EtOH and HCl into Et β-chloroisopropoxyacetate, b.p. 110-111°/19 mm., converted by conc. aq. NH₃ into β -chloroisopropoxy-acetamide, m.p. $31\cdot2^{\circ}$ (corr.), which is dehydrated by P₂O₅ at 130° to (II), b.p. 104–105°/20 mm. (II) is transformed by the appropriate Grignard reagent into the following β-chloroisopropoxymethyl ketones; Me, b.p. 73-74°/4 mm.; Et, 77-78°/4 mm.; Pr, m.p. 95–96°/6 mm.; Bu, b.p. 101–102°/3 mm.; amyl, b.p. 109–110°/3 mm.; Ph, b.p. 135–136°/3 mm., CH_2Ph , b.p. 151—152°/4 mm. All b.p. are corr. The corresponding 2: 4-dinitrophenylhydrazones have m.p. 120.5-121.5°, 85.5-86.5°, 80.5-81.0°, 69-69.5°, 91.5-92.5°, 181-182°, and 77-78° (corr.), respectively. The mol. refraction of these ketones is a better index of purity than is the parachor. H. W.

Stability of a higher ketone and a higher secondary alcohol towards heat. K. KINO (J. Soc. Chem. Ind. Japan, 1939, 42, 187B).—Stearone (from commercial stearic acid), and the corresponding carbinol (Na + BuOH), were heated at various temp., and the colour, m.p., mol. wt., and OH val. (after reduction in the former case) of the products recorded. Little decomp. occurs below 260° . A. Lr.

Oxidation of glucosides by lead tetra-acetate. R. C. HOCKETT and W. S. MCCLENAHAN (J. Amer. Chem. Soc., 1939, 61, 1667—1671).—*cis*-Glycols of the sugar series are always attacked faster than are the *trans*-glycols by Pb(OAc)₄ (6.5 mols., equiv. to infinite excess since 13 mols. react no faster); 21 examples are cited. If the ether-aldehyde formed can yield a *cis*-glycol of type (A) by cyclic acetal formation, a second mol. of Pb(OAc)₄ is very rapidly consumed; if this is impossible, reaction slows down after 1 mol. has been used; examples are α -methyl-*d*-mannopyranoside (B) (R = CH₂·OH), which gives (A), and α -methyl-*l*-rhamnopyranoside (B) (R = Me) and α -

methyl-*d*-mannopyranoside 6-CPh₃ ether (B) (R = CH₂·O·CPh₃), which cannot give (A). α -Methyl-*l*-fucoside gives the Sr salt (C), +2H₂O, $[\alpha]_{p}^{3p}$ +29·8° in H₂O. R. S. C.

Behaviour of glucose dimethyl acetal towards carbohydrases. N. K. RICHTMYER, M. ADAMS, and C. S. HUDSON (J. Amer. Chem. Soc., 1939, 61, 1833— 1834).—Glucose Me₂ acetal is unaffected by top yeast, taka-diastase, emulsin, maltase, invertase, pancreatic or malt amylase. R. S. C.

Glucofuranosides and thioglucofuranosides. V. Hydrolysis of α -ethylthioglucofuranoside. E. PACSU and E. J. WILSON, jun. (J. Amer. Chem. Soc., 1939, 61, 1450—1454; cf. A., 1938, II, 473).— Hydrolysis of α -ethylthioglucofuranoside (improved prep.; tetra-acetate, $[\alpha]_{\rm D}$ +150·0° in CHCl₃) by 0·01N-HCl at 98—100° gives about 50% of glucose and EtSH, partly directly and partly by way of β ethylthioglucofuranoside, a syrup, $[\alpha]_{\rm D}^{20}$ —104° in H₂O (tetra-acetate, a syrup, $[\alpha]_{\rm D}^{20}$ -53·1° in CHCl₃), but much rearrangement to α - (I), $[\alpha]_{\rm D}^{20}$ +261·4° in H₂O (tetra-acetate, m.p. 95°, $[\alpha]_{\rm D}^{20}$ +194·1° in CHCl₃), and β -ethylthioglucopyranoside, a syrup, $[\alpha]_{\rm D}$ —60° (tetraacetate, $[\alpha]_{\rm D}$ —25·6° in CHCl₃), also occurs. The principle of optical superposition does not apply to (I). Glucose Et mercaptal has $[\alpha]_{\rm D}^{20}$ —37·4° in H₂O. R. S. C.

Behaviour of the dimethyl acetals of glucose and galactose under hydrolytic and glucosideforming conditions. M. L. WOLFROM and S. W. WAISBROT (J. Amer. Chem. Soc., 1939, 61, 1408— 1411).—Complex changes of $[\alpha]$ of d-glucose and dgalactose Me₂ acetals with 0.05% HCl in MeOH or H₂O at 25° and determination of readily hydrolysable material during the reaction show that the very rapid initial hydrolysis is followed by formation of unstable non-pyranoid glucosides, which later slowly give the stable pyranosides. R. S. C.

Synthetic galactose 1-phosphate. H. W. Kos-TERLITZ (Biochem. J., 1939, 33, 1087—1093; cf. A., 1938, III, 933).—Tri(tetra-acetylgalactose) 1-phosphate, $[\alpha]_D^{17} + 119.9^{\circ}$ in MeOH (from acetobromogalactose and Ag₃PO₄), with MeOH-HCl at 25° for 8 hr. yields galactose 1-phosphate, which was isolated as the crude Ba and dibrucine salts; the latter afforded the K_2 salt (+2H₂O), $[\alpha]_D^{18} + 108.2^{\circ}$ in H₂O (anhyd. salt), which was converted into the *Ba* salt, $[\alpha]_D^{18}$ +92.7°. The ester appears to be α -galactopyranose 1-phosphate. F. O. H.

Glucofuranosides and thioglucofuranosides. VI. Preparation of dimethyl acetal and methylfuranosides from *d*-fructose diethyl mercaptal. E. PACSU (J. Amer. Chem. Soc., 1939, 61, 1671-1675; cf. A., 1938, II, 432, also above).-d-Fructose Et₂ mercaptal (prep. from the penta-acetate modified to give a quant. yield) with HgCl₂-HgO in MeOH at -80° gives only d-fructose Me_2 acetal (I), m.p. 107-108°, $[\alpha]_{5}^{20}$ -45.6°, -63.0°, $[\alpha]_{5563}^{20}$ -35.6°, -50.0°, $[\alpha]_{5463}^{20}$ -53.6°, -76.1° in H₂O and MeOH, respectively (penta-acetate, m.p. 109°, $[\alpha]_{D}^{20}$ 0 in CHCl₃), but at room temp. gives also the cryst. and syrupy γ -methylfructosides of Purves and Hudson (A., 1934, 513). Invertase at $p_{\rm H}$ 4.5 and yeast at $p_{\rm H}$ 7 are without effect on (I), but yeast in unbuffered solution ferments it owing to prior hydrolysis by the acids of the yeast; (I) is extremely sensitive to acid. Acetal and pyranoside formation from mercaptals may be independent reactions, or both may proceed by way of an intermediate of type, >C(OR)·SR. R. S. C.

Formation of α -ethylthioglucopyranoside from glucose ethyl mercaptal. E. PACSU and E. J. WILSON, jun. (J. Amer. Chem. Soc., 1939, 61, 1930— 1931).—Glucose Et₂ mercaptal and 22% HCl give α -ethylthioglucopyranoside (< 20% yield) without addition of glucose (cf. Brigl *et al.*, A., 1939, II, 299). The same product (15%) is obtained from glucose and EtSH in 22% HCl. The β -pyranoside is probably also formed. R. S. C.

Action of triphenylmethyl chloride on α methyl-D-mannopyranoside. A. J. WATTERS, R. C. HOCKETT, and C. S. HUDSON (J. Amer. Chem. Soc., 1939, 61, 1528—1530).— α -Methyl-D-mannopyranoside is etherified preferentially at the primary OH by CPh₃Cl in C₅H₅N, giving the 6-*CPh*₃ ether, +C₅H₅N, m.p. 101—102°, $[\alpha]_D^{20}$ +23·45° in CHCl₃ (CaCl₂ compound, +2·5EtOH, m.p. ~110—112° $[\alpha]_D^{20}$ +26·6° in MeOH), the structure of which is proved as follows. With Ac₂O-C₅H₅N at 0° it gives α -methyl-D-mannopyranoside 6-*CPh*₃ ether 2:3:4triacetate, m.p. 130°, $[\alpha]_D^{20}$ +44·33° in CHCl₃, hydrolysed by cold HBr-AcOH to α -methyl-D-mannopyranoside 2:3:4-triacetate, m.p. 98°, $[\alpha]_D^{20}$ +55·54° in CHCl₃, which with MeI-Ag₂O (5 treatments) gives a syrupy 6-Me ether. Hot 2% HCl converts this into 6-methyl-D-mannose, $[\alpha]_D^{20}$ +15·3° in CHCl₃ [osazone = 6-methylglucosazone, m.p. 172° (lit., 177°), $[\alpha]_D^{20}$ Relations between rotatory power and structure in the sugar group. XXXIII. α - and β -Methylpyranosides of *L*-fucose (*L*-galactomethylose) and their triacetates. R. C. HOCKETT, F. P. PHELPS, and C. S. HUDSON (J. Amer. Chem. Soc., 1939, 61, 1658—1660; cf. A., 1939, II, 405).—The calc. [α] of α -methyl-*L*-fucoside (I) (Hudson, A., 1925, i, 233) is confirmed by experiment (cf. Tadokoro *et al.*, J. Biochem. Japan, 1923, 2, 461; Minsaas, A., 1932, 723). *L*-Fucose (prep. from *Ascophyllum nodosum* described) and hot 1% HCl-MeOH give α -, m.p. 154°, [α]₂₀²⁰ -1497° (triacetate, m.p. 67°, [α]₂₀²⁰ -1497° in CHCl₃), and β -methyl-*L*-fucoside, m.p. 121—123°, [α]₂₀²⁰ +14·2° in H₂O (triacetate, m.p. 96—97°, [α]₂₀²⁰ +7·1° in CHCl₃). R. S. C.

Cleavage of the carbon chains of some methylaldohexomethylopyranosides by oxidation with periodic acid. W. D. MACLAY, R. M. HANN, and C. S. HUDSON (J. Amer. Chem. Soc., 1939, 61, 1660— 1666).—Accepted structures are confirmed. α -Methyl-L-galactomethylopyranoside (Votoček's nomenclature) and HIO₄ afford L'-methoxy-L-methyldiglycolldialdehyde, +H₂O, m.p. 98—99.5°, $[\alpha]_{50}^{20}$ -141'4° (cf. Jackson *et al.*, A., 1937, II, 325), converted by Br-SrCO₃ into Sr L'-methoxy-L-methyldiglycollate (I), $+xH_2O$, $[\alpha]_{50}^{20}$ (anhyd.) +68.2°. α -Methyl-D-gluco-, [$\alpha]_{50}^{20}$ +152.7°, β -methyl-L-galacto-, and β -methyl-Dgluco-methylopyranoside give similarly D'-methoxy-D-methyl-, m.p. 98—99°, $[\alpha]_{50}^{20}$ +141'4°, D'-methoxy-L-methyl-, m.p. 100—101°, $[\alpha]_{50}^{20}$ +88.8°, and L'methoxy-D-methyl-diglycolldialdehyde, m.p. 101—102°, $[\alpha]_{50}^{20}$ -88.8°, respectively, and thence the corresponding Sr salts, (II), $+xH_2O$, $[\alpha]_{50}^{20}$ -68.2°, (III), $[\alpha]_{50}^{20}$ OH -45.6° , and (IV), $[\alpha]_{50}^{20}$ +45.7°. Hydro-Me -¢-CO₂H lysis of (I) and (III) yields H₂C₂O₄ and L-lactic acid (V), dextroordatory H (Zn salt, +2H₂O, $[\alpha]_{50}^{20}$ -7.7° to -7.9°); (V.) that of (II) and (IV) gives H C.O. and

(V, J) that of (II) and (IV) gives $H_2C_2O_4$ and *D*-lactic acid (Zn salt, prepared also from morphine *D*-lactate). Changes of $[\alpha]$ during HIO_4 -oxidation are recorded. $[\alpha]$ are in H_2O . R. S. C.

Conversion of d-glucose into d-idose. W. H. G. LAKE and S. PEAT (J.C.S., 1939, 1069-1074).-4:6-Dimethyl-2:3-anhydro- β -methylmannoside when heated with NaOMe-MeOH yields 2:4:6-trimethylβ-methyl-d-idopyranoside (1), m.p. 75°, $[\alpha]_{b}^{14}$ – 61·0° in CHCl₃, converted by aq. H₂SO₄ into 2:4:6-tri-methyl-d-idose (a syrup), $[\alpha]_{b}^{18}$ + 26·6° in H₂O, +8·0° in CHCl which with a P size distribution of the distribution in CHCl₃, which with aq. Br gives trimethyl-d-idonoδ-lactone, $[\alpha]_{D}^{17} - 47.5^{\circ}$ in CHCl₃, -15.4° in H₂O. From this, with liquid NH₃, 2:4:6-trimethyl-d-idonamide, $[\alpha]_{D}^{17} - 20.0^{\circ}$ in CHCl₃, is formed. Methylation of (I) (Ag2O-MeI) yields tetramethyl-3-methyl-3-idopyranoside, b.p. 125°/0.02 mm., [a]14 -68.5° in CHCl3, -49.0° in H₂O, -77.3° in MeOH, hydrolysed by aq. H_2SO_4 to tetramethyl-d-idopyranose (II) (a syrup), $[\alpha]_{D}^{15} + 14.5^{\circ}$ in MeOH, $+22.0^{\circ}$ in H₂O, which on distillation at 130°/0.008 mm. gives octamethyldi-d-ido-pyranose, m.p. 102°, $[\alpha]_{D}^{19} + 90.2^{\circ}$ in CHCl₃, $+95.0^{\circ}$ in MeOH, $+103^{\circ}$ in H₂O, which on hydrolysis with 0.1N-H₂SO₄ regenerates (II). Oxidation of (II) with aq. Br yields tetramethyl-d-idono-8-lactone, m.p. 91°, $[\alpha]_{\rm p}^{16} - 52.6^{\circ}$ in CHCl₃, $[\alpha]_{\rm p}^{13} - 32.0^{\circ}$ in H₂O, which on oxidation with HNO₃ followed by treatment of the acids with NH_2Me gives *l*-dimethoxysuccinmethylamide and *i*-trimethoxyxyloglutaromethylamide. J. D. R.

Synthesis of D-mannoheptulose; preparation of some of its derivatives. E. D. MONTGOMERY and C. S. HUDSON (J. Amer. Chem. Soc., 1939, 61, 1654-1658).-The pulp (21 kg.) of the fruit of Persea gratissima, Gaertn., yields D-mannoheptulose (I) (315 g.), perseitol (75 g.), a non-reducing gum (400 g.), and a syrup (310 g.) (cf. LaForge, A., 1917, i, 118). In aq. 0.05N-Ba(OH)₂, *D*-manno-*D*-gala-heptose gives [Lobry de Bruyn rearrangement; $[\alpha] > 68.6^{\circ} \rightarrow +25.4^{\circ}$ (in these and other cases $[\alpha]_{p}^{20}$] a mixture, which after removal of aldoses by $[\alpha]_{p}^{20}$ (OR) = $(\alpha) = (1 + 25.4)^{\circ}$ Br-Ba(OBz)₂ affords (I) (25%), m.p. 152°, $[\alpha] + 29.2°$ in H_2O , and D-glucoheptulose (13%), m.p. 170-174°, $[\alpha] + 66.9^{\circ}$ in H_2O ; in hot C_5H_5N it gives 72% of aldoses with 21% of (I) as sole ketose. With 0.25N-HCl-MeOH, (I) gives α -methyl-D-mannoheptuloside (II), m.p. 142°, as sole product since $[\alpha]$ of the final solution $(+71.3^{\circ})$ is almost that of pure (I) $(+69^{\circ})$ in H₂O; this val. decides the configuration). With Ac₂O⁻C₅H₅N at 0°, (I) gives the α -hexa-acetate, m.p. 100°, $[\alpha] + 39.0^{\circ}$ in CHCl₃, converted by HBr-AcOH at 0° into the acetobromide, m.p. 92°, $[\alpha] + 104.0°$ in CHCl₃, which with Ag₂O-MeOH gives a-methyl-Dmannoheptuloside penta-acetate, m.p. 64° , $[\alpha] + 49.5^{\circ}$ in CHCl₃, obtained also from (II) by Ac₂O-C₅H₅N at 0° and hydrolysed to (II). Hydrolysis of (II) by 0.005 n-HCl at 98° is very rapid (k 0.050), but (II) is nevertheless a pyranoside (a) because it is formed equally, although very rapidly, at 20° and the b.p., and (b) because of its optical relations to D-mannose R. S. C. derivatives.

Periodic acid oxidation of $\alpha\alpha$ -trehalose E. L. JACKSON and C. S. HUDSON (J. Amer. Chem. Soc., 1939, 61, 1530—1532).—The structure of $\alpha\alpha$ -trehalose is confirmed by oxidation by HIO₄ (4 mols. consumed) to 2 HCO₂H and D'D'-oxydi-(D-hydroxymethyldiglycollaldehyde), a syrup, converted by Br and SrCO₃ in H₂O into Sr₂ D'D'-oxydi-(D-hydroxymethyldiglycollate) (54%), +6H₂O, $[\alpha]_{20}^{20}$ (anhyd.) -24.0° (c 0·29), -52.8° (c 0·91) in H₂O, and the free acid, $[\alpha]_{20}^{20}$ +71.3° in H₂O, from which by hydrolysis and oxidation (Br) gives H₂C₂O₄ and 65% of Ca D-glycerate. R. S. C.

Cleavage of cellobiose and celtrobiose by emulsin. N. K. RICHTMYER and C. S. HUDSON (J. Amer. Chem. Soc., 1939, 61, 1834—1835).—Cellobiose is hydrolysed 6.8 times as fast as is celtrobiose (I) by sweet almond emulsin, the difference being due to the same steric reason as for lactose-neolactose (Helferich *et al.*, A., 1939, II, 99). Hydrolysis of (I) by emulsin, but not by maltase, confirms its β -glucosidic structure. R. S. C.

2:4:6-Trimethyl- β -phenyl- and -benzyl-Dglucoside. N. K. RICHTMYER (J. Amer. Chem. Soc., 1939, 61, 1831—1832).— β -Phenyl-D-glucoside (isolated or prepared *in situ* from its tetra-acetate) and Me₂SO₄-NaOH at 95° give 2:4:6-trimethyl- β -phenyl-D-glucoside, m.p. 108—109°, $[\alpha]_{\rm D}$ =57.5° in CHCl₃ (with an isomeride, m.p. 105—106°), hydrolysed by hot 5% HCl to 2:4:6-trimethyl-D-glucose (I). β -Benzyl-D-glucoside gives similarly its 2:4:6-Me₃ derivative, m.p. 94—95°, $[\alpha]_{D}^{20}$ -49·1° in CHCl₃, also hydrolysed to (I). R. S. C.

Flavonol glucoside of Calystegia japonica, Chois. G. HUKUTI (J. Pharm. Soc. Japan, 1939, 59, 85—86).—Extraction of the leaves and stems of C. japonica, Chois, with MeOH gives campherol-3rhamnoglucoside, $C_{27}H_{30}O_{15},2H_2O$, m.p. 220—224°, in 0.03% yield. It is hydrolysed by dil. H_2SO_4 to campherol, glucose, and rhamnose and transformed by CH_2N_2 followed by dil. H_2SO_4 into 3-hydroxy-5:7:4'-trimethoxyflavone, m.p. 151°. H. W.

Isolation of monotropitoside from Gaultheria Cumingiana, Vidal. M. YASUE and T. SASAKI (J. Pharm. Soc. Japan, 1938, 58, 219).—Extraction of the leaves and twigs of this plant with 50% MeOH, treatment with Pb(OAc)₂, etc. yields monotropitoside, $C_{19}H_{26}O_6$, m.p. 181°, $[\alpha]_5^\infty$ —58.8° in H₂O, hydrolysed by 3% H₂SO₄ at 100° to o-OH·C₆H₄·CO₂Me, glucose, and xylose. R. S. C.

Mol. wt. of beta-amylose from corn starch by means of the ultra-centrifuge. C. O. BECKMANN and Q. LANDIS (J. Amer. Chem. Soc., 1939, 61, 1495-1503) .- A modified Beams air-driven ultracentrifuge has been used to study the sedimentation of β -amylose from maize starch, the granules of which were disrupted by dry grinding for 168 hr. and dispersed in H₂O. The β -amylose thus obtained is of various particle sizes, and mol. wts. range from 17,000 to 225,000. $\sim50\%$ of the material has a sedimentation const. of 4.0×10^{-13} (mol. wt. 31,000-60,000), whilst the vals. for the whole material range from 1.30 to $>12 \times 10^{-13}$. In the fractionation of ground maize β-amylose by MeOH a light fraction is obtained which is easily pptd. and retrograded. This anomalous behaviour is explained in terms of particle shape and hydration. a-Amylose from maize starch has a sedimentation const. of $\sim 6000 \times 10^{-13}$.

W. R. A.

Mol. wt. of α -amylodextrin (erythro-granulose) from potato starch. C. O. BECKMANN and Q. LANDIS (J. Amer. Chem. Soc., 1939, 61, 1504— 1507).—The mol. wts. of α -amylodextrins, prepared by three different methods involving the action of β -amylase on potato starch, vary from 8600 to 29,100. The heterogeneity of the dextrins is discussed. They are more spherical in shape than is β -amylose. W. R. A.

Constitution of laminarin. Isolation of 2:4:6-trimethylglucopyranose. V. C. BARRY (Sei. Proc. Roy. Dublin Soc., 1939, 22, 59–67; cf. A., 1938, III, 631).—Treatment of the dried comminuted fronds of Laminaria cloustoni with aq. $H_2C_2O_4$ (0.25%) for 3 days gives laminarin (I), $[\alpha]_{15}^{15}$ -12.8° in H_2O . An aq. solution of (I) and dil. HCl slowly deposits an insol. form, the difference in physical properties being thought to be due to the size of the colloidal particles. Acetylation of (I) gives the triacetate, $[\alpha]_{15}^{15}$ -52.0° in CHCl₃ (hydrolysed by 5% MeOH-HCl to α -methylglucoside), methylation of which (Me₂SO₄ + 45% KOH, 7 treatments) gives trimethyl-laminarin, $[\alpha]_{15}^{15}$ -4:39° in CHCl₃, hydrolysed by 2% MeOH-HCl to 2:4:6-trimethylglucopyranose.

It is suggested that (I) consists of a chain of β -glucopyranose (1:3 linkings) units bent into spiral form. S. H. H.

S. H. H. tert.-Alkyl primary amines, CRR'R".NH., I. Ethoxymethyldiallylcarbinylamine and some analogues. B. B. ALLEN and H. R. HENZE (J. Amer. Chem. Soc., 1939, 61, 1790-1794).-OR·CH₂·CN and MgR'Cl give an additive product, which with CH2:CH·CH2·MgBr (I) yields OR·CH2·CR'(CH2·CH:CH2)·NH2. R' may also be allyl. The amines do not give the carbylamine reaction, but their structure is proved by Hofmann degradation of a diallyl compound and synthesis of some of the products. OR CH_2 CN (R = Me, Et, or Pr^{β}) (1 mol.) and (I) (2 mols.) in Et_2O give ~ 60% yields of δ -amino- δ -methoxy-, b.p. 187.5—188°/753 mm., - δ -ethoxy- (II), b.p. 196—197°/755 mm., and - δ -isopropoxy-, b.p. 203—204.5°/753 mm., - $\Delta^{\alpha \zeta}$ -heptadiene. Addition of (I) to the product from MgPr^aBr and OEt·CH₂·CN gives δ -amino- δ -ethoxymethyl- Δ^{α} -heptene (III) (60·7%), b.p. 197—198°/753 mm. Hydrogenation (PtO₂; AcOH) of (II) or (III) gives δ-amino-δ-ethoxymethyl-n-heptane (IV), b.p. 198°/754 mm. (picrate, m.p. 123·5—124·5°). MeI and 40% aq. KOH convert (II) and (IV) into trimethyl-δethoxymethyl-Δ^{al}-heptadien-δ-yl-, m.p. 100.5-101.5° (decomp. at higher temp.), and trimethyl-8-ethoxymethyl-n-heptyl-ammonium iodide, decomp. $132\cdot5$ — 133 $\cdot5^{\circ}$, converted at 150— $180^{\circ}/25$ —27 mm. into δ -ethoxymethyl- Δ^{ayt} -heptatriene, b.p. 71— 72° (uncorr.)/ 16-17 mm., and -Δ^γ-heptene, b.p. 173.5-175°/740 72-73° (uncorr.)/17 mm., respectively. mm., Hydrogenation (Pt-black; COMe,) of both these final products yields S-ethoxymethyl-n-heptane, b.p. 170-171° (uncorr.)/740 mm., also obtained from CHPra, MgBr and CH, ClOEt in Et.O. OEt·CH₂·CO₂Et (prep. from OEt·CH₂·CN in Pr^aOH by HCl), b.p. 173.5°/748 mm., and MgPr^aBr (2 mols.) give 94.6% of δ-ethoxymethyl-n-heptan-δ-ol, b.p. 200-201°/752 mm., which with conc. HCl gives the corresponding chloride, b.p. 94-95° (uncorr.)/25 mm.; conversion thereof into (III) could not be achieved. Temp. are corr. $n, d, and \gamma$ of the products are given,

Crystal structure of glucosamine [and α -chitosamine].—See A., 1939, I, 457.

R. S. C.

and [M] and the parachors calc.

Action of periodic acid on α -amino-alcohols. B. H. NICOLET and L. A. SHINN (J. Amer. Chem. Soc., 1939, **61**, 1615).—HIO₄ oxidises substances containing *cis*-CX·CX, in which X = OH or NH₂. Thus, serine gives 95% of CH₂O and (judged by consumption of HIO₄) NH₃ and CHO·CO₂H (slowly further oxidised to CO₂ and HCO₂H). Qual. results with other NH₂acids are reported. NH([CH₂]₂·OH)₂ rapidly gives 4HCO₂H, but NEt₂·[CH₂]₂·OH does not react.

R. S. C. Polyiodides in alcoholic solutions of iodine and hexamethyl- $\alpha\gamma$ -diaminopropan-β-ol iodide. M. COVELLO (Annali Chim. Appl., 1939, 29, 187—189; cf. A., 1937, II, 8).—Ultra-violet absorption spectra indicate the presence of dissociable complexes in 0.05M. and 0.02M. solutions of the propanol with 4, 6, and 8I per mol. F. O. H.

Guanidomalonic acid.—See A., 1939, III, 707.

Phosphoserine and its enzymic hydrolysis.— See A., 1939, III, 721.

Reaction between organic sulphur compounds and hydrogen peroxide. XVIII. Action of neutral hydrogen peroxide on thiocarbamides. Synthesis of aminoiminomethanesulphinobetaines. R. KITAMURA (J. Pharm. Soc. Japan, 1939, 59, 33-36).—Gradual addition of H_2O_2 to $CS(NH_2)_2$ in 70% EtOH gives formamidinesulphinobetaine, decomp. 127—128°; methyl-, decomp., 95— 97°, propyl-, decomp. 152—153°, and diallyl-, decomp. 89—91°, -formamidinesulphinobetaine are obtained from the requisite substituted thiocarbamides. All are unstable and are transformed by KOH and H_2O_2 at room temp. into the corresponding carbamides. H. W.

Action of aldehydes on thiol-amino-com-pounds. L. GENEVOIS and P. CAYROL (Bull. Soc. chim., 1939, [v], 6, 1223-1230; cf. Schubert, A., 1936, 824).-Neutral solutions of equimols. of cysteine (I) and CH_2O (at $p_H 4$) give the compound, cysteine-formaldehyde (1 to 1 mol.) (stable at $p_{\rm H}$ 4 to $p_{\rm R}$ 7), m.p. ~65° (hygroscopic), decomposed by I. MeCHO, EtCHO, and PrCHO act similarly but not completely, and PhCHO much less readily. (I) (1 mol.) reacts with ketones, *e.g.*, COMe₂, AcCO₂H, or furfuraldehyde, only in large excess, *e.g.*, 20 mols. of COMe₂; the equilibrium is discussed. Between $p_{\rm R}$ 3 and 7 (I) acts amphotorially similarly to other NH and 7, (I) acts amphoterically, similarly to other NH2acids. $CO_2H \cdot CH(NH_2) \cdot [CH_2]_2 \cdot CO \cdot NH \cdot CH(CH_2 \cdot SH) \cdot$ CO·NH·CH₂·CO₂H reacts only with a large excess of CH_2O , e.g., 200 mols. (reaction complete at $p_{\rm H}$ 7.5); MeCHO reacts less readily, and ketones not at all. A definite relationship between NH and SH is essential for positive reaction. Thiolacetic or thiosuccinic acid does not react even with a very large excess of aldehydes or ketones. A. T. P.

Electrolytic reduction and determination of oxidised glutathione. J. S. DOHAN and G. E. WOODWARD (J. Biol. Chem., 1939, 129, 393—403).— Oxidised glutathione (I) is completely reduced electrolytically in an acid medium using a Hg cathode. The reduced (I) is determined by the sp. glyoxalase method or iodometrically. No oxidised (I) was found in sulphosalicylic acid extracts of blood or tissue but when added it was completely recovered by electrolytic reduction and only partly by reduction with Zn. E. M. W.

Halogenoacetylcarbamides. I. A. PEARL and W. M. DEHN (J. Amer. Chem. Soc., 1939, 61, 1377— 1378).—CH₂Cl·COCl and CO(NH₂)₂, first at room temp. and then at 100°, give chloroacetylcarbamide, m.p. 190—191° (lit., decomp. 160°, m.p. 180°), sternutatory. *Dichloroacetylcarbamide* (prep. from CHCl₂·COCl), m.p. 149—150°, is also sternutatory and with NaI in COMe₂ gives di-iodoacetylcarbamide, m.p. 192—193°. CCl₃·CO·NH·CO·NH₂ gives similarly tri-iodoacetylcarbamide, m.p. 74—75°, unstable in air. *Dibromo*acetylcarbamide, m.p. 180—181°, is prepared from CHBr₂·COBr. R. S. C.

Dimorphism of α-bromoisovalerylcarbamide. A. WATANABE (J. Pharm. Soc. Japan, 1938, 58, 145— 149; cf. Ichikawa, A., 1936, 1237).—Cryst. form and physical consts. are compared for the α - (plates or scales) and β -form (needles or prisms), m.p. 153—154°; the α - at 120—130° gives the β -form.

A. T. P. Characteristic reaction of dithio-oxamide with ferrous iron. G. NILSSON (Analyst, 1939, 64, 501). —A deep blue colour is produced when excess of cold alkaline aq. dithio-oxamide reacts with a Fe^{II} salt, or with a Fe^{III} salt in presence of a reducing agent. Metallic Fe does not react with the alkaline reagent unless rendered cathodic for a few sec., after which it dissolves with production of a blue colour.

E. C. S.

Hydrolysis of guanidine by boiling potassium hydroxide solution. G. LAUDE (Compt. rend., 1939, 208, 1848—1850; cf. A., 1938, I, 202, and following abstract).—The rate of hydrolysis of equimol. amounts of guanidine, creatine, creatinine, and arginine is the less the greater is the mol. wt.

J. L. D. Curves showing formation of ammonia by boiling alkaline solutions of guanidine and proteins. G. LAUDE (Compt. rend., 1939, 208, 1691—1692).—Rates of production of NH_3 by alkaline hydrolysis of guanidine, creatine, arginine, and the albumin of egg, blood, and wheat are examined (cf. A., 1937, II, 357; 1938, I, 202). J. L. D.

Co-ordination by methyl isonitrile. Structure of β -tetramethyl ferrocyanide. H. M. POWELL and G. B. STANGER (J.C.S., 1939, 1105—1106).—The β form of Me₄ ferrocyanide (Hartley, J.C.S., 1913, 103, 1196) is shown by X-ray analysis to be the *trans* six-co-ordinated compound with four MeNC mols. attached to Fe by linkings of the type found in metallic carbonyl compounds. J. D. R.

Isomerisation of cyclohexane and methylcyclopentane. A. L. GLASEBRÖOK and W. G. LOVELL (J. Amer. Chem. Soc., 1939, 61, 1717— 1720).—AlCl₃, activated by H_2O or HCl, equilibrates cyclohexane and methylcyclopentane (I) to mixtures containing 12.5% of (I) at 25°, rising to 25.6% at 77.4° (cf. Nenitzescu *et al.*, A., 1933, 941). Thermodynamic consts. are calc. R. S. C.

Dehydration of trans-2-methylcyclohexanol. C. C. PRICE (J. Amer. Chem. Soc., 1939, 61, 1847– 1849).—trans-2-Methylcyclohexanol and P_2O_5 at any temp. between 140° and 230° give a mixture (A) of 1- (35–50% of the mixture) and 3-methyl- Δ^1 -cyclohexene (structures determined by oxidation), although Vogel's C₇H₁₂ and C₇H₁₄ (A., 1938, II, 268, 354, 436; 1939, II, 304) resemble 1-ethylcyclopentene and ethylcyclopentane, respectively, in physical properties. (A) is reduced (H₂, Raney Ni, EtOH), best after distillation with EtOH, to methylcyclohexane (no change in physical properties during 1 month). R. S. C.

Catalytic cyclisation of paraffin hydrocarbons in presence of platinised charcoal. B. A. KAZ-ANSKI and A. F. PLATE (J. Gen. Chem. Russ., 1939, 9, 496—502).—The following products are obtained by passing the hydrocarbon over Pt–C at $305-310^{\circ}$; from *n*-hexane, C_6H_6 ; from β -methylhexane, PhMe; from γ -methylheptane, PhEt and *o*- and *p*-xylene; from δ -methylheptane, *m*-xylene; from δ -methyl-

410

octane, PhPr and $m \cdot C_6 H_4$ MeEt. Diisoamyl passed over Ni-Al₂O₃ catalyst at 350° yields up to 25% of unidentified aromatic products. R. T.

Synthesis and properties of β -phenyloctane, ε -phenylnonane, and η -phenyltridecane. A. D. PETROV, A. D. BAIDANOV, N. N. ZAKOTIN, and P. I. SUNTZOV (J. Gen. Chem. Russ., 1939, 9, 509—512).— Mg hexyl bromide and COPhMe yield β -phenyloctan- β -ol, b.p. 136—137°/12 mm., dehydrated by heating in presence of I to β -phenyl- Δ^{β} -octene, b.p. 121— 122°/10 mm., which with H₂ (Ni catalyst) gives β phenyloctane, b.p. 125—127°/18 mm., not solidifying at -80° . ε -Phenylnonan- ε -ol, b.p. 130—132°/7—8 mm., from MgBu^aBr and EtOBz, similarly yields ε -phenyl- Δ^{δ} -nonene, b.p. 117—121°/6 mm., hydrogenated to ε -phenylnonane, b.p. 126—127°/12 mm. η -Phenyltridecan- η -ol, b.p. 165—170°/8 mm., η -phenylt- Δ^{ξ} -tridecene, b.p. 153—154°/8 mm., and η -phenyltridecane, b.p. 183—184°/20° mm., not solidifying at -78° , are obtained analogously. The η of the saturated hydrocarbons varies little with change in temp. R. T.

Rearrangement of 4-tert.-butyl-m-xylene with aluminium chloride. L. I. SMITH and H. O. PERRY (J. Amer. Chem. Soc., 1939, 61, 1411—1412). —1:3:4-C₆H₃Me₂Bu^{γ}, b.p. 113—114°/28 mm., 210— 214°/760 mm. [oxidised by KMnO₄ to 1:3:4-C₆H₃(CO₂H)₃], prepared from 1:3:4-C₆H₃Me₂·MgI by Bu^{γ}Cl, is converted by AlCl₃ at 100° into 1:3:5-C₆H₃Me₂Bu^{γ} (cf. Baddeley *et al.*, A., 1935, 612) and may thus be an intermediate in the reaction of mxylene and Bu^{γ}Cl in presence of AlCl₃. R. S. C.

Trinitrotriphenylmethide ion as a secondary and primary base.—See A., 1939, I, 472.

Beryllium chloride in organic reactions. H. BREDERECK, G. LEHMANN, C. SCHÖNFELD, and E. FRITZSCHE (Ber., 1939, 72, [B], 1414-1429).-In its behaviour towards org. chemicals BeCl₂ shows a close analogy to AlCl₃ but usually requires a somewhat higher temp. Reactions which require only a slight activation, e.g., hydrocarbon syntheses with labile halogen compounds, proceed very smoothly whereas difficulty is experienced when stable compounds are involved. The ketone synthesis appears to take place less readily with BeCl, than with AlCl_a. It is assumed that the primary substance in the change is an additive compound of the metallic halide and the org. partner which should not be too stable. Such stability is more likely to be met with in the Be derivatives by reason of the smaller ionic radius of the metal and hence more drastic conditions are necessary subsequently. The yields with BeCl₂ and AlCl₃ are somewhat similar but variations occur in both directions and final judgment cannot be pronounced until the optimal conditions for each change have been established. In cases where mol. amounts are required the advantage lies with BeCl₂ by reason of its smaller mol. wt. but economically AlCl₃ remains unchal-lenged. The following reactions are described in detail: C_6H_6 and CH_2PhCl to CH_2Ph_2 (60%), o- and $p-C_6H_4(CH_2Ph)_2$; PhMe and CH_2PhCl to

 $CH_2Ph C_6H_4Me_p$ and *benzyl-p-methylbenzylbenzene*, b.p. 234-236°/12 mm.; *m*-xylene and CH_2PhCl to

phenylxylylmethane and (phenylxylyl)benzylmethane, b.p. 240-245°/14 mm.; CH₂PhCl and s-C₆H₃Me₃ to phenylmesitylmethane, m.p. 36°, and phenyl-2:4:6phenylnesitylinesitane, m.p. 36°, and phenyl-2:4:6-trimethylphenylbenzylmethane, b.p. 238—244°/12 mm., m.p. 76°; C₆H₆ and CHPhCl₂ to CHPh₃ (yield 28·5%) and a little CH₂Ph₂; PhMe and CHPhCl₂ to phenyl-p-, b.p. 218—220°/12 mm. (yield 73%), and (?) -o-, b.p. 286—289°/12 mm., -ditolylmethane; CHPhCl₂ and NPhMe₂ to leucomalachite-green (yield 54-2%). PhMe and EtBr to c.C.H. MoFf (wield 1700) CHPACL₂ and NPAMe₂ to followinal achite-green (yield $54 \cdot 2\%$); PhMe and EtBr to $p \cdot C_6H_4$ MeEt (yield 47%) and C_6H_3 MeEt₂, b.p. 195—200°/760 mm.; PhMe and AcCl to $p \cdot C_6H_4$ MeAc (yield, 80%); AcCl and C_6H_6 to COPhMe (yield 33%); C_6H_6 and CH₂Ph·OH to CH₂Ph₂ (yield 58%) and $C_6H_4(CH_2Ph)_2$, or with less BeCl₂ to CH₂PhCl (yield 57%) which is thus an intermediate in the production of CH₂Ph₂ by this method; CHPh₂·OH and BeCl₂ at 100—110° afford CHPh₂Cl in 77° yield : CH Ph·OH and PhMe to CH Ph·C. H. Me in 77% yield; $CH_2Ph \cdot OH$ and PhMe to $CH_2Ph \cdot C_6H_4Me$ and phenyltolylbenzylmethane; $COMe_2$ and $BeCl_2$ at 150° to mesityl oxide (yield 27%) and phorone (yield 12%); COMeEt and BeCl₂ to γ -methyl- Δ^{γ} -hepten- ε -one, b.p. 167—168° (yield 30%); COPhMe to C₆H₃Ph₃ and dypnone; PhCHO and PhMe to phenyldi-p-, b.p. 193°/3 mm., and -o- (I), b.p. 270°/ 3 mm., -tolylmethane [MeOBz and o-C₆H₄Me·MgBr give *phenyldi*-o-*tolylcarbinol*, m.p. 107–108°, which is reduced to (I), m.p. 104–105°]; CH₂Cl·CO₂Ph and BeCl₂ at 130–140° to o- and p-OH·C₆H₄·CO·CH₂Cl; $p \cdot C_6 H_4 Me \cdot OBz$ to $2:5:1 \cdot OH \cdot C_6 H_3 Me \cdot COPh$, m.p. 84° (yield 69%); p-C₆H₄Me OAc and BeCl₂ to 2:5:1-OH·C₆H₃Me·COMe, converted by HNO₃ (d 1.2) at 100° into 3-nitro-2-hydroxy-5-methylacetophenone, m.p. 132° (Na salt). CPh₂:CH₂ is converted by BeCl₂ in C₆H₆ at 110-120° into its dimeride, m.p. 142°, in $\sim 90\%$ yield. C_2H_4 gives the highest yields of distillable polymerisate at 200°/initial pressure 110 atm. At higher temp. carbonisation increases. All fractions are unsaturated; n- and iso-hexane, hexene, pentanes, pentenes, and butenes have been identified. C_3H_6 at $155-165^{\circ}/30$ atm. gives volatile hydrocarbons (15.3%), benzines (20.7%), light oils (39.3%), and heavy and lubricating oils (24.7 %). All fractions are unsaturated. The gases contain unchanged C₃H₆, butene (II), and isobutene (III). At 200° (III) yields ~80% of benzines consisting mainly of disobutene and isomeric octenes with some triisobutene and its isomerides. Very little saturated hydrocarbon is present. A tetrameric isobutene, b.p. 101-102°/4 mm., has been identified. The gases contain unchanged (III), C_3H_6 , and (II). isoHexene, isopentane, and isohexane are present in the volatile distillate. In glass vessels > half of the polymerisate is a yellow, viscous material, not volatile at 360°/ vac.; the material of the autoclave appears to have a proper, catalytic influence. isoHexene at $\sim 200^{\circ}/$ 20—30 atm. gives benzines (54%) consisting of C₈ with some C_{12} hydrocarbons, *n*- and *iso*-hexane, and *iso*-hexane. BeO has moderate catalytic activity whereas BeF2 and Be2OF2 have very little effect. BeO appears to accelerate polymerisation rather than cracking, isomerisation, or hydrogenation. Anthracene and phenanthrene are cracked by BeCl₂ to tetrahydronaphthalene, alkyl-benzenes and -naphthalenes, or, under other conditions, to unidentified cryst. compounds. Attempts to crack an aromatic

coal-tar oil were unsatisfactory, only small amounts of benzenoid hydrocarbons being obtained. H. W.

Resonance and physical and chemical properties of diphenyl types. M. CALVIN (J. Org. Chem., 1939, 4, 256-261).-The requirement that the four linkings extending from a double linking $^{1}_{2}$ C=C $<^{3}_{4}$ must be coplanar is applied to the contributing resonating states of diphenyls. Discussion of the effect of non-o-substituents on the rate of racemisation of certain diphenyls leads to the prediction that 2:2'-dibromo-4-nitro-4'-aminodiphenyl should be resolvable and have a racemisation half-life >10 min. Consideration of the effect of the possibility or impossibility of conjugated resonating states on the absorption spectrum of substituted diphenyls brings the prediction that certain non-resolvable tetra-o-substituted diphenyls should show the conjugated absorption spectrum whereas other tetra-o-substituted diphenvls in which the coplanar arrangement of the rings is impossible should have an absorption spectrum very similar to the uncoupled parts. The existence of optically active derivatives of 9:9'-diphenanthryl and of 9-cyclohexenylphenanthrene is foretold and the relationship between the contributing resonating states and the reactivity towards a diene condensation is discussed. H. W.

Reaction between hexabromobenzene and magnesium phenyl bromide. T. A. GEISSMAN and R. C. MALLATT (J. Amer. Chem. Soc., 1939, 61, 1788-1790).-C₆Br₆ and MgPhBr give (on hydro-1735—1790).—C₆Br₆ and MgFhBr give (on hydro-lysis) small yields of 1:2:4:5-C₆H₂Br₄ and -C₆H₂Ph₄ and much tar, the C₆H₂Br₄ being formed from C₆Br₄(MgBr)₂ and the C₆H₂Ph₄ from C₆Ph₄(MgBr)₂, *i.e.*, by independent mechanisms. Carbonation gives 2:3:5 6-tetraphenylterephthalic acid, m.p. $>320^{\circ}$ (block) (Me₂ ester, m.p. 280°). C₆Br₆ is unchanged by Mg + MgI₂, indicating no reaction (above) with Mg or Mg + MgBr₂. A large excess of MgPhBr doubles the yield of C6H2Ph4. C₆Br₆ and LiPh give only polymeric material. C₆Br₆ and MgPhI give 7.9% of $\hat{C}_6 H_2 Ph_4$ and much tar. R. S. C.

Reaction between maleic anhydride and vinylhydrindenes. R. T. ARNOLD (J. Amer. Chem. Soc., 1939, 61, 1405-1406).-Gradual addition of conc. H₂SO₄ to hydrindene, 30% aq. CH₂O, and conc. HCl at 60° gives 5-chloromethylhydrindene (57%) yield), b.p. 110-112°/4 mm., converted by (CH₂)₆N₄ in 60% EtOH into hydrindene-5-aldehyde, b.p. 135-138°/23 mm., which with CH₂(CO₂H)₂ and piperidine at 60° yields β -5-hydrindenylacrylic acid (I), m.p. 161-162°. α-5-Hydrindenylethyl alcohol [prep. from acetohydrindene (II) by Na-EtOH], b.p. 133°/10 mm., with HCO₂H or PhNCO gives polymerides, but with C₅H₅N-SOCl₂ gives a chloride, converted by KOH-EtOH into 5-vinylhydrindene (III), b.p. $95-100^{\circ}/10$ mm., which is obtained also from (I) in 5% yield by thermal decomp. in presence of quinol or Cu-quinoline. MgMeI and (II) give a carbinol, converted by dry HCl at 0° into the chloride, which with KOH-EtOH at 60° yields 5-isopropenylhydrindene, b.p. 84°/2 mm. This and (III) are polymerised by maleic anhydride in xylene at 100°, showing that either the ethylenic linkings of the hydrindene ring are not "fixed" by the C.C or that the rate of polymerisation exceeds that of addition. R. S. C.

Photosensitive nitro-compounds. VI. Certain nitronaphthalene derivatives substituted in the o- or p-positions with sulphur-containing radicals. N. N. VOROSHCOV, V. V. KOZLOV, and I. S. TRAVKIN (J. Gen. Chem. Russ., 1939, 9, 522– 525).—1:2-NO₂·C₁₀H₆·NH₂ diazotised in aq. H₂SO₄ and then treated with SO₂ (Cu-bronze catalyst) yields 1-nitronaphthalene-2-sulphinic acid, m.p. 119.5°. $2:1-\mathrm{NH}_2\cdot\mathrm{C}_{10}\mathrm{H}_6\cdot\mathrm{SO}_3\mathrm{H}$ is converted (Sandmeyer with NaNO2) into 2-nitronaphthalene-1-sulphonic acid.

R. T. Phenanthrene syntheses with 2:3-dimethyl- Δ^2 -cyclohexenone. E. BERGMANN and A. WEIZ-MANN (J. Org. Chem., 1939, 4, 266-269).-The crude condensation product of CH2Ac CO, Et and (CH₂O)₃ is heated with NaOEt-EtOH at 85-115° and the product is acidified with AcOH, thus giving Et 3-methyl- Δ^2 -cyclohexenone-4-carboxylate, b.p. 160— 165°/35 mm., 108°/1 mm., which is converted by NaOMe and MeI in MeOH into Et 2: 3-dimethyl- Δ^2 cyclohexenone-4-carboxylate, b.p. 158-161°/21 mm., 104-110°/1 mm., transformed by 10% KOH-EtOH into 2:3-dimethyl- Δ^2 -cyclohexenone (I), b.p. 53-65°/1.5 mm. CH, Ph·CH, MgCl and (I) afford 3-βphenylethyl-1 : 2-dimethyl- $\Delta^{1:3}$ -cyclohexadiene, b.p. 155°/6 mm., converted by SnČl₄ in C_6H_6 saturated with HCl at 0° into 1 : 2-*dimethyl*-3 : 4 : 9 : 10 : 11 : 12hexahydrophenanthrene, b.p. 105-107°/0.02 mm., 150—160°/29 mm., which is dehydrogenated (Se at 330°) to 1:2-dimethylphenanthrene, m.p. 142— 143°, usually accompanied by some 1:2-dimethyl-9:10-dihydrophenanthrene, b.p. 115—120°/2 mm. m-OMe·C₆H₄·MgBr reacts violently with $(CH_2)_2O$, giving m-anisylethyl alcohol, b.p. 105-110°/1 mm., transformed by SOCl₂ and NPhMe₂ (C₅H₅N gives inconst. results) into m-anisylethyl chloride, b.p. 85-87°/1.5 mm., 128-130°/14 mm., also obtained from m-OMe·C₆H₄·MgBr and p-C₆H₄Me·SO₃·CH₂·CH₂Cl, m-OMe·C₆'H₄'·[CH₂]₂·MgCl and (I) yield 3β - β -m-anisyl-ethyl-1: 2-dimethyl- $\Delta^{1:3}$ -cyclohexadiene, b.p. 145— 147°/0.8 mm., cyclised (as above) to 7-methoxy-1:2dimethyl-3:4:9:10:11:12-hexahydrophenanthrene, b.p. 135°/0.07 mm. This is dehydrogenated to 7methoxy-1:2-dimethylphenanthrene (picrate, m.p. 149°) and 7-methoxy-1:2-dimethyl-9:10-dihydrophenanthrene, b.p. $\sim 150^{\circ}/1$ mm. H. W.

Syntheses in the 1:2-benzanthracene and chrysene series. L. F. FIESER and W. S. JOHNSON (J. Amer. Chem. Soc., 1939, 61, 1647-1654).-Some benzanthracene and chrysene derivatives are synthesised. Formation of benzanthracene or chrysene derivatives by ring-closure sometimes depends on the condensing agent used. When the product obtained from 8-keto-3:4:5:6:7:8-hexahydro-1:2-benzanthracene (I) and MgEtBr is dehydrated by heating, it gives 88.5% of 8-ethyl-3: 4:5:6-tetrahydro-1:2benzanthracene, m.p. 65—67°, b.p. $\sim 185^{\circ}/1$ mm., dehydrogenated by S at 210—255° (followed by Zn dust) to 8-ethyl-1:2-benzanthracene, double m.p. 78-79° and 82.5-83° (picrate, m.p. 149.5-150°). Heating with S at 230-255° (not PtO, in C₁₀H₈)

and subsequent distillation converts (I) into 8-hydroxy-1: 2-benzanthracene (45%), m.p. 151.3-151.8° (acetate, m.p. $133-133\cdot6^\circ$), which with NH₃ and NaHSO₃ in aq. dioxan at 190-200° yields 8-amino-1:2-benzanthracene (26%), m.p. 201.7-202.3° (de-Me y-keto-y-9: 10-dihydro-2-phenanthrylcomp.). butyrate (prep. from the acid by HCl-MeOH), m.p. 77—78°, and MgMeI (> slight excess) in boiling Et₂O- C_6H_6 give 53% of γ -9:10-dihydro-2-phenanthryl- Δ^{β} pentenoic acid (II) (? mixed stereoisomerides), m.p. 117-125° [a probably pure acid had m.p. 137-138° (decomp.)], but at a lower temp. 32% of (II) is obtained with 35% of γ -9: 10-dihydro-2-phenanthryl- γ -valerolactone (III), m.p. 61.5-63° (clear at 70°). (III) is obtained also from (II) by hot 10% H₂SO₄ and with boiling aq. alkali gives the γ -OH-acid, m.p. 95—97° (decomp.). Reduction of (III) by Zn-alkali or Zn-Hg-HCl was unpromising, but H2-PtO2 in AcOH reduces (II) readily to γ -9:10-*dihydro*-2-phenanthryl-n-valeric acid, m.p. 77.5—78.5°, converted by HF in 81.5% or by PCl₅ in C₆H₆, followed by AlCl₃, in 64% yield into 8-keto-5-methyl-3: 4:5:6:7:8-hexahydro-1:2-benzanthracene (IV), m.p. 127.9— 128.4°. This is converted into 5-methyl-1:2-benzanthracene (49.5% yield) by heating with Zn-Hg in PhMe-AcOH-HCl-H₂O, removing unchanged ketone chromatographically (Al₂O₃), and dehydrogenating with S at $200-255^{\circ}$. Condensation of (IV) with MgMeI (excess) in C₆H₆ and dehydration at 250° gives a mixture, from which 5:8-dimethyl-3:4-dihydro-1: 2-benzanthracene, m.p. 82.2-82.8° [absorption spectrum very similar to that of 20-methyl-6:7dihydrocholanthrene; max. at 2715 (log ϵ 4.72) and 3090 A. (log ϵ 4.13)], separates; the residue is converted by S, first at 210-215° and then at 235°, into 5:8-dimethyl-1:2-benzanthracene, m.p. 131-2-131-4° and then $134.4-134.7^{\circ}$ (*picrate*, m.p. $174.5-175^{\circ}$). 8-Methyl-1: 2-benzanthracene, POCl₃, and NPhMe·CHO in o-C₆H₄Cl₂ at 100° give 8-methyl-1 : 2-benzanthracene-10-aldehyde (42%), m.p. 151·5—152°, the hydrazone, m.p. 181—181·5° (decomp.), of which with EtOH-NaOEt at 195-208° yields 8:10-dimethyl-1: 2-benzanthracene, m.p. 145.5-146.5° (picrate, m.p. 165.5-166°). Me y-2-phenanthrylbutvrate (prep. from the 9 : 10-H₂-ester, b.p. $\sim 230^{\circ}/$ 4-5 mm., by S at 235-255°), b.p. ~240°/4 mm., yields the derived acid (V), m.p. 134-135.5°, which with HF gives 78% of 8-keto-5:6:7:8-tetrahydro-1:2-benzanthracene (VI), m.p. 117.5-118.5°; MgMeCl etc. then yields 8-methyl-5: 6-dihydro-1: 2-benz-anthracene, m.p. 80-80.6° [picrate, m.p. 151-152° (decomp.)], and thence (S at 205-245°) 8-methyl-1:2-benzanthracene. However, $ZnCl_2$ in Ac_2O -AcOH cyclises (V) in 51% yield to 4-keto-1:2:3:4tetrahydrochrysene (VII); 85% H₂SO₄ at 100° gives 23% of (VII); PCl₅-C₆H₆, followed by AlCl₃, gives 35% of (VI) and 17.5% of (VII), or in PhNO₂ mainly (VI) with very little (VII). MgMeCl, followed by dehydration, converts (VII) into a H2-derivative (90%), which with S at 215-245° gives 4-methylchrysene, m.p. 151-151.5° (picrate, red and unstable orange forms, m.p. 137.5-138°). M.p. are corr.

R. S. C. Photo-oxides of carcinogenic hydrocarbons. J. W. COOK, R. MARTIN, and E. M. F. ROE (Nature, C C (A., II.)

1939, 143, 1020).—Passage of O₂ through a 0.05% solution of 9:10-dimethyl-1:2-benzanthracene in CS, exposed to the light of a 200-w. gas-filled lamp gives a photo-oxide (I), m.p. 193-194°. Photo-oxides (m.p. in parentheses) have been obtained equally readily from 5:9:10- (212-213°) and 6:9:10-trimethyl- (II) (205-206°), 5:6:9:10tetramethyl-1: 2-benzanthracene (III) (228-229°), and 9:10-dimethyl-1:2:5:6-dibenzanthracene (222-223°). (II) has m.p. 157-158°, and (III), m.p. 132-133°. The ultra-violet absorption spectrum of (I) shows bands similar to those of a meso-H₂derivative of 1:2:5:6-dibenzanthracene, with ~ half their intensities. Irradiation (Hg arc) of a C₆H₁₄ solution of (I) causes decomp. and the spectrum of the parent hydrocarbon reappears. The spectrum of 9:10-dihydroxy-9:10-dimethyl-9:10dihydro-1:2-benzanthracene shows bands of the same order of intensity as the photo-oxide, but shifted \sim 180 A. towards the far ultra-violet. 1:2-Benzanthracene, but not 1:2:5:6-dibenzanthracene and 3:4-benzpyrene, gives indications of the formation of a photo-oxide. L. S. T.

Synthesis of 1':9-methylene-1:2-benzanthracene and related hydrocarbons. L. F. FIESER and J. CASON (J. Amer. Chem. Soc., 1939, 61, 1740-1745).-Acenaphthene and AcOH or AcCl in HF give 1- (I) (29%), m.p. 114—114.5° [picrate, m.p. 114.5—115°; $C_6H_3(NO_2)_3$ derivative, m.p. 113.5—114°], and 3-acetoacenaphthene, m.p. 69—69.5° (picrate organize and values forms) (picrate, orange and yellow forms, m.p. 97-97.5°) both stable in HF. KOCl in aq. dioxan at 60° oxidises (I) to 1-acenaphthoic acid (95.5%), m.p. 254-256°, which with Na₂Cr₂O₇-AcOH at 90-95° give 2-carboxy-1: 8-naphthalic anhydride, m.p. 297.5 -298.5° (Me ester, m.p. 191-192°), and with SOCl, gives 1-acenaphthoyl chloride, m.p. 110-111° (with AlCl₃ in C_6H_6 gives a substance, decomp. >200°), and thence by NH_3 in aq. dioxan the *amide*, m.p. 227— 228°. With MgPhBr this gives 1-benzoylacenaphthene (II), m.p. 91.5—92°, b.p. 210—215°/1 mm., obtained (11), in p. 310 g, the product of t

(III.) $41-42^{\circ}$); for prep. of 1:3:2-(III.) (-26°) , b.p. 123-123.5°/14 mm., by the diazo-

reaction from 1:2:3-C₆H₃MeI·NH₂ it is best (74.5% yield) to omit isolation of the amine. Grignard reactions of (IV) with CO2, 2-C10H7 COMe, or 2-C10H₇·CN give poor yields of indefinite materials, probably owing to steric hindrance of the I. 1:2:3- $\hat{C}_6H_3Me_2\cdot NH_2$ (prep. in 92% yield from the NO₂-compound by Fe-H₂O or H₂-catalyst), b.p. 98-100°/11 mm., gives (diazo-reaction) 40% of 1:2:3-C₆H₃Me₂·CN, b.p. 105-107°/11 mm., which with 1-C₁₀H₇-MgBr in Et₂O-C₆H₆ and later in hot C₆H₆ yields 89% of 3-o-xylyl α -C₁₀H₇ ketone, b.p. 190-195°/1 mm. Pyrolysis thereof with a little Zn dust at 425—430° yields 5- and 8-methyl-1: 2-benzanthracene (V) and 1: 2-benzanthracene. 3-o-Xylyl β - $C_{10}H_7$ ketone (similarly prepared), m.p. 62—63°, gives a mixture, from which (V) is separable with difficulty. 2-Aceto-1: 8-naphthalic anhydride, m.p. 219—219-3°, is obtained by oxidation (Na₂Cr₂O₇-AcOH) of (I). M.p. are corr. R. S. C.

New syntheses of the red hydrocarbon rubicene. V. I. CHMELEVSKI and I. J. POSTOVSKI (J. Gen. Chem. Russ., 1939, 9, 620–624).—Mg and boiling fluorenone give rubicene, in 11% yield. 9:10-Dihydroxy-9: 10-diphenyl-9: 10-dihydroanthracene with AlCl₃ and MnO_2 (30 min. at 100°) affords rubicene in 4% yield. R. T.

Naphthylaminoalkanes. F. F. BLICKE and C. E. MAXWELL (J. Amer. Chem. Soc., 1939, 61, 1780—1782).— $C_{10}H_8$ derivatives of benzedrine and similar types have only slight pressor activity (dogs) and produce tolerance and cross-tolerance for ephedrine. When $1-C_{10}H_7$ ·CH₂Cl and $(CH_2)_6N_4$ are heated in CHCl₃ and the product is distilled with conc. HCl and EtOH, there is obtained $1-C_{10}H_7$ ·CH₂·NH₂, b.p. 200—205°/30 mm. (hydrochloride, new m.p. 260— 262°). $1-C_{10}H_7$ ·MgBr with MeCN in Et₂O, followed by aq. HCl, gives $1-C_{10}H_7$ ·COMe, b.p. 145—147°/6mm., the oxime, new m.p. 134—135°, of which with Na-EtOH yields $1-C_{10}H_7$ ·CHMe·NH₂, b.p. 141— 142°/5 mm. {hydrochloride, m.p. 236—237° [lit, 20—221° (decomp.)]}. $2-C_{10}H_7$ ·CMe·N·OH, m.p. 142—143°, yields similarly $2-C_{10}H_7$ ·CMe·N·OH, m.p. 280°(lit., 199—200°)]. $1-C_{10}H_7$ ·COEt (prep. from 1- $C_{10}H_7$ ·MgBr and EtCN), b.p. 171—172°/12 mm., gives the oxime, new m.p. 55—57°, and thence $1-\alpha$ -aminon-propylnaphthalene, b.p. 148—149°/10 mm. (hydrochloride, m.p. 281—282°). $1-C_{10}H_7$ ·CH₂Cl and CHNa(CO_5Et)_n in CaH₆ give

CHNa(CO₂Et)₂ in C₆H₆ give 1-C₁₀H₇·CH₂·CH(CO₂Et)₂, b.p. 199—201°/3 mm., converted by MeI and Na-EtOH into Et_2 a-naphthylmethylmethylmalonate (I), m.p. 51—52°, b.p. 207— 209°/2 mm., which with KOH in 60% KOH gives the malonic acid, m.p. 172—173° (decomp.); heating at 175—180° then yields β-1-naphthylisobutyric acid (II), m.p. 91—92°, the amide, m.p. 134—135°, of which with NaOBr at 70—80° gives 1-β-amino-n-propylnaphthalene (hydrochloride, m.p. 213—214°). Crude, oily 1-C₁₀H₇·CH:CMe·COMe, obtained from 1-C₁₀H₇·CHO, COMEEt, and HCl, is oxidised by NaOBr to 1-C₁₀H₇·CH:CMe·CO₂H, m.p. 149—150°, which is reduced to (II) by 4% Na–Hg in aq. Na₂CO₃. 1-C₁₀H₇·COPr^a (prep. from 1-C₁₀H₇·MgBr and Pr^aCN), b.p. 155—157°/3 mm., gives the oxime, b.p. 185— 187°/8 mm., and thence 1-α-amino-n-butylnaphthalene, b.p. 142—143°/4 mm. (hydrochloride, m.p. 281—282°). (I) affords 5-α-naphthylmethyl-5-methylbarbituric acid, m.p. 127—128°. R. S. C.

Thio-acyl derivatives of primary amines (synthesis of acyclic carbocyanine dyes). I. L. KNUNIANZ and L. V. RAZVADOVSKAJA (J. Gen. Chem. Russ., 1939, 9, 557—570).—CH₂Ph·NH·CSMe and MeI at 0° yield the hydriodide, m.p. 104—106° (decomp. by aq. K₂CO₃), of thioacetbenzylamide S-Me ether, SMe·CMe:N·CH₂Ph, b.p. 115—118°/4 mm., the methiodide, m.p. 120°, of which is condensed with $CH(OEt)_3$ or the anilanilide of $CO_2H\cdot CH_2\cdot CHO$ or of glutaconaldehyde in boiling Ac_2O to the dyes, CHR:CHR', $R\cdot [CH:CH]_2\cdot R'$, or $R\cdot [CH:CH]_3\cdot R'$ [R = $CH_2Ph\cdot NMeI:C(SMe)$; R' =

 $CH_2Ph \cdot NMe \cdot C(SMe) \cdot CH \cdot]$, and with $p \cdot NMe_2 \cdot C_6H_4 \cdot CHO$ to give the dye,

CH₂Ph·NMeI:C(SMe)·CH:CH·C₆H₄·NMe₂-p.

NHMeAc and P_2S_5 in C_6H_6 (70 min. at the b.p.) followed by MeI yield thioacetmethylamide S-Me ether, b.p. 132–133°, the methiodide of which is condensed as above, to yield the corresponding dyes $[R = NMe_2I:C(SMe), R' = NMe_2 \cdot C(SMe):CH \cdot]$. The absorption spectra (in EtOH) of the dyes are given. The sensitising action of the dyes on photographic emulsions is similar to that of the corresponding thiazoline dyes. R. T.

Quenching of fluorescence and photothermal decomposition of aniline.—See A., 1939, I, 404.

Diazotisation and nitrosation of amines. IV. General interpretation of the reaction. J. C. EARL and N. G. HILLS (J.C.S., 1939, 1089-1092; cf. A., 1939, II, 207).—Decomp. of 0.15 N-aq. NHMe₂,HNO₂ at 5° is accelerated by HCl or H₂SO₄, the rate being a max. with 0.5 mol. of acid. The conductivity during nitrosation of 0.01M-aq. NHPhMe at 5° falls with time; if HCl is present, an initial fall is followed by a rise, the amount of which increases with the amount of HCl (0.1-0.3 mol.). NHPhMe, HNO, disappears from H₂O in presence of acids at a regular rate, increased by increasing the concn. of acid. These and previous results are explained as due to a primary reaction, $OH \cdot N:O + NHR_2 \rightarrow (OH)_2 N \cdot NR_2$. The reported third-order rate for similar reactions is reconciled with this reaction by considering the effects of ionic dissociation on the various systems involved. R. S. C.

Separated auxo-enoid systems. VI. Coloration of nitrobenzyl derivatives of aromatic amines. V. A. ISMAILSKI and V. I. STAVROVSKAJA (J. Gen. Chem. Russ., 1939, 9, 647–662).—The coloration of nitrobenzyl derivatives of aromatic amines is ascribed to interaction between the $NO_2 \cdot C_6 H_4 \cdot CH_2 \cdot$ and $\cdot NHPh$ groups. Similar relations between structure and intensity of coloration are found as for the analogous nitro-azo-compounds. R. T.

Preparation of nuclear-substituted dimethylanilines. D. P. Evans and R. WILLIAMS (J.C.S., 1939, 1199—1200).—Alternate addition, in portions, of Me₂SO₄ (in total a slight excess) and 30% NaOH (to keep the solution alkaline to phenolphthalein) to nuclear-substituted anilines gives the dimethylaniline or its methosulphate in 40—94% yield; the *tert*. amine is readily obtained from the methosulphate by treating the derived methiodide with NaOH in boiling C₅H₁₁·OH or, less well, by treating with Ag₂O and heating the methohydroxide.

o-OPh·C₆H₄·NH₂ gives o-*phenoxydimethylaniline*, m.p. 34.5° , b.p. 161— $162^{\circ}/13$ mm., and

o-OPh·C₆H₄·NMe₃·OH. 2-Dimethylaminodiphenyl, b.p. $145 \cdot 5^{\circ}/11$ mm., and p-phenoxydimethylaniline, b.p. $185^{\circ}/13$ mm., m.p. 34° , are described. R. S. C.

Substituted acetylenes and their derivatives. XXXIV. Addition of arylamines to alkinenes. J. A. LORITSCH and R. R. VOGT (J. Amer. Chem. Soc., 1939, 61, 1462-1463; cf. A., 1939, II, 400).-- NH_2Ph adds to $n-C_5H_{11}$ ·C:CH (I) or Δ^{γ} -octinene in presence of HgO and Et₂O,BF₃ to give N-*a*-methyl-n-hexylideneaniline, b.p. 88-90°/4 mm., and the anil, CPrBu.NPh, b.p. 95-97/4 mm., respectively. A by-product, $C_{20}H_{33}N$, b.p. 138—141°/4 mm., is obtained in the former reaction. The structure of the anils is proved by acid hydrolysis to NH, Ph and the ketone. NHPhEt and (I) give N-ethyl-N-amethylene-n-hexylaniline, b.p. 92-94°/4 mm. (hydrolysed to COMe·C₅H₁₁ and NHPhEt), and a by-product, $C_{22}H_{37}N$, b.p. 146—149°/4 mm. NPhEt₂ does not add to (I).

Naphthalene series. VIII. Preparation of 4-nitro-1-naphthylamine and of an azo-dye derived therefrom. N. N. VOROSHCOV and V. V. Kozlov (J. Gen. Chem. Russ., 1939, 9, 587-589).-1:4-NH2 ·C10H6·NO is oxidised (KMnO4) to 1:4-NH2. C10H6. NO2, m.p. 196°, the diazo-derivative of which when coupled with m-C6H4(OH)2 yields a R. T. bluish-red azo-dye.

Phenyl- and naphthyl-urethanes and the corresponding disubstituted carbamides. P. JANNKE (J. Amer. Pharm. Assoc., 1939, 28, 360-364).-Formation of CO(NHAr)₂ (I) during prep. of phenyl- and naphthyl-urethanes is discussed with reference to the work of Sherk (A., 1921, i, 239, 240). Solubility data (EtOH and C2H4Cl2) for the urethanes of thymol, carvacrol, and thymoquinol and for $CO(NHPh)_2$ and $CO(NH \cdot C_{10}H_7 - \alpha)_2$ indicate that C₂H₄Cl₂ is a suitable solvent for separating the urethane and corresponding (I). F. O. H.

Derivatives of sulphanilamide.—See B., 1939, 884, 885.141 . (67) MOd I bealado

Nitration of 3:3'-dichloroazoxybenzene and reduction of some of the products. H. E. BIGE-LOW and W. H. STEEVES (Canad. J. Res., 1939, 17, B, 160—165).—Reduction of m-C₆H₄Cl·NO₂ with Na₃AsO₃ in NaOH yields 3 : 3'-dichloroazoxybenzene (I), which with boiling HNO₃ (d 1·45) gives a mixture of 3 : 3'-dichloro-6-nitro- (II), m.p. 116°, -4-nitro-(III), m.p. 145°, -2-nitro-, m.p. 112°, -5-nitro-, m.p. 105°, and -4: 6-dinitro-azoxybenzene, m.p. 157°. Reduction of (II) with Sn-HCl gives m-C₆H₄Cl·NH₂ (IV) and 4:1:2-C₆H₃Cl(NH₂)₂; similarly (III) gives (IV) and 2:1:4-C₆H₃Cl(NH₂)₂. With fuming HNO₃, (I) gives 3:3'-dichloro-2:4:6-trinitroazoxy-benzene, m.p. 165° [also formed from (II) or (III) with fuming HNO3], and an isomeride, m.p. 182°. Reduction of (III) with Na3AsO3 yields the corresponding tetrachloroazobisazoxybenzene, m.p. 210°, and a small quantity of tetrachlorotrisazoxybenzene, m.p. 195°. Reduction of (II) gave a Cl-free substance, exploding at 275° (hydrochloride, m.p. 178°). J. D. R.

Structure and absorption spectra of azodyes. W. R. BRODE (Proc. Sixth Conf. Spectros., 1938, 128-133).-The absorption spectra of a series of halogen-substituted benzeneazophenols have been investigated. It has been found that an increase in mol. wt. is usually accompanied by a decrease in

frequency of the absorption bands which is approx. ∝ increase in mol. wt., but varies with position of substitution. Substitution in the p'-position by NO₂, Me, or halogen causes a max. in the magnitude of the absorption bands in all solvents. Halogen substitution in the oo'-positions causes a very marked decrease in the magnitude of the absorption bands in all solvents. In op'-disubstituted compounds, the p'-substituent exerts a greater effect on the frequency of the absorption max. in EtOH, the o-substituent having more effect on the extinction of the band. Br has a greater extinction effect than Cl. The principal absorption bands of the compounds in NaOH consist of two overlapping bands which may be due to two forms of vibration of the mol. in equilibrium. Cl-derivatives appear to exist in four equilibrium levels and Br-derivatives in six. An investigation of the formation of the chelate ring between o-hydroxyazo-dyes and metallic salts has been carried out by studying the absorption spectra of the complexes and of a series of related compounds possessing certain structural units in common with the complexes. The Cu complex of 3-benzeneazo-pcresol exists in azoid, $C_6H_3Me \begin{pmatrix} N:NPh \\ \downarrow \\ O-M \end{pmatrix}$, and quinoid,

 $C_6H_3Me \ll \stackrel{N \longrightarrow NPh}{O \rightarrow M}$, forms in equilibrium. The structures of o-OH·C₆H₄·CHO (I) and of the Schiff's bases formed from PhCHO and o-OH·C6H4·NH2, and from (I) and NH₂Ph have been investigated.

A. J. M.

J. L. D.

Action of mixed organo-magnesium compounds on benzaldehydeacylphenylhydrazones. Preparation of α -acyl- β -alkylphenylhydrazines. P. GRAMMATICAKIS (Compt. rend., 1939, 208, 1910-1912; cf. A., 1937, II, 287).-CHPh:N·NAcPh (I) with MgEtBr gives N-acetyl-N-phenyl-N'-a-phenylpropylhydrazine, b.p. 182-184°/<1 mm. (phenylcarbamyl derivative, m.p. 153°), and a little CHPh:N·NHPh (II). (I) or benzaldehydecarbamylphenylhydrazone (III) with MgMeI gives (II) almost entirely. (I) or (III) with MgPhBr gives mainly (II) as well as products of interaction of (II) with MgPhBr [\$-benzyhydrylphenylhydrazine, m.p. 77°, CPh₂:N·NHPh, CPh₂:NH, NH₂Ph, CPh₂:NPh, and small amounts of (CHPh₂)₂]. CHPh:N·NBzPh (IV) with MgPhBr gives N-benzoyl-N-phenyl-N'-benzhydrylhydrazine, m.p. 145°, as well as CPh, NH, NHPhBz, CPh3. OH, and (II). (IV) with MgMeI or MgEtI gives mainly N-benzoyl-N-phenyl-N'-a-phenylethyl-, b.p. 195°/ <1 mm., or -N'-a-phenylpropyl-hydrazine, b.p. 198°/<1 mm., as well as small amounts of (II), CPhAlk:NH, and NHPhBz. Benzaldehydephenylcarbamylphenylhydrazone (V) with MgMeI, MgEtBr, and MgPhBr gives, respectively, N-phenylcarbamyl-N-phenyl-N'-a-phenylethyl-, m.p. 144°, -N'-a-phenyl-propyl-, m.p. 102°, and -N'-benzhydryl-hydrazine, m.p. 214°. In each case 1:3:4-triphenyl-1:2:4-triazol-5-one, m.p. 224°, is formed by intramol. oxidation of (V).

Germicidal action and chemical constitution of isomeric xylenols and monohalogenated derivatives. K. HEICKEN (Angew. Chem., 1939, 52, 263-265).—The results of Lockemann et al. (A., 1933, 707) are corr. o-3-, o-4-, m-2-, m-4-, m-5-, and p-xylenol are mono-chlorinated (SO₂Cl₂-AcOH), -brominated (Br-AcOH), and -iodinated (I-aq. NH₃-KI). The following are new or disputed : 5-chloro-m-2-, m.p. 83° (cf. Busch et al., A., 1929, 1432); 6-bromo-o-3-, m.p. 91° (cf. Short et al., A., 1936, 720); 6-iodo-0-3-, m.p. 86° (6: ?-I2-derivative, m.p. 84.5°); 5-iodo-0-4-, m.p. 67.5°, -m-2-, m.p. 105°, and -m-4-, b.p. 123-124°/ 16 mm.; 2-iodo-m-5-, m.p. 131° [2:4:6-I3-derivative, m.p. 177° (darkening)]; 5-iodo-p-2-, m.p. 97.5° (3:5-I2-derivative, m.p. 61.5°) -xylenols. The Cland Br-derivatives of o-3-, m-5-, and p-xylenols are 50-70 times, and of o-4-, m-2-, and m-4-xylenols are 15-20 times, as strong as PhOH towards B. coli A. T. P. and S. pyogenes aureus.

Steric hindrance in ketone-phenol condensations. Synthesis of cycloalkenylphenols and cycloalkylcoumarans. J. B. NIEDERL and V. NIEDERL (J. Amer. Chem. Soc., 1939, 61, 1785-1788).-Alkylidenediphenols are not obtained from phenols, 2-alkylcyclohexanones (A), and HCl in AcOH or from m-C₆H₄Alk-OH (B) and cyclohexanone (I) (cf. A., 1939, II, 175). (A) and (B) give coumarans. m-Cresol and (I) give (2-3 weeks) at room temp. 1-5'-hydroxy-o-tolyl- Δ^1 -cyclohexene (12—15%), m.p. 65° [aryloxyacetic acid derivative, m.p. 160° (Brderivative, m.p. 150°); phenylurethane, m.p. 114° ; acetate, b.p. $155-157^{\circ}/12$ mm.]. m-C₆H₄Et·OH and (I) give $1-4'-hydroxy-2'-ethylphenyl-\Delta^1$ -cyclohexene (15%), m.p. 55° [aryloxyacetic acid derivative, m.p. 117° (Br-derivative, m.p. 146°); phenylurethane, m.p. 134°; acetate, b.p. 169-174°/12 mm.]. PhOH and 2-methylcyclohexanone (II) give 1-p-hydroxyphenyl-2methyl- Δ^1 -cyclohexene (III) (55-60%), m.p. 144° [aryloxyacetic acid derivative, m.p. 136° (dibromide, [aryloxyacetic acid aerivative, m.p. 136° (dioromide, m.p. 104°); phenylurethane, m.p. 160; acetate, b.p. 161°/10 mm.; benzoate, m.p. 72°]. o-Cresol and (II) give 1-6'-hydroxy-m-tolyl-2-methyl- Δ^1 -cyclohexene (IV) (45–50%), m.p. 86° [aryloxyacetic acid deriv-ative, m.p. 113° (dibromide, m.p. 107°); phenyl-urethane, m.p. 134°; acetate, b.p. 172–174°/12 mm.; benzoate, m.p. 69°]. m-Cresol or m-C₆H₄Et-OH with (II) and HCl in AcOH at 80° (reaction is too slow at room temp.) gives 1:5-dimethyl- (~40%), b.p. 139- $141^{\circ}/12$ mm., or 1-methyl-5-ethyl- (~30%), b.p. 146-148°/12 mm., -1:2-tetramethylenecoumaran, respectively. The structure of (III) and (IV) is proved by conversion of the dibromides named by N-NaOH at room temp. into p-1': 2'-dihydroxy-2'-methylcyclo-hexylphenoxy-, m.p. 130°, and 5-1': 2'-dihydroxy-2'methylcyclohexyl-o-tolyloxy-acetic acid, m.p. 140°, respectively (proof of 2 tert. Br), which with HCl in aq. EtOH undergo the pinacolone rearrangement, yielding p-2'-keto-1'-methylcyclohexylphenoxy- and 5-2'-ketc-1'-methylcyclohexyl-o-tolyloxy-acetic acid (2:4-dinitrophenylhydrazone, m.p. 87°), respectively. R. S. C.

Sulphonic esters of 4:4'-dihydroxydiphenyl. S. E. HAZLET (J. Amer. Chem. Soc., 1939, 61, 1921).— 4:4'-Dihydroxydiphenyl dibenzenesulphonate, m.p. 148°, di-p-toluenesulphonate, m.p. 187—188°, di-o-, m.p. 191—192°, -m-, m.p. 216—217°, and -p-nitro-, m.p. 231°, and di-p-bromo-benzenesulphonate, m.p. 201—202°, are prepared. R. S. C.

Mono- and di-esters of pyrogallol. A. VON WACEK and F. K. J. TRAVNICEK (Österr. Chem.-Ztg., 1939, 42, 281-286).-Pyrogallol carbonate and AcCl in C5H5N give pyrogallol 1-acetate 2: 3-carbonate, m.p. 121°, hydrolysed by H₂O at 75° to pyrogallol 1-acetate, m.p. 85°. With BzCl-C₅H₅N, first at room temp. and then at 80°, this gives pyrogallol 1-acetate 2:3-dibenzoate (~10%), m.p. 124°. Similarly are prepared pyrogallol 1-benzoate 2: 3-carbonate, m.p. 141°, and 1benzenesulphonate 2: 3-carbonate, m.p. 93°, hydrolysed by boiling H_oO to the 1-benzoate, m.p. 133°, and 1benzenesulphonate, m.p. 121°. 1-Carbobenzyloxypyrogallol 2: 3-carbonate (prep. in NPhMe.), m.p. 74°, in aq. COMe2 at 60° gives 1-carbobenzyloxypyrogallol, m.p. 110°, which with AcCl in NPhMe₂ gives 1-carbobenzyloxypyrogallol 2:3-diacetate, m.p. 105°, and thence (H₂-Pd-black; COMe₂) pyrogallol 1 : 2-diacetate, m.p. 115° . R. S. C.

Catalytic synthesis of anisole and p-tolyl methyl ether. S. ISHIKAWA and M. MATSUHASHI (Sci. Rep. Tokyo Bunrika Daigaku, 1939, **3**, 249— 255).—PhOMe is obtained in 48% yield by passing PhOH and MeOH over ThO₂ at 400°; addition of CeO₂ or use of a carrier brings no advantage. At 500° Ph₂O and xanthene (I) are also formed; under like conditions (I) is produced from PhOH or Ph₂O and CH₂O. Similarly p-cresol and MeOH afford p-C₆H₄Me·OMe, (C₆H₄Me)₂O, and 2:7-dimethylxanthene, m.p. 168·2° (corr., Berl), oxidised by HNO₃ to 2:7-dimethylxanthone, m.p. 173·4° (corr., Berl). H. W.

Phthalic esters as alkylating agents. H. KING and E. V. WRIGHT (J.C.S., 1939, 1168—1170).—Salts (best, K salts) of phenols with alkyl phthalates (I) (1 mol.) at 190—200° give good yields of the alkyl ethers. In many cases both alkyls of part of (I) are utilised. Thus are obtained PhOMe (75), PhOEt (66), PhOBu (76), o-OMe·C₆H₄·OR (R = Me 78, Et 84, and Bu, m.p. 17—18°, 80%). KOPh and o-OMe·C₆H₄·OK with MeOBz give PhOMe (63) and o-C₆H₄(OMe)₂ (57%), respectively. p-OK·C₆H₄·NHMe with o-C₆H₄(CO₂Me)₂ at 200—210° gives p-OMe·C₆H₄(CO₂Et)₂ gives p-methylethylaminophenetole (picrate, m.p. 125°; hygroscopic hydrochloride) and phthal-p-phenetylimide, m.p. 204—205°, but with o-C₆H₄(CO₂Bu)₂ gives p-butoxymethylaniline, b.p. 154—155°/16 mm. (picrate, m.p. 98°). R. S. C.

Chemistry of vitamin-E. Chloromethylation of polymethylquinols and their derivatives; cleavage of quinol ethers. L. I. SMITH, H. E. UNGNADE, J. W. OPIE, W. W. PRICHARD, R. B. CARLIN, and E. W. KAISER (J. Org. Chem., 1939, 4, 323—333).—3:6:2:4:5-(OMe)₂C₆Me₃·CH₂Cl (I), new m.p. 67—68°, is condensed with CH₂Ac·CO₂Et and the product is hydrolysed (NaOH) to α -3:6-dimethoxy-2:4:5-trimethylphenylbutan- γ -one, m.p. 78– 78·5° (semicarbazone, m.p. 108—109°). This could not be satisfactorily demethylated by NH₂Ph,HBr at 225—227°, boiling HI (d 1:50) and AcOH, 40% HBr, or AcOH saturated with HBr. 3:6:2:4:5-(OMe)₂C₆Me₃·CH₂·OAc, m.p. 65—66°, from (I) and KOAc in boiling AcOH, is hydrolysed to the corre-

sponding alcohol (II), m.p. 120-121°, which is oxidised (CrO₃ in AcOH) to the aldehyde (III), m.p. 83.5- $84\cdot5^{\circ}$; (I) and $(CH_2)_6N_4$ in boiling aq. EtOH give impure (II). AlCl₃ in boiling light petroleum demethylates (III) to 6-hydroxy-3-methoxy-2:4:5-trimethylbenzaldehyde, m.p. 88-89°, with probably 3:6dihydroxy-2:4:5-trimethylbenzaldehyde, possibly two modifications, yellow, m.p. 129-131°, and orange, m.p. 147-148°, obtained in poor yield from trimethylquinol (IV), $Zn(CN)_2$, and HCl in Et₂O. 3:6-Diethoxy- ψ -cumene, b.p. 102-103°/2 mm., m.p. 34-35°, obtained from the quinol, Et₂SO₄, and KOH in boiling MeOH, is converted successively into 3:6diethoxy-2:4:5-trimethylbenzyl chloride, m.p. 86-87°, the acetate, m.p. 113.5-114.5°, and the alcohol, m.p. 112-113°, which is oxidised to the phototropic 3:6diethoxy-2:4:5-trimethylbenzaldehyde, m.p. 99-100°. Dealkylation occurs even less readily than with the corresponding (OMe)2-compounds. (IV) and CH2PhCl in presence of alkali or C5H5N give a difficultly separable mixture (mainly of C-CH, Ph compound and unchanged material) also obtained from the MgBr salt in Et₂O. 3: 6-Dibenzyloxy-4-cumene, m.p. 72.5-73.5°, is obtained in small yield from the quinol and CH_2PhCl in boiling $COMe_2$ containing K_2CO_3 . (IV) is converted by the successive action of NaOEt and $CH_2Br \cdot CO_2Me$ followed by hydrolysis into 3:6-di-carboxymethoxy- ψ -cumene, m.p. 205—206°, which appears to be unaffected by successive treatments with SOCl₂ and AlCl₃ in C₆H₆ but is transformed by warm 95% H₂SO₄ into 4-carboxymethoxy-3:5:6-trimethylcoumaranone, m.p. 211-213°. Similarly 3:6di-a-carboxyethoxy- ψ -cumene is obtained as an oil. ψ -Cumoquinol diacetate (pure), 40% CH₂O, and HCl are maintained at 10-20° while a fairly rapid stream of HCl is passed, after which the mixture is warmed to 25° and saturation is continued, thus giving 3:6diacetoxy-2:4:5-trimethylbenzyl chloride, m.p. 150– 151°, often accompanied by a by-product, m.p. 225– 227°. With CHAcNa·CO₂Et in C₆H₆ it affords Et3: 6-dihydroxy-2: 4: 5-trimethylbenzylacetoacetate, H. W. m.p. 135—136° (decomp.).

Pyrogallol-acetone condensation products. A. VON WACEK and K. KRATZL (Österr. Chem.-Ztg., 1939, 42, 286-289).-No CMe2: derivative could be obtained directly from pyrogallol, but the appropriate 1-derivatives with COMe₂ and P₂O₅ in COMe₂ give 2: 3-isopropylidenepyrogallol 1-Me ether, b.p. 113-115°/17 mm. (hydrolysed by 20% H₂SO₄ to pyrogallol 1-Me ether), 1-benzoate, m.p. 78°, and 1-benzenesul-phonate, m.p. 84°. Pyrogallol 1-acetate gives an impure 2:3-CMe₂: derivative (I), b.p. 123-128°/12 mm., hydrolysed by 5% KOH at room temp. to 1:2isopropylidenepyrogallol (II), m.p. 89-90° (no FeCl₃ reaction), whence (I) is obtained pure (m.p. 47-48°) The homologue, Ac.,0. 1:2:3bv hot OMe C₆H₃:O₂CMeEt, b.p. 129-132°/12 mm., is similarly obtained. (II) is termed gallacetonin, and its derivatives are named accordingly. R. S. C.

Synthesis of diphenyl ethers containing methoxy- and ethoxy-groups. H. KING (J.C.S., 1939, 1165—1168).—o-OEt·C₆H₄·OH (1·5), o-C₆H₄Br·OEt (1), KOH (1·5 mols.), and a little Cu-bronze at 190—

200° give di-o-phenetyl ether, m.p. 53°, b.p. 140-145°/0.5 mm. o-Anisyl o-phenetyl ether, m.p. 91-92°, b.p. 150°/0.6 mm., is similarly prepared. 4:3:1-OH·C₆H₃(OMe)·CO₂H (Ac derivative, m.p. 144°) is obtained in nearly 86% yield from $4:3:1-OAc+C_6H_3(OMe)+CHO$ by $KMnO_4-COMe_2$, followed 2N-NaOH at room temp. 4:5:3:1by OH·C₆H₂Br(OMe)·CO₂H, m.p. 231° (lit. 221°), and Et₂SO₄ in 2n-NaOH at 90° give 5-bromo-3-methoxy-4-ethoxybenzoic acid, m.p. 141—142°, and its Et ester (I), m.p. 25—26°, b.p. 197°/15 mm. With KOPh (1.5 mols.) and a little Cu powder at 180-190°, followed by MeOH-KOH, (I) gives 5-carboxy-3methoxy-2-ethoxydiphenyl ether (II), m.p. 116-117°, and, by debromination, 4:3:1-OEt C₆H₃(OMe) CO₂H. 4-Acetoxy-3-ethoxybenzaldehyde (prep. from the OHaldehyde by Ac₂O and N-KOH), m.p. 48-49°, with KMnO₄ in COMe₂ gives 4-acetoxy-, m.p. 152-153°, hydrolysed to 4-hydroxy-3-ethoxybenzoic acid, m.p., 164-165°. Br-AcOH then gives 5-bromo-4-hydroxy-3-ethoxybenzoic acid (III), +3 or 2H₂O, m.p. 207°, and 2: 4-dibromo-6-ethoxyphenol, m.p. 110°. Me2SO4 2N-NaOH converts (III) into Me 5-bromo-4-methoxy-3ethoxybenzoate (IV), m.p. 77-78°, less of the corresponding acid, m.p. 183-184°, and a small amount of Me 5-bromo-4-hydroxy-3-ethoxybenzoate, m.p. 111-112°. With KOPh (1.5 mols.) and Cu powder at 180°, (IV) gives 5-carboxy-2-methoxy-3-ethoxydiphenyl ether (V), double m.p. 117-118° and 134° (sometimes 134° only), and 4-methoxy-3-ethoxybenzoic acid, m.p. 165°. With Cu powder in boiling quinoline, (II) and (V) give CO, and 3-methoxy-2-ethoxy-, m.p. 33-34°, b.p. 155°/2 mm., and 2-methoxy-3-ethoxy-diphenyl ether, m.p. 23°, b.p. 138-141°/0.5 mm., respectively. R. S. C.

Constitution of rhapontin. S. KAWAMURA (J. Pharm. Soc. Japan, 1938, 58, 83—85).—Rhapontin from Turkey rhubarb root is a glucoside of *rhaponti*genin, identified as 3:5:3'-trihydroxy-4'-methoxystilbene (I), m.p. 190—191°, the tribenzoate, m.p. 142°, of which is oxidised by CrO_3 -AcOH to benzoyl isovanillic (II) and dibenzoylresorcylic acids. With O_3 in AcOH, (I) gives isovanillin and α -resorcaldehyde. With Pt-H₂ it gives dihydrorhapontigenin (3:5:3'-trihydroxy-4'-methoxydibenzyl), m.p. 135— 136° (tribenzoate, m.p. 106—107°). With Ac₂O and with NaOAc-Ac₂O, (I) gives triacetates, m.p. 114° and 128°, regarded as cis-trans isomerides. Since rhapontin benzoate with CrO_3 gives (II) and a Na₂CO₃insol. substance, the glucose mol. is presumably attached to a resorcinol-O atom. E. W. W.

Preparation and behaviour of mixed diacyl derivatives of o-aminophenol containing a carboaryloxy radical and the p-toluenesulphonyl group. L. C. RAHORD and J. R. SHELTON (J. Org. Chem., 1939, 4, 207—219).—o- NH_2 ·C₆H₄·OH and 3:5:1:4·NH₂·C₆H₂BrMe·OH (I) have been converted into mixed diacyl derivatives in which one of the radicals was invariably p-C₆H₄Me·SO₂. When the other radical was ·CR:O, OR·C:O or Ar·C:O isomerides were obtained when the acyls were introduced in different orders and no migration was observed. When the second radical was OAr·C:O isomeric mixed compounds were again formed but

xv(i)

under these conditions the products may suffer further change. Thus, the N-p-toluenesulphonyl derivative of each base reacts with CICO, Ph to give the expected O·CO.Ph derivative. That formed from the first base loses PhOH immediately to give the corresponding N-p-toluenesulphonylbenzoxazolone; with the second base both diacyl derivatives and the substituted benzoxazolone are obtained. Acylations are effected by the method of Einhorn and Hollandt or by that of Groenvik. Where these methods are unsatisfactory good results are obtained by treatment of the aminophenol with NPhMe2 and the acid chloride in dioxan. The following derivatives of o-NH2 ·C6H4 ·OH appear new : N-benzoyl-Op-toluenesulphonyl-, m.p. 109-110°; O-benzoyl-N-ptoluenesulphonyl-, m.p. 141°; N-carbethoxy-O-p-toluene-sulphonyl-, m.p. 72-74°; O-carbethoxy-N-p-toluene-sulphonyl-, m.p. 128-130°. (I) gives the following derivatives : N-p-toluenesulphonyl- (II), m.p. 171-172°; N-acetyl-O-p-toluenesulphonyl-, m.p. 131-132°; O-acetyl-N-p-toluenesulphonyl-, m.p. 150-151.5°; Nbenzoyl-O-p-toluenesulphonyl-, m.p. 149-151°; O-benzoyl-N-p-toluenesulphonyl-, m.p. 163-164°; Ncarbethoxy-O-p-toluenesulphonyl-, m.p. 124.5-125°, hydrolysed to 5-bromo-6-hydroxy-3-methylphenylurethane, m.p. 83°; O-carbethoxy-N-p-toluenesul-phonyl-, m.p. 140-142°. o-Aminophenyl p-toluenesulphonate and CICO.Ph afford o-carbophenoxyaminophenyl p-toluenesulphonate, m.p. 114°, which gives only a dark oil when hydrolysed with KOH-EtOH. 2-p-Toluenesulphonamidophenol and ClCO₂Ph in C₅H₅N or according to Schotten-Baumann yield unchanged material and a little 2-p-toluenesulphonylbenzoxazolone, m.p. 141-142°. (II) and ClCO₂Ph in C5H5N afford unchanged material and Ph 5-bromo-3p'-toluenesulphonamido-p-tolyl carbonate whereas in warm dioxan containing NPhMe₂ the product is 6-bromo-2-p-toluenesulphonyl-4-methylbenzoxazolone, m.p. 175-176°. Under various conditions 5-bromo-3-amino-p-tolyl p-toluenesulphonate and ClCO, Ph afford the *diacyl* derivative, m.p. 129-131°, and (by loss of PhOH) 1: 3-di-(5-bromo-6-p-toluenesulphonoxy-3-methylphenyl)uretidone, m.p. 208-209°, hydrolysed to the $(OH)_2$ -compound, $\overset{NR}{CO}_{ONR}$ $(\mathbf{R} =$ 2:5:3-OH·C₆H₂MeBr·), m.p. 170° (decomp.).

H. W. Relationships between constitution and action of derivatives of p-aminophenol. C. ROHMANN and K. FRIEDRICH (Ber., 1939, 72, [B], 1333-1339).-- $NEt_2 \cdot [CH_2]_2 \cdot Cl$, HCl, and $p \cdot NO_2 \cdot C_6H_4 \cdot ONa$ in xylene at 135—145° give p-nitrophenyl β -diethylaminoethyl ether, decomp. >240° (yield 67%), reduced by Fe and HCl with a little Pt as catalyst to the NH2derivative (I), which condenses with PhCHO in presence of ZnCl₂ to the :CHPh compound, reduced by Na and abs. EtOH at room temp. to p-benzylaminophenyl β -diethylaminoethyl ether (non-cryst. *dihydrochloride*). Condensation of (I) with the requisite aldehyde followed by reduction of the product gives the noncryst. dihydrochlorides of p-ethylamino-, p-propylamino-, and p-n-butylamino-phenyl B-diethylaminoethyl ether. The compounds do not disturb the circulation and are non-irritant; they have a distinct local anæsthetising action. honoranoo boxim H. W. d

Synthesis of organic compounds containing radioactive sulphur. H. K. ALBER (J. Franklin Inst., 1939, 228, 177—181).—³⁵S is prepared as a by-product of bombardment of CCl₄ with neutrons (cyclotron), mixed with (added) ³²S, and used to prepare radioactive $(p\text{-NO}_2 \cdot \text{C}_6\text{H}_4 \cdot \text{S})_2$ (I) from p-C₆H₄Cl·NO₂, Na₂S, and S, and thence by Cl₂-H₂O radioactive $p\text{-NO}_2 \cdot \text{C}_6\text{H}_4 \cdot \text{SO}_2\text{Cl}$. When ordinary or radioactive (I) is heated on a micro-m.p. hot stage, some (? tetragonal) crystals melt at 134°, resolidify and remelt at 164—165°, whereas the remaining crystals melt at 178—179° (lit. m.p. between 170° and 180°); three cryst. modifications are present. R. S. C.

Hydroxyaryl alkyl and aralkyl sulphides.— See B., 1939, 808.

Normal and abnormal reactions of the sodium derivatives of aromatic thiols with halogenonitro-naphthalenes and -benzenes. H. H. Hongson and E. LEIGH (J.C.S., 1939, 1094–1096).—Normal reactions of ArSNa with aromatic chloronitro-compounds support the explanation previously offered for the anomalous reactions (A., 1938, II, 406). PhSH and $2:1-C_{10}H_6Cl\cdotNO_2$ in hot NaOH-EtOH give *Ph* 1-*nitro*-2-*naphthyl sulphide*, m.p. 58—58-5°. *Ph* 4-*nitro*-1-*naphthyl sulphide*, m.p. 105·5—106°, is similarly prepared. The appropriate naphthyl- or anthraquinonyl-thiol with 2:1- or $1:4-C_{10}H_6Cl\cdotNO_2$ in hot NaOH-EtOH-H₂O yields α -, m.p. 107°, and β - $C_{10}H_7$ 1-*nitro*-2-*naphthyl sulphide*, m.p. 91°, α -, m.p. 127°, and β - $C_{10}H_7$ 4-*nitro*-1-*naphthyl sulphide*, m.p. 151°, 1-*nitro*-2-, m.p. 435° (decomp.; block), and (?) 4-*nitro*-1-*naphthyl* 2-*anthraquinonyl sulphide*, m.p. 238° (block).

Activity of the methylene group in the isomeric p-tolyl mononitrobenzyl sulphones and in p-tolyl 2:4-dinitrobenzyl sulphone. R. L. SHRINER and S. O. GREENLEE (J. Org. Chem., 1939, 4, 242-251).-Interaction of p-C₆H₄Me·SO₂Na with the requisite nitrobenzyl halide in boiling EtOH affords p-tolyl o- (I), m.p. 131-132°, p- (II), m.p. 188-189°, and m- (III), m.p. 160-161°, -nitrobenzyl sulphone and p-tolyl 2: 4-dinitrobenzyl sulphone (IV), m.p. 159-160°. (I) and (II) are converted by NaOEt into coloured salts which do not alkylate with MeI or couple with I but are brominated to p-toluenesulphonyl-o-, m.p. 116-117°, and -p-, m.p. 166-167°, -nitrophenylmethyl bromide, respectively. (I) in PhNO, is converted by the successive action of KOEt-EtOH and I into p-toluenesulphonyl-o-nitrophenylmethyl iodide, m.p. 145-146°. (III) does not undergo bromination in presence of NaOEt. (IV) in PhNO2 is transformed by KOEt-EtOH into a purple, cryst. salt (V), C14H11O6N2SK, from which the initial material is regenerated on acidification and which is brominated to p-toluenesulphonyl-2: 4-dinitrophenylmethyl bro-mide, m.p. 178-180°. The halogeno-compounds give only a slight ppt. when boiled with AgNO₃-EtOH but the halogen is readily removed when they are boiled with NaOAc in 80% EtOH or by reduction with Na₂S. MeI converts (V) into a-p-

toluenesulphonyl-a-2: 4-dinitrophenylethane, m.p. 167 -168°, in 63% yield. I and (V) give $\alpha\beta$ -di-(p-toluenesulphonyl-2: 4-dinitrophenyl)ethane, decomp. 375° (block). All these reactions indicate that the anion of the salt involved in these reactions is a carbanion and not one of the possible tautomeric aci-NO2 structures. Boiling NaOH-EtOH converts p-nitrophenyl benzyl sulphone into 4:4'-dibenzylsulphonylazoxybenzene, m.p. 340-342°. p- $C_6H_4Me \cdot SO_2 \cdot CH_2 \cdot NO_2$ (VI) gives a nearly colourless salt, C7H8O4NSK. Addition of Br to (VI) in NaOH yields dibromonitro-p-toluenesulphonylmethane, m.p. 127°. Attempts to condense (I), (II), (III), (IV), or (VI) with Et₂C₂O₄ in presence of NaOEt or KOEt were unsuccessful; they could not be condensed with H. W. PhCHO.

Functional aptitude of the methyl group. III. Derivatives of diphenyl sulphone. L. CHARDONNENS and J. VENETZ (Helv. Chim. Acta, 1939, 22, 853-868).-In suitable conjunction with NO₂. Me appears to be more strongly activated by PhSO₂ than by Bz but two PhSO₂ groups are ineffective. 3:4-NÖ₂·C₆H₃Me·SO₂Cl, m.p. 36° , is transformed by AlCl₃ and C₆H₆ at 70° into 3-nitro-4-methyldiphenyl sulphone, m.p. $117\cdot5^{\circ}$, which is converted by PhCHO in presence of piperidine at 130° into 3-nitro-4-styryldiphenyl sulphone, m.p. 191-192° (dibromide, decomp. 217°), by p-NMe₂·C₆H₄·CHO into 3-nitro-4-p-dimethylaminostyryldiphenyl sulphone, m.p. 177°, by p-OMe C_6H_4 ·CHO into 3-nitro-4p-methoxystyryldiphenyl sulphone, m.p. 158°, and by p-NO·C₆H₄·NMe₂ in boiling EtOH containing anhyd. Na2CO3 into 2-nitro-4-benzenesulphonylbenzald-p'-dimethylaminoanil, m.p. 187-188°, hydrolysed by HCl to 2-nitro-4-benzenesulphonylbenzaldehyde (I), m.p. to 2-nitro-4-benzenesulphonylbenzaldehyde (1), m.p. $133-134^{\circ}$ (phenylhydrazone, m.p. 217° ; semicarb-azone, m.p. 259°). $p-C_6H_4$ Me·SO₂Ph is converted by conc. H_2SO_4 and HNO_3 (d 1·5) at $0-10^{\circ}$ into 3:3'-dinitro-, m.p. $150-151^{\circ}$, and by conc. H_2SO_4 and HNO_3 (d 1·52) at room temp. and then at 100° into 3:5:3'-trinitro-, m.p. $191-192^{\circ}$, -4-methyldi-phenyl sulphone. (I) is converted by 1°_{\circ} NaOH in aq. COMe₂ into 6:6'-dibenzenesulphonylindigotin, m.p. $>370^{\circ}$ (block). Similarly, 3:3'-dinitro-4:4'-dimethyldiphenyl sulphone affords 3:3'-dinitro-4:4'-dimethyldiphenyl sulphone affords 3:3'-dinitro-4:4'distyryl-, m.p. 276° (block), and -4:4'-di-p-dimethyl-aminostyryl-, m.p. 237°, -diphenyl sulphone. The di-p-dimethylaminoanil, m.p. 250–251° (hydrolysed by HCl-H₂O in presence of CHCl₃), of 3:3'-dinitro-4:4'-diformyldiphenyl sulphone, m.p. $191-192^{\circ}$ (di-semicarbazone, m.p. $>330^{\circ}$), is prepared. From 5-nitro-2-methyldiphenyl sulphone are derived 5-nitro-2-styryl-, m.p. 233°, and -2-p-dimethylaminostyryl-, m.p. 264°, -diphenyl sulphone and 4-nitro-2-benzenesulphonylbenzald-p'-dimethylaminoanil, m.p. 232.5°, hydrolysed to 4-nitro-2-benzenesulphonylbenzaldehyde, m.p. 121-122° (phenylhydrazone, m.p. 255-256°). 2:4-Dibenzenesulphonyltoluene, m.p. 192-193°, is conveniently prepared by heating 1:2:4- $C_6H_3Me(SO_3H)_2$ with C_6H_6 and P_2O_5 at 180°, or by transforming p- C_6H_4Me -SO₂Ph by a mol. proportion of OSO H into Physics of Hamiltonian and the source of the sourc ClSO₃H into PhSO₂·C₆H₃Me·SO₃H, which is heated with C₆H₆ and P₂O₅ at 180°; it does not condense with PhCHO. If p-C₆H₄Me·SO₂Ph is treated with a large

excess of ClSO₃H 4-methyldiphenyl sulphone-3:3'disulphonyl chloride, m.p. 159°, appears to be formed. H. W.

- Manufacture of di-*p*-aminophenyl sulphones.— See B., 1939, 808.

Identification of aromatic sulphones. C. A. BUEHLER and J. E. MASTERS (J. Org. Chem., 1939, 4, 262—265).—Ph p-tolyl, pp'-ditolyl, p-chlorophenyl p-tolyl, and p-bromophenyl p-tolyl sulphone are oxidised (CrO₃ in glacial AcOH) to Ph p-carboxy-phenyl, m.p. 266—268° (Et ester, m.p. 70—70.5°), di-p-carboxyphenyl, m.p. 358-363° (Et2 ester, m.p. 156–156.5°), p-chlorophenyl p-carboxyphenyl, m.p. 274·1–275·3° (*Et ester*, m.p. 132–133°), and p-bromophenyl p-carboxyphenyl, m.p. 283·8–285·5° (*Et ester*, m.p. 133–134°), sulphone, respectively. The m.p. are high and insufficiently characteristic of the acids, which are therefore esterified by EtOH and conc. H_2SO_4 . The $(NO_2)_2$ derivatives are obtained by the action of conc. HNO_3 and conc. H_2SO_4 at 60° on the sulphone and are highly characteristic. The following sulphones are described (all m.p. are corr.): di-m-nitrophenyl, m.p. 202·1—203·1°; ? m-nitro-phenyl 2-nitro-p-tolyl, m.p. 151·7—152·7°; ? m-nitrophenyl 3-nitro-4-ethylphenyl, m.p. 137.7-138.8°; mnitrophenyl 4-chloro-3-nitrophenyl, m.p. 146.6-147.6°; ?m-nitrophenyl 4-bromo-3-nitrophenyl, m.p. 162.1—163.1°; di-(2-nitro-p-tolyl), m.p. 164.2— 165.2°; ? 2-nitro-p-tolyl 3-nitro-4-ethylphenyl, m.p. 116.4-117.4°; 4-chloro-3-nitrophenyl 2-nitro-p-tolyl, m.p. 151·2—151·7°; ?4-bromo-3-nitrophenyl 2-nitro-p-tolyl, m.p. 160·1—161·1°; ?di-4-bromo-3-nitrophenyl, m.p. 235·3-237·3°. H. W.

Crystalline esters of vitamin-A.—See A., 1939, III, 601.

Resolution of phenylmethylcarbinol. E. Dow-NER and J. KENYON (J.C.S., 1939, 1156).—dl-CHPhMe H phthalate is resolved by brucine into the l-, m.p. 86°, $[\alpha]_{6438} - 54 \cdot 2^{\circ}$ in CS₂, $+30 \cdot 2^{\circ}$ in EtOH, $[\alpha]_{4358} - 138 \cdot 2^{\circ}$ in CS₂, $+96 \cdot 4^{\circ}$ in EtOH [other $[\alpha]$ also given; brucine salt, m.p. 153° (decomp.)], and d-form, $[\alpha]_{5461} + 79 \cdot 1^{\circ}$ in CS₂. α for *l*-CHPhMe•OH, b.p. 93°/14 mm., for 5 $\lambda\lambda$ are recorded. R. S. C.

Dehydration of α -phenyl- β -propenyl glycol. Formation of aldehyde (hydrobenzoin change) and ketone. Y. DEUX and D. ABRAGAM (Compt. rend., 1939, 208, 2084—2086; cf. Tiffeneau and Weil, A., 1937, II, 225; Deux, following abstract).— α -Phenyl- Δ^{γ} -pentene- $\alpha\beta$ -diol (I) (1 part) in 30% H₂SO₄ (5 parts) when distilled in steam gives a volatile oil (A), b.p. 139—141°/13 mm.; fractional crystallisation of the derived semicarbazones shows the presence of CHMe:CH-CHPh-CHO (II) or CHEt:CPh-CHO (III), and benzyl propenyl ketone (IV). Reduction of (A) (H₂-catalyst) gives a product, oxidised by Ag₂O to CHPhPr^e·CO₂H [from (II) or (III)] and COPr^e·CH₂Ph [from (IV)]. (II) or (III) is formed as a result of a hydrobenzoin change, whereas (IV) results from a vinyl mechanism. The aromatic character of propenyl is thus less marked than that of vinyl.

J. L. D.

Dehalogenation of α -phenyl- β -propenyl glycol iodohydrin and isomerisation of the corre-

sponding oxide. Y. DEUX (Compt. rend., 1939, 208, 2002-2004; cf. A., 1939, II, 265).-CHPh:CH·CHEt·OH (from CHPh:CH·CHO and MgEtBr) with hot $H_{2}SO_{4}$ gives α -phenyl- $\Delta^{\alpha\gamma}$ -pentadiene (I), b.p. 110-111°/14 mm., which with HgO and I in Et₂O-H₂O followed by treatment with AgNO₃ is CHMe:CH·CHPh·CHO (II) converted into or CHEt.CPh·CHO (III), b.p. $142-143^{\circ}/14$ mm. (semi-carbazone, m.p. $166-167^{\circ}$), so that propenyl behaves like an aromatic radical. (II) or (III) with H₂-Raney Ni gives CHPhPr^a·CHO, oxidised to α -phenylvaleric acid, m.p. 53°. HOI adds to the double linking near Ph; dehalogenation is accompanied by a hydrobenzoin change. The chlorohydrin of (I) with powdered KOH gives $\alpha\beta$ -oxido- α -phenyl- Δ^{γ} -pentene, b.p. 87-89°/4 mm., which under 20 mm. over kieselguhr at 250-300°, similarly gives (II) or (III)

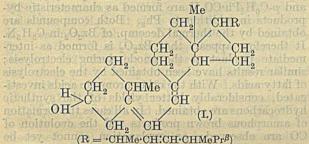
J. L. D. 2:3 - Dihydroxytrans-decahydronaphthalenes and the configuration of tetrahydronaphthalene. K. GANAPATHI (Ber., 1939, 72, [B], 1381–1386; cf. A., 1938, II, 286, 496).—2: 3-Diketotrans-decahydronaphthalene is reduced by Na-Hg to 2: 3-dihydroxytrans-decahydronaphthalene (I), m.p. 141°, by Hg-Al in moist Et_aO to the isomeride (II), m.p. 128-129°, and by Al-Hg in EtOH to a mixture of (II) and the isomeride (III), m.p. 166°. Δ^2 -Octahydronaphthalene is oxidised by neutral $KMnO_4$ to (I) with a little (II) and by BzO₂H to an oxido-compound which is hydrolysed to (III). It follows therefore that (III) is *trans-2*: 3-dihydroxytrans-decahydronaphthalene whereas (I) and (II) are cis-derivatives. (I) and (III) are unaffected by dry COMe₂ containing conc. H_2SO_4 whereas (II) is quantitatively isomerised to (III). (I), (II), and (III) have the configuration (A), (B), and (C), respectively. Titration of (I)-(III)with $Pb(OAc)_{A}$ confirms the above views. The fact

.N	I COLOH I	L DOH 1
OH C 2:3 OH	OH	H H C C 2:3 C C 2:3 C C C 2:4
C(2:8)	$\sim 10^{10}$ mi $\sim 10^{10}$ m	C(2:3)
OH OH	H	H
decompil, and	Edi . H . the e	mond OH 4
,HO.01(A.)HO.1	of s (B.) ni °I-07+	read + (C.) 101-b

that among the 2:3-dihydroxydecahydronaphthalenes the formation of $:CMe_2$ derivatives is possible only when the two rings are united in the *cis* position to one another gives a ready method of determining the nature of the union of two rings of unknown configuration. The planar configuration of tetrahydronaphthalene is excluded by the Raman spectrum. The three 2:3-dihydroxytetrahydronaphthalenes have m.p. 135° (IV), 120° (V), and 140° (VI). The mixture of glycols obtained from 2:3-dibromotetrahydronaphthalene is converted by COMe₂ and 1% (IC) into (IV) and the :CMe₂ derivative (VII) of (V). It appears therefore that (IV) is the *trans*-isomeride produced by the isomerisation of (VI). The produc-

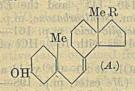
tion of (VII) shows that in (V) the OH groups lie in the same plane as the C atoms to which they are united. The tetrahydronaphthalene ring, at any rate as far as its $2:3 \cdot (OH)_2$ -derivative is concerned, has the spatial configuration (D) and not (E). The disemicarbazone of trans-cyclohexane-1:2-diacetaldehyde has m.p. 160—162°. H. W.

Influence of the structure of bromo-derivatives of alkyl- and alkoxy-benzenes on the synthesis of pinacols by the Grignard method. T. W. JEZIERSKI (Rocz. Chem., 1939, 19, 307-316).-The following 9:10-dihydroxy-9:10-diaryl-9:10dihydrophenanthrenes were synthesised from phenanthraquinone and MgRBr, under identical conditions (yields given in parentheses): aryl = o-tolyl, m.p. 151·5—152° (51%), m-tolyl (45%), p-tolyl (57%), 3 : 4-dimethylphenyl, m.p. 194·5—195° (23%), o-anisyl, 5.4-*atmentylphenyl*, in.p. 1945–195 (25%), 0-*atmenyl*, m.p. 179–180° (43%), m-*anisyl*, m.p. 185·5–186·5° (48%), *p*-anisyl (47%), o-*phenetyl*, m.p. 196–197° (52%), m-*phenetyl*, m.p. 159–160° (39%), and *p*-phenetyl (44%); Mg *m*-4- and *p*-xylyl bromides do not give the expected derivatives. The above products are oxidised (CrO₃) to 2 : 2'-diaroyldiphenyls, viz., di-o-toluoyl, m.p. 134.5-135.5° (79%), -m-toluoyl (71%), -p-toluoyl (72%), -3: 4-dimethylbenzoyl, m.p. 126—127° (52%), -o-anisoyl, m.p. 136—137° (84%), -m-anisoyl, m.p. 87—88° (90%), -p-anisoyl (83%), -o-ethoxybenzoyl, m.p. 142·5—143·5° (70%), -methoxybenzoyl, m.p. 91.5-92.5° (82%), and p-ethoxybenzoyl (75%). R. T.


Oxidation of adrenaline by succinic acid. Inhibition by cocaine and sparteine. T. WENSE (Z. physiol. Chem., 1939, 260, 100-104; cf. Marquardt, A., 1939, III, 581).—Tests with luminol and a trace of hæmin show that aq. succinic (I) and fumaric acid contain peroxide which is probably responsible for the inactivation of adrenaline by solutions of these acids. The degree of luminescence is not increased by exposing the solutions of the acids to sunlight. The action of (I) is not increased by ergotamine. The oxidation of adrenaline by the solutions is inhibited by cocaine and sparteine. Sparteine (but not cocaine) also inhibits the autoxidation of adrenaline and the inactivation of adrenaline by MeCHO. Cocaine diminishes but sparteine increases the luminescence produced with luminol. W. McC.

Biochemical reduction of a 1 : 2-benzanthracene derivative. A. DANSI and A. VERCELLONE (Ber., 1939, 72, [B], 1457—1458).—1 : 2-Benzanthracene-10-aldehyde is reduced by fermenting yeast to 10-hydroxymethyl-1 : 2-benzanthacene, m.p. 173—174°. H. W.

[Sensitive test for ergosterol and differentiation of ergosterol and ergosteryl esters.] A. F. VON CHRISTIANI and V. ANGER (Ber., 1939, 72, [B], 1482; cf. A., 1939, II, 316).—The indicated concn. of $Pb(OAc)_4$ is double that required. H. W.


Catalytic hydrogenation of cholesteryl acetate in acetic acid containing hydrochloric acid. T. KAWASAKI (J. Pharm. Soc. Japan, 1939, **59**, 79–80). —Hydrogenation (Pt-black) of cholesteryl acetate in AcOH-38% HCl (34:1) gives, through the acetate, cholestanol, m.p. 140—141° when purified chromatographically (C₆H₆ solution; activated Al₂O₃); a small amount of cholestane is formed also (probably through cholesterylene). A. T. P. Sitosterol complex. Isolation of α_3 -sitosterol. S. BERNSTEIN and E. S. WALLIS (J. Amer. Chem. Soc., 1939, 61, 1903—1904).—Wheat-germ oil yields α_1 -, α_2 -, and a little α_3 - (I) -sitosterol (cf. Wallis *et al.*, A., 1937, II, 100). (I), C₂₉H₄₈O, m.p. 142—143°, $[\alpha]_D^{20}$ +5·2°, gives a benzoate, m.p. 173—175°, $[\alpha]_D^{20}$ +12·0°, 3 : 5-dinitrobenzoate, m.p. 210—211·5°, $[\alpha]_D^{20}$ +12·2°, and *acetate*, m.p. 152—153°, $[\alpha]_D^{20}$ +6·1° (all $[\alpha]$ in CHCl₂). R. S. C.

Dihydrotachysterol. F. VON WERDER (Z. physiol. Chem., 1939, 260, 119–134; cf. Windaus et al., A., 1933, 62).—The product (A) obtained by reduction (Na, EtOH) of tachysterol contains ~ 30% of the antirachitically inactive dihydrovitamin- D_2 (cf. Windaus et al., A., 1932, 311), m.p. 65–66°, $[\alpha]_{2}^{p_5}$ +10° (all rotations in CHCl₃) (benzoate, m.p. 70–71°, $[\alpha]_{2}^{p_2}$ +30°), separable as the allophanate, m.p. 184–186°, $[\alpha]_{2}^{p_6}$ +16°, and also obtained by similar reduction of vitamin- D_2 . The fraction of (A) not, or only slightly, adsorbed on Brockmann's Al₂O₃ consists largely of dihydrotachysterol (I), m.p. 125–127°, $[\alpha]_{2}^{p_2}$ +97.5° (propionate, m.p. 97–98°, $[\alpha]_{2}^{p_2}$ +37°; n-butyrate, m.p. 62–63°), purified chro-

matographically through the acetate (II), m.p. 108— 110°, $[\alpha]_D^{3*} + 32.8^\circ$. (I) and its esters show characteristic absorption max. at 242, 251, and 261 mµ. (II) consumes 3 H₂ (Pt, 96% AcOH), does not react with (:CH·CO)₂O in xylene at 135°, and is oxidised (CrO₃, aq. AcOH, room temp.) to the ketone, C₁₉H₃₂O, of Windaus *et al.* (A., 1936, 1247). The antirachitic activity of (I) is ~0.5% of that of vitamin- D_2 ; (I) possesses the highest calcification factor of any substance (derived from irradiated ergosterol) so far investigated. The limiting toxic dose (mouse) of (I) and (II) is 10 and 200 µg. respectively. H. B.

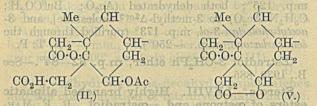
Constitution of dihydrovitamin- D_2 and $-D_3$. A. WINDAUS and C. ROOSEN-RUNGE (Z. physiol. Chem., 1939, 260, 181—184).—Oxidation (O₃, AcOH) of the allophanate, m.p. 165°, $[\alpha]_{17}^{17} + 61\cdot3°$ in CHCl₃, of dihydrovitamin- D_3 (I) gives the same ketone, $C_{18}H_{32}O$, as is obtained from vitamin- D_3 (A., 1938, II, 58). Dihydrovitamin- D_2 (II) is oxidised [Al(OBu⁸)₃, COMe₂, C_6H_6] to a ketone, the semicarbazone, $C_{29}H_{47}ON_3$, m.p. 208—210° (decomp.), of which shows

the characteristic high absorption (max. at 270 mµ.) of an $\alpha\beta$ -unsaturated ketone. (I) and (II) are, therefore, most probably (A) with R = ·CHMe·[CH₂]₃·Pr^{β} and ·CHMe·CH:CH·CHMePr^{β}, re-

spectively (cf. *loc. cit.*; von Reichel *et al.*, A., 1936, 603). H. B.

Sterols. XIV. Ketone cyanohydrins. S. KU-WADA and M. MIYASAKA (J. Pharm. Soc. Japan, 1938, 58, 115—118; cf. A., 1937, II, 190).—Androsterone and isoandrosterone afford cyanohydrins, decomp. 163° (diacetate, m.p. 183°) and 210° (diacetate, m.p. 144°), respectively. trans-Dehydroandrosterone cyanohydrin diacetate and MgMeI afford 17-methyl- $\Delta^{5:6}$ -trans-androstene-3: 17-diol, m.p. 197 —199° (diacetate, m.p. 146°), identical with that from trans-dehydroandrosterone and MgMeI. Cholestanone cyanohydrin, decomp. 125—150°, and MgMeI give 3methyl-, m.p. 147—148° [with a (?) stereoisomeride, m.p. 125°; both dehydrated (Ac₂O; Bu^βCO₂H; C₅H₅N-Ac₂O) to 3-methyl- $\Delta^{2\alpha 3}$ -cholestene], and 3acetyl-cholestan-3-ol, m.p. 173° (purified through the semicarbazone, m.p. ~250°). A. T. P.

Estradiol 3-CH₂Ph ether, m.p. 82—84°.—See B., 1939, 885.


Sterols. LXVIII. Highly branched aliphatic esters of œstrone and α-œstradiol. R. E. MAR-KER and E. ROHRMANN (J. Amer. Chem. Soc., 1939, 61, 1922—1923).—Œstrone 3-αα-dimethylpropionate, m.p. 164—166° [hydrogenated (PtO₂; EtOH-Et₂O) to α-œstradiol 3-αα-dimethylpropionate, m.p. 178— 180°], and 3-ββ-dimethyl-n-butyrate, m.p. 148—150° (hydrogenated to α-œstradiol 3-ββ-dimethyl-n-butyrate, m.p. 127—129°), α-œstradiol 3 : 17-bis-αα-dimethylpropionate, m.p. 174—176°, and 3 : 17-bis-ββ-dimethyl-n-butyrate, m.p. 98—100°, are prepared. R. S. C.

Estradiol 3-acylates.—See B., 1939, 885.

Sugar-cane wax. III. New constituents of unsaponifiable fraction. T. MITUI (J. Agric. Chem. Soc. Japan, 1939, 15, 526—530; cf. A., 1938, II, 232).—The unsaponifiable fraction also contains α -saccharostanediol (I), C₂₉H₅₂O₂, m.p. 206° (dibenzoate, m.p. 160°; di-3:5-dinitrobenzoate, m.p. 171°), and β -saccharostenone (II), C₂₉H₄₈O, m.p. 106° (oxime, m.p. 163—165°; 2:4-dinitrophenylhydrazone, m.p. 206°; tribromide, m.p. 160·5°). (I) contains 2 OH whilst (II) contains 1 CO and 1 double linking.

J. N. A.

Steroids and related compounds. IV. Stereochemical configuration of the cholestane-3:5:6triols. B. ELLIS and V. A. PETROW (J.C.S., 1939, 1078—1083; cf. A., 1939, II, 367).—The triol obtained from cholesterol by H_2O_2 , now renamed cholestane-3:5:6-triol-*I*, is shown by the following and Criegee's evidence (A., 1933, 62) to be the $3(\beta):5(\alpha):6(\beta)$ -triol. The isomeric cholestane-3:5:6-triol-*II* (new name) (obtained by KMnO₄ or OsO₄) is similarly shown to be the $3(\beta):5(\beta):6(\beta)$ triol. The arguments are based on the rules of bromination and oxidative ring-fission for 3-ketosteroids being unaffected by the OH on C₍₅₎. 3:6-Diacetoxycholestan-5-ol with cold KOH-abs. EtOH gives 6-acetoxycholestane-3:5-diol, +H₂O, m.p. 132— 133° or (anhyd.) 143—144°, $[\alpha]_{B}^{B}$ —26·4°, converted by B2Cl-C₅H₅N into the known 3-benzoyloxy-6-acetoxycholestan-5-ol and by CrO₃ in AcOH at 100° (3 min.) into 6-acetoxycholestan-5-ol-3-one (I), m.p. 161—162°, $[\alpha]_{B}^{B}$ —10·2°, and the 6-acetoxy-lactonic acid (II), C₂₉H₄₆O₆, m.p. 217—218° (sinters at 185°), $[\alpha]_{B}^{B}$ —10·4°. SOCl₂-C₅H₅N, first at room temp. and then boiling, or boiling Ac₂O dehydrates (I) to 6-acetoxy- Δ^4 -cholesten-3-one (III), m.p. 101.5°, [α]₁₉¹⁹ +36°, hydrolysed by 1% KOH-MeOH at room temp. to Δ^4 -cholesten-6-ol-3-one (IV), m.p. 192° (known semicarbazone, m.p. 221°), which is oxidised by CrO₃ in C₆H₆-AcOH to the known Δ^4 -cholestene-3 : 6dione. HCl-EtOH converts (III) or (IV) into cholestane-3 : 6-dione, also obtained from (III) by 5% NaOMe-MeOH (excess). 0.5% KOH-EtOH converts (II) into the dilactone (V), C₂₇H₄₂O₄, m.p. 165° (sinters at 155°) (neutralises 2 KOH hot). With Br in AcOH at 35°, (I) gives 2-bromo- (VI) (40%), m.p.

186°, $[\alpha]_{p}^{21}$ +3.6°, and a little 2:2-dibromo-6-acetoxycholestan-5-ol-3-one, m.p. 218° (decomp.), $[\alpha]_{D}^{19} + 70.9^{\circ}$ obtained also by further bromination (presence of a trace of HBr) of (VI); with NaI in C_6H_6 -EtOH liberates Br]. C_5H_5N is without effect on (VI), but 1.5% KOH-MeOH at 55-60° converts it into cholestan-6-ol-3-one 2 : 5-oxide (20-30%), m.p. 181-182° (stable to 10% HCl-EtOH; acetate, m.p. 84°, regenerates the oxide with 2.5% KOH-MeOH), which with CrO3-AcOH gives cholestane-3: 6-dione 2:5-oxide, m.p. 115-116° (bis-2:4-dinitrophenyl-hydrazone, m.p. 171°). Cholestane-3:5-diol-6-one belongs to the triol-II series, since CrO3-AcOH oxidises it to coprostan- $5(\beta)$ -ol-3: 6-dione [= cholestan-5-ol-3:6-dione-II]. Partial CrO3-oxidation of triol-I at room temp. gives a product, converted by boiling Ac₂O into 3-acetoxycholestan-5-ol-6-one (VII), m.p. 238°, $[\alpha]_{\rm D}^{23}$ -56.2°. NaOMe-MeOH hydrolyses (VII) to cholestane-3: 5-diol-6-one-I (VIII), and SOCl, in hot C_5H_5N dehydrates it to $3(\beta)$ -acetoxy- Δ^4 -cholesten-6-one. Ac₂O-KHSO₄ at 100° or boiling Ac₂O converts (VII) into $3(\beta)$: $5(\alpha)$ -diacetoxycholestan-6-one, m.p. 169—170°, $[\alpha]_{D}^{22}$ —11°, hydrolysed to (VIII). M.p. are corr. $[\alpha]$ are in CHCl₃. R. S. C.

Chaulmoogryl chaulmoograte. T. KARIYONE and T. SUGAHARA (J. Pharm. Soc. Japan, 1939, 59, 18—20).—Reduction of chaulmoogra oil (I) by Na and EtOH gives a mixture separated by fractional distillation into hydnocarpyl alcohol, b.p. 136— $142^{\circ}/1$ mm., m.p. 19°, $[\alpha]_5^{\circ}$ +56·27° (*phenylurethane*, m.p. 69°), and chaulmoogryl alcohol (II), b.p. 152— $158^{\circ}/1$ mm., m.p. 23°, $[\alpha]_5^{\circ}$ +57·90°. When hydrogenated in presence of Ni, (I) affords *dihydrohydnocarpyl alcohol*, b.p. 155—165°/2 mm., m.p. 25° (*phenylurethane*, m.p. 72°), and dihydrochaulmoogryl alcohol, b.p. 155—160°/1.5 mm. Chaulmoogroyl chloride and (II) give *chaulmoogryl chaulmoograte*, m.p. 31°, $[\alpha]_5^{\circ}$ +55·40° in CHCl₃.

Derivatives of phenylacetonitrile. P. JULLIEN (Bull. Soc. chim., 1939, [v], 6, 1252—1254; cf. A., 1936, 1109).—CH₂Ph·CN and Et₂O–NaNH₂ followed by BuBr give a mixture of Bu₁ and Bu₂ derivatives, further treated similarly to give CBu₂Ph·CN, b.p. $172-175^{\circ}/25$ mm., hydrolysed by KOH-EtOH at 100° (bath) to a little $CBu_2Ph\cdot CO\cdot NH_2$, m.p. 76°. Similarly prepared is $CPr^{\theta}_2Ph\cdot CN$ (I), b.p. 144–146°/25 mm., separated from $CHPr^{\theta}Ph\cdot CN$ (II) by treating with 85% H_2SO_4 ; (I) is unaltered and (II) gives the corresponding amide. $CH_2Ph\cdot CHPh\cdot CN$, m.p. 58°, and $(CH_2Ph)_2CPh\cdot CN$, m.p. 83°, are readily prepared. A. T. P.

Kolbe's electrosynthesis with aromatic acids ; benzoic, phenylacetic, β -phenylpropionic, and phenoxyacetic acid. F. FICHTER and H. STENZL (Helv. Chim. Acta, 1939, 22, 970-978).-Kolbe's electrosynthesis can be effected with various aromatic acids if C5H5N is used as solvent; the films which so frequently form on the anode during electrolysis of solutions in H₂O or MeOH are thereby dissolved. The difficulty of effecting Kolbe's electrosynthesis with aromatic acids depends on the sensitiveness of the aromatic nucleus towards anodic O. The use of C5H5N alone or in presence of MeOH prevents the evolution of O₂ at the anode. The new method has been applied successfully to CH2Ph·CH2·CO2H, CH.Ph·CO.H, OPh·CH,·CO,H, and with smaller vields to BzOH. With BzOH, 4-phenylpyridine and p-C₆H₄Ph·CO₂H are formed as characteristic byproducts in addition to Ph₂. Both compounds are obtained by the thermal decomp. of Bz₂O₂ in C₅H₅N. It therefore appears that Bz₂O₂ is formed as intermediate product at the anode during electrolysis; similar results have been obtained by the electrolysis of fatty acids. With the other aromatic acids investigated, considerably better yields of the synthetic hydrocarbons are obtained. In all cases the formation of amorphous brown products and the evolution of CO are observed; an explanation cannot yet be given. ab-Di-(2:4-dinitrophenyl)butane, m.p. 204-H. W. 205°, is prepared.

Acetonephenylpyruvic [α -hydroxy- γ -keto- α benzylvaleric] acid and its dehydration product. P. CORDIER (Compt. rend., 1939, 209, 49—51; cf. A., 1938, II, 60).—The acid is easily dehydrated in AcOH-HCl to (probably) γ -keto- α -benzyl- Δ^{α} -pentenoic acid, m.p. 94°, which when oxidised (NaOCl or NaOBr) gives benzyl-maleic (I) and -fumaric (II) acids (cf. A., 1928, 519). When excess of NaOHal is removed with NaHSO₃, more (II) is isolated, whereas As₂O₃ leads to (I). J. L. D.

Aldehydo-acids and aldo-enol-lactones. II. Synthesis of the γ -lactone of $\alpha\gamma$ -dihydroxy- β phenyl- Δ^{β} -butenoic acid (3-hydroxy-2-keto-4phenyl-2:3-dihydrofuran). III. Certain specific properties of γ -aldo-enol-lactones and unsaturated aldehydo-acids. M. M. SCHEMJAKIN (J. Gen. Chem. Russ., 1939, 9, 484–490, 491–495). —II. OH·CH(OEt)·CO₂Et and CH₂Ph·CHO in Ac₂O (20 hr. at 140—145°) yield 2-keto-3-acetoxy-4-phenyl-2:3-dihydrofuran (I), m.p. 140—141°, and the *Et* ester (II), b.p. 110—114°/3 mm. (semicarbazone, m.p. 167°), of β -aldehydo- β -phenylarylic acid, m.p. 161— 162° [also obtained by hydrolysis with 10% HCl of (I)].

III. (I) or (II) and 3% NaOH at 80—90° yield a truxinic acid, m.p. 195—196° (Me ester, m.p. 198— 199°), differing from other known truxinic acids. R. T. Naphthylacrylic acids and their derivatives. I. β -2-Naphthylcrotonic acids. A. BANCHETTI (Gazzetta, 1939, 69, 398—405).— β -C₁₀H₇·COMe (I) and CH₂Br·CO₂Et with Zn in boiling C₆H₆ give the *Et* ester (II), b.p. 210—215°/24 mm., of β -2-naphthylcrotonic acid (III), m.p. 169—170° (product, m.p. 140—150°, with Br₂), to which, with other substances, (II) is hydrolysed by KOH–EtOH. With conc. H₂SO₄, (II) gives (I), not an indone. Aq. KMnO₄– Na₂CO₃ oxidises (III) to (I). A solution of (III) in C₆H₆ exposed to ultra-violet light yields a stereoisomeride, m.p. 141—142°. Either this or (III) is reduced by Na–Hg in aq. NaOH to β -2-naphthylbutyric acid, m.p. 109—110°. E. W. W.

Chemistry and metabolism of phenylalanine. I. Nitration. R. J. BLOCK and D. BOLLING (J. Biol. Chem., 1939, 129, 1-12).-The view that the violet colour formed in the colorimetric determination of phenylalanine (I) is due to a derivative of diaci-o-dinitrodihydrobenzene is confirmed by the prep. of diaci-3: 4-dinitro-3: 4-dihydrophenylalanine (II), m.p. 182—183° (decomp.), giving a negative ninhydrin reaction, by nitration of (I) with conc. H_2SO_4 containing $Ba(NO_3)_2$ at 100° followed by reduction by H_2S . It gives the typical violet colour on treatment with aq. NH3, NaOH, or Na2CO3 $(p_{\rm H} \sim 9.5)$. 3:4-Dinitrophenylalanine, m.p. 155°, decomp. 182°, has also been prepared. The cherryred colour produced by nitration of BzOH followed by reduction is probably formed from 2:5- $(NO_2)_2C_6H_3:CO_2H$. Reduction of all derivatives of p-C6H4(NO2)2 yields a red colour, and of o-C6H4(NO2)2 a violet colour. The mechanism of these reactions is discussed. (II) is accompanied by a red amorphous solid, decomp. $220-250^{\circ}$ (softens $\sim 65-70^{\circ}$), which may be 3: 4-dinitro-3: 4-dihydrobenzoic acid.

P. G. M. Azlactones. I. Preparation of a-benzamidocrotonic acid azlactone and the conversion of allothreonine into threonine. H. E. CARTER, P. HANDLER, and D. B. MELVILLE (J. Biol. Chem., 1939, 129, 359-369).-N-Benzoyl-dl-threonine, N-benzoyldl-allothreonine, and their O-Me, O-Ac, m.p. 138-140° and 86-89°, respectively, and -Bz, new m.p. 158-159° and 179-180°, respectively, derivatives are converted into *a*-benzamidocrotonic acid azlactone (I), m.p. 95—96°, by the action of BzCl in C_5H_5N . NaOMe converts (I) into N-benzoyl-O-methylthreonine. The structure of (I) is confirmed by synthesis from hippuric acid and MeCHO, hydrolysis (N-HCl) to a-benzamidocrotonic acid, m.p. 193-195°, and EtCO-CO₂H, and reduction (H₂, PtO₂, AcOH) to NHBz-CHEt-CO₂H. E. M. W. to NHBz·CHEt·CO,H.

Derivatives of 4-chloro-3-nitrobenzonitrile. C. H. D. WITTE (Diss., Leiden, 1939, 107 pp.).—p-Chloro- (m.p. 101°) and -bromo-benzonitrile give the 3-NO₂-derivatives on nitration and a second NO₂group cannot be introduced directly. Nitration of pcyano-anisole or -phenetole affords the 2-NO₂-derivative [also obtained from 3:4:1-NO₂·C₆H₃Cl·CN (I) and NaOMe or NaOEt] and 2:6-dinitro-4-cyano-anisole, m.p. 114°, or -phenetole respectively. The appropriate amine and (I) give N-methyl- (Ac derivative, m.p. 92°), -ethyl- (Ac derivative m.p. 85°), -npropyl-, m.p. 116° (Ac derivative, m.p. 102°), -n-butyl-, m.p. 69° (Ac derivative, m.p. 63°), -n-amyl-, m.p. 60°, -n-heptadecyl-, m.p. 82° (Ac derivative, m.p. 77°), and $-\beta$ -hydroxyethyl- (II), m.p. 135° (N-Ac derivative, m.p. 130°), -2-nitro-4-cyanoanilines. N-n-Heptadecyl-2: 4-dinitroaniline, m.p. 61° (Ac derivative, m.p. 70°), is obtained by interaction of C17H35 NH2 and 1:2:4-C6H3Cl(NO2)2. Nitration of (II) gives β-N-(2: 6-dinitro-4-cyanophenyl)-N-nitroaminoethyl nitrate, m.p. 130°, also obtained by nitrating N-B-hydroxyethyl-2: 6-dinitro-4-cyanoaniline, m.p. 116°, prepared from ethanolamine and (I). Nitration of NN'-di-(2-nitro-4-cyanophenyl)ethylenediamine, prepared from (CH2:NH2)2 and (I), or NN'-di-(2 : 6-dinitro-4-cyanophenyl)ethylenediamine, m.p. 282°, obtained by replacement of OMe in corresponding anisole, gives NN'-dinitro-NN'-di-(2:6dinitro-4-cyanophenyl)ethylenediamine, m.p. 204° (block), 212° (tube). (I) reacts with N₂H₄ and NHMe·NH, forming 2-nitro-4-cyanophenyl-hydrazine and -a-N-methylhydrazine, m.p. 130°, respectively. 2-Nitro-4-cyanophenyl-hydrazones and -methylhydrazones of the following are described, the respective m.p. being given in parentheses : COMe, (128°, 144°); m.p. being given in parendeses . COMe_2 (125; 144), COMeEt (139°, 124°); COEt_2 (129°, 125°); CH_2O (175°, 126°); MeCHO (179°, 110°); EtCHO (132°, 129°); Pr°CHO (138°, 101°); PhCHO (225°, 183°); o- (255°, 218°), m- (272°, 209°), and p-NO₂·C₆H₄·CHO (301°, 235°); o- (276°, 191°), m- (256°, 173°), and p- $C_6H_4Cl \cdot CHO$ (253°, 193°); 3:4-CH₂O₂:C₆H₃·CHO (279°, 176°); 4-hydroxy-3-methoxy- (304°, 225°), and -3-ethoxy-benzaldehyde (308°, 237°); furfuraldehyde (204°, 184°); 5-methyl- (199°, 169°) and 5hydroxymethyl-furfuraldehyde (177°, -). (I) reacts with Na2S2 forming 2:2'-dinitro-4:4'-dicyanodiphenyl disulphide; the product obtained with Na2S is indefinite. The taste of the various compounds is discussed. S. C.

Nitroamines. VIII. Nitroaminobenzoic acid. E. MACCIOTTA (Gazzetta, 1939, 69, 330– 332).—o-NH₂·C₆H₄·CO₂H with HNO₃ (d 1·52) in AcOH gives o-*nitroaminobenzoic* acid (deflagrates when heated) (Na and Ag salts), which in conc. H₂SO₄ rearranges to 3:2:1-NO₂·C₆H₃(NH₂)·CO₂H. *m*-NH₂·C₆H₄·CO₂H similarly with HNO₃, followed by Hg(OAc)₂ gives Hg bis-*m*-nitroaminobenzoate. E. W. W.

Chloral-chlorosalicylamides and their methyl ethers. N. W. HIRWE and K. N. RANA (Ber., 1939, 72, [B], 1346-1353; cf. A., 1939, II, 264).-In hydroxybenzamides the condensation with chloral is restricted partly by OH in the ortho- and completely by OH in the meta- or para-position. The condensation of methoxybenzamides is facilitated by OMe in the ortho-, meta-, or para-position. A negative group in position 3 (o to OH) in o-OH C6H4 CO2H favours condensation, which is restricted by a similar group at C(5) (p to OH). The following are obtained by heating a mixture of amide and chloral under an air condenser until a clear solution is obtained : chloral-3chloro- (I) [3-chloro-2-hydroxybenz-\beta\beta-trichloro-\alphahydroxyethylamide], m.p. 159-160°, -5-chloro- (II), m.p. 148-149° (decomp.), and -3: 5-dichloro-, (III), m.p. 158-159° (decomp.), -salicylamide; chloral-3chloro-, m.p. 115-116°, -5-chloro- (IV), m.p. 157-158° (decomp.), and -3: 5-dichloro-, m.p. 143-144°, -2-methoxybenzamide. Chlorination of chloralsalicylamide with Cl_2 (1 mol.) in AcOH at $>20^\circ$ gives mainly (I) with some (II) and 5-chlorosalicylamide, m.p. 226-227°; if two mols. of Cl., are used (III) is obtained. Similarly chloral-2-methoxybenzamide and Cl. (1 mol.) afford (IV), also obtained exclusively when more than 1 mol. of halogen is used.

H. W.

Synthesis of homoisovanillic acid. H. W. BERSCH (Arch. Pharm., 1939, 277, 271–286; cf. A., 1922, i, 569; Schöpf et al., A., 1932, 1040).–O-Carbethoxyisovanillin, m.p. 58–59° [from isovanillin (I), ClCO₂Et, and dil. NaOH], with NaHSO₃ followed by NaCN yields the cyanohydrin, m.p. 98° (sinters at 90°), which with MeOH-HCl and then H₂O gives Me 3-carbethoxyoxy-4-methoxymandelate. Successive chlorination (SOCl₂), reduction (H₂, PtO₂, C₅H₅N), and hydrolysis of this yields homoisovanillic acid, new m.p. 127-129° [30-40% yield from (I)]. Several other methods were tried. Vanillin and BzCl in Et₂O with aq. KCN yields O-benzoylvanillin cyano-hydrin benzoate, m.p. 146-5—147.5, reduced (Pd in tetrahydronaphthalene) to 4-benzoyloxy-3-methoxy-phenylacetonitrile, m.p. 110°; O-benzoylisovanillin cyanohydrin benzoate (oil) is similarly prepared (poor yield). (I) with MeNO2 yields w-nitro-3-hydroxy-4methoxystyrene, m.p. 155-156° (sinters at 150°). reduced (H2, Pd-C, C5H5N) to 3-hydroxy-4-methoxyphenylacetaldoxime, m.p. 146–147°. Acetylation $(Ac_2O-conc. H_2SO_4)$ of (I) yields a mixture of the mono-, m.p. 86°, and tri-acetate, m.p. 117-118°. 3-Benzyloxy-4-methoxybenzyl alcohol, m.p. 70-71° (from isovanillyl alcohol, CH₂PhCl, and MeOH-NaOMe), with SOCl₂ yields the *chloride*, m.p. 70-75°, which does not react normally with KCN. 3-Nitro-4-methoxyphenyl-acetonitrile, m.p. 86-87° (from the chloride and NaCN), is hydrolysed to the -acetic acid, m.p. 133-134° (sinters at 129°); reduction (H2, Pd-C, EtOAc) of the nitrile and of the Me, m.p. 102°, and Et, m.p. 58-59°, esters of the acid yields respectively 3-amino-4-methoxyphenylacetonitrile, m.p. 40° (hydrochloride, m.p. 202°), and Me, b.p. 147-148°/1 mm. (hydrochloride, m.p. 190-191°), and Et 3-amino-4-methoxyphenylacetate, b.p. 150-152°/1 mm. [hydrochloride, m.p. 166-167° (turning brown)], none of which can be satisfactorily diazotised. Diethylamino-a-3: 4-methylenedioxy- (cf. Knoevenagel, A., 1904, i, 982) and -3-hydroxy-4-methoxyphenylacetonitrile (similarly prepared), m.p. 83° (sinters at 78°), do not react with EtBr or MeI. A. LI.

Condensation of 4-nitro-o-tolunitrile with aromatic aldehydes. C. CANDEA and E. MA-COVSKI (Bull. Soc. chim., 1939, [v], 6, 1182-1187; cf. A., 1938, II, 491).-4:1:2-NO₂·C₆H₃Me·CN (I) (unaffected by NaOMe-MeOH) and PhCHO or o-NO2 C6H4 CHO in NaOMe-MeOH afford 4-nitro-(II), m.p. 263° (partial decomp.), or 4:2'-dinitro-2carbamylstilbene, m.p. 228°. (I) and PhCHO with piperidine at 130-140° give 4-nitro-2-cyanostilbene, new m.p. 145° (unaffected by NaOMe). The latter and H₂O₂-MeOH, followed by aq. KOH to the boiling solution, give (II); (I) similarly affords 4:1:2NO2 ·C6H2Me·CO·NH2, new m.p. 175°. The mechanism of reaction is discussed. A. T. P.

Hydrindene derivatives. II. Simple substitution products. J. LINDNER, F. SCHMITT, and B. ZAUNBAUER (Monatsh., 1939, 72, 216-222).-Directions are given for the conversion of 4 and 5aminohydrindene into the corresponding hydroxy-, acetoxy-, methoxy-, and cyano-hydrindenes; the acids and their amides are described. 5-Acetoxyhydrindene, m.p. 17-18°, and hydrindene-4-carboxylic acid, m.p. 155° (amide, m.p. 171.5°), appear new.

H. W. Synthesis of sphaerophorin. A. HASHIMOTO [with S. KOYAMA] (J. Pharm. Soc. Japan, 1938, 58, 221–223).—Sphaerophorol, HCl, HCN, and AlCl₃ give sphaerophorolaldehyde (I), 3:5:1:2-221–2223).—Sphaerophorolaldehyde (I), 3:5:1:2-(OH)₂C₆H₂(C₇H₁₅)·CHO, m.p. 83° (p-nitrophenyl-hydrazone, m.p. 204°); its OO-(CO₂Et)₂-derivative by KMnO₄-oxidation and hydrolysis affords sphaero-phorolcarboxylic acid, m.p. 140°. 5:1:3:2-OMe·C₆H₂Me(O·CO₂Et)·COCl and (I) in C₅H₅N give the aldehyde (p-nitrophenylhydrazone, decomp. 182°) corresponding with sphaerophorin (II); treatment with $CICO_2Et-C_5H_5N$, oxidation by $KMnO_4-MgSO_4 COMe_2$, and hydrolysis by 4% NaOH-EtOH then gives (II), m.p. 137° (cf. A., 1934, 525). 3:1:5:2-OMe·C₆H₂Me(O·CO₂Et)·COCl and (I) afford similarly isosphaerophorin (III), 5:1:3:2-OH·C₆H₂Me(OMe)·CO·O·C₆H₂(OH)(C₇H₁₅)·CO₂H-1:3:5:4, m.p. 137° (CH₂N₂ gives trimethyl-

sphaerophorin). R. S. C.

Orsellinic esters. F. FUZIKAWA and H. SENсоки (J. Pharm. Soc. Japan, 1939, 59, 91-92).-By heating lecanoric or gyrophoric acid with the requisite alcohol, Pr^{a} , m.p. 125—126°, Pr^{β} , m.p. 115°, Bu^{a} , m.p. 95°, Bu^{β} , m.p. 139°, isoamyl, m.p. 88°, CH, Ph, m.p. 137-138°, and ·CH, ·CH, Ph, m.p. 102-103°, orsellinates are obtained. H. W.

Lichen substances. XCIII. Thamnolic acid. Y. ASAHINA and M. HIRAIWA (Ber., 1939, 72, [B], 1402—1404).—Thamnolic acid (I) loses CO₂ when warmed with an excess of $\rm NH_2Ph$ in EtOH–glycerol at 60° giving decarboxythamnolanil, m.p. 216° (decomp.), hydrolysed by 10% HCl in COMe, to decarboxythamnolic acid, new m.p. 225°, which is thus very readily obtained. The reaction is adapted to the microchemical detection of (I). Hamatommanil, m.p. 206°, is considerably more stable in presence of an excess of NH₂Ph but is partly decomposed in boiling EtOH. (I) can also be detected by means of its Ba salt. Very probably (I) is identical with hirtellic acid. H. W.

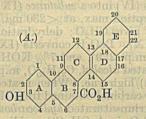
Synthesis of 6-methoxydiphenyl ether-3:4'diacetic acid. M. TOMITA, M. SATOMI, and T. IKEDA (J. Pharm. Soc. Japan, 1938, 58, 127-130; cf. Kondo et al., ibid., 1933, 53, 92; A., 1932, 1048) .---6-Methoxydiphenyl ether-3: 4'-dicarboxyl chloride and CH₂N₂-Et₂O afford the 3:4'-di(diazoketone) (I), m.p. 135°, converted by Ag₂O-H₂O-dioxan at 60° into 6-methoxydiphenyl ether-3: 4'-diacetic acid (II), m.p. 173° [diamide, m.p. 194°, obtained from (I) and aq. NH₃-AgNO₃-dioxan at 60-65°, is hydrolysed

(EtOH-KOH) to (II)]. (I) and Ag_2O -EtOH at 60° give the Et_2 ester of (II). A. T. P.

Synthesis of methyl 3-bromohydrastate. S. UYEO and M. KATAYANAGI (J. Pharm. Soc. Japan, 1939, 59, 94—96).—7-Nitro-5:6-methylenedioxy-hydrind-1-one is oxidised by 10% HNO₃ at 100° to 3-nitrohydrastic [3-nitro-4:5-methylenedioxyphthalic] acid, m.p. 236—237°, the Me_2 ester, m.p. 157—158°, of which is reduced (H₂, PtO₂, EtOAc) to Me_2 3-aminohydrastate, m.p. 92—93°; this is transformed (Sandmeyer) into Me_2 3-bromohydrastate, m.p. 150—151°, which readily forms Me_2 hydrastate when heated with Cu-bronze. H. W.

Chemiluminescence of hydrazides of carboxylic acids. E. S. WASSERMAN and G. P. MIK-LUCHIN (J. Gen. Chem. Russ., 1939, 9, 606—619).— Hydrazides of the types $R \cdot CO \cdot NH \cdot NH_2$ (R = Ph, $m \cdot NO_2 \cdot C_6 H_4$, CHPh:CH), ($\cdot CO \cdot NH \cdot NH_2$)₂,

and $R(CO\cdot MH\cdot NH_2)_2$ [where $R = CH_2$, ·CH(OH)·CH₂·, ·CH(OH)·CH(OH)·, ·CH(NH₂·CH₂)·], and [·CH(CO·NH·NH₂)₂]₂ do not exhibit chemiluminescence [hæmatin or $K_3Fe(CN)_6$ as activator], except when the radical R contains an NH₂-group. In the series (R·CO·NH·)₂ luminescence exists when $R = CCl_3$, p-NO₂·C₆H₄, or o-NH₂·C₆H₄, but not when R = H or Ph. Chemiluminescence is exhibited by (·CO·NH·)₂ and other cyclic hydrazides of the types R(·CO·NH·)₂, viz., malon-, naphthalic, 4-nitronaphthalic, m.p. >320°, diphenic, m.p. >310°, ocarboxyphenylglycine, m.p. >320°, 1-amino-2: 5-diphenylpyrrole-3: 4-dicarboxylic, m.p. >320°, 4hydroxy- and 3-nitro-phthal-, 4-sulphophthal- (N₂H₄ salt, m.p. >310°), 3-nitro-N-phenylphthal-, and Ncarbethoxymethylphthal-hydrazides.


 $o-C_6H_4 < NH < CO \cdot NH \\ NH < CO \cdot NH, and <math>o-C_6H_4 < NH \cdot CO \\ NH \cdot CO \\ do not exhibit chemiluminescence. R. T.$

Bile acid, $C_{27(28)}H_{46(48)}O_6$, m.p. 252—255°, $[\alpha]_{23}^{23}$ —30.58° in EtOH (Me ester, m.p. 94—96°), from shark bile, and keto-acid, m.p. 175°.—See A., 1939, III, 693.

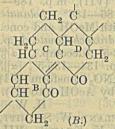
3:5:6-trihydroxycholanic Isomerides of acid. J. HATTORI (J. Pharm. Soc. Japan, 1939, 59, 12—16).—Treatment of Me Δ^3 -3-hydroxycholenate (I), m.p. 145-146°, with 40% H₂O₂ in AcOH and subsequent acetylation yields Me a-5-hydroxy-3: 6diacetoxycholanate (II), m.p. 150–151°, $[\alpha]_{D}^{30}$ –42.4° in CHCl3 {hydrolysed by alkali to a-3:5:6-trihydroxycholanic acid, m.p. $258-259^{\circ}$ (decomp.), $[\alpha]_{D}^{28} - 4.37^{\circ}$ in EtOH [*Me* ester (III), m.p. $213-214^{\circ}$]}, and *Me* 3:5:6-triacetoxycholanate (IV), m.p. 193-193.5°, $[\alpha]_{\rm p}^{30}$ -36.9° in CHCl₃, hydrolysed by alkali to 3:6dihydroxy-5-acetoxycholanic acid, m.p. 239-240° (decomp.). This is transformed by Ag,O and MeI into Me3: 6-dihydroxy-5-acetoxycholanate, m.p. 163.5-164.5°, and by MeOH-H₂SO₄ into Me β -3:5:6-trihydroxycholanate, m.p. 210-212°, which is acetylated to Me 5-hydroxy-3: 6-diacetoxycholanate, m.p. 141-142.5°, $[\alpha]_{\rm p}^{33}$ -46.9° in CHCl₃, hydrolysed by alkali to β-3:5:6-trihydroxycholanic acid, m.p. 236·5-237·5° (decomp.), $[\alpha]_D^{29} - 3.92^\circ$ in EtOH. (II) is converted by dry HCl in Ac₂O into (IV). The production of these isomerides depends on the configuration of the two OH at C(5) and C(6). Excess of BzO2H in CHCl3

converts (I) into Me a-3-hydroxy-5: 6-oxidocholanate (V), m.p. 142.5-143.5°, [a]²⁸_p -52.5° in CHCl₃, which does not give a yellow colour with C(NO2)4 in CHCl₃ but gives a ppt. with digitonin in EtOH; it is acetylated to $Me \alpha$ -3-acetoxy-5: 6-oxidocholanate (VI), m.p. 130–131°, $[\alpha]_{D}^{28}$ –47.4° in CHCl₃, and hydrolysed to a-3-hydroxy-5: 6-oxidocholanic acid, m.p. 210-211° (decomp.). Fission of the oxide ring of (V) by AcOH leads to (II) whereas heating with H₂O or with 50% EtOH yields (III); with HCl-MeOH it affords Me 5-chloro-3: 6-dihydroxycholanate, m.p. 220° (decomp.), which is also obtained similarly from (II). Me 5-chloro-6-hydroxy-3-acetoxy- (VII), m.p. 189-189.5°, and -3-benzoyloxy-, m.p. 186-188°, -cholanate are described. Scission of (V) with MeOH and conc. $H_{2}SO_{4}$ yields Me γ -3:5:6-trihydroxycholanate, m.p. 223–224° [acid, m.p. 211–212.5° (decomp.), $[\alpha]_{D}^{30}$ -12.8° in EtOH; 3-acetate, m.p. 134–135.5°, $[\alpha]_{D}^{10}$ -40.5° in CHCl₃]. C₅H₅N and AgNO₃ transform (VII) into (VI), which is transformed by AcOH into (II). H. W.

Quinovic acid. VI. H. WIELAND, W. SCHMITT, and A. HRUBESCH [and, in part, K. KRAUS]. VII. H. WIELAND and H. SCHLENK (Annalen, 1939, 539,

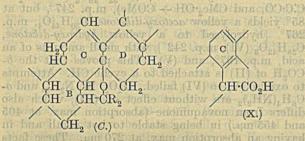
219—241, 242—261; cf. A., 1936, 849).—VI. Evidence is presented that quinovic acid (I) is a derivative of (A). Pyroquinovic acid (II), $[\alpha]_{D^0}^{20}$ —61·3° in CHCl₃, is obtained from (I) in 70— 80% yield at 280—300°/ vac. Me pyroquinovate

and MgMeI give a dimethylcarbinol (III), $\hat{C}_{31}H_{52}O_{2}$, m.p. 187—188°, the 3-acetate (IV), m.p. 213°, of which with CrO_3 -AcOH at 40° yields mainly a colourless acetoxy-diketone (V), $C_{32}H_{48}O_4$ (C:C·CH₂ \rightarrow C:C·CO, and CMe₂·OH \rightarrow COMe), m.p. 247°, but at 85° yields a yellow acetoxy-diketone, $C_{30}H_{44}O_4$, m.p. 267° [hydrolysed to a yellow hydroxy-diketone, $C_{28}H_{42}O_3$ (VI), m.p. 242°], with small amounts of an acid, m.p. 197°, and (V). This proves that the b-CO₂H of (II) is attached to a cyclic CH. Attempts to oxidise (V) to (VI) failed. H₂O₂, Br, N₂H₄, and o- $C_{6}H_4(NH_2)_2$ are without effect on (VI), which also differs from novaquinone (absorption max. at 405 and 455 mµ.) in being stable to hot alkali and in having an absorption max. at 270 mµ. These facts prove the presence of CO·C:C·CO in (VI). The yellow acid, $C_{29}H_{40}O_5$ [obtained from (II) by CrO₃ (loc. cit.) and from acetylpyroquinovic acid by oxidation, followed by hydrolysis and further oxidation], also

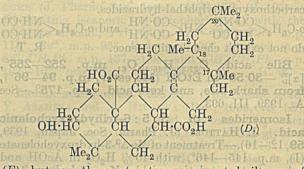


has CO·C:C·CO, has an absorption max. at 268 mµ., and is probably (VII) ($R = CO_2H$). Acetylpyroquinovoyl chloride (prep. by SOCI, at room temp.), m.p. 170° (decomp.) [with NaOH in dioxan gives the acetoxy-acid, but with boiling N-MeOH-KOH (1-2 min.) gives the hydroxy-ester], with ZnPhCl in PhMe gives the acetoxyketone, m.p. 161°, hydrolysed

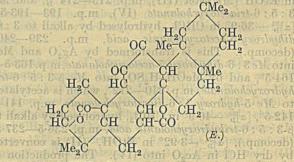
(KOH-Pr^aOH) to the hydroxy-ketone (VIII), C₃₅H₅₀O₂,


xv(k)

m.p. 235°, and oxidised by CrO_3 -AcOH at 85° to the yellow acetoxy-triketone [(VII) R = COPh], C_{37}H_{48}O_5, m.p. 213° (does not undergo the benzilic acid rearrangement with 10% KOH-EtOH). Anhydropyroquinovic acid (Me ester, $[\alpha]_{29}^{29}$ -30.5° in CHCl₃) and KMnO₄ in aq. COMe₂ give the yellow acid, C₂₉H₄₀O₄, m.p. 286° (decomp.) (A., 1931, 1158, m.p. 283°) [Me ester, m.p. 235-238° (loc. cit., 245°)], which has CO·CC·CO as in (VII) and an additional ethylenic linking in ring A due to dehydration of the CH₂·CH·OH. Zn dust reduces the Ac derivative of (VI) to a H₂-derivative, m.p. ~230° (CO·CC·CO \rightarrow CO·CH·CH·CO), readily re-


CO·CH·CH·CO), readily reconverted into (VI) by air. This and the other reactions indicate that (VI) contains the grouping (B). The yellow acetoxy-, $C_{31}H_{44}O_6$, and hydroxy-acid, $C_{29}H_{42}O_5$, obtained by oxidising acetylpyroquinovic acid, are also reduced by Zn dust in AcOH to H_2 -derivatives, m.p. 290-291° and 283-284°, respectively,

which rapidly regenerate the yellow acids in alkali in air. Boiling Ac₂O converts (IV) into a substance (IX), $C_{33}H_{52}O_2$, m.p. 191° (absorption max. at <230 mµ.), which with O_3 in EtCl at 0° gives CH₂O; dehydration thus gives a CMe:CH₂ in (IX). BzO₂H converts (IX) into a diepoxy-derivative, m.p. 229°, and 7% KOH– MeOH gives the diunsaturated alcohol, $C_{31}H_{50}O$, m.p. 148—150°, b.p. 230° (bath)/high vac. When heated at 150°, (III) or the similar carbinol obtained from Me anhydroquinovate gives a triunsaturated hydrocarbon, $C_{31}H_{48}$, m.p. 156—157°. CrO₃ in AcOH–CO₂ oxidises (III) to a triketone (6%), $C_{28}H_{40}O_3$, m.p. 1975°, which contains the features (B). LiPh and (VIII) give an oily diphenylcarbinol (with CrO₃ gives 30% of COPh₂),



the acetate of which with Br-NaOAc in MeOH gives the lactone (C) (R = Ph), $C_{43}H_{54}O_2$, m.p. 235°; similarly, (IV) gives the substance (C) (R = Me), $C_{33}H_{52}O_3$, m.p. 164° (absorption max. at 230—236 mµ.). Me pyroquinovate and BzO₂H in CHCl₃ at 0° give the 13 : 14-oxide, $C_{30}H_{48}O_4$, m.p. 228° (acetate, m.p. 185— 186°), converted by HCl-AcOH at 90°, followed by Ac₂O-C₅H₅N, into Me pyroquinovadienate acetate, m.p. 179°, which is hydrolysed by KOH-MeOH to pyroquinovadienic acid (X), $C_{29}H_{44}O_3$, $[\alpha]_{D}^{20}$ -41.6° in CHCl₃ (Me ester, m.p. 131.5°). Anhydropyroquinovia cid absorbs 2 O from BzO₂H, giving a dioxidolactone, $C_{29}H_{44}O_4$, m.p. 259°; the Me ester gives a di-, $C_{30}H_{46}O_4$, m.p. 189.5°. Fission of the lactone, $C_{29}H_{40}O_4$, by KOH in 50% MeOH, followed by esterification (CH₂N₂), gives a (?) stereoisomeride of (XI).

VII. Prep. of (X) (absorption max. at 247 mu.; cf. quinochromin, $252 \text{ m}\mu$.) from (I) by way of (II) is modified to give a 40% over-all yield. (X) and its Ac derivative absorb only 1 O from BzO₂H. With Br (1 mol.) and NaOAc in AcOH at -10° , (X) gives pyroquinovatrienic acid (XII), $C_{29}H_{42}O_3$, m.p. 244—245°, $[\alpha]_{29}^{20} - 4.6^{\circ}$ or -5.2° in CHCl₃ [Me ester, m.p. 197° (acetate, m.p. 144°)], and, sometimes, a (?) acetoxy-lactone, C31H44O5, m.p. 325° (decomp.). The absorption max. at 269 mu. shows (XII) to contain an aromatic ring (C or, less probably, D), and this is supported by oxidation by boiling, conc. HNO₃ to $1:2:3:4-C_6H_2(CO_2H)_4$ and indifference to Br and H₂-catalyst. CrO₃ in cold AcOH converts (XII) into the corresponding keto-acid, $C_{29}H_{40}O_3$, m.p. 248°, $[\alpha]_{29}^{29}$ +18.8° in CHCl₃ (Me ester, m.p. 178°), or at 65° into an acid, $C_{27}H_{38}O_7$, m.p. 190—194° (decomp.). Tribenzoylquinovic acid (XIII) and SOCl₂, first at $<\!0^\circ\!,$ then at room temp., and finally at 100°, give benzoylquinovoyl dichloride, decomp. 200-204° [with hot MeOH gives Me₂ benzoylquinovate, m.p. 226° (lit. 235–236°)], which at $\sim 210^{\circ}$ and later 240– (10. 250° yields CO (80%), CO₂ (8%), and isomeric benzoyloxy-compounds, $C_{35}H_{46}O_2$, m.p. 269–271° (33%), $[\alpha]_{16}^{16} + 41.6^{\circ}$ to $+45.3^{\circ}$ in CHCl₃, and m.p. $(35^{\circ}_{0}), [\alpha]_{p}^{a} + 41^{\circ}_{1}$ ($\alpha]_{p}^{a4} + 65^{\circ}_{1}$ in CHCl₃, hydrolysed to 191—193° (15°_{0}), $[\alpha]_{p}^{a4} + 65^{\circ}_{1}$ r in CHCl₃, hydrolysed to the *alcohols*, $C_{28}H_{42}O_2$, m.p. 261° and 192°, respectively; these give colours with $C(NO_2)_4$ and are shown by absorption max. at ~ 267 mµ. to contain an aromatic ring (formed under the isomerising influence of the HCl evolved). (I) is probably (D) and novaquinone

(E), but, as these structures are not built up of isoprene residues, the Me at $C_{(17)}$, $C_{(18)}$, and $C_{(20)}$ may be replaced by Pr^{β} at $C_{(17)}$. However, the change of $[\alpha]$ from $+116.5^{\circ}$ in CHCl₃ for Me₂ quinovate to

 -61.1° in CHCl_3 for Me pyroquinovate and the difference in reactivity of the acids and esters towards

Br, $C(NO_2)_4$, etc. suggest that the ethylenic linkings may be in different places for the quinovic and pyroquinovic series. In Et₂O, (XIII) and SOCl₂ at 0° give benzoylquinovoyl monochloride, m.p. 197-198°, which with MeOH gives ? Me₁ benzoylquinovate, m.p. 211-212° (decomp.) [at 250°/vac. gives CO, a little CO₂, and a (?) quinovatrienol]. When melted, (I) gives \Rightarrow a trace of CO. Cl₂ and (I) in AcOH at room temp. give trichloroquinovalactone (XIV), $C_{30}H_{41}O_5Cl_3$, m.p. 287° (decomp.), $[\alpha]_{D}^{19} + 23\cdot1^{\circ}$ in CHCl₃ [CH₂N₂ gives a Me ester, m.p. 302° (decomp.)], and a Cl_3 -acid, $C_{30}H_{41}O_5Cl_3$, decomp. 324° (Me_2 ester, m.p. 206°); thus, (XIV) absorbs first 2 Cl, loses 1 HCl to form a monolactone, and has its CH-OH oxidised to CO, which then gives CCl_2 . With boiling 8% KOH-MeOH (XIV) gives KCl and <50% of a substance, C30H42O7, m.p. 275°, in which 2 Cl are replaced by OH and one is lost as HCl giving an ethylenic linking. With boiling C5H5N, (XIV) loses 1 Cl as HCl, giving a substance, C₃₀H₄₀O₅Cl₂, m.p. 282-285°. AgNO3 in C5H5N at room temp. replaces 1 Cl by OH, and so gives a substance, C₃₀H₄₂O₆Cl₂, m.p. 285°. Zn dust in AcOH gives very slowly a poor with the substance, m.p. $253-255^{\circ}$ (decomp.). Me quinovate, the OH-acid, $C_{29}H_{42}O_5$, and its ester absorb no O from BzO₂H, but quinochromin absorbs 1 O. Anhydroquinovic and novic acid have $[\alpha]_{p}^{29}$ +294° in CHCl₃-EtOH (1:2) and $[\alpha]_{p}^{28}$ +123° in CHCl₄ respectively. R. S. C. CHCl₃, respectively.

Preparation of multiply unsaturated nitriles and aldehydes. II. G. WITTIG and H. HARTMANN (Ber., 1939, 72, [B], 1387-1398).-Reaction does not occur between PhCHO and CMe2:C(CN)·CO2Me (I) at $\sim 120^{\circ}$ alone or in the presence of NH₂Ac or NEt₂Ac; NH₄OAc causes hydrolysis of (I) to COMe₂ ALL₂AC, MH₄ORC causes hydrolysis of (1) to obtain and CN·CH₂·CO₂Me, which with PhCHO yields CHPh.C(CN)·CO₂Me, m.p. 88—89°. In presence of piperidine and its acetate at 45°, PhCHO and (I) yield Me α-cyano-δ-phenyl-β-methyl-Δ^{αγ}-pentadienate, m.p. 111.5°, in 85% yield. CHPh.CH·CHO, NH₄OAc, and (I) afford Me α -cyano- δ -phenyl- $\Delta^{\alpha\gamma}$ -pentadienate, m.p. 143.5-144.5°. CHPh:CH-CHO and Me a-cvanosorbate in presence of piperidine and AcOH give Me α -cyano-0-phenyl- $\Delta^{\alpha_{yen}}$ -nonatetraenoate, m.p. 168—169°, in 25% yield. This is hydrolysed by Ba(OH)₂-MeOH to the *acid*, m.p. 219—221°, which is decarboxylated by Cu powder at 180-200° to a mixture of stereoisomeric θ -phenyl- $\Delta^{a\gamma\epsilon\eta}$ -nonatetraenonitriles, of which a form, m.p. 146-149°, is obtained pure. Prolonged boiling of a mixture of β-ionone and CN·CH2·CO2Me in AcOH containing NH2Ac and NH₄OAc leads to Me cyano-β-ionylideneacetate, b.p. 171^{$-172^{\circ}/0.38$} mm.; the non-cryst. acid is de-carboxylated at 150° to β -ionylideneacetonitrile, b.p. 117—122°/1 mm., hydrolysed to β -ionylideneacetic acid, m.p. 125°. The reducibility of unsaturated nitriles R. [CH:CH], CN (A) decreases rapidly with increase of n when SnCl, and HCl in Et₂O are used. CrCl₂ in Et₂O-HCl or dioxan-HCl at 80°, CrBr₂ in Et₂O-HBr, VCl₂ or TiCl₃ in HCl-Et₂O are ineffective but much better results are obtained with SnBr2 in HBr-Et₂O or HBr-dioxan at 55-60°, the yield of aldehyde from (A) being 73, 65, and 50% when n = 0, 1, and 2, respectively. A suitable apparatus

is described. The method is not effective with Ph·[CH:CH]₂·CN. H. W.

Preparation of m-dialkylaminobenzaldehydes. W. COCKER and J. O. HARRIS (J.C.S., 1939, 1092-1094).—m-NH₂·C₆H₄·CH(OMe)₂ (I) in Et₂O with 1.5N-Na₂CO₃ and Et₂SO₄ at room temp. (7 days) gives m-diethylaminobenzaldehyde, b.p. 137-138°/6-7 mm. (semicarbazone, m.p. 165°; azine, m.p. 114-115°; 2:4-dinitrophenylhydrazone, m.p. 197-198°; picrate, m.p. 145.5-146°; leuco-base, m.p. 108.5-109.5°, of the crystal-violet analogue), which gives a methiodide, m.p. 167.5-168° (decomp.), but no ethiodide. $3n-Na_2CO_3$, $Pr^{\alpha}I$, and $(I)-Et_2O$, at room temp. for 21 days and then boiling for 4 days, give m-di-n-propylaminobenzaldehyde, b.p. 145-148°/5-6 mm. [semicarbazone, m.p. 172-172.5°; 2:4-dinitrophenylhydrazone, m.p. 207-208°; picrate, m.p. 136-137°; methiodide, m.p. 152°; platinichloride, m.p. 178° (decomp.)]. 1.5N-Na2CO3 and CH2:CH-CH2Br yield m-diallylaminobenzaldehyde, b.p. 131-132°/4 mm. [semicarbazone, m.p. 133.5-134°; 2:4-dinitrophenylhydrazone, m.p. 165-165.5°; platinichloride, m.p. 161° (decomp.), unstable in warm H₂O; azine, m.p. 70-71°; unstable, impure picrate, m.p. 108.5-109°], which gives no methiodide. 3N-Na₂CO₃ and CH₂PhBr give m-dibenzylaminobenzaldehyde, m.p. 59-60°, b.p. 230-231°/7 mm. (semicarbazone, m.p. 185-185.5°; oxime, m.p. 125-126°; 2:4-dinitrophenylhydrazone, m.p. 230-231°; azine, m.p. 167-167.5°; impure platinichloride, m.p. 124-125°), which gives no methiodide. The order of basicity of mdialkylaminobenzaldehydes follows no accepted rules. Steric effects may influence the results. R. S. C.

 γ -Substituted resorcinol derivatives. I. Synthesis of γ -resorcaldehyde. K. NAKAZAWA (J. Pharm. Soc. Japan, 1939, 59, 57—59).—2:4:1-(OH)₂C₆H₃·CO₂H and AlCl₃–Zn(CN)₂–Et₂O, with HCl gas, give 3-aldehydo-2:4-dihydroxybenzoic acid, m.p. 195° (decomp.), converted by H₂O₂-aq. NaOH into pyrogallol-4-carboxylic acid, m.p. 221° (decomp.), or by boiling H₂O into γ -resorcaldehyde, m.p. 154° (oxime, m.p. 167°). A. T. P.

4-Methoxy-3-chloromethylbenzaldehyde. Β. REICHERT and K. AUF DEM KAMPE (Arch. Pharm., 1939, 277, 261-271; cf. A., 1937, II, 422).-4:3:1-OMe·C₆H₃(CH₂Cl)·CHO (I) with MeNO₂ (EtOH-KOH) and EtNO₂ (EtNH₂) yields respectively βnitro-a-(4-methoxy-3-chloromethylphenyl)-ethylene, m.p. 118°, and -propylene, m.p. 80°. Hydrolysis (dil. H₂SO₄) of (I) gives OMe·C₆H₃(CH₂·OH)·CHO (II) in 78% yield. (II) similarly yields β -nitro- α -(4-methoxy-3-hydroxymethylphenyl)-ethylene, m.p. 104-105° (acetate, m.p. 131-132°), and -propylene, m.p. 90°; reduction (H2, Pd-C, C5H5N at 55°) of the former affords 4-methoxy-3-hydroxymethylphenyl-acetaldoxime, m.p. 119-120°, further reduced (H₂, PtO₂, EtOH-H₂C₂O₄ or Na-Hg + EtOH-AcOH) to the -ethylamine (H oxalate, m.p. 147-148°). (II) with CH₂(CO₂H)₂, C₅H₅N, and a trace of piperidine yields 4-methoxy-3hydroxymethylcinnamic acid, m.p. 190-191°, reduced (H₂, Pd-C, 80% MeOH at 35°) to β-6-methoxy-mtolylpropionic acid, m.p. 98-99° [Me ester (CH2N2), m.p. 45°]. Oxidation of (I) or (II) with dil. HNO, or of (II) with CrO₃ yields 4-methoxyisophthalaldehyde, m.p. $123-124^{\circ}$ (dioxime, m.p. $170-172^{\circ}$), further oxidised (KMnO₄) to 4:3:1-OMe·C₆H₃(CO₂H)₂. A. LI.

2:4-Dinitrophenylhydrazone, m.p. 198°, of p-hydroxyphenylpyruvic acid.—See A., 1939, III, 725.

Synthesis of substituted alicyclic methyl ketones. II. Hydroxymethyl ketones. W. A. YARNALL and E. S. WALLIS (J. Org. Chem., 1939, 4, 284—288).—Attempts to condense cyclohexanone (I) with CH₂Cl·CHCl·CO₂Et in presence of NaOEt leads under all conditions to CH₂:CCl·CO₂Et. (I) does not condense with OH·CH₂·CHCl·CO₂Et.

CH₂Cl·CHCl·CO₂H is obtained in 18% yield by addition of Cl₂ to CH₂:CH·CH₂·OH and oxidation of the dichlorohydrin by HNO_3 , or in 85% yield by passage of Cl_2 through CH_2 :CH·CHO at $<-5^{\circ}$ and treatment of the product with a mixture of conc. and fuming HNO_3 at 40–50°. Gradual addition of Mg cyclohexyl chloride to a suspension of CN·CH₂·OMgI (obtained from OH·CH2·CN and MgMeI) in Et2O gives cyclohexyl CH2. OH ketone, isolated as the 3: 5dinitrobenzoate, m.p. 110-111°. The 3:5-dinitrobenzoates of cyclopentyl and 2-methylcyclopentyl CH, OH ketones have m.p. 100° and 103°, respectively. 2-Methylcyclopentanone is reduced to the alcohol, which is converted in the usual manner into 2-methylcyclopentyl chloride, b.p. 122-124°/atm. pressure (some decomp.). H. W.

Hydrogen fluoride as a condensing agent. VII. Acylation of aromatic compounds. J. H. SIMONS, D. I. RANDALL, and S. ARCHER. VIII. Alkylation of benzene by esters. J. H. SIMONS, S. ARCHER, and D. I. RANDALL (J. Amer. Chem. Soc., 1939, 61, 1795—1796, 1821—1822; cf. A., 1939, II, 362).—VII. In HF at 80—100° PhMe with AcOH, Ac₂O, or AcCl gives p-C₆H₄Me·COMe, with BzOH or BzCl gives p-C₆H₄Me·COPh, and with Bu°CO₂H gives p-C₆H₄Me·COBu°; PhOH and AcOH give p-OH·C₆H₄·COMe; C₆H₆ and AcCl give COPhMe. VIII. With HF in an excess of C₆H₆ at 80—100°, Bu'OAc gives PhBu' and COPhMe; Pr⁶OAc gives

VIII. With HF in an excess of C_6H_6 at $80-100^\circ$, Bu^{γ}OAc gives PhBu^{γ} and COPhMe; Pr^{β}OAc gives PhPr^{β}, COPhMe, and p-C₆H₄Pr^{β}-COMe; Bu^{α}OAc or sec.-BuO·COPr^{β} gives PhBu-sec.; CH₂Ph·OAc gives CH₂Ph₂. The reaction mechanism is discussed. R. S. C.

Action of mixed organo-magnesium compounds on osazones. P. GRAMMATICAKIS (Compt. rend., 1939, 208, 1998-2000; cf. A., 1937, II, 248, 287).-COPh·CH:N·OH (1 mol.) with NHPh·NH2,HCl (2.2 mols.) in warm EtOH gives phenylglyoxalphenylosazone (I) (100%), which with MgPhBr in Et₂O gives w-phenylhydrazino-w-phenylacetophenonephenylhydrazone (II), m.p. 124°, and a small amount of (·CPh:N·NHPh)₂ (III). (I) with MgEtBr affords ω-phenylhydrazino-ω-ethylacetophenonephenylhydrazone, m.p. 123°. Glyoxalphenylosazone with MgPhBr similarly affords (II), (III), (I), and CHPh:N·NHPh. (I) does not react with MgMeI in Et₂O. (III) in boiling Et₂O/14 hr. with a large excess of MgMeI, MgEtBr, or MgPhBr forms no additive products. Cinnamaldehydephenylhydrazone with MgEtBr similarly affords a-phenylhydrazino-a-styrylpropane, b.p. 185-187°/<1 mm.

Heterocyclic compounds containing nitrogen. XLIV. 2:2'-Dinitrodeoxybenzoin. P. RUGGLI and A. DINGER (Helv. Chim. Acta, 1939, 22, 908— 911).—The product of the oxidation of o-NO₂:C₆H₄:CH₂:CO·CO₂H by CaOCl₂ is shown to be 2:2'-dinitrodeoxybenzoin, m.p. 166° (lit. 160°). Hydrogenation (Raney Ni in EtOH-EtOAc-H₂O) of it yields 2-o-aminophenylindole, m.p. 153° (Ac derivative, m.p. 151—152°), and $\alpha\beta$ -2:2'-diaminodiphenylethane, m.p. 67° (Ac₂ derivative, m.p. 250°). H.W.

Influence of route chosen for an asymmetric synthesis on the configuration of the resulting enantiomorph. S. M. PARTRIDGE (J.C.S., 1939, 1201).—The formation of (+)- and (-)- OH·CPhEt·COPh from (-)-OH·CHPh·CO₂H (Roger,

A., 1939, II, 111) and of (+)- and (-)-OMe·C₆H₄·CMe(OH)·CO₂H (McKenzie *et al.*, A., 1932, 1037) is determined by the order in which the substituents are introduced and thus contradicts the conclusions of Roger. R. S. C.

Rearrangement of a-hydroxy-carbonyl compounds. P. G. STEVENS (J. Amer. Chem. Soc., 1939, 61, 1714-1716).-Isomerism, $CH_{2}Ar \cdot CO \cdot CHAr' \cdot OH \leftarrow CH_{2}Ar \cdot CH(OH) \cdot COAr'$, is demonstrated, thus supporting Hibbert's theory of lignin formation. α -Hydroxy- β -keto- γ -phenyl- α -p-chlorophenylpropane (I), m.p. 125.5—126°, is prepared from p-C6H4Cl·CO·CH(OH)·CHPh·CO,H and $p - C_6 \dot{H}_4 \dot{Cl} \cdot \dot{CH} (OH) \cdot \dot{CN} + \dot{CH}_2 Ph \cdot Mg \dot{Cl}.$ from Hydroxy-a-keto-y-phenyl-a-p-chlorophenylpropane (II), m.p. 43—44°, is converted into (I) by Na_2CO_3 in hot 95% EtOH; the reverse transformation was effected in poor yield under narrow conditions. With strong alkali, (I) gives $p \cdot C_{\beta}H_4Cl \cdot CO_2H$ and α -hydroxy- β phenyl-a-p-chlorophenylpropionic acid (III), m.p. 201-°, the reaction mechanism being : (I) or (II) -202° $\begin{array}{l} {\rm CH_2Ph} \cdot {\rm C(OH)} \cdot {\rm C(OH)} \cdot {\rm C_6H_4Cl} \rightarrow {\rm CH_2Ph} \cdot {\rm CO} \cdot {\rm CO} \cdot {\rm C_6H_4Cl} \\ {\rm (IV)} + {\rm CH_2Ph} \cdot {\rm CH_2} \cdot {\rm CO} \cdot {\rm C_6H_4Cl} \quad ({\rm not\ isolated}) \ ; \quad ({\rm IV}) \end{array}$ gives (III) by benzilic acid rearrangement or C_6H_4Cl · CO_2H by cleavage. The structure of (III) is proved by synthesis from β -p-chlorobenzoyl- α phenylethylene oxide by alkali and by oxidation to p-chlorodeoxybenzoin, m.p. $104.5-105.2^{\circ}$. H₂-PtO₂ in MeOH reduces $p-C_6H_4Cl\cdotCO\cdotCH:CHPh$ to p- $C_6H_4Cl\beta$ -phenylethyl ketone, m.p. 75-76°, converted by Br-CHCl₃ into p- $C_6H_4Cl\alpha$ -bromo- β -phenylethyl ketone, m.p. 92-93°, which with Na₂CO₃ in aq. EtOH gives (II). R. S. C.

Functional aptitude of the methyl group. II. Derivatives of benzophenone and benzil. L. CHARDONNENS and J. VENETZ (Helv. Chim. Acta, 1939, 22, 822—836).—Me in substituted benzophenones is activated if Bz is in the para- and NO₂ in the ortho-position but not if the placing of the substituents is reversed. 3-Nitro-4-methylbenzophenone (I) condenses with p-NMe₂·C₆H₄·CHO in presence of piperidine at 155—160° to 3-nitro-4-p-dimethylaminostyrylbenzophenone, m.p. 180°. 3-Nitro-4-p-methoxystyrylbenzophenone, m.p. 180°. 3-Nitro-4-p-methoxystyrylbenzophenone, m.p. 156°, is obtained similarly. PhCHO and the requisite benzophenone afford 3:3'dinitro-, m.p. 155—156°, 3:5-dinitro-, m.p. 129:5— 130:5°, and 3:5:3'-trinitro-, m.p. 164:5°, -4-styrylbenzophenone. 3:3'-Dinitro-4-methylbenzophenone

and p-NO·C₆H₄·NMe₂ in boiling EtOH containing anhyd. Na2CO3 slowly afford 2-nitro-4-m'-nitrobenzoylbenzald-p"-dimethylaminoanil, m.p. 147-148°, and 2-nitro-4-m'-nitrobenzoylbenzaldoxime N-p-dimethylaminophenyl ether, m.p. 234°. p-NO·C₆H₄·NMe₂ and (I) yield 2-nitro-4-benzoylbenzald-p-dimethylaminoanil, m.p. 174—175°, and the corresponding nitrone, m.p. 217°. 3:5-Dinitro-4-methylbenzophenone appears to give exclusively 2:6-dinitro-4-benzoylbenzald-p-dimethylaminoanil, m.p. 157-158°. 5:2-NO₂·C₆H₃Me·CO₂H is transformed by the successive $NO_2^{\circ}C_6H_3$ and CO_2H is transformed into 5-nitro-2-methylbenzophenone, m.p. 79°, which is transformed by p-NO· C_6H_4 ·NMe₂ into 4-nitro-2-benzoylbenzald-oxime N-p-dimethylaminophenyl ether, m.p. 240°. $3:5:2-(NO_2)_2C_6H_2Me\cdot CO_2H$ is transformed into 3:5dinitro-2-methylbenzophenone, m.p. 88°, which yields 3:5-dinitro-2-styrylbenzophenone, m.p. 119-120°, with PhCHO and piperidine at 130°, and 2:4-dinitro-6-benzoylbenzald-p-dimethylaminoanil, m.p. 190-192°, with p-NO·C₆H₄·NMe₂ in boiling EtOH containing Na₂CO₃, 3:3'-Dinitro-4:4'-dimethylbenzophenone and PhCHO afford 3:3'-dinitro-4:4'-distyrylbenzophenone, m.p. $202-203^{\circ}$, whilst 3:3'-dinitro-4:4'-diformylbenzophenonedi-p-dimethylaminoanil, m.p. $200-201^{\circ}$, is obtained from p-NO·C₆H₄·NMe₂. 3:3'-Dinitro-4:4'-dimethylbenzil [quinoxaline, m.p. 179—180°, from o-C₆ H₄(NH₂)₂] affords 3 : 3'-dinitro-4 : 4'-distyrylbenzil, m.p. 224° or 196—197° (quin-H. W. oxaline, m.p. 207-208°).

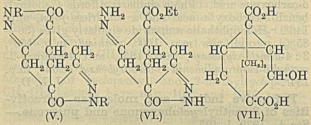
Mechanism of reduction of conjugated systems with terminal carbonyl groups. Dienols obtained from unsaturated αδ-diketones. R. E. LUTZ and W. G. REVELEY (J. Amer. Chem. Soc., 1939, 61, 1854—1859).—Reduction of

COR·CH:CH·COR (I) catalytically or by metal is shown to occur by 1: 6-addition, giving

OH·CR:CH·CH:CR·OH (II) as primary product. When (I) (R = mesityl) is hydrogenated (Pt) in EtOH at 0° and the solution is filtered under N2 and run into aq. or EtOH-I, the amount of (II) (R =mesityl) present is determined by the I consumed [(II) $+2I \rightarrow (I)$; this amount depends on the time of manipulation and with short times rises to 93.7%; if the solution is kept, preferably after addition of a little piperidine as catalyst, ketonisation gives nearly 100% yields of $(2:4:6-C_6H_2Me_3\cdot CO\cdot CH_2)_2$ (III). The amount of (II) formed was checked (concordant results) by converting the (II) by NaHSO₃ in boiling 60% EtOH into the H₂O-sol. Na $\alpha\delta$ -diketo- $\alpha\delta$ -dimesitylbutane-\$\beta-sulphonate (Pb salt) and weighing the insol. (III). Zn dust in 1 : 1 AcOH-Et₂O at -5° to 0° gives a solution containing (I method) 61% of (II). Ketonisation of (II) (R = mesityl) in EtOH is very slow at 0°, but rises with increasing temp.; at $26-29^{\circ}$ the half-life period is ~ 12 hr. at rest, but if the solution is disturbed, ketonisation is much more rapid. (II) (R = mesityl) could not be isolated. The amount of (II) (R = mesityl) obtained by hydrogenation at 0° was in 95% EtOH 91—94, dioxan-EtOH (4:1) 90, EtOAc 78, $Pr_{2}^{\beta}O$ 60, $C_{6}H_{6}$ (at 5°) 54, n-C₆H₁₄ 60, decahydronaphthalene 17, and AcOH-EtCO2H (63:37) ~40-50%. The dimagnesium enolate of (III) [prep. by heating with MgPhBr DD (A., II.)

(excess) in dissoamyl ether at 110°] with I in 95%EtOH at 0° gives an excellent yield of trans-(I) (R = mesityl). OMgBr·CPh:CH·CPh:CPh·OMgBr [prep. from (:CHBz)₂ by MgPhBr] with I-EtOH gives CHBz:CPhBz (no CH₂Bz·CHPhBz) and 2:3:4:5tetraphenylfuran (formed from the CHBz:CPhBz by the unused MgPhBr); this confirms the author's mechanism for addition of MgRHal to (I). Isolation

of OH·CR:CH·CR:CR·OH ($\mathbf{R} = \text{mesityl}$), m.p. 70—71°, and of four stable mono-enols,


OH·CR:CR·CHR·COR, is announced without details. R. S. C.

Synthesis of benzil-o-carboxylic and β -deoxybenzoin-o-carboxylic acids. B. Hoï (Compt. rend., 1939, 208, 2082—2084).—Phthalonic anhydride, C₆H₆, and AlCl₃ at 80° afford a mixture of the yellow, m.p. 141-5°, and colourless, m.p. 125°, forms of benzilo-carboxylic acid. PhMe similarly affords 4'-methylbenzil-2-carboxylic acid and a colourless form, m.p. 146°. Homophthalic anhydride similarly gives (30— 85%) p-tolyl, new m.p. 160°, p-anisyl, m.p. 150°, 3:4-dimethoxyphenyl, m.p. 185°, and 4-hydroxy-2methyl-5-isopropylphenyl o-carboxybenzyl ketone, m.p. 184°. J. L. D.

Refractive indices and molecular refractivities of 3-methylcyclohexanone and pulegone.— See A., 1939, I, 405.

series. VI. Addition Hydroaromatic of 6-methoxy-1-vinyl-3: 4-dihydronaphthalene to Δ^1 -cyclopentenone and 4:4-dibromo- Δ^1 -cyclopentene-3: 5-dione. E. DANE and K. EDER (Annalen, 1939, 539, 207-212; cf. A., 1939, II, 318).—∆²-cycloPentenyl acetate, b.p. 58—61°/20 mm., is best obtained, with some 1: 2-diacetoxycyclopentane, b.p. 115—118°/20 mm., from cyclopentene by Pb(OAc)₄ in AcOH at 50°. Δ^2 -cycloPentenol, b.p. 68-70°/40 mm., obtained therefrom, is oxidised by CrO_3 in dil. H_2SO_4 to Δ^2 -cyclopentenone, b.p. $42^\circ/10$ mm. (2:4-dinitrophenylhydrazone, m.p. 165°). With butadiene in dioxan at 120—160°, this gives 4:7:8:9-tetra-hydroindan-1-one, an oil (dinitrophenylhydrazone, m.p. 199°) and with 6 methovy l. risel 2:4 di m.p. 199°), and with 6-methoxy-1-vinyl-3:4-di-hydronaphthalene (I) gives 1'-keto-7-methoxy-1:2:3:9:10:11-hexahydrocyclopentano-3':2'or 2': 3'-1: 2-phenanthrene, m.p. 141° (dinitrophenylhydrazone; HBr-AcOH gives a cryst. phenol, de-hydrated by benzoquinone to a cryst. compound). 4: 4-Dibromo- Δ^1 -cyclopentene-3: 5-dione with butadiene or (I) in dioxan at 110-115° gives 2:2-dibromo-4:7:8:9-tetrahydroindane-1:3-dione, m.p. and 4': 4'-dibromo-3': 5'-diketo-7-methoxy-92°, 1:2:3:9:10:11-hexahydrocyclopentano-1': 2'-1:2phenanthrene, m.p. 166°, respectively. R. S. C.

para-Bridge formation with ethyl succinosuccinate. I. Formation of dicyclo-[1:2:2]heptane, dicyclo-[2:2:2]-octane, and dicyclo-[3:2:2]-nonane systems. P. C. GUHA (Ber., 1939, 72, [B], 1359—1373; cf. A., 1936, 1252).—The action of CH₂I₂, I, or Br on Et₂ sodiosuccinosuccinate (I) gives $Et_2 2: 5$ -dihydroxyterephthalate (II), m.p. 133° (Ac derivative, m.p. 154°), identified by conversion by dil. HCl at 180° into quinol. CH₂Br₂ and (I) give a very small yield of Et_2 dicyclo-[1:2:2]-heptane-2: 5-dione-1:4-dicarboxylate, b.p. 110°/1 mm. COBr₂ and (I) in C_6H_6 appeared to afford an isomeride, m.p. 132°, of (I) which gives a pale red colour with FeCl₃ in EtOH. CHBr(CO₂Et)₂ and (I) yield a product, m.p. 127—128°, which gives a blue-green colour with FeCl₃ and is not identical with (I) or (II). (CH₂Br)₂ and (I) give *Et*₂ dicyclo-[2:2:2]-octane-2:5-dione-1:4-dicarboxylate (III), m.p. 112° (disemicarbazone, m.p. 263—264°), which when heated with H₂O containing a few drops of HCl at 200°, or boiled with 50% H₂SO₄ or 18% HCl until a clear solution is obtained, is hydrolysed to the dicarboxylic acid (IV), m.p. 286° (disemicarbazone, m.p. 257°). This is partly decarboxylated at 270—280°/vac. to dicyclo-[2:2:2]-octane-2:5-dionecarboxylic acid, m.p. 216—217°. (IV) is readily re-converted into (III) by EtOH-HCl, which gives a dioxime, m.p. 210°, mono-oxime, m.p. 167°, is transformed by NHPh·NH₂ into the

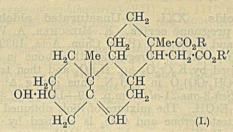
pyrazolone compound [(V), R = Ph], m.p. 188–189°, by boiling NH_2Ph into the dianilide, m.p. 193°, and by N2H4,H2O in EtOH into the dipyrazolone derivative [(V), R = H], m.p. 326°, and the mono-pyrazolone compound (VI), m.p. 204°, characterised by the formation of a :CHPh derivative, m.p. 281°. Boiling 10% KOH-EtOH transforms (III) into \$\$'dicarboxysuberic acid, m.p. 177-178°, which gives a mixture when esterified in the usual manner. Oxidation of (III) with KMnO_4 yields ($\cdot\text{CH}_2\cdot\text{CO}_2\text{H})_2$, $\text{H}_2\text{C}_2\text{O}_4$, and an acid, m.p. 150°, which is not adipic acid; fuming HNO_3 gives $\text{H}_2\text{C}_2\text{O}_4$ and a trace of ($\cdot\text{CH}_2\cdot\text{CO}_2\text{H})_2$. (III) is largely unchanged by Na and EtOH under CO₂. Reduction with Na-Hg in EtOH-AcOH leads to Et_2 dicyclo-[2:2:2]-octane-2:5-diol-1: 4-dicarboxylate, b.p. 200-204°/3 mm., with H₂-PtO₂ activated by FeCl₂ in AcOH at 25°/2.5 atm. to the isomeric diol diester, b.p. 196-197°/5 mm., and by Zn-Hg and boiling dil. HCl to dicyclo-[2:2:2]-octane-1:4-dicarboxylic acid, m.p. 385° (Et2 ester, b.p. $140-145^{\circ}/3$ mm.), and the *acid* (VII), m.p. 315° (*Et*₂ ester, b.p. $180-190^{\circ}/4$ mm.). Dry (I) and Br-[CH₂]₃·Br at 170-175^{\circ} give *Et*₂ *dicyclo-*[2:2:3]-nonane-2:5-dione-1:4-dicarboxylate (VIII), m.p. 132° (disemicarbazone, m.p. 227°), and a viscous yellow liquid, b.p. 180-190°/5 mm., which does not react with FeCl₃ and does not give a semicarbazone. Acid hydrolysis of (VIII) gives the dicarboxylic acid, m.p. 238° (disemicarbazone, m.p. 217°), readily reesterified to (VIII). (VIII) and NHPh·NH₂ give a dipyrazolone compound {cf. (V), R = Ph; $[CH_2]_3$ instead of $[CH_2]_2$, m.p. 231–232°, and with N_2H_4, H_2O a substance {cf. (V), R = H; $[CH_2]_3$ instead of $[CH_2]_2$, m.p. 321°. By the hydrolysis of (VIII) with 5% KOH-EtOH three CO-dicarboxylic acids, $C_{10}H_{14}O_5$, of the cycloheptane series are obtained with m.p. 163°, 181° (semicarbazone, m.p. 220°), and 199° [Et ester, b.p. 195-205°/3 mm. (semicarbazone,

m.p. 152°)], respectively. (VIII) is largely unchanged by Na-Hg in EtOH-AcOH but is reduced (Clemmensen) to dicyclo-[2:2:3]-nonane-1: 4-dicarboxylic acid, m.p. $>360^{\circ}$. H. W.

para-Bridge formation with ethyl succino-Synthesis of dicarbethoxysuccinate. II. suberic ester and its cyclisation to dicyclo-[2:2:2]-octanedione by double Dieckmann condensation. P. C. GUHA and C. KRISHNA-MURTHY (Ber., 1939, 72, [B], 1374–1379).—Et₂ βββ'β'-tetracarbethoxysuberate, m.p. 69°, is obtained from (CH₂Br)₂ and Et₂ sodiocarbethoxysuccinate or from $CH_2Br^*CO_2Et$ and Et_4 disodiobutane- $\alpha\alpha\delta\delta$ -tetracarboxylate. It is slowly hydrolysed by boiling HCl (1:1) to $\beta\beta'$ -dicarboxysuberic acid, m.p. 177–178° [Et4 ester (I), b.p. 205°/2 mm.]. Gradual addition of (I) to mol. Na suspended in C6H6 at room temp. gives unidentified alkali-insol. material which yields a semicarbazone, m.p. 240-242° (decomp.), and a portion sol. in alkali which is hydrolysed and decarboxylated by HCl (1:1) to dicyclo-[2:2:2]-octane-2:5-dione, m.p. 205-206° (disemicarbazone, m.p. 244-245°). H. W.

para-Bridge formation with ethyl succinosuccinate. III. Resolution of dicyclo-[2:2:2]octane-2: 5-dione-1: 4-dicarboxylic acid into its optical antipodes. P. C. GUHA and S. K. RANGANATHAN (Ber., 1939, 72, [B], 1379—1380).— Crystallisation of the brucine salt of the *dl*-acid from boiling H₂O gives the normal brucine salt (I) (+3H₂O), $[\alpha]_{2}^{B_{5}}$ -70.87° in H₂O, of d-dicyclo-[2:2:2]-octane-2:5-dione-1:4-dicarboxylic acid, m.p. 271°, $[\alpha]_{2}^{B_{5}}$ +23.85° in H₂O. Concn. of the mother-liquors from (I) with periodical removal of the salt which separates leaves a salt from which the *l*-acid, $[\alpha]_{2}^{B_{5}}$ -23.24° in H₂O, is isolated. H. W.

Synthesis of substituted alicyclic methyl ketones. I. W. A. YARNALL and E. S. WALLIS (J. Org. Chem., 1939, 4, 270-283; cf. A., 1937, II, 294).-Addition of powdered NaOEt to cyclohexanone and CHMeCl·CO₂Et affords $Et \alpha$: 1-oxido- α -cyclohexylpropionate, b.p. 126-128°/19 mm., in 54% yield; the usual brown colour is avoided if the mixture is cooled to -80° and the yield is increased to 68%. In presence of Et_2O , anhyd. C_6H_6 , or C_6H_6 + light petroleum the yields are 34, 47, and 54%, respectively. The use of an excess of a-halogeno-ester and condensing agent is advantageous, and CHMeCl·CO.Et is superior to CHMeBr·CO.Et. Et a: 1-oxido-a-cyclopentylpropionate, b.p. 128°/25 mm., is prepared in poorer yield from cyclopentanone. Excellent yields of the glycidic acids are obtained by hydrolysis of the esters with NaOH-EtOH, the Na salt being sometimes allowed to crystallise; when the acids are kept in solution before isolation small amounts of ketones are frequently formed. Pyrolysis of the acids at ordinary or reduced pressure gives low yields of ketones and appreciable amounts of resinous material. Attempts to obtain cyclohexyl Me ketone (I) from Et α -hydroxy- α -1-chlorocyclohexylpropionate by rearrangement under the influence of alkali show that the rate of re-formation of glycidic ester exceeds that of hydrolysis so that only traces of ketone are produced. a: 1-Oxido-a-cyclohexylpropionic acid and HCl yield a-hydroxy-a-1-chlorocyclohexylpropionic acid, which when dissolved in aq. Na₂CO₂ and steam-distilled gives (I) in 29% yield and a mixture of acids which yields some (I) when pyrolysed. Much better results are secured by boiling the acid in C₅H₅N, whereby 75% yields of (I) are obtained but only 25% yields of cyclopentyl Me ketone. Alternatively the glycidic acids are transformed into their Na salts, which are heated with an equiv. proportion of NaOH, thus giving 45-56% of ketone. By use of a large excess of CHMeCl·CO2Et and NaOEt and prolonged boiling of the Et₀O solution, dehydroandrosterone (II) is almost completely converted into the non-cryst. glycidic ester, which is hydrolysed to a mixture from which acids, m.p. 183-185° and 240-244°, are isolated. The crude condensation mixture is dissolved in Et₂O and thoroughly washed; any propionates are removed at 50-70°/high vac. and unchanged (II) as its semicarbazone. The residual mixture of glycidic ester and androstenediol is hydrolysed by NaOH-EtOH and small amounts of Δ^5 -pregnenolone (III) and Δ^5 -isopregnenolone are isolated as their semicarbazones, which are hydrolysed to the free ketones (separable by digitonin). Most attempts to improve the yield of (III) failed owing to the stability of the glycidic acid. Better results are, however, obtained when the acid is treated with HCl in dry Et₂O and the product is boiled in C5H5N; the ketones are isolated as their semicarbazones, which are hydrolysed to a cryst. product, m.p. 110-114°. This is brominated, oxidised, and debrominated to progesterone, identical with that obtained from stigmasterol. The possible formation of Δ^4 -pregnenolone is mentioned. H. W.


Δ⁵-Norcholesten-3-ol-25-one, an oxidation product of cholesteryl acetate dibromide. J. HATTORI (J. Pharm. Soc. Japan, 1938, 58, 150—153). —Δ⁵-Norcholesten-3-ol-25-one (I), m.p. 126—127° (sinters at 117°) [acetate, m.p. 139—140° (semicarbazone, decomp. 233—234°; oxime, m.p. 182°; dibromide, decomp. 125—126°); mono-oxime, m.p. 176—177°; monodinitrophenylhydrazone, m.p. 159— 160°; dibromide, decomp. 130—131°], is isolated from the oxidation products of cholesteryl acetate dibromide by a method similar to that of Ruzicka et al. (A., 1937, II, 506). 3-Acetoxy-Δ⁵-cholenic acid, m.p. 189° (corr.), and SOCl₂ give the chloride, converted by CH₂N₂ into the corresponding diazo-

ketone, decomp. 158°. The latter and NH₃– AgNO₃–EtOH afford 3acetoxy - Δ^5 - homocholenamide, m.p. 200–204° (corr.), and thence 3hydroxy- Δ^5 -homocholenic acid (II), decomp. 217–

219° (corr.) (sinters at 210°) (Et ester). The acetate, m.p. 188—191° (corr.), of (II) then gives, through the chloride and diazoketone (by HCl–Et₂O), the corresponding CH_2Cl ketone, m.p. 182—184°, converted by Zn–AcOH into the acetate, m.p. 137·5—138·5° (corr.), of (I). A. T. P.

trans-Androsterone Me ether, m.p. 91°.—See B., 1939, 885. Sterols. XVI. Monoalkyl 3-hydroxy- $\Delta^{5:6}$ ætiobilienates. XVII. Synthesis of trans-dehydroandrosterone. S. KUWADA and K. NAKA-MURA (J. Pharm. Soc. Japan, 1938, 58, 254—256, 257—259).—XVI. Hydrolysis of Me₂ 3-hydroxy- $\Delta^{5:6}$ -ætiobilienate, m.p. 112°, for a short time with 0·2N-KOH-EtOH gives the Me_1 ester (I) (R = Me, R' = H), m.p. 214·5—216·5°, $[\alpha]_2^{D7}$ —75° [acetate (II), m.p. 168·5—169·5°]; prolonged treatment gives the *Et* ester (I) (R = Et, R' = H), m.p. 176—177° (uncorr.), $[\alpha]_{22}^{25}$ —75·4° to —76·4° [acetate, m.p. 137·5— 139°], previously believed to be a Me ester. 3-Hydroxy- $\Delta^{5:6}$ -ætiobilienic acid with MeOH-H₂SO₄ gives the Me ester [(I), R = H, R' = Me], m.p. 186·5—188°, $[\alpha]_{22}^{27}$ —55·9°, and with CHMeN₂ gives

the Et_2 ester, m.p. $103 \cdot 5 - 104 \cdot 5^{\circ}$, hydrolysed by 0.2n-KOH-EtOH to (I) (R = Et, R' = H), the identity of which with the previous prep. is proved by crystallographic and X-ray data.

XV. The acid chloride from (II) (prep. by SOCl₂) and CH₂N₂-Et₂O give the oily diazo-ketone, which with NH₃-AgNO₃ in EtOH yields β -Me 3-acetoxy- $\Delta^{5:6}$ - α homoætiobilien- α -amide (III), m.p. 165—166°. H₂SO₄-

$\begin{array}{c} \mathrm{CMe}{\cdot}\mathrm{CO}_{2}\mathrm{Me} \\ \mathrm{CH}{\cdot}\mathrm{[CH}_{2}]_{2}{\cdot}\mathrm{CO}{\cdot}\mathrm{NH}_{2} \end{array}$	
(IIII)	

EtOH, followed by 0.2N-KOH-EtOH, then gives β -Me 3-hydroxy- $\Delta^{5:6}$ - α -homoatiobilienate, m.p. 211-212°, hydrolysed by 15% KOH

at 150° to 3-hydroxy- $\Delta^{5:6}$ -a-homoætiobilienic acid (IV), decomp. 248—248-5°, which is also obtained directly from (III) by 30% KOH at 100° or 15% KOH at 150—160°. Boiling 10% KOH-EtOH converts (III) into 3-hydroxy- $\Delta^{5:6}$ -a-homoætiobilienamide, decomp. 255—256°, hydrolysed to (IV) by H₂SO₄-EtOH. When the anhydride (prep. by Ac₂O) of (IV) is first heated at 250°/vac. for 10—15 min. and then distilled at 250—260°/high vac., it gives trans-dehydroandrosterone acetate. M.p. etc. are corr. R. S. C.

Steroids. XXII. 17-Epimeric methylandrostenediols and methyltestosterone. K. MIESCHER and W. KLARER (Helv. Chim. Acta, 1939, 22, 962— 969).—The mother-liquors obtained in the prep. of 17-methylandrostenediol (I) by the action of MgMeI on t-dehydroandrosterone, after removal of unchanged ketone by NH₂·CO·NH·NH₂, afford 17-isomethylandrostenediol [17-methyl- Δ^5 -androstene-3t: 17c-diol] (II), m.p. 203—204°, $[\alpha]_{2}^{p1}$ —81° in EtOH, —84·5° in CHCl₃. (II) gives a 3-monoacetate, m.p. 160—161°, $[\alpha]_{2}^{p1}$ —77° in EtOH, but does not yield a diacetate, whereas (I) is converted by boiling Ac₂O into 17methyl- Δ^5 -androstene-3t: 17t-diol diacetate, m.p. 145— 146°, $[\alpha]_{2}^{p1}$ —59° in EtOH. Al(OPr^β)₃ converts (II) in boiling PhMe-cyclohexanone into 17-isomethyl-

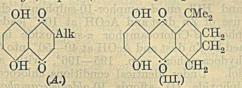
testosterone [17-methyl- Δ^4 -androsten-17c-ol-3-one] (III), m.p. 182—183°, $[\alpha]_{D}^{21}$ +66° in EtOH, +72° in CHCl₃ [semicarbazone, m.p. 220-222° (decomp.); 17-methyltestosterone semicarbazone has m.p. 226° (decomp.) or m.p. 270-272° (decomp.) in sealed tube]. 17-Methyltestosterone (IV) is transformed by Ac₂O-C5H5N at 130-140° into its acetate, m.p. 176-176.5°, $[\alpha]_{\rm p}^{20}$ +69° in EtOH, whereas (III) gives resins in these circumstances and is unattacked under milder conditions. Distillation of (IV) with anhyd. CuSO4 at 135-150°/0.01 mm. yields the ketone, C20H280, m.p. 135—136°, $[\alpha]_{p}^{21}$ +137° in EtOH [semicarbazone, m.p. 230° (decomp.)], also obtained from (III). This is oxidised by OsO4 to the ketodiol, C20H30O3, m.p. 238°, [α]²⁰_p +51° in EtOH. H.W.

Steroids. XXI. aβ-Unsaturated aldehydes of the pregnene series. K. MIESCHER, A. WETT-STEIN, and C. SCHOLZ (Helv. Chim. Acta, 1939, 22, 894-907).-Δ4:5-17:20-Pregnadien-21-ol-3-one in C₆H₆ is oxidised by $K_2Cr_2O_7$ -aq. H_2SO_4 and then treated with $(\cdot CH_2 \cdot CO)_2O$ in C_5H_5N , thus giving $\Delta^{4:5-17:20}$ -pregnadien-3-one-21-al (I), m.p. 149—152°, $[\alpha]_D^{20}$ +139° in abs. EtOH. The mixture of diols obtained from 17-allyltestosterone and OsO_4 is oxidised by KIO_4 and aq. H_2SO_4 at room temp. to $\Delta^{4:5}$ -pregnen-17-ol-3-on-21-al (II), m.p. 149-151° [dioxime, m.p. 215° (decomp.) (softens at 144°)], dehydrated in boiling AcOH containing Ac,O to (I) [disemicarbazone, rapid decomp. >370°], also obtained from (II) by boiling in $EtCO_2H$ under N_2 , or in *m*-xylene containing I, by sublimation at 145°/0.0001 mm., or by treatment with anhyd. $CuSO_4$ at $135^{\circ}/0.001$ mm. (I) is oxidised by air in PhMe at 100° to $\Delta^{4:5-17:20}$. pregnadien-3-one-21-carboxylic acid, m.p. 265—267° (decomp.) (Me ester, m.p. 152—154°). Boiling AcoH containing Ac₂O converts (II) into $\Delta^{4:16:20}$ -21-acetoxypregnatrien-3-one, m.p. 192—194° [also obtained similarly from (I)], with, apparently its stereoisomeride, m.p. 262-264° (decomp.). Successive treatments of $\Delta^{5:6}$ -17-allylandrostene-3t: 17-diol 3monoacetate (III) with Br in AcOH, O₃, Zn dust, and Girard's reagent lead to $\Delta^{5:6-17:20}$ -3t-acetoxypregnadien-21-al, m.p. 185-187° (semicarbazone, m.p. 245-246°), also obtained by treating (III) successively with OsO_4 in Et_2O , Na_2SO_3 in boiling aq. EtOH, KIO_4 , and H_2SO_4 in aq. MeOH, and $Ac_2O-C_5H_5N$ at room temp. The presence of $\alpha\beta$ -unsaturated :CO suffices for the positive but relatively slow and not particularly intense reduction of AgNO3-NH3. Other substituents except CHO or ketol do not cause any reduction. A suitable reagent for the detection of CHO is $1: 4-C_{10}H_6(OH)_2$, which gives a pronounced red colour with (II) but only a weak, non-sp. fluorescence with its precursor. aβ-Unsaturated 3-ketones with a double linking in the 17-side-chain give a red to violet-red colour with 1:4-O:C10H6:O. If CO is replaced by a by-unsaturated OH or an acyloxygroup at $C_{(3)}$ the colour is displaced towards shorter λ and becomes blue. When an alkyl residue constitutes the side-chain and the unsaturated :CO is also present in position 3 a green colour is formed which becomes blue in the case of the corresponding 3-OH-derivatives. Other compounds investigated give at most a feeble colour. H. W.

Intramolecular dehydrogenation of aromatic nuclei.—See B., 1939, 809.

Absorption spectra of naturally-occurring naphthaquinones and their derivatives.—See A., 1939, I, 402.

Chemistry of vitamin-E. VII. Preparation of quinones from methylphenols. L. I. SMITH, J. W. OPIE, S. WAWZONEK, and W. W. PRICHARD (J. Org. Chem., 1939, 4, 318—322).—The prep. of polymethylquinones is effected by coupling the requisite polymethylphenol with diazotised sulphanilic acid, reductive cleavage of the azo-compound, and oxidation of the NH₂-phenol followed by the removal of the quinone by steam-distillation or filtration. If certain precautions are taken pure quinones are obtained. Duroquinone, trimethylbenzoquinone, and m- and p-xyloquinone have been prepared in overall yields of 50—90% by the method, which fails when applied to the prep. of toluquinone. H. W.


(A) Quinones having vitamin-K activity. L. F. FIESER, D. M. BOWEN, W. P. CAMPBELL, M. FIESER, E. M. FRY, R. N. JONES, B. RIEGEL, C. E. SCHWEIT-ZER, and P. G. SMITH. (B) Synthesis of antihæmorrhagic compounds. L. F. FIESER, D. M. BOWEN, W. P. CAMPBELL, E. M. FRY, and M. D. GATES, jun. (J. Amer. Chem. Soc., 1939, 61, 1925-1926, 1926-1927).-(A) Vitamin-K activity of 2:3dimethyl-1: 4-naphthaquinone [absorption max. at 246 and 265 (log ϵ 4.2-4.3) and 330 mµ. (log ϵ 3.4)] is < 1/250 that of pure $-K_1$. Lomatiol and hydroxy-hydrolapachol are active. Diallyl-1: 4-benzoquinone (I), m.p. 16°, diallylquinol (II), m.p. 130–131° [obtained with an isomeride (III), m.p. 87–90°, from quinol diallyl ether; oxidation gives (I)], the diacetate, m.p. 111-112°, of (II), lapachol, hydrolapachol, lomatiol Me ether, m.p. 61.5-62°, and lapachol Me ether, m.p. 51.5-52°, have no, or only a trace of, The oxido-reduction potential of $-K_1$ activity. indicates that it is a 2: 3-dialkyl-1: 4-naphthaquinone. $-K_1$ may be 2-methyl- or 2: (?6)-dimethyl-3-phytyland $-K_2 2: 3$ -difarnesyl-1: 4-naphthaquinone. 2: 1and $A_2 \simeq 3$ -cuantesyle i. Fraphilital animeter $A_2 \simeq 3$ -CH₂:CH₂:CH₂:CH₂:CH₂:CH₂·CH₂·CH₀ = 0 H is converted by way of the azo-compound and amine into 2-allyl-1: 4-naphtha-quinone (IV), m.p. 36—36.5°. 1: 4-Diallyloxynaphthal-ene, m.p. 49.5—50°, with NPhEt₂ and Ac₂O gives 1: 4-diacetoxy-2: 3-diallylnaphthalene (V), m.p. 92.5-93°, which resists alkaline hydrolysis but with MgRHal and O, in Et₂O gives a quinone (VI), m.p. 129-130° (absorption max. at 245, 267, and 330 mµ.).

(B) 2:3-, 2:6-, and 2:7-Dimethyl-1: 4-naphthaquinone have, respectively, very great, very slight, and definite -K activity. Benzo- are much less active than naphtha-quinones. 2-Allyl-1: 4-naphthaquinone, which contains a $\beta\gamma$ -unsaturated side-chain, is particularly active; (V) is inactive. The intense absorption bands of 2:3-dialkyl-1: 4-naphthaquinones have general and fine structure similar to that of $-K_1$ and $-K_2$. These facts support the structures postulated for $-K_1$ and $-K_2$. 3-Hydroxy-2- Δ^{α} -heptenyland -2-n-heptyl-1: 4-naphthaquinone are slightly active. 2:6:8-C₁₀H₅Me₂·O·CH₂·CH:CH₂ is rearranged to 3:7-dimethyl-2-allyl-1-naphthol, b.p. 152—157°/2 mm., converted into the 4-NH₂-derivative and thence

(FeCl3-COMe2) into 2: 6-dimethyl-3-allyl-1: 4-naphthaquinone, m.p. 42-42.5°. Ag₂O oxidises (III) to an oily quinone, which adds (CH2:CMe), to give a product, converted by isomerisation and oxidation (CrO_3) into 6:7-dimethyl-2: 3-diallyl-1: 4-naphtha-quinone, m.p. $69\cdot5-70\cdot7^\circ$. 6:7-Dimethyl-1: 4naphthaquinone, m.p. 118-119°, is similarly prepared. The adduct of 1:4-O:C₆H₄:O and (CH₂:CH)₂ with CH₂:CH·CH₂Br and K₂CO₃⁺ in COMe₂ gives 1:4-diallyloxy-5:8-dihydronaphthalene, m.p. 64-65°, rearranged in hot kerosene to 1:4-dihydroxy-2:3diallyl-5: 8-dihydronaphthalene, m.p. 108-109°, which with CrO3-AcOH gives 2:3-diallyl-1:4naphthaquinone (VII), m.p. 29-30°. (VI) is a quinone with 2 H more than (VII); more gentle cleavage of (V) by MgMeBr and oxidation by Ag₀O gives (VII). Absorption spectra of many of these quinones are given (T. J. WEBB). The NaOEt-EtOH reaction for $-K_1$ is given by the allylnaphthaquinones (allyl group in R. S. C. quinone ring).

Constitution of vitamin- K_1 . D. W. MACCORQUO-DALE, S. B. BINKLEY, S. A. THAYER, and E. A. DOISY (J. Amer. Chem. Soc., 1939, 61, 1928—1929).—When hydrogenated catalytically, vitamin- K_1 absorbs 4 H₂ (3 H₂ to reduce the quinone ring; 1 H₂ to reduce the side-chain). The quinol diacetate from $-K_1$ with O₃ gives (?) $\zeta \kappa \xi$ -trimethylpentadecan- β -one (semicarbazone, m.p. 66—67°). CrO₃ oxidises $-K_1$ to o-C₆H₄(CO₂H)₂ and (?) 2-ethyl-1: 4-naphthaquinonyl-3acetic acid, m.p. 210° (decomp.). $-K_1$ is thus probably 2-ethyl-3-phytyl-1: 4-naphthaquinone. R. S. C.

Synthesis of alkannan and other alkylnaphthazarins. H. BROCKMANN and K. MÜLLER (Annalen, 1939, 540, 51-72; cf. A., 1936, 79).-Structures ascribed below are supported by absorption spectra, the main max. (mµ.) of which (in C_6H_6) are given in parentheses. Mixed products are separated by adsorption on acid-washed SiO₂ or CaC₂O₄. adsorption on acid-washed SiO₂ or CaC₂O₄. p-C₆H₄(OMe)₂, RCOCl, and AlCl₃ in boiling CS₂ give mixed acylquinol Me₁ and Me₂ ethers (40– 50%), reduced by Zn-Hg-HCl-AcOH to the alkyl-uinol ethers. quinol ethers. Thus are prepared 2-isobutyrylquinol Me2, b.p. 160-165°/17 mm., 2-isobutylquinol Me2, b.p. 131-134°/20 mm., 2-isovalerylquinol Me1, b.p. 177-178°/18 mm., 2-isoamylquinol Me1, b.p. 154-156°/18 mm., 2-γ-methyl-n-valerylquinol Me2, b.p. 172-173°/7 mm., and 2-δ-methyl-n-amylquinol Me2 ether (I), b.p. 168-170°/8 mm. (converted by AlCl₃ in boiling PhMe into 2-8-methyl-n-amylquinol, m.p. 94°). With maleic anhydride (II) and $AlCl_3$ -NaCl, first at 170° and then at 200° (1–2 min.), the appropriate ethers give ethyl-, m.p. 127°, n-propyl-, m.p. 98°, isobutyl-, m.p. 94°, and isoamyl-naphthazarin (A),

m.p. 89°, but (I) gives 1:1-dimethyl-1:2:3:4-tetrahydroquinizarin (III), m.p. 83° (550, 512). 2:3-Dimethylnaphthazarin [prep. from 2:3-dimethylquinol (IV) and (II)], m.p. 174° (552, 513, 481), and

CH₂N₂-Et₂O give a quinizarin derivative, C₁₄H₁₂O₄N₂, m.p. ~243-246° (496). With toluquinone or (IV), citraconic anhydride gives 2:6- (and/or 2:7-)di-, m.p. ~127° (560, 520, 485), or 2:3:6-tri-methylnaphthazarin, m.p. 165° (554, 516, 482), respectively. 2:3-Dihydronaphthazarin with an excess of Bu^{β}CHO and HCl in warm AcOH gives a diisoamylnaphthazarin, m.p. 127° (562, 523, 487), and another product, but with 1 mol. of aldehyde gives in poor yield a product, C25H2008, m.p. 178°; with an excess of iso-C5H11 CHO (V) or $n-C_6H_{13}$ ·CHO it gives a $di-(\delta-methyl-n-amyl)$ -, m.p. 78°, or di-n-heptyl-naphthazarin, m.p. 114-115°, respectively. Naphthazarin (VI), (V), and conc. HCl in AcOH at 100° give mainly an amorphous product with some 1'-dehydroalkannan [2-8-methyl-Δ^a-n-pentenylnaphthazarin] (VII), m.p. 111°, sublimes at 120-125°/0.0005 mm. (579, 534, 499), diisobutylquinizarin, m.p. 114° (469), and alkannan (VIII); under other conditions mainly (VIII) is obtained. H_2 -PtO₂ in AcOH reduces (VII) to (VIII), whereby the structure of (VIII) is confirmed. With $Bu^{\beta}CHO$, (VI) gives Δ^a -isopentenyl- (IX), m.p. 120-121°, and isoamyl-naphthazarin, m.p. 90° [obtained also by hydrogenating (IX)], and with n-C₆H₁₃·CHO gives heptylnaphthazarin, m.p. 92-93°. The mechanism of the aldehyde condensations is discussed. The alkyls of the dialkylnaphthazarins are probably in different rings. R. S. C.

Action of ammonia on anthraquinone in presence of reducing agents. I, II. H. SHINGU (J. Soc. Chem. Ind. Japan, 1939, 42, 173—174B).— Anthraquinone with NH_3 and $Na_2S_2O_4$ under pressure at 140—150° yields mesoanthramine (I) (60% if 2 mols. of $Na_2S_2O_4$ are used), anthranol, dianthranol, and a N-containing ketodianthranyl (?) derivative, also produced, along with (I) (30%) and dihydrodianthronedi-imine (5%), from anthraquinol and NH_3 . The mechanism of the reaction is discussed. Similar reductive amination of substituted anthraquinones has been investigated. A. LI.

Synthesis of hydroxyanthraquinone salts. II. Action of aqueous solutions of inorganic salts on hydroxyanthraquinones. G. FLUMIANI and V. BAJIĆ (Monatsh., 1939, 72, 368—372).—Addition successively of hydroxyanthraquinone (A) (0·2), CuSO₄ (0·2), and dil. H₂SO₄ (5—10 drops) to boiling H₂O (200 g.) gives the Cu salts (A., 1938, II, 237). Salts are formed only from OH in α -positions. Salts of the type, Cu[(A) — H]₂, are obtained in 20—70% yield from 1 : 2-di-, 1 : 2 : 6- and 1 : 2 : 7-tri-hydroxyanthraquinone, and of the type, Cu₂[(A) — H]₂, from 1 : 5- and (in aq. EtOH at 80°) 1 : 4-di- and 1 : 2 : 5 : 8-tetra-hydroxyanthraquinone. Salts are not obtained from 2-hydroxy-, 2 : 6- or 2 : 7-dihydroxy-anthraquinone. R. S. C.

Biochemistry of micro-organisms. LXII. Crystalline colouring matters of species in the Aspergillus glaucus series. II. J. N. ASHLEY, H. RAISTRICK, and T. RICHARDS (Biochem. J., 1939, 33, 1291-1303).—Rubroglaucin (A., 1934, 1263; 1937, II, 106) is a mixture of physcion (I) [4:5dihydroxy-7-methoxy-2-methylanthraquinone], dimorphous, m.p. 203-204° (diacetate, new m.p. 186-187°), and the deep red erythroglaucin (II), C₁₆H₁₂O₆, dimorphous, m.p. 205—206° [triacetate, m.p. 225°; Me_3 ether (III), m.p. 187—188°]. Cynodontin Me_4 ether, m.p. 233—234°, differs from (III), thus showing that (II), which is a tetrahydroxymethylanthraquinone Me_1 ether, is not a cynodontin Me_1 ether. In five of the species examined, (I) and (II) are accompanied by physicion anthranols A, m.p. ~260° (decomp.), and B, dimorphous, m.p. 181—182°; B, but not A, is obtained by reduction (Zn dust, AcOH) of (I) and both are oxidised (CrO₃-AcOH) to (I). These anthranols are probably 4 : 5-dihydroxy-7methoxy-2-methyl-9- and -10-anthranols. Of the 17 species of A. glaucus examined, all give (I), (II) (except A. mutabilis), and flavoglaucin (except possibly A. echinulatus); 6 species give auroglaucin. H. B.

d-Neoisomenthol. W. HÜCKEL and H. NIGGE-MEYER (Ber., 1939, 72, [B], 1354-1358).-l-Piperitone is reduced (Pd-C in Pr^BOH) to a mixture of 70% of d-isomenthone and 30% of l-menthone, which is hydrogenated (Pt sponge in AcOH) to a mixture of d-neoisomenthol (I), (70%), d-neomenthol (II) (25%), and *l*-menthone (5%); *d*-isomenthol (III) does not appear to be present. When the mixture is treated with 70% of the theoretical quantity of $3:5-(NO_2)_2C_6H_3$ COCl in C_5H_5N , nearly all of (II), which reacts very slowly, remains unaffected. The ester obstinately retains small amounts of *l*-menthyl dinitrobenzoate. It is therefore hydrolysed and the alcohol is purified through its p-nitro-, p-amino-, and p-benzamido-benzoate, thereby giving (I) with all the properties recorded by Read and Grubb (A., 1934, 528). Since, in acid solution, (I) is formed almost exclusively from *d*-isomenthone (IV), it follows that the vicinal substituents are in the cis-position to one another, thus confirming Read's view of the configuration of (I). This is further confirmed by the observation that d-neoisomenthyl p-toluenesulphonate, m.p. 66—67°, is as unstable as the ester of (II) whereas the esters of (III) and *l*-menthol are stable. In sign and magnitude $[\alpha]$ of (I), but not of (III), depends greatly on the solvent. Cautious oxidation of (I) with CrO₃ in AcOH gives almost homogeneous (IV), the oxime of which is reduced to the amine, which is purified through the hydrochloride, decomp. 258°, $\left[\alpha\right]_{\mathrm{D}}^{20}$ +21·1° in H₂O. This is converted by HNO₂ into homogeneous (III), m.p. 83°, $[\alpha]_D^{20} + 26.5^\circ$ in EtOH (p-toluenesulphonate, m.p. 84.5° , $[\alpha]_{D}^{20} + 5.88^{\circ}$ in C₆H₆). dl-isoMenthol (p-toluenesulphonate, m.p. 64°) is most simply obtained by the hydrogenation (Ni at $140^{\circ}/50-70$ atm.) of thymol; the crude material is transformed into the *p*-nitrobenzoate, which is converted into the p-amino- and p-benzamido-, m.p. 119-120°, -benzoate, which is hydrolysed. H. W.

4-Methylbornylene and its hydration. A. I. SCHAVRIGIN (J. Gen. Chem. Russ., 1939, 9, 516—521). —Dehydration by the xanthate method of 4-methylborneol or 4-methylisoborneol (I) yields in both cases 4-methylbornylene; this yields chiefly (I) when hydrated by the methods of Bertram and Walbaum or of Kondakov. R. T.

Use of isotopes in chemical reactions. I. Mechanism of the Wagner-Meerwein rearrangement. Exchange of radioactive chlorine and of deuterium between camphene hydrochloride and hydrogen chloride. T. P. NEVELL, E. DE SALAS, and C. L. WILSON (J.C.S., 1939, 1188-1199). -The conversion of camphene hydrochloride (I) into isobornyl chloride (II) in presence of D radio-chloride proceeds in two steps, shown by comparing the speeds of rearrangement of Cl exchange and H exchange; the first step involves the rapid establishment of an ionic equilibrium by separation of Cl, and the second a relatively slow bimol. reaction between the org. ion and HCl. Experiments in pure CHCl₃ at 0° show that rearrangement is 1/15 as fast as Cl exchange. The difference between the mechanism for rearrangement and for H exchange is that interaction of the org. ion with HCl is much slower in the former case and much faster in the latter case than the preliminary halogen ionisation. The dissociation of (I) into camphene and HCl has no direct bearing on the rearrangement except in so far as it supplies the HCl necessary for the rearrangement when this has not been initially added. The bimol. reaction of the org. ion and HCl involves a Walden inversion and it follows that (II) has the cis-(exo-)configuration. It is concluded that D exchange involves one of the bridge heads; this process cannot involve a Walden inversion and therefore substitution of H by D proceeds with retention of configuration. F. R. S.

Action of acetic acid on α -pinene in presence of acetic anhydride and boron trioxide. I. Preparation of borneol. II. Identification of by-products. M. IMOTO (J. Soc. Chem. Ind. Japan, 1939, 42, 183—185B, 185—186B).—I. The influence of temp., quantity of AcOH and of catalyst, variation of reaction method, and the presence of dipentene or α -terpinyl acetate on the yields of bornyl and *iso*bornyl acetate is described.

II. Dipentene, camphene (?), α -terpinene, *p*-cymene, terpinolene, and α - and β -fenchyl acetates are byproducts of the reaction. A. LI.

Camphor derivatives. III. Derivatives of camphor containing sulphur. T. TUKAMOTO (J. Pharm. Soc. Japan, 1939, 59, 37–41).— π -Thiol-d-camphor, m.p. 94°, $[\alpha]_{D}^{29}$ +108·7°, is obtained in 21·7% yield by the reduction of d-camphor- π -sulphonyl chloride with powdered Sn and conc. HCl at 40-50° and subsequently at 100°, or in 11.4% yield by the use of Zn dust and AcOH under similar conditions. The acetate, m.p. 34° , semicarbazone, m.p. $219-220^\circ$, Hg derivative, blackens at $\sim 260^\circ$, and the corresponding disulphide, m.p. 215°, are described. 10-Thiol-d-camphor, m.p. 66° (corresponding disulphide, m.p. 231°), is obtained in 40% yield by the action of Sn and HCl on *d*-camphor-10-sulphonyl chloride; the use of Zn dust and AcOH at 100° leads to dcamphor. d-Chlorocamphor π-sulphoxide is transformed by Zn dust and AcOH at 40-50° into trans-πaldehydocamphor, m.p. 195-196°, with a little π -thiol. Under identical conditions chlorocamphor ω-sulphoxide (I) affords 10-aldehydecamphor (II), m.p. 205° (semicarbazone, m.p. 249°; identification by oxidation by $KMnO_4$ to ketopinic acid), and a little 10-thiol (III). With Zn dust and H_2O at 100° (I) affords some (II) but no (III). Thiocamphor (IV), m.p. 118°, is prepared by treating camphoroxime in Et₂O with NaNO₂-20% H₂SO₄, whereby a mixture of camphorimine nitrate and pernitrosocamphor results, and this is converted by conc. aq. NH₃ into camphorimine, which with H₂S in C₆H₆ at 100° yields (IV). H. W.

[Reactions of] δ-fenchene-3-carboxylic acid. G. A. NYMAN and E. ELOMAA (Annalen, 1939, 539, 266-275).--8-Fenchene-3-carboxylic acid (I) (prep. from *dl-iso*fenchol-3-carboxylic acid modified to give a 68% yield) adds HBr in AcOH or H₂O to give bromofenchanecarboxylic acid [? (II)], m.p. 138-139°. and smaller amounts of an isomeride, m.p. 125.5°

$$\begin{array}{c} \mathrm{CMe}_2 \cdot \mathrm{CH} & -\mathrm{CH}_2 \\ | & \mathrm{CH} \cdot \mathrm{CO}_2 \mathrm{H} \\ | & \mathrm{CH}_2 - \mathrm{CH} \end{array} \tag{II.}$$

(decomp.), a pinacolinic rearrangement probably occurring. Removal of HBr from the Me ester by quinoline at 175—180° (followed by KOH–EtOH) or N-KOH–EtOH at 18° regenerates (I). Warm dil. NaOH, Na₂CO₃ at 50°, or Ag₂O at room temp. converts (II) into the corresponding OH-acid, m.p. 175-176°, which gives no lactone, is oxidised by HNO_3 (d 1.27) at 100° to an acid, OH·C₉H₁₃(CO₂H)₂, m.p. 226.5°, and is converted by hot HCO, H and subsequent distillation into (I) and a OH-acid, C11H18O3, m.p, 213°, best obtained by boiling 18% HCl. R. S. C.

Triterpenes. L. Transformation of β-boswellic acid into a-amyrin. L. RUZICKA and W. WIRZ (Helv. Chim. Acta, 1939, 22, 948—951).— β -Boswellic acid has m.p. 236—238°, $[\alpha]_{\rm D}$ +237° in CHCl₃. Acetyl- β -boswellic acid is converted by SOCl, at room temp. into acetyl-β-boswellyl chloride, m.p. 193°, which is reduced (Pd-BaSO₄ in PhMe) to the corresponding (impure) aldehyde (oxime, m.p. 226°), which gives a marked yellow colour with C(NO2)4. The semicarbazone, m.p. 281-284° (slight decomp.), is transformed by NaOEt-EtOH at 200° into α -amyrin, m.p. 185—187°, $[\alpha]_{\rm p}$ +91·4° in C₆H₆ (acetate, m.p. 225—226°, $[\alpha]_{\rm p}$ +83·3° in CHCl₃; benzoate, m.p. 193-194°). H. W.

Triterpene resinols and related acids. VII. D. E. SEYMOUR, K. S. SHARPLES, and F. S. SPRING (J.C.S., 1939, 1075-1078).-Oxidation (H₂O₂) of α-amyrenyl benzoate gives a compound, m.p. 302a-amyrentyl benzoate gives a compound, m.p. 302^{-1}_{-1} 304° (small amount), and *a-amyranonyl benzoate* (I), m.p. $205-206^{\circ}$, $[\alpha]_{D}^{19.5}+113\cdot6^{\circ}$ in CHCl₃, which is reduced (Na-C₅H₁₁·OH) to *dihydroxy-a-amyrane*, m.p. $199-201^{\circ}$, $[\alpha]_{D}^{19.5}+70\cdot5^{\circ}$ in CHCl₃ (*diacetate*, m.p. $203-205^{\circ}$, $[\alpha]_{D}^{19.5}+90\cdot0^{\circ}$ in CHCl₃). Br and (I) yield iso-*a-amyrenonyl benzoate*, m.p. $205-206^{\circ}$, $[\alpha]_{D}^{19.5}+81\cdot66^{\circ}$ in CHCl₃, which when reduced $(Na-C_5H_{11}OH)$ and treated with Ac_2O affords α-amyradienyl acetate, identical with that prepared from α -amyrenonol; the benzoate is hydrolysed (KOH) to iso- α -amyrenonol, m.p. 237–238°, $[\alpha]_{p}^{19.5} + 72.11^{\circ}$ in CHCl₃ (Ac derivative, m.p. 276.5°). This series of reactions emphasises the similarity in properties of the α - and β -amyrenols and points to a close structural resemblance of the unsaturated rings of these alcohols; the unsaturated centre of the α isomeride is considerably less reactive than that of the β-isomeride. F. R. S.

Identity of pyrethrosin with chrysanthin and non-identity with geigerin. M. S. SCHECHTER and H. L. HALLER (J. Amer. Chem. Soc., 1939, 61, 1607-1609).-Pyrethrosin (I) (preferred name) (Thoms, A., 1892, 349) is identical with chrysanthin (Rose et al., A., 1938, II, 239) and chrysanthin (Chou et al., A., 1934, 1007). (I), $C_{17}H_{22}O_5$, m.p. (from EtOAc) 201° or (from EtOH) 177–178°, $[\alpha]_{D}^{20}$ –30.5° in CHCl₃, -38.1° in abs. EtOH, reacts with 2 mols. of alkali forming AcOH and an acid, C15H26O7, and gives no 2:4-dinitrophenylhydrazone. Geigerin (Rimington et al., Onderstepoort J. Vet. Sci., 1936, 7, 485) differs therefrom, having double m.p. (a-form) 78° and 189°, (β-form) 68° and 169°, $[\alpha]_{D}^{20} - 42.58^{\circ}$ in CHCl₂, -60.23° in abs. EtOH, giving a 2:4-dinitrophenylhydrazone, reacting with 2 mols. of alkali to give an acid, $C_{15}H_{22}O_5$, and differing also in reactions give an acid, $O_{15} II_{22} O_5$, and KMnO₄. with HCl, H₂SO₄, Br-CHCl₃, and KMnO₄. R. S. C.

Constituents of species of Helenium. II. Tenulin. E. P. CLARK (J. Amer. Chem. Soc., 1939, 61, 1836–1840; cf. A., 1936, 1574).–Helenium macrocephalum contains helenalin, which is a vermifuge, fish poison, and insecticide. Extraction of H. tenuifolium, H. elegans, or H. badium with CHCl3 yields, often with difficulty and in variable yield, tenulin (I), $C_{17}H_{22}O_5$, m.p. 193—195°, $[\alpha]_D^{20} - 21.6^{\circ}$ in EtOH, which gives no reactions for OH, CO, CO,H, or OR. H_2 -PtO₂ reduces (I) in EtOAc to dihydro-tenulin, m.p. (? + solvent) 182°, (anhyd.) 172° [phenylhydrazone, m.p. 248° (decomp.)]. Br in EtOAc gives a dibromide ["dibromotenulin,"] C17H22O5Br2, m.p. 124-125° (decomp.), and, from the mother-liquors, after 2-3 days "bromotenulin," C₁₇H₂₁O₅Br, m.p. 202-203° (decomp.). When heated at 300°, (I) evolves gas and yields anhydro-tenulin, $C_{17}H_{20}O_4$, m.p. 172°. With NaOAc in boiling Ac₂O, (I) gives a substance, C₂₂H₂₆O₅, m.p. 240°. Alkali under various conditions converts (I) into an isomeride, isotenulin (II), m.p. variable between 157° and 160-161° (obtained from *H. tenuifolium* by the method of Buehler et al., A., 1938, III, 161), with (under some conditions) a substance, $C_{15}H_{20}O_4$, m.p. 255°. By the methods used for (I), (II) gives a H₂-derivative, m.p. 151° (phenylhydrazone, m.p. 219–220°), "dibromo-" [a dibromide], m.p. 135° (decomp.), and bromo-isotenulin, m.p. 213° (decomp.). One lot of *H. tenuifolium* gave (\hat{I}) and a substance, $C_{16}H_{22}O_5$, m.p. 233-234° (gives RI equiv. to 3.85% of OMe; H2-, m.p. 192°, and two Ac derivatives, m.p. 163° and 193°). R. S. C.

Constitution of forsythin. II. S. KUNIMINE and S. WADA (J. Pharm. Soc. Japan, 1938, 58, 182—185).—Nitration of d-forsythigenol Me ether (I) gives a $(NO_2)_2$ -derivative, m.p. 180° [with HNO_3 affords $4:5:1:2-(NO_2)_2C_6H_2(OMe)_2$], and 4:1:2-NO2 C6H3(OMe)2. Hot MeOH-HCl converts (I) into pinoresinol Me2 ether (II) [diastereoisomeric with, and also converted by MeOH-HCl into, (I)] and d-epiforsythigenol Me ether (III), m.p. 133-134° [(NO₂)₂-derivative, m.p. 230°]. Fission of the CH₂O₂ group of *d*-sesamin and subsequent methylation gives (I), (II), and a compound corresponding with (III). H. B. Isolation of elemi resin acids. M. MLADENOVIĆ (Monatsh., 1939, 72, 350-353).--NH₃ in wet Et₂O ppts. some, but not all, of the NH₄ salts (cryst.) of the acids from elemi resin in a very pure state. No pptn. occurs in dry Et₂O. β -Elemonic and γ -elemic acid are completely pptd., and thus it is the neutral constituents which hinder pptn. from the resin.

R. S. C. **Glycyrrhetic acid.** K. ΤΑΚΕDA (J. Pharm. Soc. Japan, 1938, **58**, 194—197).—Glycyrrhetic acid, m.p. 292—294°, $[\alpha]_{\rm B}$ +160·3° in CHCl₃ (cf. lit.) [acetate, m.p. 314—317°; Me ester (I), m.p. 258°, $[\alpha]_{\rm B}$ +154·8° in CHCl₃ (acetate, m.p. 301—303°; *dibromide*, decomp. 180—181°)], is obtained from K glycyrrhizate and 1% H₂SO₄ at 130—140°/3·5—4 atm. Oxidation (CrO₃-AcOH at 50—60°) of (I) gives *Me ketoglycyrrhetate*, m.p. 251° (*axime*, m.p. 260°; *semicarbazone*, decomp. 250°), reduced [Al(OPr^β)₃ in PrOH-C₆H₆] to (I). S. H. H.

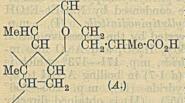
Sweet constituents of liquorice root. G. KURONO (J. Pharm. Soc. Japan, 1938, 58, 220).— Me glycyrrhetinate and CrO_3 -AcOH give Me ketoglycyrrhetinate, $C_{31}H_{46}O_4$ (oxime, m.p. 288.5°; semicarbazone, m.p. 254°). Glycyrrhetinic acid with Na in hot EtOH gives dehydrohydroglycyrrhetinic acid, $C_{30}H_{46}O_3$, m.p. 287° [Me ester, m.p. 272°; acetate, m.p. 261°; unsaturated to $C(NO_2)_4$], and, when distilled at 380—400°, gives a (?) hydrosapotalene, $C_{13}H_{20}$, b.p. 95—100°/2 mm., converted by Se into sapotalene. R. S. C.

Smilagenone: a correction. G. A. R. KON, H. R. SOPER, and A. M. WOOLMAN (J.C.S., 1939, 1201).—Smilagenone, prepared on a larger scale (cf. A., 1936, 1386), has m.p. 187—189° (lit. 157°). o-Bromobenzoates have been found suitable for characterisation of smilagenin (m.p. 196—197°) and sarsasapogenin (m.p. 178—179°). F. R. S.

Identity of soja-sapogenol B with a new sterol ("sapogenol") from shoyu oil. K. TSUDA and T. KAZANO (J. Pharm. Soc. Japan, 1939, 58, 142).— Sapogenol, $C_{30}H_{50}O_3$, m.p. 258° (A., 1937, II, 417), is identical with soja-sapogenol B, m.p. 259° (Tsuda et al., A., 1938, II, 24, 239). A. T. P.

Pittosapogenin, $C_{30}H_{50}O_7$, m.p. 308—310°, $[\alpha]_{20}^{30} + 27.8^{\circ}$ in CHCl₃ + MeOH (acetate, m.p. 252—254°), and compound, m.p. 51—52°, from *Pittosporum undulatum*.—See A., 1939, III, 638.

Saponins. III. Dissociation constant and potentiometric titration of sapoalbinic acid. R. RUYSSEN and E. O. K. VERSTRAETE (Natuurwetensch. Tijds., 1939, 21, 125—136).—Sapoalbinic acid, obtained by dialysis of the saponins from soapwort, behaves like a monobasic org. acid, $\alpha =$ 7.05×10^{-5} in concns. 1.25—10% from concn.— $p_{\rm H}$ and κ measurements. The results deviate at lower and higher concns. in the latter case owing to aggregation. The equiv. is const. over a wide range of concns. at 1545. Conductometric methods cannot be used for standardising solutions of saponin acids. Direct titration with indicators (phenolphthalein) of the saponin acid and the sapogenin obtained by hydrolysis shows that the CO₂H occurs only in the saponenin part of the mol. S. C.


Sapogenins. V. Bassic acid. B. J. HEY-WOOD, G. A. R. KON, and L. L. WARE. VI. Quillaic acid. D. F. ELLIOTT and G. A. R. KON (J.C.S., 1939, 1124-1129, 1130-1135).-V. Bassic acid (I), C₃₀H₄₆O₅, has been isolated from several species of Bassia and is shown to be an acid of the triterpene series; it has m.p. 316°, $[\alpha]_{D}$ +82.4° in $C_{5}H_{5}N$ [(+H₂O), from EtOAc; (+MeOH) from MeOH; (+BuOH) from BuOH], and forms a Me ester (II), m.p. 212°, $[\alpha]_{\rm D}$ +64° in CHCl₃. Dehydrogenation (Se) of (I) gives sapotalene (1:2:7-C₁₀H₅Me₃), 2:7- $\dot{C}_{10}H_6\dot{M}e_2$, 1:8-dimethylpicene (small amount), and (?) 1:2:5:6- $C_{10}H_4Me_3$ OH (small amount). Br and (II) yield a dibromide, m.p. 133—135°, and (II) is reduced (PtO_2-H_2) to Me dihydrobassate, m.p. 172— 173°: COMe₂ with (II) affords an *acetonyl* derivative, m.p. 205°, indicating that the two OH involved in its formation must be in the 1:3 position; one of these OH must be primary since oxidation (Cu) of (II) gives CH₂O and a neutral diketone, C₃₀H₄₄O₄ (2:4-dinitrophenylhydrazone, m.p. 184°). With Ac2O, (II) forms triacetylbassic acid (+H₂O), m.p. 117° (Me ester, m.p. $95-96^{\circ}$), and with Br-AcOH gives a Br lactone, m.p. 220° . The two OH, CO₂H, and a double bond in (I) occupy positions similar to those of other sapogenins but there is another OH and a reactive double bond the positions of which still remain to be determined. A partial formula for the compound is suggested.

VI. Quillaic acid (II), m.p. 292-293°, [α]_p+56·1° V1. Quinalc acid (11), m.p. 292-293, $[\alpha]_{\rm p} +3641$ in C_5H_5N , is $C_{30}H_{46}O_5$ and not $C_{29}H_{44}O_5$ (cf. Windaus et al., A., 1927, 42); it forms a Me ester, m.p. $222-223^{\circ}$, $[\alpha]_{\rm p} +40.5^{\circ}$ in C_5H_5N . Hydrogenation (H_2-PtO_2) of (111) gives dihydroquillaic acid, m.p. $315-316^{\circ}$, $[\alpha]_{\rm p} +32^{\circ}$ in C_5H_5N , formed by the reduc-tion of the CO, and the Me ester, m.p. $269-270^{\circ}$, affords an acetonyl derivative, m.p. $256-259^{\circ}$, indic-ating the presence of $1:3\cdot(OH)_2$. The H_2 -acid is unsaturated since it gives a saturated triacetulunsaturated since it gives a saturated triacetyl-lactone, m.p. 247-249°. With AcOH-HBr, (III) forms a diacetyl-lactone, m.p. 260°, [a]_D -21.5° in CHCl₃, deacetylated to quillaic lactone, m.p. 315°, and oxidised (H₂CrO₄-AcOH) to an acid, C₃₃H₄₆O₆, m.p. 380° (Me ester, m.p. 375°), and its Ac derivative, m.p. 278-280°; the formation of these products indicates that (III) is an aldehyde. The C₃₀ acid is further oxidised (H₂CrO₄) to a neutral compound, $C_{29}H_{42}O_4$, m.p. 296—297°, $[\alpha]_p$ -83.5° in CHCl₃ (semicarbazone, m.p. 301—302°; 2:4-dinitrophenyl-hydrazone, m.p. 298—299°), and several acids, one of which has m.p. 290-291° and gives a Me ester, m.p. 206°. Oxidation (H_2CrO_4) of (III) yields a neutral compound, C₂₉H₄₀O₅, m.p. 256-260°. These results show that (III) contains CH(OH) ·C·CHO, doubtless situated in ring A; the position of the second OH has not yet been determined, but it is shown that it cannot be in rings A or C. (III) is probably a hydr-F. R. S. oxygypsogenin.

Constituents of the leaves of certain Leucadendron species. II. Degradation experiments with leucodrin. W. S. RAPSON (J.C.S., 1939, 1085—1089).—Dibromoleucodrin (I) gives a series of derivatives analogous to those of leucodrin (II), and it appears as if its acidity is due to the presence

of halogen in the m-positions. COMe2 and (I) afford isopropylidenedibromoleucodrin, m.p. 257° (Ac2 derivative, m.p. 218-221°), which with CH₂N₂-MeOH yields the Me ether, sinters 175-176°, hydrolysed to dibromoleucodrin Me ether, m.p. 179-180°. MeI-Ag₂O with (I) gives a Me_4 ether, m.p. 136.5—137.5°. The action of Pb(OAc)₄ on (II) and various derivatives gives CH₂O but no other recognisable product. Acetylisopropylideneleucodrin Me ether is hydrolysed to monoacetyl-leucodrin Me ether, m.p. 102-103°, and methylated followed by hydrolysis to isopropylideneleucodrin Me_2 ether, m.p. 123.5—124.5°. Leucodrin Me_4 ether, m.p. 123—124°, cannot be degraded with KMnO₄ but with HNO₃ gives nitroleucodrin Me4 ether, m.p. 162-163°, which with more conc. acid affords a *dilactonic acid*, $C_{18}H_{19}O_{11}N$, m.p. 139—140.5° (*Et ester*, m.p. 169.5—170.5°). Bromination of the Me₄ ether yields bromoleucodrin Me_4 ether, m.p. 158.5-159.5°, which with NH₃ does not form a dihydroxydiamide. Oxidation (H₂O₂) of the Me ether of (II) gives anisylsuccinic acid. The presence of \geq C·CH[C₆H₄·OH(*p*)]·CH₂·C \in in (II) seems certain. F. R. S.

Sarsasapogenin. IV. Sarsasapogenoic acid and related compounds. L. F. FIESER, E. M. FRY, and R. N. JONES (J. Amer. Chem. Soc., 1939, 61, 1849-1854; cf. A., 1939, II, 31).-Presence of C:C·CO in Me anhydrosarsasapogenoate acetate is confirmed by absorption max. at 243 (log ϵ 4.13) and 303 mµ. (log ϵ 1.86) in EtOH. The absorption spectrum of the dibasic acid, $C_{27}H_{40}O_7$, indicates presence of CO but absence of C.C.CO, as does that of sarsasapogenoic acid acetate [max. at 281 mµ. (log ϵ 1.92)]; this is also so for the acid, obtained from deoxysarsasapogenin (modified prep.), and previously considered to be $C_{27}H_{40}O_4$, H_2O , but now $C_{27}H_{42}O_4$, H_2O . The formula of dehydrosarsasapogenoic acid (prep. with a substance, m.p. 202-209°, from sarsasapogenone by CrO₃ described), C₂₇H₄₀O₅, m.p. 164-165°, [a]25 -105° in EtOH (Me ester, m.p. 125-126°, $[\alpha]_{p}^{27}$ -101° in EtOH; with H₂-PtO₂ in AcOH gives in poor yield a product, m.p. ~200°; unstable to alkali), is confirmed. "Anhydrotetrahydrosarsasapogenoic acid" (loc. cit.) may be (A). Tschesche and

Hagedorn's formula sarsasapogenin for (cf. loc. cit.) is held CH_2 ·CHMe·CO₂H to account for the effects of acid, whilst Marker's formula (A., 1939, II, 276) does not accommodate the results of oxid-

ation and the evidence in its favour is largely negatived by the following results. Octahydro-2:2'-difuryl [prep. from 2:2'-difuryl by H_2 -Raney Ni at 150°, but not by H₂-PtO₂ or H₂-Pd-C (cf. Kondo et al., J. Pharm. Soc. Japan, 1935, 55, 142)], b.p. 77-80°/13 mm., reacts slowly with Br and a little HBr in AcOH, and (unless freshly purified) reduces SeO_2 and absorbs H_2 (PtO₂; HCl-EtOH), and suffers fission of one ring by HCl-AcOH at 88° giving a glycol (bis-3: 5-dinitrobenzoate, cryst.). Tetrahydro--furoamide, m.p. 65-76° b.p. 135-138°/10 mm., and MgMeCl give 2-acetotetrahydrofuran, b.p. 52.3-54.8°/10 mm. (2:4-dinitrophenylhydrazones, orange, m.p. 122-124°, and yellow, m.p. 135-136°), which is R. S. C. unstable to alkali.

Sterols. LXVII. Sarsasapogenin derivatives. Bromo-compounds. R. E. MARKER and E. ROHR-MANN (J. Amer. Chem. Soc., 1939, 61, 1921-1922).-Sarsasapogenin (I) and Br in AcOH containing a trace of HBr give bromosarsasapogenin, C27H43O3Br, decomp. ~125°, which is oxidised by CrO3 in 80% AcOH to bromosarsasapogenone, m.p. 191° (decomp.), also obtained by brominating sarsasapogenone, which, however, with more Br gives dibromosarsasapogenone, m.p. 190° (decomp.). Reduction of bromosarsasapogenin acetate by Na- C_5H_{11} OH or -EtOH gives (I), by H₂-PtO₂ in AcOH at 70°/3 atm. gives di- and by Zn-Hg-HCl gives tetra-hydrosarsasapogenin. Boiling C5H5N or AgNO3-C5H5N at 25° has no effect on R. S. C. (II).

alloStrophanthidin. E. BLOCH and R. C. ELDER-FIELD (J. Org. Chem., 1939, 4, 289-297).-Evidence is adduced in favour of the view that the isomerisation involved in the allomerisation of cymarin consists in an inversion of one of the asymmetric centres of the strophanthidin mol., probably at C(14) but possibly at alloStrophanthidin is oxidised by KMnO4 in COMe₂ at 5° to allostrophanthidinic acid, C₂₃H₃₂O₇, m.p. 247°, $[\alpha]_{D}^{22}$ +39.2° in MeOH, the *Me* ester, m.p. 263–265°, of which is converted by CrO₃ in AcOH into Me allostrophanthidonate, m.p. 258°, $[\alpha]_{20}^{30} + 20 \cdot 1^{\circ}$ in C₅H₅N (Me strophanthidonate has m.p. 161—162°, $[\alpha]_{p} + 26^{\circ}$ in C₅H₅N). This is transformed by boiling MeOH-10% HCl into Me monoanhydroallostrophan-thidonate, m.p. 138—145°, $[\alpha]_{20}^{30} + 118^{\circ}$ in C₅H₅N. Dianhydroallostrophanthidin, m.p. 172—175°, $[\alpha]_{B}^{sp}$ -123·1° in C_5H_5N , obtained by the action of EtOH-HCl on dianhydroallostrophanthidin oxidoethylal, is rapidly converted by conc. HCl into a Cl-derivative, m.p. 165°, transformed by NH₃ in boiling EtOH into dianhydroallostrophanthidin. alloStrophanthidin is converted by HCI (d 1.19) at 0° into an unstable Clderivative, C23H31O5Cl, m.p. 175°, transformed by NH3-EtOH into anhydroallostrophanthidin, m.p. 205°, [α]²⁰_D +119° in EtOH (3-Bz derivative, m.p. 252°; H. W. oxime, m.p. 182°).

Amber. V. L. SCHMID and W. HOSSE (Monatsh., 1939, 72, 290-302).—Amber is extracted with EtOH. The extract is partly sol. in light petroleum and the dissolved portion is pptd. from the solution by MeOH. After treatment with Na₂CO₃ the material is purified chromatographically $(Al_2O_3 \text{ in } C_6H_6)$. The substance, m.p. 140°, $[\alpha]_{b}^{17.5} + 58^{\circ}$ in C_6H_6 , thus obtained is hydrolysed by KOH-MeOH to a resin acid, C₂₅H₄₀O₄, m.p. 136—139°, $[\alpha]_{\rm D}^{17}$ +29° in C₆H₆ (*Me* ester, m.p. 125—127°; *Ac* derivative, m.p. 96—98°), and a resin alcohol (I), $C_{25}H_{36}O_2$, m.p. 117°, $[\alpha]_D^{18} + 45.7^\circ$ in C_6H_6 (acetate, m.p. 55-56°), which slowly gives a yellow colour with $C(NO_2)_4$ and is dehydrogenated by Se at $260-280^{\circ}$ and then at 350° to $1:2:5-C_{10}H_5Me_3$ and pimanthrene (II). The portion of amber which remains in Et₂O after removal of the acids when purified chromatographically gives two fractions, m.p. 110-130°, $[\alpha]_{D}^{18} + 34.7^{\circ}$ in $C_{6}H_{6}$ and $[\alpha]_{D} + 26.7^{\circ}$ in C₆H₆, respectively, the former of which is dehydrogenated by Se to agathaline and (II). Either fraction when hydrolysed by alkali gives a resin *acid*, m.p. 130—135°, $[\alpha]_1^{19} + 47 \cdot 2^\circ$ in C_6H_6 (*Me* ester, m.p. 120°; *Ac* derivative, m.p. 98°, $[\alpha]_2^{18} + 52 \cdot 8^\circ$ in C_6H_6), and an alcohol, m.p. 113—115°, $[\alpha]_2^{19} + 45 \cdot 7^\circ$ in C_6H_6 (acetate, m.p. 56—58°, $[\alpha]_2^{18} + 62 \cdot 6^\circ$ in COMe₂), which slowly affords a yellow colour with $C(NO_2)_4$ and does not depress the m.p. of (I). H. W.

Amber. VI. Acids occurring in amber. L. SCHMID [with T. LENZER and E. BLUM] (Monatsh., 1939, **72**, 311–321).—Prep. of amorphous succino-abietinolic (I), OH·C₃₅H₅₀₋₅₂O₃·CO₂H, m.p. 125–128°, $[\alpha]_{D}^{17}$ +26·34° in EtOH, and succexyabietic acid (II), m.p. $\sim 92-95^\circ$, $[\alpha]_p^{18}+16^\circ$ in EtOH, from amber is described (cf. Schmid et al., A., 1933, 831). (I) gives a Ag salt, sensitive to light, contains 2 active H, cannot be acetylated, gives no CO-reactions, is unaffected by H₂-PtO₂ in AcOH, and thus does not contain CO.C.C. It gives a Me ester, m.p. 82-85°, hydrolysed by 5% KOH-MeOH to a different acid, m.p. 121-124°, which is also obtained from (I) by alkali. (II) is a mixture; methylation does not stop at the CO₂H. With Se at 260-350°, (II) gives $(CH_2 \cdot CO_2H)_2$ and $1:2:5-C_{10}H_5Me_3$, but (I) gives also pimanthrene. As (I) and (II) are very sensitive to O_2 , all the products hitherto isolated from amber may be decomp. products. R. S. C.

Acid, m.p. 133°, isomeric with marindinin, from *Piper methysticum*.—See A., 1939, III, 734.

Gibberellin-A, m.p. 194–196°, and -B, m.p. 245–246° (decomp.), $[\alpha]_{\rm D}$ +36·13° in MeOH, from rice fungus.—See A., 1939, III, 627.

Neutral substance, $C_{16}H_{26}O$, m.p. 190°, from Asclepias syriaca, L.—See A., 1939, III, 639.

Constitution of crystalline constituent of the bark and leaves of Abies mariesii, Mast. T. TAKAHASHI (J. Pharm. Soc. Japan, 1938, 58, 273-276).-Warm EtOAc extracts from the bark and leaves a compound (I), $C_{30}H_{44}O_3$, m.p. 255°, $[\alpha]_{D}^{12}$ -96.93° in CHCl3 [amorphous tetrabromide, m.p. ~130° (decomp.)], which is a lactone and contains OMe and CHMe. It is reduced (H₂, Pt-black, EtOAc) to a H_2 -derivative, m.p. 225°; in Et₂O, H_4 -, m.p. 206–207°, and H_8 -, m.p. 191–193°, -derivatives result. Hydrolysis (0.5n-EtOH-KOH) of (I) gives an amorphous OH-acid (II), C29H45O2 CO2H, H2O, m.p. 85-90° (decomp.) (K salt), another acid, m.p. ~120° (decomp.), and a neutral substance, m.p. 122-123°. Hot Ac.O converts (II) into (I); Br-AcOH gives a tetrabromide, m.p. ~125° (decomp.), whilst NH₂OH affords a compound, $C_{30}H_{49}O_4N_3$, m.p. 186°, insol. in cold 20% H_2SO_4 or 30% KOH. Boiling 2% EtOH-HCl converts (I) into an isomeride, m.p. 215°, whilst 0.5n-EtOH- or 0.05n-MeOH-H2SO4 gives an isomeride, m.p. 24° (? 224°). Oxidation of (I) with CrO3 $(= 3.8 \text{ } 0_2)$ in AcOH at 55-60° affords an amorphous OMe-free acid, $C_{20}H_{32}O_3$, m.p. ~130° (decomp.), and a diketonic *OMe-lactone*, $C_{28}H_{38}O_5$, m.p. 218—221° [*dioxime* (+ NH₂OH), m.p. ~130° (decomp.); *di-bromide*, m.p. 145—150° (decomp.), whence it is inferred that (I) contains 2 double linkings]. Oxidation (KMnO₄ = 3 O₂) of (I) gives $H_2C_2O_4$ and a OMelactone, $C_{28}H_{42}O_4$, m.p. 90-95° (decomp.), which is

further oxidised by CrO_3 (1.5 mols.) in AcOH to an acid, $C_{20}H_{30(32)}O_5$, m.p. 135—140° (decomp.); KMnO₄ ($\equiv 5.8 O_2$) in AcOH at ~70° oxidises (I) to a OMe-acid, $C_{28}H_{42}O_5$, m.p. 215° (? Ac₁ derivative, m.p. 242—243°). H. B.

Constituents of "senso." VII. New constituent of native toad poison: F_3 -bufotalin. H. KONDO and S. OHNO (J. Pharm. Soc. Japan, 1938, 58, 102—103).—In addition to compounds previously described (cf. A., 1938, II, 197), toad poison contains F_3 -bufotalin, $C_{24}H_{32}O_5$, m.p. 243—245°. (Cf. A., 1939, II, 382.) E. W. W.

Constituents of "senso." VIII. Ozonisation of acetyl- ψ -deacetylbufotalin. IX. Cinobufotalidin, a substance accompanying cinobufagin. H. KONDO and S. OHNO (J. Pharm. Soc. Japan, 1938, 58, 232—234, 235—237).—VIII. The δ -lactone structure of ψ -deacetylbufotalin is confirmed by conversion of its Ac derivative by O₃ in CHCl₃ into CH₂O, HCO₂H, and H₂C₂O₄ [proof of CR \leq CH. COI] with an α -keto-aldehyde (I), C₂₃H₃₄O₆, and an α -keto-acid (II), C₂₃H₃₄O₇. With NH₂·CO·NH·NH₂, (I) gives a triazine, and with AcO₂H, followed by H₂O₂, gives an amorphous acid (III), C₂₀H₃₂O₅, also obtained from (II) by H₂O₂. When kept in acid, (II) gives an aldehyde, C₂₂H₃₄O₅ (*oxime*). The Me ester of (III) yields the amide only incompletely; when treated with MgMeI, heated in xylene at 100—120°, and then ozonised, it yields COMe, and the cyclic ketone C₂-H₂O, (*oxime*).

COMe₂ and the cyclic ketone, $C_{19}H_{30}O_4$ (oxime). IX. Cinobufagin, isolated from "senso," is accompanied by cinobufotalidin (IV), $C_{24}H_{34}O_6$, m.p. 217° (decomp.) (acetylanhydro-derivative, m.p. 209— 210°; p-nitrobenzoate, m.p. 236—238°), from which it is separated mechanically. A δ -lactone group is indicated in (IV) by an absorption max. at 290— 300 mµ. When sublimed at 0.0005 mm., (IV) gives 2 H₂O and two unsaturated [C(NO₂)₄] substances, $C_{24}H_{30}O_4$, m.p. 125—128° and ?, and thus contains 2 tert. OH. R. S. C.

Lichen pigments of the pulvinic acid series. V. Synthesis of *m*-hydroxypulvinic anhydride. M. ASANO and S. FUZIWARA (J. Pharm. Soc. Japan, 1939, 59, 83—85).—Et phenylcyanopyruvate and *m*-OMe·C₆H₄·CH₂·CN are condensed by NaOEt-EtOH to m-*methoxydiphenylketipinodinitrile* (I), m.p. 207·5° (decomp.), converted by the successive action of AcOH in boiling 60% H₂SO₄ and Ac₂O into m*methoxypulvinic anhydride*, m.p. 171—173°, which is demethylated by HI (d 1·7) in boiling AcOH to *m*hydroxypulvinic anhydride (II), m.p. 255—256° (acetate, m.p. 202—205°). (II) is obtained directly from (I) by the action of HI (d 1·7) in boiling AcOH. H. W.

Components of resins. XIII. Constitution of hinokiol. G. FUKUI and T. CHIKAMORI (J. Pharm. Soc. Japan, 1939, 59, 86—91).—Methylhinokiol is oxidised with CrO₃ and the resulting ketone is reduced (Clemmensen or Wolff-Kishner) to a yellow liquid, b.p. 170—173°/3 mm., which is dehydrogenated (Se) to methoxyretene (I), m.p. 80°. Reduction of hinokione (II) (Clemmensen) and dehydrogenation of the product yields hydroxyretene (II), m.p. 179180°, methylated to (I). The OH of (II) is that which was originally present in hinokiol as $\cdot CH_2 \cdot OH$. $K_3Fe(CN)_6$ is without action on (III). Dehydrogenation of hinokiol (IV) with Cu powder affords (II). (IV) is therefore at diterpene alcohol with a phenolic nucleus. Application of the isoprene rule leads to a modification of the formula of (IV) from $C_{19}H_{28}O_2$ to $C_{20}H_{30}O_2$. Hence (IV) is a dihydroxydimethyloctahydroretene, the nucleus and side-chains of which are derived from four isoprene residues. In addition to (IV) and hinokinin, cuprescus resin yields (II). H. W.

Constitution of clerodin, the active bitter principle of *Clerodendron infortunatum*. II. H. N. BANERJEE (Trans. Bose Res. Inst., 1936-1937, 75-88; cf. A., 1938, II, 288).-The following reactions of clerodin are described. Reduction (H,-Pt in cyclohexane-AcOH, or Zn + AcOH) yields dihydroclerodin, m.p. 115° (decomp., shrinks at 80°). MgMeI in amylether gives 1 mol. of CH4 per mol. 10% H2SO4 at 100° yields the compound obtained (loc. cit.) by hydrolysis with EtOH-KOH. Cold conc. HCl removes the Ac group, giving a compound, C₁₁H₁₅OCl, m.p. $>360^\circ$, containing no active H. Fusion with KOH at 200° yields an amorphous substance (decomp. 360; unaffected by CH_2N_2), further fusion of which at 250-300° affords an acid, m.p. 90-91°, equiv. wt. 104. Zn dust at 250-360° in a current of H₂ yields first a green liquid (I) (C 90.0, H 10.0%) [picrate, m.p. 131°; nitrate (containing N 8.2%), m.p. 88°], and later a brown, viscous oil. Dehydrogenation with S yields a product, b.p. $200^{\circ}/20$ mm., which when treated with conc. HNO₃, reduced, diazotised, and coupled with β -C₁₀H₇·OH yields a scarlet dye, whilst Se at 170° yields (I). Oxidation with KMnO₄ in COMe₂ yields an aromatic monobasic acid (II), C13H16O4, m.p. 265° (decomp.); HNO3 gives CO2, $H_2C_2O_4$, and a NO_2 -derivative (C 61.2, H 7.1, N 7.2%), m.p. 206°, sol. in alkali, whilst CrO_3 yields (II) and an impure substance, m.p. 117–120°, $[\alpha]_{D}$ –21°. It is concluded that clerodin contains an unsaturated A. LI. ring.

Echinochrome and spinochrome. Methoxy-Distribution. derivatives. Associated pigments. R. GLASER and E. LEDERER (Compt. rend., 1939, 208, 1939-1942) .- Excess of echinochrome (I) (cf. A., 1938, II, 448) with CH_2N_2 gives mono-, m.p. 191°, di-, m.p. 161°, and tri-methoxy-echinochrome, m.p. 137°, separated by chromato-graphic adsorption on CaCO₃. Spinochrome (II) similarly yields mono-, di-, and tri-methoxyspinochrome, m.p. 176°, 265°, and 147°, respectively. The pigment in the ovaries of Arbacia æquituberculata is mainly (I), which also occurs in small amounts [with (II)] in the violet scales of Strongylocentrotus lividus. In the former isoechinochrome, m.p. 247°, and an un-identified pigment are also found. The latter contains (II) together with brown pigments which give colour reactions with FeCl. J. L. D.

Scission of hydrofuran and hydropyran rings with acetic anhydride. R. PAUL (Bull. Soc. chim., 1939, [v], 6, 1162—1173; cf. A., 1939, II, 274). Orientation of the unsaturated OAc compounds (*loc. cit.*) is determined by identifying the R-CHO after treating the ozonide with Zn (+AgNO₃). 2-

Methyltetrahydropyran and Ac₂O-ZnCl, at 200° give az-diacetoxyhexane, b.p. 125-127°/14 mm., and aacetoxy- Δ^{δ} -hexene, b.p. 73°/20 mm. (gives MeCHO). 2-Propyltetrahydropyran similarly gives az-diacetoxyoctane, b.p. 153-155°/20 mm., and a mixture, b.p. 96—97°/14 mm., of α -acetoxy- Δ^{δ} - and - Δ^{ϵ} -octene (gives EtCHO + PrCHO). 2-Butyltetrahydropyran affords a mixture, b.p. 117°/20 mm., of α -acetoxy- Δ^{δ} - and - Δ ^e-nonene. 2-Phenyltetrahydropyran gives mainly Ph2 (loc. cit.). Tetrahydrofuran and Ac2O-ZnCl2 at 230° (8 hr.) give αδ-diacetoxybutane, b.p. 229-230°, or 108°/10 mm., and a fraction, b.p. 160-165°/10 mm. 2-Ethyltetrahydrofuran, at 200°, affords αδ-diacetoxyhexane, b.p. 123-125°/14 mm., and α -acetoxy- Δ^{δ} - + - $\Delta \gamma$ -hexene, b.p. 72-73°/20 mm. (gives MeCHO + EtCHO). 2-Butyltetrahydrofuran gives αδ-diacetoxyoctane, b.p. 142-158°/13 mm., and a mixture, b.p. 94-95°/13 mm., of α -acetoxy- Δ^{δ} - (88%) and $-\Delta^{\gamma}$ octene (22%); amyltetrahydrofuran affords αδdiacetoxynonane and a mixture, b.p. 117-118°/20 mm., of α -acetoxy- Δ^{δ} - and - Δ^{δ} -nonene. 2-Benzyltetrahydrofuran (at 190°) gives αδ-diacetoxy-ε-phenyl-pentane, b.p. 196—197°/16 mm., and a mixture, b.p. 153—158°/14 mm., of α -acetoxy- ϵ -phenyl- Δ^{γ} - and - Δ^{δ} -pentene (hydrogenated to α -acetoxy-z-phenylpentane, b.p. 153°/12 mm.). A. T. P.

Action of hydroxymethylamides on ethyl pyromucate. G. B. MARINI (Gazzetta, 1939, 69, 340-344).—o-C₆H₄(CO)₂N·CH₂·OH added to Et pyromucate (I) in conc. H₂SO₄ gives 5'-carbethoxyfurfurylphthalimide, m.p. 118°, hydrolysed (NaOH-EtOH) to 5'-carboxyfurfurylphthalamic acid, m.p. 204°. With NHBz·CH₂·OH, (I) gives 5'-carbethoxy-, m.p. 106°, hydrolysed to 5'-carboxy-benzfurfurylamide, m.p. 180°, and with CH₂Cl·CO·NH·CH₂·OH, 5carbethoxychloroacetfurfurylamide, m.p. 90°, hydrolysed by HCl to 5-carboxyfurfurylamine hydrochloride, m.p. 245° (platinichloride, m.p. 202°). E. W. W.

Aldehyde-acids and aldo-enol-lactones. I. Condensation of aconic acid with aldehydes and ketones. M. M. SCHEMJAKIN and I. A. REDKIN (J. Gen. Chem. Russ., 1939, 9, 442—446).—Aconic acid condenses with aldehydes in presence of NHEt_2 , at 105°, to yield benzylidene-, m.p. 201—202°, mnitrobenzylidene-, not melting at 290°, and furfurylidene-aconic acid, not melting at 290°. R. T.

Vitamin-E. IV. Synthesis of tocopherols. L. I. SMITH and H. E. UNGNADE. V. Direct allylation of phenols and quinols. VI. Addition of dienes to phenols and quinols. L. I. SMITH, H. E. UNGNADE, H. E. HOEHN, and S. WAWZONEK (J. Org. Chem., 1939, 4, 298–304, 305–310, 311– 317).—IV. Passage of HBr into phytol containing anhyd. Na₂SO₄ at 0° gives phytyl bromide (I), which decomposes when kept at room temp. and cannot be distilled since it is largely converted at 75° into phytadiene (II). (I) when heated with trimethylquinol (III) affords some (II) and r-a-tocopherol, b.p. 140°/10-6 mm. (allophanate, m.p. 157-160°), which readily oxidises when exposed to air. Its absorption spectrum is nearly indistinguishable from that of natural a-tocopherol. p-Xylotocopherol, b.p. 145-150°/10-6 mm., when pyrolysed at 355-360 under CO2 gives a mixture of quinols. m-Xylotocopherol, b.p. $120-130^{\circ}/10^{-6}$ mm., could not be obtained pure. These tocopherols have vitamin-*E* activity.

V. Allyl bromide (V) is less, and geranyl bromide more, reactive than $\gamma\gamma$ -dimethylallyl bromide (V) or (I) towards polylalkylphenols and quinols. (IV), (V), and (I) react with quinol in a sealed tube at 100-150° without solvent or catalyst. ZnCl₂ and C₆H₆ or light petroleum may be used but the yield and quality of the product are not improved. The optimum temp. is 100-150°; the pure materials must be thoroughly mixed to a paste and the tube heated in a vertical position. The following are described : 5-hydroxy-2:4:5:7-tetramethylcoumaran, m.p. 130.5-131.5° (acetate, m.p. 72.5-73.5°), also obtained by reducing 5-hydroxy-2:4:5:7-tetramethylcoumarone (H.-Raney Ni at 200°/2600 lb.); 6-hydroxy-2:2:5:7:8pentamethylchroman, m.p. 94-94.5° (acetate, m.p. 92.5-93.5°); 2:3:5-trimethylphenyl allyl ether, b.p. $59 \cdot 2^{\circ}/0.1$ mm.; 2:3:5-trimethyl-6-allylphenol, m.p. $49 \cdot 5 - 50 \cdot 5^{\circ}$; 2:4:6:7-tetramethylcoumaran, b.p. 142-144°/29 mm.

VI. The condensation between dienes and phenols leading to chromans has been extended to certain quinols and to p-OH·C6H4·OMe. Under proper conditions these substances give good yields of chromans but, unless the conditions are carefully regulated. mixtures result. $p-C_6H_4(OH)_2$ does not react under any of the conditions tried; p-OH·C₆H₄·OMe and (III) react readily but 2:5-dimethylquinol does not. 2:3:5-C₆H₂Me₃·OH and isoprene in AcOH saturated with HCl at 0° give a *phenol*, $C_{14}H_{20}O$, m.p. 84—86°, and 2:2:5:7:8-*pentamethylchroman*, m.p. 40—41° (also obtained by use of ZnCl₂ as catalyst). *p*-OH·C₆H₄·OMe and dimethylbutadiene in AcOH saturated with HCl at 0° afford 6-methoxy-2:2:3trimethylchroman, b.p. 50-53°/10-6 mm., whilst isoprene gives 6-methoxy-2: 2-dimethylchroman, b.p. 74- $80^{\circ}/0.1$ mm., and γ -chloro- α -o-hydroxy-m-methoxy-phenylbutane, b.p. $83-90^{\circ}/0.1$ mm. (III) and iso-prene in AcOH containing ZnCl₂ at 100° give 6hydroxy-2:2:5:7:8-pentamethylchroman, m.p. 94-94.5° [acetate, m.p. $92.5-93.5^\circ$; allophanate, m.p. $209-211.5^\circ$ (decomp.)]. (II) and (III) in boiling AcOH-HCO₂H afford α -tocopherol, apparently contaminated with a liquid of high b.p. H. W.

Vitamin-E. X. Reaction between quinones and metallic enolates. IX. L. I. SMITH and W. W. PRICHARD (J. Org. Chem., 1939, 4, 342-350). -Addition of 1:3:5:2-C6H2Me3Ac followed by trimethylbenzoquinone (I) to MgEtBr in Et₂O gives 3: 6-dihydroxy-2: 4: 5-trimethylphenylacetomesitylene, m.p. 148-148.5° (yield 90%) (diacetate, m.p. 169-170°), which does not give ketonic derivatives. It could not be converted into the corresponding counarone by loss of H_2O . When refluxed with HCl in MeOH, EtOH, or AcOH it appears to give the Me ether, m.p. 158-159°, Et ether, m.p. 160-161.5°, and acetate, m.p. 149.5-150.3°, of the corresponding enol. When warmed with H₂SO₄ it gives only tarry products. CH2Br CO CMe2 CO2Et could not be converted into the enolate by MgPhBr, Mg mesityl bromide, or CdPhCl, the product invariably failing to condense with the quinone. Et₂ β -keto- $\alpha\alpha$ -dimethylglutarate does not condense with (I) in presence of Mg(OMe)₂ and, although it reacts with Na, the product gives only a red oil with (I). $\text{CN}\cdot\text{CH}_2\cdot\text{CO}\cdot\text{CMe}_2\cdot\text{CO}_2\text{Et}$ with $\text{Mg}(\text{OMe})_2$ affords a cryst. enclate, which gives only a non-cryst. product with (I). $\text{CHBu}^{\beta}(\text{CO}_2\text{Et})_2$ reacts readily with (I) in presence of NaOEt or $\text{Mg}(\text{OEt})_2$ but Bu^{β} is lost and the product is 5-hydroxy-2-carboethoxy-4:6:7-trimethylisocoumaranone, m.p. $111-112^{\circ}$ (acetate, m.p. $101-103^{\circ}$). This is transformed by hot AcOH saturated with HCl into 5-hydroxy-4:6:7trimethylisocoumaranone, m.p. $195-196^{\circ}$ (acetate, m.p. $166-167^{\circ}$). H. W.

Vitamin-E. XI. Introduction of the p-hydroxy-group into chromans and coumarans. L. I. SMITH, H. H. HOEHN, and H. E. UNGNADE (J. Org. Chem., 1939, 4, 351-357).-2:2:5:7:8-Pentamethylchroman (I) couples very slowly with diazotised p-NH₂·C₆H₄·SO₃H so that only traces of the N₂ compound can be prepared. HNO₃ in AcOH readily transforms (I) into 6-nitro-2:2:5:7:8-pentamethylchroman, m.p. 125-125.5°, which is very inert and could not be reduced by Sn and HCl or by H₂ in presence of Pt at 45 lb. pressure; it is attacked by Na and Bu^aOH, giving a non-cryst. product with a marked phenolic reaction. Br in CCl, converts (I) into 6-bromo-2:2:5:7:8-pentamethylchroman, m.p. 69-70°, which is mixed with EtBr and dropped on to Mg; the product is transformed by O2 into 6-hydroxy-2:2:5:7:8-pentamethylchroman, m.p. 94-94.5°, in poor yield. Similarly 5-bromo- is converted into 5-hydroxy-2:4:6:7tetramethylcoumaran, which with alkali at 300° gives H. W. $2:3:5-C_{6}H_{2}Me_{3}OH.$

Vitamin-E. XII. Preparation of chromans by action of Grignard reagents on dihydrocoumarins. L. I. SMITH, H. E. UNGNADE, and W. W. PRICHARD (J. Org. Chem., 1939, 4, 358—362). —Under any of the conditions used the first isolable product of the action of MgEtBr on dihydrocoumaran is α -hydroxyphenyl- γ -ethylpentan- γ -ol, m.p. 71—72°, usually accompanied by and readily cyclised (boiling AcOH-20% H₂SO₄) to 2:2-diethylchroman, b.p. 128-5 —128-9°/12 mm. Similarly MgPhBr affords the corresponding carbinol and 2:2-di-n-propylchroman, b.p. 153—154°/15 mm., but no ketone. 6-Hydroxy-5:7:8-trimethyl-3:4-dihydrocoumarin gives the unstable carbinol, readily cyclised to 6-hydroxy-2:2:5:7:8-pentamethylchroman. H. W.

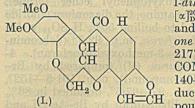
Synthesis of 4-methylcoumarin derivatives, using metallic chlorides as condensing agent. Z. HORH (J. Pharm. Soc. Japan, 1939, 59, 59–60). $m \cdot C_6H_4(OH)_2$, 1:2:3- or 1:3:5- $C_6H_3(OH)_3$ with $CH_2Ac \cdot CO_2Et$, using FeCl₃, SnCl₄, or TiCl₄ as condensing agent, gives 7-hydroxy-, 7:8- and 5:7dihydroxy-4-methylcoumarin, respectively. High yields are claimed in most cases. A. T. P.

Dibenzfuran. XI. Substituents in the 4position. H. GILMAN and P. R. VAN ESS. XII. Metalation of bromo-derivatives. H. GILMAN, H. B. WILLIS, and J. SWISLOWSKY (J. Amer. Chem. Soc., 1939, 61, 1365—1371, 1371—1373; cf. A., 1939, II, 276).—XI. Some 4-substituted dibenzfurans are prepared. Structures are proved by synthesis of any isomerides previously unknown. 3-Hydroxydibenzfuran (I) (prep. in 56-75% yield from 3-bromodibenzfuran, CuSO₄, Cu turnings, Cu bronze, and aq. NaOH in a steel bomb at 240°) and Br-AcOH give 4-bromo-3-hydroxydibenzfuran, m.p. 123-123.5° [Me ether (II), m.p. 117-118°], and traces of the 2-Brderivative (isolated as the Me ether). 3-Methoxydibenzfuran [prepared from (I) by Me₂SO₄-NaOH], m.p. 46-47°, b.p. 164-165°/6 mm., and Br-AcOH give 2-bromo-3-methoxydibenzfuran (III) (33%), m.p. 171-172°, and (II). 2-Bromo-3-acetamidodibenzfuran (prep. in 16.4% yield by bromination) and, best (96%), KOH-EtOH give the 3-NH2-compound, the diazonium salt from which with boiling, aq. CuSO₄ affords 13% of 2-bromo-3-hydroxydibenzfuran, m.p. 143-144° [Me ether = (III)]. $CH_2:CH\cdot CH_2Br$, (I), and K_2CO_3 in COMe2 give 72-82% of 3-allyloxydibenzfuran, b.p. 178-180°/4 mm., rearranged by heating at 220-230° to 3-hydroxy-4-allyldibenzfuran (IV), m.p. 83°, b.p. 173°/5 mm., which gives (Me₂SO₄) the Me ether, m.p. 67-68°, obtained also from the Mg derivative of (II) by CH.:CH.CH.Br. Hot KOH-MeOH converts (IV) into 3-hydroxy-4-propenyldibenzfuran, m.p. 94–95°. The Grignard reagent from (III) and $CH_2:CH:CH_2Br$ (excess) yield 3-methoxy-2allyldibenzfuran, b.p. 158-159°/4 mm. Passage of O₂ over the Grignard reagent from (II) and MgBu^aBr in Et₂O-C₆H₆ gives 71% of 4-hydroxy-3-methoxydibenzfuran, m.p. 111-111.5°, unstable in alkali, decomposed by HI, and converted by MeI-K₂CO₃-COMe, into 3: 4-dimethoxydibenzfuran, m.p. 79°. The Grignard reagents of (II) and (III) with CO₂ yield 3-methoxydibenzfuran-4-, m.p. 156-157° (Me ester, m.p. 99.5-100°), and -2-carboxylic acid, m.p. 206-207° (*Me* ester, m.p. 122.5°), respectively. *p*-OMe·C₆H₄·OK and 1:4:2-C₆H₃Br₂·NO₂ at 170° give 4-bromo-2-nitro-4'-methoxydiphenyl ether (crude), reduced by SnCl₂ to the amine, the diazonium chloride of which, when added to boiling 50% H₂SO₄, yields 3-bromo-6-methoxydibenzfuran, m.p. 92.5° (debrominated by Pd-CaCO₃ to 3-methoxydibenzfuran). 4-Bromo-1-hydroxydibenzfuran (V) (prepared by Br-AcOH from the OH-compound), m.p. 151.5-152°, gives the Me ether, m.p. 97-97.5°, obtained in 86% yield from 1-methoxydibenzfuran by Br-AcOH and converted [method as for (II)] into 4-hydroxy-1-methoxydibenzfuran, m.p. 155°, which with HI and a little red P gives 1:4-dihydroxydibenzfuran, m.p. 217-218° (decomp.), and with Me₂SO₄-NaOH gives 1:4-dimethoxydibenzfuran, m.p. 78.5°. 1-Aminodibenzfuran (prep. in 56.7% yield by a modified Hof-mann reaction) and Ac_2O in C_6H_6 give the Ac derivative, which with Br-AcOH yields 4-bromo-1acetamidodibenzfuran, m.p. 228°, and thence 4-bromo-1-aminodibenzfuran, m.p. 119-120°; the diazonium salt thereof with aq. $CuSO_4$ affords (V), and with HPO2 gives 4-bromodibenzfuran (VI), m.p. 67°. Conc., aq. NH3 and CuBr at 230-240° convert (VI) into 4aminodibenzfuran, m.p. 74° (Ac derivative, m.p. 205°). By Grignard reactions (VI) affords 4-hydroxydibenzfuran, m.p. 140-140.5° (1- or 3-Br-derivative, m.p. 178°), and dibenzfuran-4-carboxylic acid, m.p. 232-233°, the Me ester, m.p. 63°, of which gives the 7-(?2-)NO₂-ester, m.p. 216°, and thence a NO₂-acid, m.p. 297-298°, decarboxylated by Cu bronze in quinoline to 2-nitrodibenzfuran. 1:4:2 $(OMe)_2C_6H_3$ ·MgBr and MgBu^aBr with O_2 give 43% of 2:5-dimethoxyphenol, b.p. 134—135°/15 mm. (benzoate, m.p. 73·5°), the K salt of which with o-C₆H₄Br·NO₂ at 170° yields 2-nitro-2':5'-dimethoxy-diphenyl ether, b.p. 190—193°/3 mm., and thence (SnCl₂) the 2-NH₂-ether, m.p. 72°, b.p. 183—185°/4 mm., which gives a phenol and not a dibenzfuran by diazotisation and treatment with H₂SO₄.

XII. 1-Bromodibenzfuran and $\tilde{L}iBu^a$, first in Et_2O and then in C_6H_6 , give a Li derivative, converted by CO_2 into dibenzfuran-1-carboxylic acid (57.5% of pure acid), which is not obtained by the Grignard process. 3:7-Dibromodibenzfuran gives similarly up to 72% of the 3:7-dicarboxylic acid and some (?) dibutyldibenzfuran. 2-Bromodibenzfuran (VII) gives a 5:1 mixture of dibenzfuran-1-and -2-carboxylic acid; the 1-acid probably arises by reaction of Li 2-dibenzfuryl with (VII) to give Li 2-bromo-1-dibenzfuryl (and dibenzfuran), which then reacts with dibenzfuran to give Li 1-dibenzfuryl and regenerate (VII). R. S. C.

Methylation of hydroxyflavanols. Quercitin, gossypetin, and herbacetin. P. S. RAO and T. R. SESHADRI (Current Sci., 1939, 8, 255–256).— Pentamethylquercitin, hexamethylgossypetin, m.p. $170-172^{\circ}$, and O-pentamethylherbacetin, m.p. $156-158^{\circ}$, are obtained exclusively and in good yield by methylation (Me₂SO₄-NaOH-COMe₂) of the appropriate Ac derivative, using the method previously reported (A., 1939, II, 385). F. N. W.

3-Hydroxyflavanone derivatives. I. New synthesis. Y. KIMURA (J. Pharm. Soc. Japan, 1939, 58, 123—127; ef. A., 1937, II, 70).—2-Hydroxy-4:6-dimethoxyacetophenone and 10% aq. NaOH-EtOH at 10—20°, with p-OMe·C₆H₄·CHO, 3:4:1-(OMe)₂C₆H₃·CHO, 3:4:5:1-(OMe)₃C₆H₂·CHO, or piperonaldehyde, respectively, afford 2-hydroxy-4:6:4'-trimethoxy-, m.p. 121°, -4:6:3':4'-tetramethoxy-, m.p. 117°, -4:6:3':4'-tetramethoxy-, m.p. 117°, -4:6:3':4'-tetramethoxy-, m.p. 117°, -4:6:3':4'-tetramethoxy-, m.p. 117°, -4:6:3':4'-tetratetoxy-, m.p. 117°, -4:6:3':4'-tetramethoxy-, m.p. 117°, -4:6:3':4'-tetramethoxy-, m.p. 117°, -4:6:3':4'-methylenedioxyphenyl a-methoxystyryl ketone, m.p. 112—113°, converted by aq. HCI-EtOH into 3-hydroxy-5:7':4'trimethoxy-, m.p. 158—159°, -5:7:3':4'-tetramethoxy-, m.p. 176°, -5:7:3':4':5'-pentamethoxy-, m.p. 168—169°, and -5:7-dimethoxy-3':4'-methylenedioxy-flavanone, m.p. 142°, respectively. A. T. P.

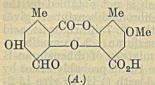

Pigments of the flavone series. V. Diosmin, a constituent of dahlia flowers. T. NAKAOKI (J. Pharm. Soc. Japan, 1938, 58, 197—201).—The white flowers of *D. variabilis* contain apigenin $(\sim 2.5\%)$, luteolin $(\sim 0.2\%)$, and luteolin Me₁ ether rhamnoglucoside (I) $(\sim 0.5\%)$. (I) is identical with diosmin (Oesterle *et al.*, A., 1925, i, 1438) and is shown to be 5:3'-dihydroxy-4'-methoxyflavone-7-rhamnoglucoside. S. H. H.

Lichen substances. XCII. Psoromic acid. III. Y. ASAHINA and S. SHIBATA (Ber., 1939, 72, [B], 1399—1402).—Hypoparellic acid Me₂ ether is transformed by SOCl₂ or conc. H_2SO_4 into 2:4:6trimethoxy-3:5:8-trimethylxanthone (I), m.p. 187°, which does not react with CO: reagents under the usual conditions, has a blue fluorescence in Et₂O, gives a yellow solution in conc. H_2SO_4 which becomes

ene dioxide, m.p. 120°. (II), $\text{Cl}\cdot[\text{CH}_2]_2$ ·COCl, and AlCl₃ give 2:6-di- β -chloropropionyldiphenylene dioxide, m.p. 211°, converted by piperidine into (I).

XIV. 2:6-Dimethyldiphenylene dioxide and CH₂Cl·COCl-AlCl₃ afford the 3:7-di(chloroacetyl) derivative, m.p. 248°, converted into the 3:7-di(piperidinoacetyl) compound, m.p. 163-165° (hydrochloride, $+2H_{2}O$, m.p. $>300^{\circ}$), and thence by Na-Hg into 3: 7-di-(α -hydroxy- β -piperidinoethyl)-2: 6-dimethyl diphenylene dioxide, m.p. 211°. Similarly prepared are : [from (II)] 2 : 6-di-(α-bromopropionyl)-, m.p. 213°, -di-(a-piperidinopropionyl)-, m.p. 185-186°, and -di- $(\alpha$ -hydroxy- β -piperidinopropyl)-diphenylene dioxide, m.p. 215° (analysis not good); 2:6-di-(α -bromoiso-valeryl)-, m.p. 196°, and -di-(α -piperidinoisovaleryl)-, m.p. 161° (some loss of piperidine); and -di-(α -bromoisobutyryl)-diphenylene dioxide, m.p. 160-167° (im-pure; loses Br on crystallisation). The last-named and piperidine give a substance, C₂₀H₁₆O₄, m.p. 255°. A. T. P.

Active principles of leguminous fish-poison plants. II. Isolation of *l*-elliptone from Derris elliptica. S. H. HARPER (J.C.S., 1939, 1099—1105). —Quick extraction (5% KOH) of an ethereal extract of D. elliptica (var. Sarawak creeping) affords rotenone and l-elliptone (I), $C_{20}H_{16}O_6$, m.p. 160° , $[\alpha]_{20}^{90} +55^\circ$ in $COMe_2$, -18° in C_6H_6 (*a-oxime*, m.p. 222°; β -oxime, m.p. 236°; monoacetate, m.p. 200°). Racemisation of (I) with NaOAc-EtOH gives dl-elliptone, m.p. 176— 177° , $[\alpha]_D \pm 0^\circ$ in C_6H_6 (*a-oxime*, m.p. 259°; β -oxime, m.p. 261°; monoacetate, m.p. 202°), identical with Buckley's substance of m.p. 183° (B., 1936, 1117), of which (I) is the precursor. NaOAc and I with (I) yield dehydroelliptone, m.p. 264°, $[\alpha]_D \pm 0^\circ$, Reduction of (I) with H₂-PtO₂ affords successively

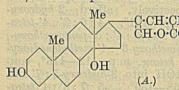


1-dihydro-, m.p. 159°. $[\alpha]_{10}^{\infty}$ —97° in COMe₂, and 1-tetrahydro-elliptone (+EtOH), m.p. 217° $[\alpha]_{10}^{20}$ +61° in COMe₂ (diacetate, m.p. 140—142°); similar reduction of the dl-compound gives dl-tetra-

hydroelliptone (+EtOH), m.p. 205°. From a study of its reactions and by comparison with those of isorotenone, structure (I) is suggested. F. R. S.

Thiophen derivatives from ethyl β-carbethoxylævulate. S. MITRA, N. K. CHAKRABARTY, and S. K. MITRA (J.C.S., 1939, 1116-1117).-Et β-carbethoxylævulate dissolved in the appropriate alcohol, saturated with HCl, with H₂S gives the Me, b.p. 125°/5 mm., Et, b.p. 150°/5 mm., and Pr^a ether, b.p. 135°/5 mm., of Et 5-hydroxy-2-methylthiophen-3carboxylate. These are hydrolysed to 5-methoxy-, m.p. 128°, -ethoxy-, m.p. 122° (Ba salt), and -n-propoxy-2-methylthiophen-3-carboxylic acid, m.p. 75°, dealkylated to the 5-OH-acid (I), m.p. 160°. These acids condense with aromatic aldehydes (EtOH-HCl) to form dithienylarylmethanes : di-(5-ethoxy-3-carboxy-2methyl-4-thienyl)-phenylmethane, m.p. 233°, and -4'hydroxy-3'-methoxyphenylmethane, m.p. 235°, and di-(5-n-propoxy-, m.p. 232° (decomp.), and di-(5-methoxy-3-carboxy-2-methyl-4-thienyl)phenylmethane, m.p. 250°

colourless when diluted with H_2O , and has an ultraviolet absorption spectrum resembling that of gentisein. It is a xanthone derivative since it is transformed by P_2S_5 and K_2S in xylene at 105—110° into 2:4:6-trimethoxy-3:5:8-trimethylxanthione, m.p. 159.5°, which is converted by NH₂OH,HCl and NaOAe into 2:4:6-trimethoxy-3:5:8-trimethylxanthion-oxime, m.p. 231° (decomp.). NaNH₂ and (I) in xylene at 150—180° afford 2':4:5-trimethoxy-3:6:3'-trimethyldiphenyl ether, m.p. 110°; identical with decarboxylated (I). Since energetic reduction



of (I) gives deoxyhyposalazinol Me₃ ether, it is 2-OMe carboxy-4 : 6 : 3'-trimethoxy-5 : 2' : 5'-trimethyldiphenyl ether, and psoromic acid is A. Hypoparellic acid is converted by

conc. H_2SO_4 at room temp. into 4:6-dihydroxy-2methoxy-3:5:8-trimethylxanthone, m.p. 319° (decomp.) after becoming discoloured at $\sim 280^{\circ}$, whilst (I) with Br-AcOH gives a Br-derivative, m.p. 264° , transformed by SOCl₂ into 7-bromo-2:4:6-trimethoxy-3:5:8-trimethylxanthone, m.p. 233° . H. W.

Isolation of xanthyletin from Luvunga scandens, Ham. E. SPÄTH, P. K. BOSE, E. DOBRO-VOLNY, and A. MOUKERJEE (Ber., 1939, 72, [B], 1450—1452).—Vac. sublimation of the coumarin fraction G obtained by Bose *et al.* from L. scandans, Ham, gives luvangetin and xanthyletin, m.p. 131— 131.5°, identified by hydrogenation to tetrahydroxanthyletin, m.p. 158—159°. H. W.

Toad poisons. X. Constitution of bufalin. M. KOTAKE and K. KUWADA (Sci. Papers Inst. Phys. Chem. Res. Tokyo, 1939, 36, 106—111; cf. A., 1934, 777).—The impure substance, m.p. 227°, obtained

after removal of cino-C·CH:CH bufagin and cinobu-CH·O·CO fotalin is the *acetate* (I), m.p. 229-231°, of bufalin (A), C₂₄H₃₄O₄, m.p. 235-236°, which, with

conc. HCl yields anhydrobufalin, m.p. $204.5-206^{\circ}$ (acetate, m.p. $151-152^{\circ}$), and, in AcOH, with CrO₃ in aq. H₂SO₄ a ketone, C₂₄H₃₂O₄, m.p. 226-227^{\circ}. With Pd-H₂, (I) in EtOH gives tetrahydroacetylbufalin, m.p. $182-185^{\circ}$. W. McC.

Synthesis of diphenylene dioxide derivatives. XIII. 2:6-Di-(α -hydroxy- γ -piperidinopropyl)diphenylene dioxide. XIV. β -Piperidinoalkyldiphenylene dioxide. M. TOMITA (J. Pharm. Soc. Japan, 1939, 58, 130—132, 133—136; cf. A., 1932, 1048).—XIII. 2:6-Diacetyldiphenylene dioxide and (CH₂O)₂ + piperidine hydrochloride in C₅H₁₁·OH (cf. Kamp *et al.*, A., 1936, 1390; Mannich *et al.*, A., 1922, i, 351; 1923, i, 43) afford 2:6-*di*-(β -piperidinopropionyl)diphenylene dioxide (I), m.p. 138° (hydrochloride, m.p. 231°). (I) and Na-Hg in EtOH give a N-free substance, m.p. >300°; catalytic reduction (PtO₂-EtOH at room temp.) of (I) gives 2:6-*dipro*pionyl-, m.p. 241° (*dioxime*, m.p. 235°) [also obtained from diphenylene dioxide (II), EtCOCl, and AlCl₃], and 2:6-*di*-(α -hydroxy- γ -piperidinopropyl)-*diphenyl*- (decomp.). Condensation of (I) with aldehydes gives yellow dyes: 5-keto-4-benzylidene-, m.p. 166°, -4-onitrobenzylidene-, m.p. 184° (decomp.), -4-o-methoxybenzylidene-, m.p. 152°, -4-ethylidene-, m.p. 124°, and -4-cinnamylidene-2-methyl-4:5-dihydrothiophen-3-carboxylic acid, m.p. 204°. F. R. S.

Thiophen series. XLV. 5-Hydroxy-2-methylthiophen (thiotenol). W. STEINKOPF and F. THOR-MANN (Annalen, 1939, 540, 1-7).-5-Hydroxy-2methylthiophen (I) (prepared by distilling

COMe·[CH₂]₂·CO₂H and P₂S₅ in CO₂), m.p. -23.5° to 22.5°, b.p. 94-96°/15 mm., gives a benzoate, m.p. $47-47.5^{\circ}$, and the known acetate, but condenses as a ketone with aldehydes. With PhCHO and HCl in abs. EtOH at room temp., it gives 57% of 5-keto-4benzylidene-2-methyl-4: 5-dihydrothiophen, m.p. 85-86°. Cryst. FeCl₃ in boiling EtOH gives bis-3-keto-2-methyl-4: 5-dihydro-4-thienylidene [" bis-(2-methylthiophen)-4-indigo "], m.p. 188-190°, sublimes at 14 mm. With acenaphthenequinone and HCl-AcOH at 100°, it gives 7-keto-8-5'-keto-2'-methyl-4': 5'-dihydro-4'-thienylidene-7: 8-dihydroacenaphthene [acenaphthene-(1)-2-methylthiophen-(4)-indigo], m.p. 164°. With 3:4dibromothiophen-2: 5-dialdehyde (II) in HCl-AcOH at 100°, it gives 3: 4-dibromo-2: 5-di-(5'-keto-2'-methyl-4': 5'-dihydro-4'-thienylidenemethyl)thiophen [3: 4-dibromo-2: 5-thioxylidenebis-3'-(5'-keto-2'-methyl-4': 5'dihydrothiophen)], m.p. 232—234°. 3:4-Dibromo-2:5-di-(2'-keto-1':2'-dihydro-1'-thionaphthenylidenemethyl)thiophen [3:4-dibromo-2:5-thioxylidenebis-1'-(2'-keto-1': 2'-dihydrothionaphthen)], cryst., is obtained from (II) and 2-hydroxythionaphthen in boiling HCl-AcOH. With $p-C_6H_4(CHO)_2$ in boiling HCl-AcOH, (I) gives xylylidenebis-4'-(5'-keto-2'-methyl-4':5'-dihydrothiophen), o-C₆H₄(CH:C<CO-S , m.p. 167-168°, and very little 5-keto-4-p-aldehydobenzylidene-2methylthiophen, m.p. 277-279°. The C4H2S is strongly bathochromic compared with Ph.

R. S. C.

Thiophen series. XLVI. Derivatives of 2:5thioxen [2:5-dimethylthiophen]. W. STEINKOPF, T. BARLAG, and H. J. VON PETERSDORFF (Annalen, 1939, 540, 7—14).—2:5-Dimethylthiophen, o- $C_6H_4(CO)_2O$, and AlCl₃ in PhNO₂ at 0—5° give 62% of 3-o-carboxybenzoyl-2:5-dimethylthiophen, m.p. 127—128° (Et ester, b.p. 152—153°/high vac., does not give an amide; 4-Br-derivative, m.p. 186°), reduced by Zn in boiling AcOH-H₂O (4:1) to α-2:5dimethyl-3-thienylphthalide (64%), m.p. 154°, and cyclised, best (18%) by AlCl₃-NaCl at 140°, to 2:5dimethylnaphtha-1': 4'-quinonylo-2': 3'-3: 4-thiophen [2:7-dimethyl-β-thionaphthanthrenequinone] (I), m.p. 175—176°. 3-Iodo-2:5-dimethylthiophen and Cu-

bronze at $245-250^{\circ}$ give di-2:5-dimethyl-3-thienyl, b.p. $142-144^{\circ}/9$ mm., purified by conversion into the 1 > 8 4 : 4' - diacetoxymercuri - derivative, m.p. $233-234^{\circ}$, and regeneration therefrom by 18% HCl at 100° . 5-

(I.) Acetyl-2-methyl- or 3-acetyl-2 : 5-dimethyl-thiophen with isatin and KOH in aq. EtOH at 110° yield 2-2'-methyl-5'-, m.p. $227-228^{\circ}$ (Me ester, m.p. 91-92°, b.p. 176-178°/high vac.), and 2-2' : 5'- dimethyl-3'-thienylquinoline-4-carboxylic acid, m.p. 214—215° (Me ester, m.p. 79—80°), decarboxylated by soda-lime at ~360° to 2-2'-methyl-5'-, m.p. 122— 123° (picrate, m.p. 192—194°), and 2-2': 5'-dimethyl-3'-thienylquinoline, an oil, respectively. 2-2'-Thienylquinoline, m.p. 132—133° (picrate, m.p. 194—195°), is similarly obtained from the 4-carboxylic acid.

R. S. C.

Thiophen series. XLVII. Phenyl 2-thienyl diketone and its oximes. W. STEINKOPF and, in part, G. BOKOR (Annalen, 1939, 540, 14—24).— Addition of C_5H_{11} ·O·NO to CH_2Ph 2-thienyl ketone and NaOEt in EtOH at <0° gives *Ph* 2-thienyl diketone Bz-syn-mono-oxime (I), m.p. 88°, the benzoate, m.p. 111—113°, of which is converted by hot, dil. Ph·C·CO·C H.S. Ph·C·OBz Ph·C·CO·C.H.S.

 $\begin{array}{ccc} {\mathop{\rm Ph}}\cdot {\mathop{\rm C}}\cdot {\mathop{\rm CO}}\cdot {\mathop{\rm C}}_4{\mathop{\rm H}}_3{\mathop{\rm S}} & {\mathop{\rm Ph}}\cdot {\mathop{\rm C}}\cdot {\mathop{\rm OBz}} & {\mathop{\rm Ph}}\cdot {\mathop{\rm C}}\cdot {\mathop{\rm CO}}\cdot {\mathop{\rm C}}_4{\mathop{\rm H}}_3{\mathop{\rm S}} \\ {\mathop{\rm OH}}\cdot {\mathop{\rm N}}\cdot {\mathop{\rm OH}} & {\mathop{\rm N}}\cdot {\mathop{\rm OH}} \\ {}_{({\rm I}.)} & {}_{({\rm III}.)} & {}_{({\rm IV}.)} \end{array}$

NaOH-EtOH into PhCN and thiophen-2-carboxylic acid (II) and is thus (III). H₂SO₄-EtOH rapidly or HCl-AcOH-Ac₂O slowly converts (I) at room temp. into PhCN and (II). Boiling, conc. H₂SO₄ (short treatment) or HCl-EtOH at room temp. converts (I) into the Bz-anti-mono-oxime (IV), m.p. 144°, the benzoate, m.p. 139-140°, of which regenerates (IV) with alkali and is thus the normal benzoate. Hot, conc. H₂SO₄ hydrolyses (I) or (IV) into Ph 2-thienyl diketone (V), m.p. 65-65.5°, which is yellow when melted and thereafter when cooled in Et₂O-CO₂, but becomes colourless again when recrystallised. When (I) is treated with NaOEt-EtOH and benzoin, the reaction, $(OK \cdot CPh:)_2 + (V) \rightarrow OK \cdot CPh \cdot COPh +$ OK·CPh·CO·C₄H₃S [or COPh·C(OK)·C₄H₃S], occurs, since subsequent oxidation gives (V) (47.6), Bz₂ (52.4), BzOH (77.64), and (II) (22.36%). With o-C6H4(NH2), at 125°, (V) gives 2-phenyl-3-2'-thienylquinoxaline, m.p. 128°. With NH2OH, HCl and aq. NaOH, (I) gives Ph 2-thienyl anti-diketoxime (VI), m.p. variable, 193-195° (diacetate, m.p. 173.5-175.5°), and some syn-diketoxime (VII), m.p. 173-175° [diacetate, m.p. 165—166° after sintering; obtained also from (VI) by NH_2OH , HCl and aq. NaOH or by conc. HCl at 60-65°]; hydrolysis of the diacetates regenerates the

$$\begin{array}{cccc} Ph \cdot C & \hline C \cdot C_4 H_3 S & Ph \cdot C & \hline C \cdot C_4 H_3 S \\ N \cdot OH & OH \cdot N & OH \cdot N & N \cdot OH \\ (VL) & (VIL) & (VIL) \end{array}$$

original dioximes. 2-Cyanothiophen, m.p. 51.5° , is obtained in ~70% yield from 2- ω -oximinoacetylthiophen by AcCl at 0° (less well by Ac₂O) and converted by conc. HCl into 2-thienylglyoxylic acid (80% yield), m.p. (+H₂O) 52-53°, (anhyd.) 91.5°. Passage of CH₂O into Mg 2-thienyl iodide in Et₂O (apparatus described) gives 66% of 2-hydroxymethylthiophen, b.p. 94.5-96°/12 mm. R. S. C.

Synthesis of thianthren (diphenylene disulphide) derivatives. Friedel-Crafts reaction with thianthren. Synthesis of 2:8-di-(α -hydroxy- β -piperidinoethyl)thianthren. M. TOMITA (J. Pharm. Soc. Japan, 1939, 58, 139–141; cf. A., 1939, II, 442).—Thianthren (I) (Friedel-Crafts) affords 2:8-di(chloroacetyl)- (II), m.p. 177°, and thence -di(piper-idinoacetyl)-, m.p. 129° (hydrochloride, m.p. 260°), and

2:8-di-(α -hydroxy- β -piperidinoethyl)-thianthren, m.p. 208°. (I) and AcCl-AlCl₃ give 2:8-diacetylthianthren, m.p. 157°, oxidised [as is (II) also] by CrO₃-AcOH to diphenylenedisulphone-2:8-dicarboxylic acid, m.p. >300°, obtained also by similar oxidation of 2:6-dimethylthianthren, m.p. 126°. A. T. P.

Phenoxthionine and thianthren derivatives. II. Synthesis of phenoxthionine and thianthren oxide derivatives. M. TOMITA and T. IKEDA (J. Pharm. Soc. Japan, 1938, 58, 231—232).—Phenoxthionine 10-oxide or 10:10-dioxide or thianthren 9:9:10:10-tetraoxide does not undergo the Friedel-Crafts reaction with CH₂Cl·COCl. H₂O₂ converts 2:8-dichloroacetylphenoxthionine into the 10:10-dioxide, m.p. 224—229°, and 2:6-dichloroacetylthianthren into the 9:9:10:10-tetraoxide, m.p. 209— 213°. With piperidine, these products give N- and Cl-free substances of high m.p., stated to be polymerised vinyl ketones. R. S. C.

Synthesis of phenoxthionine derivatives. I. Friedel-Crafts reaction with phenoxthionine. Synthesis of 2:8-di-(α -hydroxy- β -piperidinoethyl)phenoxthionine. M. TOMITA (J. Pharm. Soc. Japan, 1939, 58, 136—139).—Phenoxthionine and CH₂Cl·COCl-AlCl₃ afford 2:8-di(chloroacetyl)- (I), m.p. 193°, and thence, with piperidine, 2:8-di(piperidinoacetyl)-, m.p. 105°, and (Na-Hg) 2:8-di-(α -hydroxy- β -piperidinoethyl)-phenoxthionine, m.p. 133°. (I) and Zn-Hg give 2:8-diethylphenoxthionine (II), m.p. 205—206°, also obtained from the 2:8-Ac₂ derivative (III), m.p. 175° (prepared by Friedel-Crafts reaction), similarly. (4-C₆H₄Ac)₂O similarly affords 4:4'-diethyldiphenyl ether, b.p. 161—163°, converted by S-AlCl₃ into (II). (II) is oxidised (CrO₃) to 2:8-diethylphenoxthionine 10-dioxide (IV), m.p. >300° (Me₂ ester, m.p. 204—208°). (4-C₆H₄Me)₂O, S, and AlCl₃ afford 2:8-dimethylphenoxthionine, m.p. 73—74° (cf. Hilditch et al., J.C.S., 1911, **99**, 408), oxidised (CrO₃) to (IV).

Oximinopyrroles. XI. Transformation products of 3-oximino-2:5-dimethylpyrrole. Τ. AJELLO and S. CUSMANO (Gazzetta, 1939, 69, 207-214).—2:5-Dimethylpyrrole (new prep. from COMe [CH2]2 COMe and NH4OAc in boiling AcOH, followed by treatment with aq. NH3 and extraction with Et₂O) with NaOEt-EtOH and C₅H₁₁·O·NO gives the Na salt (I) of 3-oximino-2: 5-dimethylpyrrole. When (I) is acidified and the product steam-distilled or extracted with Et₂O, 3-acetyl-5-methylisooxazole (cf. Angelico and Calvello, A., 1904, i, 448; Schmidt and Widmann, A., 1909, i, 525) [oxime, m.p. 117° (Bz derivative, m.p. 180°); semicarbazone, m.p. 238-239°; azine, m.p. 156-158°] is formed. E. W. W.

Studies in the pyrrole series. I. Synthesis of certain N-alkyl-substituted 2:5-dimethylpyrrole-3(4)-carboxylic acid esters. N. M. TIMO-SCHEVSKAJA (J. Gen. Chem. Russ., 1939, 9, 406—408). —CH₂Ac·CHAc·CO₂Et and NH₂R in EtOH yield Et 1:2:5-trimethyl-, 2:5-dimethyl-1-ethyl, m.p. 25— 26°, -1-n-propyl-, b.p. 144°/4 mm., m.p. 44·5°, and -1n-butyl-pyrrole-3-carboxylate, b.p. 162—163°/4 mm. R. T.

Imidoporphyrins. VI. 2-Methyl-3: 4-diethyl- and 3: 4-diethyl-pyrrole. Curtius degradation of Et 2-methyl-3: 4-diethylpyrrole-5carboxylate. H. FISCHER, H. GUGGEMOS, and A. SCHÄFER (Annalen, 1939, 540, 30-50; cf. A., 1939, II, 288).-Numerous pyrrole, pyrromethene, and imidoporphyrin derivatives are synthesised. 3-Acetyl-5-benzeneazo-, m.p. 143° (hydrochloride, m.p. 134°), and -5-p-sulphobenzeneazo-2-methyl-4-ethylpyrrole, decomp. 222°, prepared by coupling, do not give the 5-aminopyrrole when hydrogenated (PtO2). N2H4-NaOEt-EtOH converts 3-acetyl-2-methyl-4-ethylpyrrole into 2-methyl-3: 4-diethylpyrrole (I), b.p. 104-106°/11 mm., and some 1-amino-2-methyl-3: 4-diethylpyrrole, m.p. 68°, b.p. 140°/11 mm. (*picrate*, m.p. 170°); H_2 -Raney Ni at 180°/200 atm. gives 70% of (I) and some of a substance, b.p. 76-77°/11 mm. (picrate, m.p. 115°). H_-Raney Ni similarly reduces Et 3-acetyl-2methyl-4-ethylpyrrole-5-carboxylate to Et 2-methyl-3: 4-diethylpyrrole-5-carboxylate (II) (42%), m.p. 75°, obtained also with some Et 2-methyl-3: 4-diethylpyrrole-1-carboxylate, an oil [readily converted into (I)], from (I) by ClCO₂Et. Photo-oxidation of (I) in Et₂O gives an oil, from which H₂O₂ yields 2-hydroxy-3:4diethylpyrrole-5-carboxylic acid, m.p. 124°. SO₂Cl₂ (3 mols.) and (II) give an oily Cl₃-derivative, hydrolysed by boiling H₂O to 2-carbethoxy-3: 4-diethylpyrrole-5-carboxylic acid, decomp. 264°, which with 10% NaOH at 160° yields 3:4-diethylpyrrole, b.p. 83°/10 mm. [PhN,-derivative, decomp. 222° (picrate, decomp. 182°); gives no picrate or 2-CHO derivative], unstable in air. N₂H₄, H₂O and (II) at 150° give the hydrazide, m.p. 163° (obtained similarly from the 1-CO₂Et-derivative), which with NaNO₂ in AcOH at $0-5^{\circ}$ yields 2-methyl-3:4-diethylpyrrole-5-carboxylazide (III), decomp. 98°. 1 mol. of SO₂Cl₂ in Et₂O converts (III) into an unstable Cl₁-derivative, which with MeOH at 35° gives 2-methoxymethyl-3: 4-diethylpyrrole-5-carboxylazide, decomp. 58°. 2 mols. of SO2Cl2 in Et₂O yield 2-dichloromethyl-3: 4-diethylpyrrole-5carboxylazide, decomp. 97°, converted by MeOH containing a little H₂O into 2-formyl-3: 4-diethylpyrrole-5-carboxylazide, decomp. 68°, and by CH2PhOH in boiling xylene into N-2-formyl-3: 4-diethyl-5-pyrryl-O-benzylurethane, decomp. 205° (azine, m.p. 198°). 3 mols. of SO₂Cl₂ with (III) in Et₂O gives an oily Cl₃derivative, which reacts violently with MeOH to give N-2-carbomethoxy-3:4-diethyl-5-pyrryl-O-methylurethane, m.p. 113°. Boiling MeOH or CH₂Ph·OH in boiling xylene converts (III) into urethanes, (IV) $C_{11}H_{18}O_3N_2$, decomp. 119°, and $C_{17}H_{22}O_3N_2$, decomp. 136°, respectively, which are probably auto-oxidation products, give no picrates, and yield oils with H2-Pdblack. In 50% AcOH at 100° (III) gives N_2 and 5-amino-2-methyl-3: 4-diethylpyrrole, an unstable oil (picrate, m.p. 182°); 5-amino-2:4-dimethyl-3-ethyl-pyrrole [5-aminocryptopyrrole] (picrate, m.p. 201°; picrolonate, darkens at 200°, decomp. 224°) is analogously obtained; it cannot be diazotised or acylated. A hygroscopic by-product obtained in the treatment of Et 3-acetyl-2:4-dimethylpyrrole-5carboxylate with N₂H₄-NaOEt (A., 1929, 1463) has m.p. 60° and is 1-aminocryptopyrrole. The 1-NH2derivatives obtained in such reactions are formed by ring-fission of the pyrroles to diketones, followed by

condensation thereof with N2H4. Et 2-bromomethyl-3: 4-diethylpyrrole-5-carboxylate (improved prep.), decomp. 120-121°, in a little boiling MeOH gives 3:4:3':4'-tetraethylpyrromethene-5:5'-dicarb-Et, oxylate, m.p. 98°, converted by boiling 50% KOH into a dicarboxylic acid, which with Br-AcOH affords 5:5'-dibromo-3:4:3':4'-tetraethylpyrromethene, m.p. 163° (hydrobromide). With NH₂-EtOH at 140°, this gives octaethyl-βδ- (or αγ-)di-imidoporphyrin (V), m.p. 291° (absorption max. at 6232 and 5411 A.; removed from Et_oO by 20% HCl), which is also obtained with a little octaethyl- $\alpha\gamma$ - ($\beta\delta$ -)di-imidoporphyrin (absorption max. 6132, 5580, and 5326 A.; removed from Et_2O by 11% HCl) from (IV) and NHPh·NH₂ at $180-240^{\circ}$. With AgOAc or KOAc in boiling AcOH or, much less well, with NaOMe at 160-165°, 5-bromo-5'-methyl-3:4:3':4'-tetraethylpyrromethene hydrobromide gives 5-hydroxy-5'-methyl-3:4:3':4'-tetraethylpyrromethene, m.p. 230°, converted by Br-AcOH into a violet, cryst. product, C₃₅H₄₆O₃N₄. 3-Bromo-2-for-myl-4-methyl-5-pyrryl-O-ethylurethane and cryptopyrrole in hot HBr-H2O-MeOH yield 3-bromo-4:3':5'-trimethyl-4'-ethylpyrromethene-5-ethylurethane, decomp. 154-155°. 2-Formyl-4-methyl-3-ethyl-5pyrryl-O-ethylurethane with cryptopyrrole in aq. HBr-AcOH or opsonic acid in aq. HBr-HCO₂H gives 4:3':5'-trimethyl-3:4'-diethylpyrromethene-5-O-benzylurethane, m.p. 140° (unstable hydrobromide), and CH_Ph 4: 3'-dimethyl-3-ethylpyrromethene-5-carbaminate-4'-propionic acid hydrobromide, m.p. 203-204°, respectively. R. S. C.

Reactions with amyl nitrite. II. T. AJELLO (Gazzetta, 1939, 69, 315–322).—2:3:5-Triphenylpyrrole with C_5H_{11} ·O·NO (I) in Et₂O gives 4-nitro-2:3:5-triphenylpyrrole (II), m.p. 192–194°, reduced (Al in 30% KOH) to the 4-NH₂-compound, to which the *Me ether*, m.p. 195°, of (II) is also reduced by Zn-AcOH. 2:5-Diphenylpyrrole and (I) give a substance, $C_{16}H_{12}O_3N_2$ (?), m.p. 300°, and 3-nitro-2:5-diphenylpyrrole (III), m.p. 174°, reduced as above to the NH₂-compound, to which the *Me ether* is also reduced. With (I), oximino-di- and -tri-phenylpyrrole give (II) and (III), respectively. E. W. W.

Local anæsthetics from β -2-piperidylethyl alcohol. L. A. WALTER and R. J. FOSBINDER (J. Amer. Chem. Soc., 1939, 61, 1713-1714).-2-β-Hydroxyethylpiperidine hydrochloride and the appropriate acid chloride (1 mol.) in hot, dry CHCl3 give β-2-piperidylethyl benzoate, m.p. 189-191° (lit., 182-183°), p-, m.p. 209-210°, m-, m.p. 170-172°, and o-nitro-, m.p. 148-150°, p-, m.p. 249-251°, m-, m.p. 177-180°, and o-amino-, m.p. 209-211° p-ethoxy-, m.p. 146-148°, 3-nitro-, m.p. 150-155° and 3-amino-4-ethoxy-benzoate, m.p. 173-175°, and cinnamate, m.p. 180-182°. The N-phenylurethane has m.p. 200-202°. A few pharmacological data are given. 2-β-Hydroxyethylpiperidine is best (15–20%) obtained from α -picoline (1) and 40% CH₂O (2 parts by wt.) at 120°, followed by Na-EtOH. Li picolinyl with (CH₂)₂O or MeCHO gives 40% of 2-y-hydroxy-n- and 2-a-hydroxyiso-propylpyridine, readily reduced to the piperidinyl alcohols. M.p. are R. S. C. corr.

EE (A., II.)

Catalytic transformations of heterocyclic compounds. XII. Conversion of tetrahydropyran into piperidine, N-ethylpiperidine, and tetrahydrothiopyran. J. K. JURIEV, E. J. PERVOVA, and V. A. SAZONOVA. XIII. Synthesis of pyrrolidine and thiophan by catalytic dehydration of butane- $\alpha\delta$ -diol in presence of ammonia or hydrogen sulphide. J. K. JURIEV and N. G. MEDOVSOHTSOHI-KOV (J. Gen. Chem. Russ., 1939, 9, 590-594, 628-630).—XII. Tetrahydropyran passed in a stream of NH₃ over Al₂O₃ at 360-430° gives piperidine (I) in 20% yield; N-ethylpiperidine is prepared analogously, with NH₂Et, and tetrahydrothiopyran (II) with H₂S. (I) and H₂S at 415° (Al₂O₃ catalyst) yield (II).

XIII. $(OH \cdot CH_2 \cdot CH_2)_2$ and NH_3 or H_2S at 400° similarly give pyrrolidine (35% yield) or thiophan (63% yield). R. T.

Hydrogenation of hydroxy-amides. J. D. D'IANNI and H. ADKINS (J. Amer. Chem. Soc., 1939, 61, 1675-1681).-Hydrogenation of α-, γ-, δ-, and ε-OH-amides gives mainly NH2-alcohols, better in presence of Cu chromite at $250-260^{\circ}$ than of Raney Ni at 225° , β -OH-amides are reduced and dehydrated. More complex cases are also studied. Lactopiperidide, b.p. 128–129°/7 mm., with H₂-Cu chromite and H₂-Ni, respectively, gives β -piperidinoisopropyl alcohol (51, 27%), $\alpha\beta$ -dipiperidinopropane (10, 0%) (picrate, m.p. 171–172°), OH-CHMe-CH₂-OH (10, 18%), piperidine (I) (10, 38%), and 1-n-propyl-piperidine (4, 0%). β -Hydroxybutyropiperidide (prep. from the Et ester at 200°), b.p. 118–123°/7 mm., with H2-Cu chromite gives 1-n-butylpiperidine (78) and (I) (12%), but with H_2 -Ni gives n-butyropiperidide (86%), b.p. 105-109°/7 mm., and (I) (12%). γ -Hydroxy-*n*-valeropiperidide with H_2 -Cu chromite or -Ni, respectively, gives ε -piperidinopentan- β -ol (79, 15%), b.p. 107°/6 mm. (picrate, m.p. 97–98°), $\alpha\delta$ -dipiperidino-n-pentane (6, 0%), b.p. 118–119°/1 mm. (dipicrate, m.p. 168–169°), (I) (7, 44%), and γ -valerolactone (0, 58%). δ -Hydroxy-n-hexopiperidide, b.p. 135-140°/1 mm., with H2-Cu chromite or -Ni, respectively, gives ζ -piperidino-n-hexan- β -ol (76, 34%), respectively, gives ζ -piperiaino-n-hexan- β -ol (16, 34%), b.p. 123—125°/7 mm. (picrate, m.p. 86—89°), $\alpha \varepsilon$ -dipiperidino-n-hexane (6, 0%), b.p. 122—123°/0-5 mm. (dipicrate, m.p. 166—167°), (I) (4, 29%), and δ -hexolactone (0, 15%). ε -Hydroxy-n-heptopiperidide, b.p. 145—148°/0-5 mm., with H₂-Cu chromite gives η -piperidino-n-heptan- β -ol (60%), b.p. 105—106°/1 mm. (picrate, m.p. 62—64°), $\alpha \zeta$ -dipiperidino-n-heptane (149%) b.p. 127–120°(1) mm. (dipicrate, m.p. 202 (14%), b.p. 127-130°/1 mm. [dipicrate, m.p. 203-205° (decomp.)], heptane- $\alpha\zeta$ -diol (26%), and (I) (9%). *n*-Hexopiperidide is largely unchanged by H₂-Raney Ni, giving $n-C_6H_{13}$ OH (5), (I) (7), and 1-*n*-hexyl-piperidine (6%). NN-*Di*-n-amylmalonamide, b.p. b.p. 146°, with H₂-Cu chromite gives 1-*n*-amylpyrrolidone (32), NH(C_5H_{11})₂ (30), succin-*n*-amylimide (14), NN-*di*-n-*amylsuccinamide* (12), b.p. 180—181°, 1-*n*-amylpyrrolidine (II) (9), and NH₂· C_5H_{11} -*n* (7%); NN-*di*-n-*amyltartaramide*, b.p. 194—195°, gives NH(C_5H_{11} -*n*)₂ (20), (II) (11), and NH₂· C_5H_{11} -*n* (20), E_5H_{11} -*n*)₂ (20), (II) (11), and NH₂· C_5H_{11} -*n* (8%); 5-phenyl-2: 4-dimethyl-4-oxazolidone gives mandelamide (35), OH·CHPh·CH₂·OH (29), $CH_2Ph \cdot CH_2 \cdot OH$ (3), and $NHPr_2^\beta$ (47%). Muco-

XVII(d)

dipiperidide (344 g.), b.p. 231° (decomp.), with H_o-Cu chromite at 250° (less well at 225-235° or with Raney Ni at 175-200°) suffers fission only between $C_{(\beta)}$ and $C_{(\gamma)}$, giving (1) (23), 1-ethyl- (10), 1-n-butyl- (7.5), 1- β -hydroxyethyl-. (7), 1-acetyl-(4.2), and ζ -hydroxy-*n*-hexyl-piperidine (11.5), $\alpha\beta$ dipiperidinoethane (12), $\alpha\delta$ -dipiperidino-*n*-butane (44) (dipicrate, m.p. 185-186°), aζ-dipiperidino-n-hexane (12.5), αζ-dipiperidino-n-hexan-β-ol (22), b.p. 125-130°/1 mm. (dipicrate, m.p. 138-139°; dihydrochloride, m.p. 189—191°), αζ-dipiperidino-n-hexane-βε-diol (16), b.p. 150—160°/1 mm. (dipicrate, m.p. 170— 173°), and adipdipiperidide (11 g.). Boiling (I) with OH·CHMe·CH₂·CO₂Et or OH·CMe₂·CO₂Et gives mainly β - β' -hydroxybutyroxybutyropiperidide, b.p. 105—110°/1 mm., and α - α' -hydroxyisobutyroxy-isobutyropiperidide, b.p. 108—108.5°/1 mm., respectively. R. S. C.

1-Azadicyclo-[1:3:3]-nonane. V. PRELOG, S. HEIMBACH, and R. SEIWERTH (Ber., 1939, 72, [B], 1319-1325).-CH₂(CO₂Et)₂, NaOEt, and OPh [CH2]3 Br in boiling EtOH afford Et, y-phenoxypropylmalonate, b.p. 207-208°/7 mm., converted by prolonged boiling with OPh [CH2]Br and NaOEt in EtOH into Et₂ di-y-phenoxypropylmalonate, b.p. 245-250°/0.01 mm., m.p. 42-43.5°; the corresponding acid, m.p. 123-123.5°, is decarboxylated at 180-200° to an-diphenoxyheptane-S-carboxylic acid, m.p. 65°, the Et ester, b.p. $248^{\circ}/0.05$ mm., of which is reduced by Na-abs. EtOH to $\alpha\eta$ -diphenoxy- δ -hydroxymethylheptane, b.p. $255^{\circ}/0.3$ mm.; this with $68^{\circ}/_{0}$ HBr at 100° gives $\alpha\eta$ -dibromo- δ -bromomethylheptane, b.p. 170—175°/0.03 mm., which does not yield a tert. base when heated with NH₃-MeOH. Et nicotinoylacetate hydrochloride is reduced (PtO2 according to Bruce in EtOH) to Et β -3-piperidylpropionate (I), b.p. 141-142°/10 mm. (yield 33.5% varying greatly with quality of catalyst). 3- β -Piperidylpropionic acid hydrochloride has m.p. 229°. Na and boiling EtOH reduce (I) to γ -3-piperidylpropanol, b.p. 154°/10 mm., whence 3-y-bromopropylpiperidine hydrobromide, m.p. 154°, transformed by 0.1N-NaOH at 50° into 1-azadicyclo-[1:3:3]-nonane (II), b.p. ~175°, m.p. 114° (hydrochloride, volatilises without melting at >350°; platinichloride, m.p. 226°; picrate, m.p. 283°; picrolonate, m.p. 231°; methiodide, m.p. 351°). Et $\alpha\eta$ -diethoxyheptane- δ -carboxylate, b.p. 166—168°/22 mm., is reduced by Na and abs. EtOH to an-diethoxy-8-hydroxymethylheptane, b.p. $158-161^{\circ}/15$ mm., converted by PBr₃ and C₅H₅N into $\alpha\eta$ -diethoxy- δ -bromomethylheptane, b.p. $153^{\circ}/11$ mm. This with KCN in EtOH-H₂O gives $\alpha\eta$ -diethoxy- δ -cyanomethylheptane, b.p. $171-172^{\circ}/12$ mm., hydrolysed to z-ethoxy-a-y'-ethoxypropylhexoic acid, b.p. 206°/12 mm., which is converted through the azide into $\alpha \eta$ -diethoxy- δ -aminomethylheptane, b.p. 150—151°/10 mm. The corresponding hydrobromide and 67% HBr at 100° afford $\alpha\eta$ -dibromo- δ -aminomethylheptane hydrobromide, m.p. 159°, converted by 0.1N-NaOH at 50° into (II) in 79% yield. All m.p. are corr. H. W.

Hydrogenations in the pyridine series. P. KARRER (Annalen, 1939, 539, 297–298).—Concerning priority (cf. Mumm et al., A., 1939, II, 339). R. S. C.

Polarisation in heterocyclic rings with aromatic character. E. OCHIAI (J. Pharm. Soc. Japan, 1939, 59, 20-28).-Examination of the literature of heterocyclic compounds from the electronic viewpoint shows that, as with isocyclic compounds, the chemistry of heterocyclic compounds can be divided into rings of alicyclic and aromatic character. The heterocyclic rings of alicyclic type can be considered in accordance with that of aliphatic derivatives and those of aromatic character can be treated in the same manner as C₆H₆ derivatives if the following hypotheses are accepted. The development of aromatic character in heterocyclic rings is due to the presence of six-membered rings with three conjugated double linkings or of five-membered rings which contain at least one hetero-atom (O, S, Se) or radical (NH) with a lone pair of electrons and two double linkings. Gradual differences are observed in the intensity of the aromatic character of aromatic heterocyclic rings. The most important underlying factor is the polar effect of the hetero-atoms, particularly of those with a lone pair of electrons. The chemical reaction of the heterocyclic ring of aromatic character is greatly influenced by the polar effect of the hetero-atoms of the rings. Substituents which are present exert their polar effect. It is therefore possible that the substitution of hetero-rings which are devoid of substituents occurs in the same manner as the reaction of substitution products of C₆H₆ which are similarly polarised. Thus pyrrole and PhOH, C₅H₅N and PhNO₂ have many properties in common. These four hypotheses are in good agreement with the behaviour of compounds with one ring and one hetero-atom. Detailed consideration is given to polarisation in the furan, thiophen, and pyrrole rings and in the C₅H₅N ring. H. W.

Pyrid-2-one-5-sulphonamide and certain derivatives. C. NAEGELI, W. KÜNDIG, and H. BRAN-DENBURGER (Helv. Chim. Acta, 1939, 22, 912-924).-2-Chloropyridine-5-sulphonamide is converted by 10% NaOH at 110° into pyrid-2-one-5-sulphonamide, m.p. 269-271°, in 88% yield, which is not increased by the addition of Cu powder or CuSO4; aq. Na2CO3 or NaHCO₃ is without action. 2-Chloropyridine-5-sul-phonyl chloride and 33% NH₂Me in COMe₂ afford 2-chloropyridine-5-sulphonmethylamide, m.p. 111-112°, transformed by boiling 10% NaOH containing Cu powder into pyrid-2-one-5-sulphonmethylamide, m.p. 188-190°. The following are analogously obtained : 2-chloropyridine-, m.p. 115-117°, and pyrid-2-one-, m.p. 212-214°, -5-sulphondimethylamide; 2-chloropyridine-, m.p. 86-87°, and pyrid-2-one-, m.p. 163.5-165°, -5-sulphondiethylamide; 2-chloropyridine-, m.p. 78°, and pyrid-2-one-, m.p. 159-160°, -5-sulphonallylamide; 2-chloropyridine-, m.p. 90-92°, and pyrid-2-one-, m.p. 178°, -5-sulphon-n-butylamide; pyrid-2-one-5-sulphonanilide, m.p. 214—215°; 2-chloropyridine-, m.p. 116—118°, and pyrid-2-one-, m.p. 169—172°, -5-sulphoncyclohexylamide; 2-chloropyridine-, m.p. 131-132°, and pyrid-2-one-, m.p, 236–238°, -sulphonpiperidide; pyrid-2-one-5-sulphon-morpholide, m.p. 262–264°; 2-chloropyridine-, m.p. 197°, and pyrid-2-one-, m.p. 282°, -5-sulphon-p-nitroanilide-, pyrid-2-one-5-sulphon-p'-aminoanilide, m.p. 246°; N⁴ pyrid-2' one-5'-, m.p. 250-252°, N'-2''-pyridyl-周围(1. 11.) 周周

N⁴-2'-chloropyridine-5'-, m.p. 266°, and N'-2''-pyridyl-N⁴-pyrid-2'-one-5'-sulphonyl-5'-, m.p. 301-302°, -sulphonylsulphanilamide; 2-(pyrid-2'-one-5'-sulphonamido)pyridine-5-sulphonamide, m.p. 295° (incipient decomp.); 2-2'-Chloropyridine-5'-sulphonamidopyridine, m.p. 235-236°, and 2-(NN-di-2'-chloropyridine-5'-sulphon)amidopyridine, m.p. 197-199°, are described. 2-2'-Ethoxypyridine-5'-sulphonamidopyridine and 2-butoxypyridine-5'-sulphonamidopyridine and 2-butoxypyridine-5-sulphonallylamide have m.p. 180° and 67-68°, respectively. H. W.

Indoline aldehydes.—See B., 1939, 809.

Synthesis of nitrogen ring compounds. XII. Synthesis of quinoline derivatives. II. Synthesis of 6: 7-dimethoxyquinoline. S. SUGASAWA, К. Какеми, and Т. ТSUDA (J. Pharm. Soc. Japan, 1938, 58, 80—82).—3:4:1-(OMe)₂C₆H₃·[CH₂]₂·CO₂H with HNO3-AcOH at 40-50° gives 6-nitro-3:4dimethoxyhydrocinnamic acid, m.p. 188°, reduced catalytically in EtOH at 2 atm. to 6:7-dimethoxyhydrocarbostyril (I), m.p. 136° (not obtained by action of HN3 on 5: 6-dimethoxyhydrindone), identified by its prep. by reduction of 6-nitro-3 : 4-dimethoxycinnamic acid. With P_2S_5 and K_2S in xylene at 90–95°, (I) gives 6:7-dimethoxyhydrothiocarbostyril, m.p. 151°, reduced electrolytically in 20% EtOH-H₂SO₄ (Pb anode; 1 amp. per sq. cm.; 25-35°) to 6:7-dimethoxy-1:2:3:4-tetrahydroquinoline (hydrochloride, m.p. 196°; NO-derivative, m.p. 137°; Bz derivative, m.p. 102°). This is dehydrogenated (method : Hoshino and Takiura, A., 1936, 863) to 6:7-dimethoxyquinoline [hydrochloride, m.p. 232° (decomp.); picrate, E. W. W.

[Attempted] Ullmann reaction with nitrogenous heterocyclic compounds. M. TOMITA and H. WATANABE (J. Pharm. Soc. Japan, 1938, 58, 223-230).-Condensation of 7-hydroxy-6-methoxy-2-methyl-1:2:3:4-tetrahydroisoquinoline (I) with 8bromo-6: 7-dimethoxy-2-methyl-1: 2:3: 4-tetrahydroisoquinoline (II) by KOMe and Cu catalysts, first at 180° and then at 220°, failed, giving unchanged (I) and, by debromination of (II), the Me ether of (I). 3:4:1-OMe•C₆H₃(O•CH₂Ph)•CH•CH•NO₂ [prep. in 75% yield from 3:4:1-OMe·C₆H₃(O·CH₂Ph)·CHO and MeNO2 by NH2Me, HCl and Na2CO3 at room temp.], m.p. 123-124°, is reduced electrolytically to 3:4:1-OMe·C₆H₃(O·CH₂Ph)·[CH₂]₂·NH₂, the hygroscopic formate, m.p. 146-149° (decomp.), of which at 180-200°/vac. yields the N-CHO derivative, m.p. 57-63°. With POCl₃ in hot PhMe this gives 7-benzyloxy-6methoxy-3: 4-dihydroisoquinoline (24%), m.p. 183° 7-hydroxy-6-methoxy-3: 4-dihydroisoquinoline, (and m.p. 182°), which affords the methiodide, m.p. 194°, and thence the hygroscopic methochloride, which, best, with H₂-PtO₂ in H₂O gives (I), m.p. 167°. 5-Bromo-w-nitro-3: 4-dimethoxystyrene, m.p. 159°, is obtained from 3:4:5:1-(OMe)₂C₆H₂Br·CHO [prep. from $4:3:5:1-OH \cdot C_6H_2Br(OMe) \cdot CHO$ by $Me_2SO_4-NaOH]$, MeNO₂, and KOH-aq. EtOH, and by the methods given above yields β-5-bromo-3: 4-dimethoxyphenylethylamine (formate, hygroscopic; N-CHO derivative, an oil), 8-bromo-6: 7-dimethoxy-3: 4-dihydroisoquinoline, m.p. 102° [hydrochloride, decomp. E E* (A., II.)

196°; methiodide, m.p. 179° (decomp.); methochloride, hygroscopic], and (II), an oil [platinichloride, m.p. 213° (decomp.); hydrochloride, hygroscopic, m.p. 210°]. The structure of (II) is proved by its prep. from (I) by Br-AcOH (gives the 8-Br-derivative, m.p. 185°), followed by CH_2N_2 . R. S. C.

Amyostatic poisons. Synthesis of polyaminohydrocarbostyrils. U. UEDA (Proc. Imp. Acad. Tokyo, 1939, 15, 148-155).-The structure of the derivatives described below is proved by the oxidations noted. Nitro- and particularly polynitrohydrocarbostyrils suffer ring-fission by 0.5N-NaOH and the resulting acids can be isolated. Aminohydrocarbostyrils are usually too unstable to be isolated except as salts. Colour reactions with Br-H₂O distinguish 3-NH2- and 3: 6-(NH2)2- from 3: 8-(NH2)2and $3:6:8\cdot(\mathrm{NH}_2)_3$ -derivatives. Hydrocarbostyril (I) with H₂SO₄-NHO₃ (d 1·52) at 0° gives the 6-NO₂-derivative (II), m.p. 203–204° [oxidised by KMnO₄] to 5:2:1-NO2·C6H3(NH2)·CO2H], converted by further nitration into the $6: 8-(NO_2)_2$ -derivative (III), m.p. 177°, also obtained directly from (I) (cf. Menon et al., A., 1930, 795). Zn-HCl at 100° reduces (II) to 6-aminohydrocarbostyril, m.p. 178° (hydrochloride, decomp. ~315°; Bz, m.p. 241°, and Ac derivative, m.p. 263-264°). With 0.05N-KOH at 100°, (III) gives β -3: 5-dinitro-2-aminophenyl propionic acid, but with hot N-NaOH gives 2:3:5:1-

OH·C₆H₂(NO₂)₂·[CH₂]₂·CO₂H, m.p. 159—160°. Zn-HCl and (III) give 6:8-diaminohydrocarbostyril (Bz_2 derivative, m.p. 264—265°). H₂SO₄-HNO₃ (d 1·52) at 100° oxidises as well as nitrates (I), giving 3:6:8-trinitrocarbostyril (IV), m.p. 182° (cf. Kaufmann, A., 1917, i, 354). 6:8-Dinitro-3-acetamido-hydrocarbostyril (V) (prep. from the 3-NHAc-compound), m.p. 235°, and K₂Cr₂O₇ in hot 30% H₂SO₄ give 2:3:5:1-NH₂·C₆H₂(NO₂)₂·CO₂H and thence by NaOH 2:3:5:1-OH·C₆H₂(NO₂)₂·CO₂H. Hot 0·05N-NaOH converts (V) into *α*-acetamido-β-3:5-dinitro-2-aminophenylpropionic acid, m.p. 225° (decomp.), and Zn-HCl yields 3:6:8-triaminohydrocarbostyril [hy-drochloride; Bz_3 derivative, m.p. 250°, obtained also from (IV) by red P and HI (d 1·7) and subsequent benzoylation, whence the structure of (IV) follows].

Sharp-tasting acylamines. T. Széki (Math. nat. Anz. ung. Akad. Wiss., 1936, 54, 807-818; Chem. Zentr., 1937, i, 1690; cf. A., 1930, 597).-Piperoylpyrrolidine, m.p. 144°, which is analogous in constitution to piperine, has a sharp taste. The aminophenol group in the spicy acylamines may be replaced by an NH2-alcohol; thus NH2.[CH2]3.OH gives spicy derivatives (piperoyl-, m.p. 148.5°, producing a strong burning action on the mucous membrane; undecenoyl-, m.p. 53°, similar in odour to capsaicine). Piperoyl-β-aminoethanol, m.p. 162°, has no spicy character, but the undecenoyl derivative, m.p. 70.5°, has a sharp, aromatic taste. Substitution of C6H3:O2CH2 or C6H3(OMe)2 in the C-chain of the NH_2 ·[CH₂]₃·OH grouping (β -undecenamido- α -hydroxy-dihydroisosafrole, m.p. 95°, and -dihydroisoeugenol Me ether, m.p. 91°) destroys the spicy taste. Compounds of unsaturated acids with piperidine and pyrrolidine (undecenoyl-, b.p. 170°/3 mm, and 168°/3 mm., respectively) are spicy. Undecenoyl-4-aminoquinoline, m.p. 71.5° (hydrochloride, m.p. 169°), -tetrahydroquinoline, b.p. 234—235°/4 mm., piperoyl-4-aminoquinoline, m.p. 233°, -tetrahydroquinoline, m.p. 145°, and diundecenoylpiperazine, m.p. 63°, are tasteless. The prep. of the above compounds from the base and piperoyl or undecenoyl chloride is described.

A. J. E. W.

Constitution of the quinaldinic acids. V. M. MITCHOVITCH (Bull. Soc. chim., 1939, [v], 6, 1156— 1162).—Me₂ quinaldine-3: 4-dicarboxylate (A., 1938, II, 293) and excess of PhCHO at 160—165° afford the *CHPh*: derivative, m.p. 124°, hydrolysed by KOH-EtOH to 2-styrylquinoline-3: 4-dicarboxylic acid (I), $+H_2O$, m.p. 213° [= m.p. of (II)]. It loses 2H₂O at 100—110°/0·2 mm. to give the anhydride (II), m.p. 213°, convertible into (I). (I) and KMnO₄-aq. KOH at 100° (bath) give quinoline 2: 3: 4-tricarboxylic acid, $+H_2O$, m.p. 254° (decomp.) (Me₃ ester, m.p. 102·5°). Isatic acid and CO₂H·[CH₂]₂·CO·CO₂H afford quinoline-3-acetic acid-2: 4-dicarboxylic acid, m.p. 245° (decomp.) [Et₂ ester, m.p. 195° (decomp.)]. A. T. P.

Quinoline series. IV. New synthesis of quinic acid. E. THIELEPAPE and A. FULDE (Ber., 1939, 72, [B], 1432-1443).-Acet-N-methyl-p-methoxyacetanilide is converted by $Et_{2}C_{2}O_{4}$ and NaOEt in Et₂O into ethoxalylacet-N-methyl-p-methoxyacetanilide, m.p. 80.0-80.5° (corr.) [Cu salt, m.p. 194-195° (corr.)], converted by conc. H_2SO_4 at $< -5^\circ$ into Et 2-keto-6-methoxy-1-methyl-1:2-dihydroquinoline-4carboxylate (I), m.p. 105° (corr.), which is hydrolysed by aq. NaOH to the *acid*, m.p. 316-317° (corr.) [*Me* ester, m.p. 113° (corr.)]. Addition of (I) to a boiling solution of PCl₅ in POCl₃ affords Et 2-chloro-6-methxoyquinoline-4-carboxylate (II), m.p. 100° (corr.), hydrolysed by boiling very dil. NaOH to 2-chloro-6methoxyquinoline-4-carboxylic acid (III), m.p. 230° (corr.; decomp.). Boiling 30% NaOH transforms (II) into 2-hydroxy-6-methoxyquinoline-4-carboxylic (11) Into 2-Hydroxy-to-interloxy-quinointer respinse acid, m.p. $335-336^{\circ}$ (corr.) [Me, m.p. $233-234^{\circ}$ (corr.), and Et, m.p. 195° (corr.), ester]. Red P, KI, and HI (d 1.5 or 1.7) transform (II) at 100° and sub-sequently at 150° into 2-iodo-6-methoxyquinoline-4carboxylic acid (IV), m.p. 190° (corr.; decomp.) after becoming brown at 186° (corr.). (II) is transformed by SnCl, and HCl (d 1.19) at 100° into 6-methoxyquinoline-4-carboxylic (quinic acid), m.p. 285° (corr.; decomp.) [hydrazide, m.p. 154° (corr.); aurichloride, m.p. 223° (corr.); stannichloride,

 $(C_{11}H_9O_3N,HCl)_2ShCl_4$, m.p. 274—275° (corr.; decomp.); *picrate*, m.p. 244° (corr.); Et, m.p. 69° (corr.), and Me, m.p. 87° (corr.), ester]. Dechlorination of (II) or (III) could not be effected in presence of Pt-sponge, whereas Pd-BaSO₄ is almost quantitatively efficient at room temp. Dehalogenation of (IV) occurs slowly in presence of Pt-sponge. H. W.

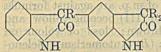
Course of the quinoline synthesis with tetrahydronaphthylamines. 7:8-Tetramethylenequinoline. J. LINDNER and B.ZAUNBAUER (Monatsh., 1939, 72, 213—215).—1-Aminotetrahydronaphthylamine, glycerol, H_2SO_4 , and PhNO₂ afford 7:8tetramethylenequinoline, m.p. 26° [hydrochloride, m.p. ~215° (decomp.); picrate, m.p. 186°]. H.W.

Hydrindene derivatives. III. 7:8-Trimethylene-quinoline and -quinaldine. J. LINDNER, J. SELLNER, and A. BERGER. IV. 5:6- and 6:7-Trimethylenequinoline. J. LINDNER, J. SELLNER, E. HOFMANN, and J. HAGER. V. 5:6- and 6:7-Trimethylenequinaldine. J. LINDNER, A. BER-GER, and W. MIGNON. VI. Action of formaldehyde on, and proof of the constitution of, 6:7-trimethylenequinaldine. J. LINDNER and J. HAGER (Monatsh., 1939, 72, 330-334, 335-349, 354-360, 361-367).-III. 4-Aminohydrindene with glycerol, conc. H2SO4, and PhNO2 gives 7: 8-trimethylenequinoline, m.p. 51-53° [hydrochloride, decomp. ~210°; hydrobromide, decomp. ~210°; hydriodide, decomp. >210°: picrate, m.p. 211-212° (decomp. from $\sim 207^{\circ}$], and with MeCHO, HCl, and H₂SO₄ at 100° gives 2-methyl-7:8-trimethylenequinoline, m.p. 89° (hydrochloride, decomp. 250°; hydrobromide, decomp. ~230°; hydriodide, decomp. ~240-250°; picrate, m.p. 190-191°).

IV. 5-Aminohydrindene (I) gives >90% of 6:7-(II), m.p. 79-80.5° [hydrochloride; hydrobromide; hydriodide; picrate, m.p. 269-271° (decomp.)], and <10% of 5:6-trimethylenequinoline (III), m.p. 43-44.5° (hydrochloride; hydrobromide; hydriodide; picrate, m.p. 190-191°). KMnO₄ converts (II) into quinoline-6:7-dicarboxylic acid, m.p. 240-250° (decomp. from 230°) (Me₂ ester, m.p. 104.5°). (III) gives the known quinoline-5: 6-dicarboxylic acid, m.p. 228° (lit., 238-241°) (Me₂ ester, sinters at 119°, m.p. 120-121°).

V. By the Döbner-Miller quinaldine synthesis, (II) gives 2-methyl-6: 7- (IV), m.p. 93—95° (hydrochloride; hydrobromide, decomp. ~185°; hydriodide, decomp. ~190—195°; picrate, m.p. 202—203°), with a very small amount of -5: 6-trimethylenequinoline (V), m.p. 53—54° (picrate, m.p. 193—194°).

VI. The constitution of (IV) and thus by exclusion of (V) is proved as follows. 70% of (IV) is recovered after heating with 40% aq. CH₂O (0.85 mol.) at 100°, but the remainder yields 6:7-trimethylene-2- β -hydroxyethyl- (VI), m.p. 92—93°,-2- β F'-dihydroxyisopropyl-, m.p. 121—122°, and -2- β F'/-trihydroxy-tert.-butylquinoline, m.p. 165°. With HI (d 1.96) and red P at 100°, (VI) gives 6:7-trimethylene-2- β -iodoethylquinoline, an oil [hydriodide, m.p. 124° (sinters at 120°; decomp. from 100°)], converted by conc. NaOH-H₂O-COMe₂ into 6:7-trimethylene-2-vinylquinoline, m.p. 65°, which with KMnO₄-H₂SO₄ at 0° gives 6:7-trimethylenequinoline-2-carboxylic acid, decomp. ~208—210°. This, when heated with Ba(OH)₂ in N₂ at 220—230°/vac., gives (II).


The above reactions show that the ethylenic linkings of hydrindene exist mostly, but not entirely, as in $CH \cdot CH \cdot C \cdot CH_2 > CH_2$. R. S. C. $CH \cdot CH \cdot C \cdot CH_2$

Heterocyclic derivatives of *p*-aminobenzenesulphonamide and 4:4'-diaminodiphenylsulphone. W. H. GRAY (J.C.S., 1939, 1202).—*p*-Aminobenzenesulphonamide with 2-chloropyridine (I) gives p-(2-*pyridylamino*)-, m.p. 235°, and with 2-chloroquinoline (II) affords p-(2-quinolylamino)-benzenesulphonamide, m.p. 263° (hydrochloride, m.p. 279°). *pp*'-Diaminodiphenylsulphone with (I) yields pp'-bis-(2-pyridylamino)-, m.p. 241°, and with (II) gives

-(2-quinolylamino)-diphenylsulphone, m.p. 306°. These compounds have low toxicity but are inactive in streptococcal and pneumococcal infections of mice. F. R. S.

10-Substituted acridoneanils and acridoneazines. K. GLEU and R. SCHAARSCHMIDT (Ber., 1939, 72, [B], 1404-1407).—The additive compound (I) of 10-methylacridine and POCl₃ is almost instantaneously converted by NH₂Ph in cold H₂O into 10-methylacridoneanil, m.p. 162°. 10-*Ethyl*-, m.p. 147°, and 10-*phenyl*-, m.p. 142°, -*acridoneanil* are obtained similarly. Under analogous conditions (I) and N2H4,H2O afford 10-methylacridoneazine, m.p. 290°; the hydrazone is not obtained even with a very large excess of N₂H₄, H₂O. 10-Ethyl-, m.p. 204°, and 10-phenyl-, m.p. 286°, -acridoneazine are described. H. W.

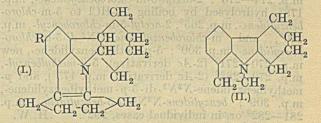
Diphenylisatin and its derivatives. III. Byproducts of dianisylisatin and their oxidation products. IV. Monobromo-compounds of dianisylisatin and their oxidation products. V. Oxidation product of diacetoxyphenylisatin. VI. Ditolylisatin and its oxidation products. VII. Synthetic preparation of phenyldioxindoles and their oxidation products. S. INAGAKI (J. Pharm. Soc. Japan, 1939, 59, 1-4, 4-5, 5-6, 7, 7-10).-III. The by-product, m.p. 325-327°, of the condensation of isatin with anisole is identified as

an isylisatyl dianisylisatin-CR₂ (I). It is oxidised by

CO it yields a Me_2 compound and is acetylated to a diacetate. Bromination of dianisylisatin (II) gives a 5-bromodianisylisatin. Oxidation with CrO3 in AcOH causes union of 1 O with each isatin nucleus and acetylation of 1 NH, giving a compound, decomp. 178-180°; this when treated successively with conc. H₂SO₄, H₂O, and NaOH gives o-amino-p'-methoxy-benzhydrylanhydro-2-acetamido-4': 4''-dimethoxytriphenylcarbinol or anhydro-o-acetamido-p'-methoxybenzhydryl-2-amino-4': 4"-dimethoxytriphenylcarbinol, m.p. 203-204°. Isatin is converted by Mg o-methoxyphenyl iodide into o-methoxyphenylisatylcarbinol, m.p. 240°; this with anisole and conc. H₂SO₄ yields 3-2': 4"-dimethoxydiphenylisatin, m.p. 232° (Ac derivative, m.p. 172°), which is not identical with (I); it is oxidised and then converted by H_2SO_4 , H_2O , and NaOH into 2'-amino-2": 4" - dimethoxytriphenylcarbinol.

IV. 4-, 5-, 6-, and 7-Bromoisatin have been prepared and the position of Br therein has been determined by oxidation by H_2O_2 to the corresponding bromoanthranilic acids. They condense with anisole in AcOH containing conc. H₂SO₄ to 4-, m.p. 211°, 5-, m.p. 220°, 6-, m.p. 193-194°, and 7-, m.p. 222-224°, -bromodianisylisatin, of which the 5-derivative is identical with the product of the bromination of (II) in AcOH. These are oxidised by CrO₃ in AcOH to 4-, m.p. 213—214°, 5-, m.p. 220°, 6-, m.p. 201— 202°, and 7-, m.p. 198—199°, *bromodianisylisatoic* anhydride, respectively. The anhydrides lose CO2

when treated with conc. H₂SO₄ and the products are transformed by H₂O and NaOH into 3-, non-cryst., 4-, m.p. 125-128°, 5-, m.p. 143-145°, and 6-, m.p. 235-236°, -bromo-2-amino-4': 4"-dimethoxytriphenyl-3-Bromo-2-acetamido-4': 4"-dimethoxytricarbinol.


phenylcarbinol has m.p. 149—152°. V. Oxidation of 3-4': 4''-diacetoxyphenylisatin with CrO3 in AcOH gives a small yield of diacetoxyphenylisatoic anhydride, which is transformed by conc. H_2SO_4 into 2-amino-4': 4''-dihydroxytriphenylmethane (III), m.p. 218° (Ac_3 derivative, m.p. 139°), and 2-hydroxy-5-4'-hydroxyphenylacridine (IV), m.p. >350° (diacetate, m.p. 167°). 2-Amino-4': 4"-dimethoxytriphenylcarbinol is transformed by Zn and AcOH into 2-acetamido-4':4"-dimethoxytriphenylmethane, which is converted by HBr-AcOH into (III). NH₂Ph and m-C₆H₄(OH)₂ afford 3-hydroxytriphenylamine, which is condensed with p-OH·C₆H₄·CO₂H in presence of $ZnCl_2$ to (IV).

VI. Condensation of isatin with PhMe by conc. H2SO4 gives 3-p'p"-ditolylisatin, m.p. 204-205°, oxidised by CrO₃ in AcOH to ditolylisatoic anhydride, which with conc. H2SO4 loses CO2 and gives 2-amino-4': 4"-dimethyltriphenylcarbinol.

VII. The action of the requisite Grignard reagent on powdered isatin gives p-, m.p. 205°, m-, m.p. 200°, and o-, m.p. 215-216°, -tolyldioxindole and p-, m.p. 194°, m-, m.p. 179.5°, and o-, m.p. 240°, -anisylox-indole. All are colourless. Conc. H_2SO_4 gives red colours with the p- and m- but blue colours with the o-compounds. They are converted by Ac₂O at 145° or by boiling Ac₂O containing NaOAc into the Ac_2 derivatives, m.p. 158°, 136°, 142-144°, 143°, 133-134°, and 160°, respectively. Phenyldioxindole yields a diacetate, m.p. 143°. Oxidation of the oxindoles by H2O2 in alkaline solution affords respectively p- $C_6H_4Me \cdot CO_2H$ and $o-NH_2 \cdot C_6H_4 \cdot CO \cdot C_6H_4Me \cdot p$; m- $C_6H_4Me \cdot CO_2H$ and 2-amino-3'-methylbenzophenone, m.p. 60°; $o \cdot C_6H_4Me \cdot CO_2H$ and 2-*amino*-2'-*methylbenzo-phenone*, m.p. 81–82°; *p*-OMe \cdot C_6H_4 \cdot CO_2H and *o*-NH_2 \cdot C_6H_4 \cdot CO_{c}H_4 \cdot CO_{c}H_4 \cdot CO_{c}H_4 and 2-amino-3'-methoxybenzophenone; o-OMeC6H4.CO2H and 2-amino-2'-methoxybenzophenone, m.p. 110°

H. W. Stereochemistry of tervalent nitrogen. F. LIONS and E. RITCHIE (J. Amer. Chem. Soc., 1939, 61, 1927-1928).-Manjunath's "8:9-(1':2'-cyclohexvl)tetrahydrocarbazole" (A., 1927, 978) was really (I) (R = H). 9-Nitroso-6-methyl-

1:2:3:4:1a:4a-hexahydrocarbazole, cyclohexanone, and Zn dust in AcOH give similarly the substance (1)

(R = Me), but no analogue could be obtained from the 8-methylcarbazole derivative owing to steric hindrance. A similar reaction with 1-nitrosoindoline gives the substance (II), m.p. 154°. R. S. C.

Formation and constitution of skatole-red from urine. M. RANGIER and P. DE TRAVERSE (Compt. rend., 1938, 207, 1257—1259; cf. A., 1939, III, 393). —Urochrome, freed from indoxyl sulphate and glycuronates, with 2% H₂SO₄ at 100° affords indoxyl, removed by Et₂O. Evaporation of the mother-liquor yields a substance, m.p. 85°, which polymerises easily, gives a red colour [skatole-red (I)] with warm HCl in air, and with FeCl₃ an intense blue. (I) is probably indirubin. J. L. D.

Amino-acids. XI. Condensation of creatinine with aromatic aldehydes. P. CATTANEO, V. DEULOFEU, and T. H. GUERRERO (Ber., 1939, 72, [B], 1461—1470).—5-p-Hydroxybenzylidenecreatin-ine, m.p. 284—285 or, $+Ac_2O$, m.p. 225—227°, obtained from creatinine and p-OH·C₆H₄·CHO at 150—155° or in boiling piperidine (Ac derivative, m.p. 225°), is reduced by Na-Hg in H_2O to 5-phydroxybenzylcreatinine, m.p. (dry) 255-256°. The following -creatinines are obtained analogously : 5-3'hydroxy-4'-methoxy-benzylidene-, m.p. 280°, and -benzyl-, m.p. 253°; 5-2':4'-dimethoxy-benzylidene-, m.p. 244—245° (2-Ac derivative, m.p. 205°), and -benzyl-(Ac derivative, m.p. 129°); 5-3': 4'-dimethoxybenzyl-idene-, m.p. 244—245° (Ac derivative, m.p. 213—214°); 5-3': 4': 5'-trimethoxy-benzylidene-, m.p. 257-258° 3'-methoxybenzylidene-, m.p. 218°; 5-o-methoxybenzylidene-, m.p. 243-244° (2-Ac derivative, m.p. 194°), o-methoxybenzylidene-N2N2-di-5-o-methoxyand benzylidene-, new m.p. $306-308^{\circ}$; 5-m-methoxy-benzylidene-, m.p. 231° , 5-m-methoxybenzyl-, m.p. 268° (non-cryst. 2-Ac derivative), and m-meth-oxybenzylidene-N²N²-di-5-m-methoxybenzylidene-, m.p. 270°; 5-p-methoxybenzylidene-, m.p. 259°, and p-methoxybenzylidene - N^2N^2 - di-5-p-methoxybenzylidene -, prisms or needles, m.p. >300°; 3:4-dimethoxybenzylidene-N²N²-di-5-3: 4-dimethoxybenzylidene-, m.p. 260°; 5-4'-hydroxy-3': 5'-dimethoxybenzylidene-, m.p. 250° or, + AcOH, m.p. 148° (Ac₂ derivative, m.p. 205°), and 4-hydroxy-3: 5-dimethoxybenzylidene-N²N²di - 5 - 4 - hydroxy - 3 : 5 - dimethoxybenzylidene-, m.p. $>300^{\circ}$ (Ac_3 derivative, m.p. $>300^{\circ}$); o-chlorobenzyl-idene-, new m.p. $250-251^{\circ}$ (2-Ac derivative, m.p. 198°), 2-acetyl-5-o-chlorobenzyl-, m.p. 148°, and ochlorobenzylidene - N^2N^2 - di - 5 - o - chlorobenzylidene -, m.p. 274—275°; 2-acetyl-5-m-chlorobenzylidene-, m.p. 178°, hydrolysed by boiling 2n-HCl to 5-m-chloro-benzylidene-, m.p. 265°, 2-acetyl-5-m-chlorobenzyl-, m.p. 160°, and m-chlorobenzylidene-N²N²-di-5-m-chlorobenzylidene-, m.p. 300°; 5-p-methylbenzylidene-, new m.p. 270-271° (2-Ac derivative), 5-p-methylbenzyl-, m.p. 270-282° (2-Ac derivative, m.p. 175°), and pmethylbenzylidene- N^2N^2 -di-5-p-methylbenzylidene-, meinytoenay henzylidene-N²N²-di-5-benzylidene-, m.p. m.p. 309°; benzylidene-N²N²-di-5-benzylidene-, m.p. 282 - 282° or in individual cases, 292°. H. W.

Reaction between organic sulphur compounds and hydrogen peroxide. XII. Constitution of antipyrine and related compounds. I. R. KITA-MURA (J. Pharm. Soc. Japan, 1938, 58, 86—101;

cf. A., 1938, II, 206).-Thiopyrine (I) with aq. KOH and H₂O₂ slowly gives antipyrine (II). 3-Thiopyrine (III) also slowly gives 3-antipyrine (IV), and antithiopyrine and bisthiopyrine (V) give bisantipyrine (VI). MeCS·NPhMe and 1-phenyl-3:4:4-trimethyl-5-thiopyrazole (VII) react more rapidly, as do CMe—CH NMe-S-C NPh | HCS·NHPh, PhCS·NH₂, PhCS·NHPh, and MeCS·NHPh. The slow reaction of (I) may be due to tautomerism between LNPh_ a preponderant but little reactive betaine (A.) form (A) and a more reactive form $\begin{array}{l} {\rm CH--CS} \\ {\rm CMe\cdot NMe} \end{array} \\ {\rm NPh} \ (B) \ ({\rm Knorr's \ formula}). \ \ {\rm Neutral \ H_2O_2} \end{array}$ converts (I) into thioantipyrine trioxide, decomp. 301-302° (new temp)., but does not react with (VII). The stability of (II), (IV), pyramidone (VIII), and 4-aminoantipyrine (IX) to $Pt-Pd-H_2$ is against formula (B). Coloured compounds with FeCl₃ are described, as follows. From (I), (II), (IV), and (IX), compounds of type 3M,2FeCl₃, decomp. 115—120°, 220—300°, 180— 187°, and 243—245°, respectively; from (V), (VI) and methylenebisantipyrine, compounds of type 3M,4FeCl₃, decomp. 169—172°, 250—260°, and 174— 179°, respectively; and from (VIII) a compound 179°, respectively; and from (VIII) a compound, M,FeCl₃, decomp. 132-134°. All these compounds support formula (A); relations between colour and constitution of antipyrines etc. are discussed. Absorption spectra indicate the co-existence of both structures; abnormalities of m.p. are against formula (B). When melted, (I) and (III) become yellow, and 3-selenopyrine yellowish-brown; loss of colour on cooling suggests a $(A) \rightleftharpoons (B)$ tautomerism. Selenopyrine is, however, yellow in both cryst. and melted states. While (II) distils unchanged at 147°/0.05 mm., supporting formula (B), (I) at $\sim 140^{\circ}/0.05$ mm. in part distils unchanged, and in part gives ψ -thiopyrine. It is concluded that the structure of (I) is best represented by forms (B) and CH - CS - NPh in equilibrium, and of (II) by similar forms in which O replaces S. E. W. W.

Reaction between organic sulphur compounds and hydrogen peroxide. XIII. Constitution of antipyrine and related compounds. II. Proof of the betaine form. R. KITAMURA (J. Pharm. Soc. Japan, 1938, 58, 161—164).—Thiopyrine trioxide (I), $\stackrel{+}{O}Me \cdot OF > C \cdot SO_3$ (from thiopyrine and neutral H_2O_2), is unaffected by cold aq. KOH but with H_2O_2 and KOH in 60% EtOH at room temp. for 36 hr. gives antipyrine (II), thus establishing the betaine structure of (II). Conversion of (I) into (II) is also effected with $0 \cdot 5N \cdot KOH$ at 100° (bath) and, less readily, $N \cdot K_3CO_3$; hot N-HCl is without action. H. B.

Reaction between organic sulphur compounds and hydrogen peroxide. XIX. Mechanisms of reaction. XX. Constitution of antipyrine and related compounds : tautomerism and mesomerism. R. KITAMURA (J. Pharm. Soc. Japan, 1939, 59, 61-72, 73-78).—Theoretical considerations. A. T. P.

Pyrazole synthesis. IV. Action of α -halogenohydrazones on sodium derivatives of β -

450

ketonic esters. V. Action of α -halogenohydrazones on sodium salts of sym.- β -diketones. VI. Action of α -halogenohydrazones on sodium salts of as.- β -diketones. R. Fusco (Gazzetta, 1939, 69, 344—352, 353—364, 364—378; cf. A., 1938, II, 206).—IV. In EtOH, COMe·CHNa·CO₂Et or COPh·CHNa·CO₂Et with CPhCI:N·NHPh (I) gives Et 1:3-diphenyl-5-methyl- or 1:3:5-triphenyl-pyrazolone-4-carboxylate, respectively. With

p-NO₂·C₆H₄·ŇH·Ń:CBr·CO₂Et (II), the products are the Et_2 esters, m.p. 98—99° and 90°, respectively, of 1-p-nitrophenyl-5-methyl- (III), m.p. 265° (decomp.), and 5-phenyl-1-p-nitrophenyl-pyrazole-3 : 4-dicarboxylic acid (IV), m.p. 215° (decomp.). Above the m.p., (III) and (IV) lose CO₂, giving the corresponding 4-carboxylic acids, m.p. 227—231° and 248°. KMnO₄-KOH oxidation of (III) gives 1-p-nitrophenyltriazole-3 : 4 : 5tricarboxylic acid, m.p. 70—72° (+ 3H₂O), 204—205° (anhyd.), of which the Et_3 ester, m.p. 76°, is obtained from (I) and CO₂Et·CO·CHNa·CO₂Et.

V. (I) and CH_2Ac_2 with NaOEt in EtOH give 4-acetyl-1: 3-diphenyl-5-methylpyrazole, m.p. 88° (phenylhydrazone, m.p. 182°), or, in EtOH-Et,O, a product, $C_{18}H_{18}O_2N_2$ (? 3: 5-diphenyl-2-methyl-2-acetonyl-2: 3-dihydro-1: 3: 4-oxadiazole), m.p. 156°, easily decomposed into NHPh·NHBz and (I). With CHNaBz₂ in EtOH, (I) gives 4-benzoyl-1:3:5-tri-phenylpyrazole, m.p. 174°. With NaOEt in EtOH, (II) and CH₂Ac₂ give the *Et* ester, m.p. 173—174° [(p-nitrophenylhydrazone, m.p. 310° (decomp. from 300°)], of the -3-carboxylic acid (V), m.p. 205° (decomp.) (p-nitrophenylhydrazone, m.p. 260-262°), of 4-acetyl-1p-nitrophenylpyrazole (VI), m.p. 156° (obtained by decarboxylation at 200-210°). In 80% HNO₃, (V) and (VI) are oxidised to 1-p-nitrophenyl-5-methylpyrazole-3: 4-dicarboxylic acid, m.p. 265° (decomp.), and -4-carboxylic acid, m.p. 230°, respectively. With CHNaBz₂, (II) gives the Et ester, m.p. 174°, of the -3-carboxylic acid, m.p. 233° (decomp.), of 4-benzoyl-5phenyl-1-p-nitrophenylpyrazole, m.p. 163-164° (obtained by decarboxylation); the last three compounds do not react with p-NO₂·C₆H₄·NH·NH₂. VI. With COPh·CHNa·CHO in EtOH, EtOH-

 C_6H_6 , or EtOH-Et₂O, (II) gives the *Et* ester, m.p. 165° (p-nitrophenylhydrazone, m.p. 283°), of the 3-carboxylic acid (VII), m.p. 263° (decomp.) (NH4 salt, decomp. 255-268°; p-nitrophenylhydrazone, m.p. 300°), of 4-benzoyl-1-p-nitrophenylpyrazole, m.p. 195-197° [p-nitrophenylhydrazone, m.p. 251° (sinters ~220°)]. With COPh·CH₂·COMe and NaOEt in EtOH, (II) gives the Et ester, m.p. 170°, of the -3-carboxylic acid (VIII), m.p. 200° (decomp.) (no p-nitrophenylhydrazone obtained from ester or acid), of 4-benzoyl-1-p-nitrophenyl-5-methylpyrazole, m.p. 155-156°. With aq. KMnO₄-KOH, (VIII) yields (VII). With COPh·CH, CO·CO, Me and NaOMe in MeOH, (II) gives 5-carbomethoxy-3-carbethoxy-4-benzoyl-1-p-nitrophenylpyrazole, m.p. 136-138°, hydrolysed to 4-benzoyl-1-p-nitrophenylpyrazole-3: 5-dicarboxylic acid (+H₂O lost at ~140°), m.p. 185-190° (decomp.) (no p-nitrophenylhydrazone obtained from ester or acid), decarboxylated to (VII). With Et₂O, (II) gives 5-carbomethoxy-3-carbethoxy-4-acetyl-1p-nitrophenylpyrazole, m.p. $158-159^{\circ}$ (no p-nitrophenylhydrazone), hydrolysed to 4-acetyl-1-p-nitrophenylpyrazole-3:5-dicarboxylic acid (+H₂O, lost at 140°), m.p. 176° (decomp.) [p-nitrophenylhydrazone, m.p. 258-261° (softens 238°)], oxidised (HNO₃) to the 3:4:5-tricarboxylic acid. The following order of reactivity for the formation of pyrazole and isooxazole rings is proposed: CHO > CO·CO₂R > Ac > Bz > CN > CO₂Et > CO·NH₂. E. W. W.

Action of hydriodic acid on cycloglycylglycine [diketopiperazine] and biological significance of product obtained. V. S. ISUPOV (Compt. rend. Acad. Sci. U.R.S.S., 1939, 23, 158—162).—Diketopiperazine with aq. 25% HI at 100° for 6 hr. yields a substance (I), $C_9H_{21}O_7N_5I_2$, m.p. 224°, which when boiled with EtOH gives a substance, $C_4H_{10}O_4N_2$. The formation and structure of these compounds are discussed. NH₂-acids and polypeptides do not form I-compounds under the above conditions. (I) causes a decrease in blood pressure when injected intravenously into cats [(II) has no effect], and when introduced into the cavities of axolotls transforms them into amblystomes in 38 days. J. N. A.

Polarisation in heterocyclic rings with aromatic character. III. Polarisation of the pyrimidine ring. E. OCHIAI and M. YANAI (J. Pharm. Soc. Japan, 1939, 59, 97-104).-NaNH₂ and 6methylpyrimidine in decahydronaphthalene at ~130° briskly evolve H2 and give 2-amino-6-methylpyrimidine (I), m.p. 158-159°, 2:4-diamino-6-methylpyrimidine, m.p. 183-185° (hydrochloride, m.p. 253-255°), a decomp. 209-210°; mercurichloride, decomp. 250-251°), and a viscous liquid, b.p. 180–200% 0.002 mm., which does not afford cryst. salts. Hence $C_{(2)}$, $C_{(4)}$, and C(6) of pyrimidine show electrophilic activity and and $C_{(2)}$ is highly active. 2:4:6-Trimethylpyrimidine and CH_2 Ph-COBr in abs. EtOH yield 2:4:6-tri-methylpyrimidine hydrobromide, 4':6'-dimethylpyrimidino-1': 2'-1: 5-3-phenylpyrrole, b.p. 180-200°/0.005 mm. (picrate, decomp. 220-223°), and (probably) phenylacetonylpyrrole, m.p. 178-180° (mono-p-nitrophenylhydrazone, m.p. 233-235°). CH, Ph.COBr and (I) in hot EtOH give 4'-phenyliminazolo-1': 2'-1: 2-6methylpyrimidine, m.p. 223-224° (hydrochloride, decomp. 240-243°; hydrobromide, decomp. 260-261°; picrate, decomp. 239-240.5°; mercurichloride, decomp. $259-260^{\circ}$). 4-Amino-6-methylpyrimidine and CH₂Ph-COBr give some hydrobromide, decomp. 226-227°, and the phenacylobromide, decomp. 263-264°, converted by warm aq. NaHCO3 into 4'-phenyliminazolo-1': 2'-3: 4-6-methylpyrimidine, decomp. 244° (picrate, decomp. 212-214°; hydrochloride, decomp. 247-250°). The base is relatively unstable and passes when recrystallised into a black, tarry mass. It is unchanged by NaHCO₃, KHCO₃ KOH-H₂O, or KOH-EtOH. H. W.

Action of Grignard's reagent on the carbethoxy side-chain of halogenated [ethyl] pyrimidine[acetates]. E. OCHIAI and Z. ITIKAWA (J. Pharm. Soc. Japan, 1938, 58, 168—171).—Et 4-chloro-2-methylpyrimidine-5-acetate, m.p. 39—40° (from the 4-OH derivative and POCl₃), and MgMeI

give 4-chloro-2-methyl-5-3-hydroxy-3-methylpropylpyrimidine (I), b.p. 160-240°/0.01 mm. (hydrochloride, decomp. 267-268°), and a little 4-chloro-5-acetonyl-2methylpyrimidine, decomp. 254° (semicarbazone, decomp. 174-175°). 4-Amino-2-methyl-5-β-hydroxy-βmethylpropylpyrimidine, m.p. 160-162° [from (I) and EtOH-NH, at 100°], and AcOH-HBr at 100° afford 4-amino-2-methyl-5-3-bromo-3-methylpropylpyrimidine hydrobromide, decomp. 187-188°, which does not give a quaternary salt with 4-methyl-5-3-hydroxyethylthiazole but loses HBr to yield 4-amino-2-methyl-5- Δ^{a} -isobutenylpyrimidine (*picrate*, decomp. 202°)

H. B. Condensation of 2:4:6-trimethylpyrimidine and benzaldehyde. II. E. OCHIAI and M. YANAI (J. Pharm. Soc. Japan, 1938, 58, 76-79).—This condensation gives 4:6-dimethyl-2-styryl- (I), new m.p. 57—58°, 6-methyl-2:4-distyryl- (II), m.p. 177—178.5°, and 2:4:6-tristyryl-pyrimidine. With O_2-O_3 in CHCl₃, (II) gives PhCHO and 6-methylpyrimidine-2:4-dialdehyde (bis-p-nitrophenylhydrazone, decomp. 290—292°), oxidised by KMnO₄ to the -2 : 4-*dicarb*-oxylic acid (+2H₂O), decomp. 195—197°. With O_2-O_3 (I) similarly gives 4 : 6-*dimethylpyrimidine* 2aldehyde (p-nitrophenylhydrazone, m.p. 215-216°), oxidised to the -2-carboxylic acid. The following data are also given : 2:4:6-trimethylpyrimidine, m.p. 199-200° (picrate, decomp. 222-224°); pyrimidine-2:4:6-trialdehyde (2-p-nitrophenylhydrazone, decomp. >320°), and -2:4:6-tricarboxylic acid, decomp. >320°; picrate, decomp. 187-189° (?), of (I). E. W. W.

derivatives. 2:5-Naphthyridine II. E OCHIAI and H. MIYAKI (J. Pharm. Soc. Japan, 1938, 58, 207-211; cf. A., 1937, II, 467).-Hydrolysis of Me 1:4-dihydroxy-2:5-naphthyridine-3-carboxylate (I) (Ac derivative, m.p. 225°) by strong acids gives 1: 4-dihydroxy-2: 5-naphthyridine (II), m.p. $>310^{\circ}$ [picrate, m.p. 230° (decomp.); Ac derivative, m.p. 216—217° (decomp.)]. Both (I) and (II) are phenolic, giving greenish-blue C·OH

N ȕOH (I.)

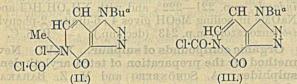
FeCl₃ colours, being indifferent to CO: reagents, and not allowing C.CO2Me replacement of the lactim O by S. POCl₃ converts (II) into 1 - chloro - 4 - hydroxy - 2 : 5 - naph -

thyridine (III), m.p. 215° , the Cl of which resists replacement by H. The $3-CO_2Me$ -derivative (IV) of (III) with NH3-EtOH gives only 1-chloro-4-hydroxy-2:5-naphthyridine-3-carboxylamide, m.p. 288-289° (decomp.). The Ac derivative of (IV) resists replacement of Cl by SH. H2-PtO2 in AcOH reduces only the C₅H₅N ring, giving 1-chloro-4-hydroxy-5:6:7:8tetrahydro-3: 5-naphthyridine, m.p. 149°, and its 3-CO₂Me-derivative, m.p. 206°. R. S. C.

Reaction between *m*-phenylenediamine and ethyl acetoacetate. G. JACINI (Gazzetta, 1939, 69, 405-408).-This reaction, in AcOH at 50°, gives Et, m-phenylenebisaminocrotonate, new m.p. 31° (cf. Backeberg, A., 1936, 64). At 200-250°, this gives 4: 8-dihydroxy-2: 6-dimethyl-1: 5-phenanthroline, decomp. 330° , stable to CrO_3 in AcOH or H_2SO_4 , which is oxidised by alkaline KMnO₄, with POCl₃ gives 4:8-dichloro-2:6-dimethyl-1:5-phenanthroline, m.p.

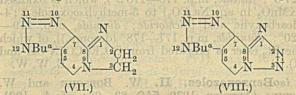
168°, and when distilled over Zn gives 2:6-dimethylphenanthroline. We at a the muibos E. W. W.

1-Aminoindolizine derivatives. E. OCHIAI, M. WADA, M. SUZUKI, and T. NISHIZAWA (J. Pharm. Soc. Japan, 1938, 58, 172-174).-Attempts to synthesise compounds containing the annexed ring system from derivatives of 1-amino-N indolizine were unsuccessful. The Schiff N hadden m.p. 120°, from AcCO₂Me and 1 - amino - 3 - acetyl - 2 - methylindolizine (I) (*CHPh*:, m.p. 129—130°, and *N*-Ac, m.p. 219°, derivative) with H₂SO₄, AcOH, AlBr₃, ZnCl₂, or NaOEt undergoes no condensation. The N-chloroacetyl derivative, m.p. 223° (decomp.), of (I) is either unaffected or resinified by $AlCl_3$ in CS_2 , PhNO₂, or C₂H₂Cl₄. H. B.


Synthesis of 3:4:8:9-dibenzo-5:10-diazapyrene. G. R. CLEMO and E. C. DAWSON (J.C.S., 1939, 1114-1118).-1:5-Dianilinonaphthalene, m.p. 214°, prepared from the OH-compound and NH₂Ph, is oxidised (O_2-AlCl_3) to 3:4:8:9-dibenzo-5:10-Is oxidised $(O_2$ -AiCi₃) to 3.4.3.5.5-tubenzon in-diazapyrene, m.p. 362°. PbO₂ and β -C₁₀H₇·NH₂ give 1:2:6:7-dibenzophenazine and a substance, C₂₀H₁₄N₂, m.p. 195° (? 5:10-dihydro-1:2:6:7-dibenzophenazine). N₂H₄ and β -C₁₀H₇·OH, followed by HCl, yield 2:2'-diamino-1:1'-dinaphthyl (45%) yield), which could not be cyclised. F. R. S.

Sulphoxytriazine [5-keto-3-thion-2:3:4:5tetrahydro-1:2:4-triazine] ethers. E. CATTE-LAIN (Compt. rend., 1939, 208, 1912-1914; cf. A., 1928, 308).-Alkylation of the appropriate S-monoethers of 6-benzylsulphoxytriazine (cf. A., 1939, II, 390) in a neutral medium leads to 3-benzylthiol-2:6dibenzyl- (I), m.p. 106°, 3-methylthiol-6-benzyl-2-methyl-, m.p. 116.5°, and 3-ethylthiol-6-benzyl-2-ethylsulphoxytriazine, a liquid, all of which are hydrolysed (EtOH-HCl) to the 2-mono-ether and a mercaptan, thereby proving the structure of the di-ethers. 3-Benzylthiol-6-benzylsulphoxytriazine (II) has m.p. 167°. (I) and (II) when reduced give 3-benzylthiol-2:6-dibenzyl-, a liquid, and 3-benzylthiol-6-benzyl-, m.p. 125°, -1: 6-dihydrosulphoxytriazine respectively, which do not behave as mono-acids and are oxidised by I-NaOH to (I) and (II), respectively. J. L. D.

Condensation of formaldehyde with thioarylhydrazines. H. WUYTS and (MLLE.) A. L. LACOURT (Bull. Soc. chim. Belg., 1939, 48, 165-175; cf. A., 1934, 537; A., 1937, II, 434).-Equimols. of the appropriate thioaryl-*a*-phenylhydrazine and CH₂O in EtOH-HCl afford 1:5-di-(thioacetyl)-, m.p. 186°, -(thiophenylacetyl)-(II), m.p. 172°, -(thiobenzoyl)-(III), m.p. 187°, -(thio-p-toluoyl)- (IV), m.p. 190°, and -(thio-a-naphthoyl)-2: 4-diphenylhexahydrotetrazine, m.p. 200°, of type $R \cdot CS \cdot N < \frac{CH_2 \cdot N(CSR)}{NPh} > NPh$. In contrast with the lower-melting thiodiazolines (loc. cit.) (made with less HCl), the above are almost insol. in Et₂O or EtOH, and are crystallised from C₅H₅N-H₂O. 3-Phenyl-5-benzyl- or -p-tolyl-2: 3-dihydro-1:3:4-thiodiazole and HCO_2H (d 1.22) at 90° or 110° afford (II) or (IV), respectively. (III) and I-CHCl₃ give a I₁₀-derivative, m.p. 195°, transformed by dissolution in COMe_2 and pptn, with Et_2O into a I_6 -derivative, m.p. 225° (decomp.). A. T. P.


Attempted hydrogenation of 3-methylxanthine. T. B. JOHNSON and J. C. AMBELANG (Science, 1939, 90, 68-69).-Xanthine (I) and 3-methylxanthine (II) resist structural changes when hydrogenated in presence of certain catalysts. They are unaltered by exposure in AcOH to H₂ for 8 hr. in presence of Adams' Pt (1.5-2.0 atm.). Shaking with H2 for 10 hr. at 200°/160-200 atm. in abs. EtOH in presence of Raney Ni partly destroys (I) and (II), but 60% of (II) was recovered unchanged. Catalytic hydrogenation of (I) at different pressures and temp. in presence of Cu-Cr oxide catalyst resulted in extensive decomp. Glyoxaline, 2:4:5-trimethylglyoxaline, histidine, lysidine, and benziminazole are not reduced in presence of Pt-black. Benziminazole-benzimide could not be hydrogenated using Adams' Pt, Raney Ni, or Cu-Cr L. S. T. oxide.

Pyridino-3: 4-triazole series. III. O. BREMER (Annalen, 1939, 539, 276-296; cf. A., 1937, II, 308). -Numerous derivatives of pyridino-3': 4'-4: 5-triazole are prepared; all structures, if not obvious, are proved by the ring-closures described. They differ from *iso*quinoline derivatives in many respects. Halogen in position 2 of the C_5H_5N ring is very reactive, but in position 5 is extremely inert. Cl is introduced into 2'-keto-1'-methyl-1-n-butyl-1': 2'dihydropyridino-3': 4'-4: 5-triazole by PCl₅ at 100°, but COCl₂ in PhOH gives a substance, converted by H₂O or EtOH into 2'-hydroxy-1-n-butylpyridino-3': 4'-4: 5-triazole (I), m.p. 223°, probably by way of (II) and (III) and also obtained from the 2'-Cl-compound

by 15% KOH-MeOH-H₂O at 100°. Br-KOAc in AcOH converts (I) into 5'-bromo-2'-hydroxy-1-n-butylpyridino-3': 4'-4: 5-triazole, m.p. 163°, and fuming HNO_3 in conc. H_2SO_4 at 5–10° gives the 5'- NO_2 -derivative, m.p. 198°. 3-Nitro-4-butylaminopyridine is reduced and chlorinated by SnCl₂ in hot fuming HCl, giving 2-chloro-3-amino-4-n-butylaminopyridine, m.p. 107-108° (hydrochloride, m.p. 223-224°), converted by diazotisation into 2'-chloro-1-n-butylpyridino-3': 4'-4: 5-triazole, m.p. 10°, b.p. 171-172°/3 mm. This is converted by NaOEt-EtOH at 100° into the 2'-OEt-, m.p. 50—51°, by 32% KSH-MeOH at 100° into the 2'-SH, m.p. 203—204°, by 10% NH₃-EtOH at 150—160° into the 2'-NH₂- (IV), m.p. 176—177°, by 33% NH₂Me-EtOH at 150—160° into the 2'-NHMe-, m.p. 93-94°, by 25% NHMe₂-EtOH at 150-160° into the 2'-NMe2-, m.p. 119-120°, b.p. 160-161°/3 mm., by NH₂·[CH₂]₂·NEt₂ at 150-160° into the 2'-β-diethylaminoethylamino-, b.p. 209-210°/3 mm., by N₂H₄,H₂O in EtOH at room temp. into the 2'-NH2 NH- (V), m.p. 80°, by cyclohexylamine and a little EtOH at 150-160° into the 2'-cyclohexylamino-, m.p. 74°, and by OH·[CH₂], NH, and a little EtOH at

150-160° into the 2'-β hydroxyethylamino-derivative, m.p. 78-79° {hydrochloride, m.p. 193-194°; converted by SOCl₂ at 100° into the 2'-β-chloroethylaminoderivative (VI), cryst. [hydrochloride, m.p. 190° (decomp.)]}. Diazotisation of 2: 5-dichloro-3-amino-4-butylaminopyridine (prep. from 5-chloro-3-nitro-4butylaminopyridine by SnCl₂-HCl), b.p. 163-164°/3 mm., m.p. <0°, gives 2': 5'-dichloro-1-n-butylpyridino-3': 4'-4: 5-triazine, m.p. 48°, b.p. 198°/3 mm., which with p-OMe C6H4 NH2 at 130-140° gives 5'-chloro-2'-p-anisidino-1-n-butylpyridino-3': 4'-4: 5triazine, m.p. 103-104°. 2-Chloro-5-bromo-3-amino-4-n-butylaminopyridine (similarly prepared), m.p. 45° [hydrochloride, m.p. 167° (decomp.)], gives similarly 2'-chloro-5'-bromo-1-n-butylpyridino-3':4'-4:5-tridzine, m.p. 66-67°, and thence (by 10% NH3+EtOH at 120-130°) 2'-chloro-5'-amino-, m.p. 222° [also obtained from (IV) by Br-AcOH at 100°], and (by N₂H₄,H₂O in EtOH at room temp.) 2'-chloro-5'hydrazino-1-n-butylpyridino-3': 4'-4: 5-triazole, m.p. 124°. With fuming HNO3 in conc. H2SO4, (IV) yields in a short time 2'-nitroamino-1-n-butylpyridino-3': 4'-4:5-triazine, m.p. 165-166° (decomp.), or after being kept overnight 5'-nitro-2'-amino-1-n-butylpyridino-3': 4'-4: 5-triazine, m.p. 259°, reduced by SnCl₂ in fuming HCl at 100° to the $2': 5'-(NH_2)_2$ -derivative, m.p. 202-203° [Ac2 derivative, m.p. 205-206°; monohydrochloride, m.p. 266-267° (decomp.)], which consumes 1 HNO, and then with a further mol. of diamine gives the diazoamino-compound, cryst., also obtained directly by diazotisation in presence of insufficient HCL. 5-Bromo-1-n-butylpyridino-3': 4'-4:5-triazine, m.p. 43-44° (picrate, m.p. 122-123°), is obtained from 4-chloro-5-bromo-3-nitropyridine by way of 5-bromo-3-nitro-, an oil, and 5-bromo-3-amino-4-n-butylaminopyridine, m.p. 46°, b.p. 163°/3 mm.; with NH_3 -EtOH at 170–180° it affords the 5- NH_2 derivative, m.p. 148°, converted by HNO₂ into the 5-0*H*-derivative, m.p. 109—110°. When heated at 170—180°, (VI) gives impure 1"-n-butyltriazino-4": 5"-3': 4' - pyridino - 1': 2'-1: 2-4: 5-dihydrogly oxaline (VII), cryst. (ethiodide, m.p. 176°; author's numbering as shown). Diazotisation of (V) gives

1"-n-butyltriazino-4": 5"-3': 4'-pyridino-1': 2'-1: 5-1: 2: 3: 4-tetrazole (VIII) (author's numbering as shown), m.p. 157—158°, and the 5'-Br-derivative, m.p. 114°, is similarly prepared. Diazotisation of 5nitro-2-hydrazinopyridine gives 5'-nitropyridino-1': 2'-1: 5-1: 2: 3: 4-tetrazole, m.p. 142—143° (decomp.). The K salt of 5'-bromopyridino-3': 4'.4: 5triazine with Bu^aI in MeOH at 150—160° gives the base, CH=CBr·CN>N ("5'-bromo-1-n-butylpyridino-3': 4'-4: 5-triazole"), m.p. 106°, b.p. 167—168°/3 mm. (picrate, m.p. 134—144°). In the formation of (IX) and the tricyclic compounds, the C₅H₅N derivatives react in tautomeric forms. R. S. C.

Anomalous decomposition of the tetrazoderivative of 2:2'-diamino-1:1'-dinaphthyl. VI. Dehydrogenating action of thionyl chloride on an ethylenic double linkage. A. CORBELLINI, C. GHIOLDI, and F. CHEVALLARD (Gazzetta, 1939, 69, 291—301).—The acid $C_{20}H_{12}O_2N_2$ obtained by oxidation of cis-o-(4:5:1':2'-naphthopyrazolyl)cinnamic acid (I) by SOCl₂ (A., 1939, II, 391) is shown to be the corresponding -propiolic acid (II). The Et ester (III) of (II) is oxidised by KMnO₄ in C₅H₅N to the corresponding -benzoic acid (IV) (A., 1936, 979), also obtained by similar oxidation of the Et ester of (I). With iso-C₅H₁₁·OH-N₂H₄,H₂O, (III) gives 3-o-(4': 5': 1'': 2''-naphthopyrazolyl-3')-phenylpyrazol-5-one, m.p. 295° [hydrochloride, m.p. 191°; NOderivative, m.p. 186° (decomp.); PhN_2 -compound, m.p. 273.5°; Ac derivative, m.p. 85–92°]. The acid chloride of (I) with N₂H₄,H₂O in CHCl₂ gives the hydrazide, m.p. 261-262° (decomp. from 250°), of (I). With KOH-*iso*- C_5H_{11} ·OH, (I) gives (IV), AcOH, and a substance, m.p. 228°. E. W. W.

Water-soluble c-hæmin from blood.—See A., 1939, III, 552.

Action of nitric acid on phenacylacetone. II. S. CUSMANO (Gazzetta, 1939, **69**, 214—221).—Angeli's product, " $C_{22}H_{18}O_{11}N_4$," m.p. 210° (A., 1893, i, 197), from COPh·[CH₂]₂·COMe and HNO₃ (d 1·45) is identified as 5-p-*nitrophenylisooxazole-3-carboxylic acid* (I) [*Et* ester (II), m.p. 183°; *NHPh·NH*₂ salt, m.p. 168—170° (decomp.)], oxidised by alkaline KMnO₄ to *p*-NO₂·C₆H₄·CO₂H. With HNO₃ (d 1·45), COPh·CH₂·CH(COMe)·CO₂Et gives (II), and 5phenylisooxazole-3-carboxylic acid gives, at $\geq 60^\circ$, (II), or, at the b.p., (I). E. W. W.

New syntheses of isooxazolepolycarboxylic acids. I. L. PANIZZI (Gazzetta, 1939, 69, 322– 329).—CHPh:CH:CCI:N:OH and COMe:CHNa:CO₂Et (I) give *Et 5-methyl-3-styryl*isooxazole-4-carboxylate, m.p. 60—60.5°, easily hydrolysed (KOH-MeOH) to the 4-carboxylic acid, m.p. 240—241° (decomp.) (acid chloride, m.p. 98—99°; amide, m.p. 226.5— 227.5°; anilide, m.p. 178—178.5°), which is oxidised (KMnO₄ in aq. Na₂CO₃) to 5-methylisooxazole-3:4dicarboxylic acid [dichloride; diamide, m.p. 219— 220°; dianilide, m.p. 177—178° (decomp.)], of which the Et₂ ester is prepared from CO₂Et·CCI:N:OH and (I). E. W. W.

isoBenzoxazoles. II. W. BORSCHE and W. SCRIBA (Annalen, 1939, 540, 83–98; cf. A., 1921, i, 652).—Formation of isobenzoxazoles from o-halogenophenyl ketoximes often depends on the alkali used. Addition of PCl_5 , followed by $AlCl_3$, to $o-C_6H_4Br-CO_2H$ in C_6H_6 gives $\sim 80\%$ of $o-C_6H_4Br-CO_2H$ in C_6H_6 gives $\sim 80\%$ of $o-C_6H_4Br-COPh$ (I), b.p. 190°/14 mm., the oxime, m.p. 132°, of which in hot KOH–MeOH (I:4) gives 2-phenylisobenzoxazole (II), m.p. 83°, obtained also from $o-C_6H_4F$ -CPh:N-OH. $o-C_6H_4Br-COCI$ (0-1), Ph₂ (0-3), and $AlCl_3$ (0-2 mol.) at 100° give 4-o-bromobenzoyldiphenyl, m.p. 90°, b.p. 230–235°/1 mm., the oxime, m.p. 187–188°, of which with 2N-aq. KOH–MeOH (I:1) at 140° gives 4-2'.isobenzoxazolyl-diphenyl, m.p. 119–120°, but the crude ketone with NH₂OH,HCl and KOH in boiling MeOH gives also

some (?) 2-2'-isobenzoxazolyldiphenyl, m.p. 100-101°. An excess of o-C6H4Br COCl yields 4:4'-di-o-bromobenzoyldiphenyl, m.p. 155-156°, the dioxime, m.p. 229-230°, and thence 4:4'-di-2-isobenzoxazolyldiphenyl, m.p. 235-236°. With Br-AcOH at room temp., (II) gives the 4-Br-, m.p. 88-89°, and with $KNO_3-H_2SO_4$ gives the mixed $(NO_2)_2$ -derivatives (mainly m.p. 164-165°; a part has m.p. up to 190°; cf. lit.). Na-EtOH reduces (II) to 2-hydroxybenzhydrylamine, m.p. 104-105° (Ac2, m.p. 141-141.5°, and ON-Bz, derivative, new m.p. 175°, hydrolysed by KOH-MeOH to the N-Bz derivative, new m.p. 213-214°; CH2N2-COMe2 gives o-methoxybenzhydrylisopropylideneamine, m.p. 93-94°). N₂H₄,H₂O at 200° converts (II) into PhOH, o-hydroxybenzophenoneazine, m.p. 273°, o-hydroxydiphenylmethane, b.p. 159-162°/12 mm., and a substance, m.p. 199-200°. N2H4,H2O and (I) at 200° give 3-phenylindazole (III), m.p. 115-116°, b.p. 220-225°/14 mm., and obromodiphenylmethane, m.p. $30-31^{\circ}$, b.p. $159-160^{\circ}/14$ mm., and $5-160^{\circ}/14$ mm. $[(NO_2)_2$ -derivative, m.p. $127-128^{\circ}]$. $5:2:1-NO_2 \cdot C_6 H_3 Br \cdot COPh$ (IV) and $N_2 H_4, H_2 O$ in MeOH at 140° give 5-nitro-3-phenylindazole, m.p. 187—188°, hydrogenated to the $5-NH_2$ -compound (Bz derivative, m.p. 252—253°), which with iso-C₅H₁₁O·NO-HCl-MeOH and later HPO₂ yields (III). $3:5:2:1-(NO_2)_2C_6H_2(OMe)\cdot COPh$ (V) and N_2H_4, H_2O in boiling MeOH afford 5:7-dinitro-3phenylindazole, m.p. 278-279°. NHPh·NH, HCl and (IV) in MeOH at 140-150° give 5-nitro-1: 3-diphenylisoindazole, reduced by H2-Pd-C in EtOAc to the 5-NH2-compound (Bz derivative, m.p. 200-202°), which by a diazo-reaction gives 1: 3-diphenylisoindazole, m.p. 100-101°. With NHPh·NH₂ in boiling MeOH, (V) gives 5:7-dinitro-1:3-diphenylisoindazole, m.p. 221-222°, and with NH₂OH,HCl and NaOMe in boiling MeOH gives 4 : 6-dinitro-2-phenylisobenzoxazole, m.p. 243° (decomp.). R. S. C.

Organic compounds of sulphur. XXVI. New method for the preparation of tetra-arylethylene sulphides. A. SCHÖNBERG and M. Z. BARAKAT (J.C.S., 1939, 1074—1075).—Tetra-arylethylene sulphides can be prepared from H₂S and boiling EtOH solutions of 2:2:5:5-tetra-aryl-2:5-dihydro-1:3:4oxadiazoles. Tetra-phenyl-, -p-tolyl-, m.p. 194—195°, and -anisyl-ethylene sulphide are prepared respectively from 2:2:5:5-tetra-phenyl-, -p-tolyl-, m.p. 177—178° (efferv.), and -anisyl-2:5-dihydro-1:3:4oxadiazole, m.p. 174° (decomp.). F. R. S.

3-Acylisooxazole. III. T. AJELLO and S. CUS-MANO (Gazzetta, 1939, **69**, 391–398).—3-Acetyl-5methylisooxazole (or its oxime) with free NH_2OH in EtOH gives the oxime (I), m.p. 88° (Bz derivative, m.p. 112°) of 3-methyl-4-acetonyl-1:2:5-oxadiazole (II) (semicarbazone, m.p. 190°), to which (I) is hydrolysed by boiling dil. HCl. With NaNO₂ in AcOH, (II) gives its oximino-derivative, m.p. 153° (Bz derivative, m.p. 84°), which with free NH_2OH in EtOH forms 4-pyruvyl-3-methyl-1:2:5-oxadiazole dioxime, m.p. 172° (Bz derivative, m.p. 163°; Ni salt). Pyruvylacetone trioxime and boiling aq. KOH give (I). E. W. W.

Polarisation in heterocyclic rings of aromatic nature. II. Thiazole ring. E. OCHIAI and F. NAGASAWA (J. Pharm. Soc. Japan, 1939, 59, 43-49). -4-Methylthiazole (I) is not nitrated by HNO₃-H₂SO₄ at $0-100^{\circ}$ (decomp. at 200°). With 20% oleum at 200° (no reaction at 100°) (I) gives 4-methylthiazole-5-sulphonic acid, m.p. 287-288° (Ba salt). 2-Thiol-4methylthiazole and H₂O₂-KOH give 4-methylthiazole-2-sulphonic acid, m.p. 207-211° (K salt, m.p. 273-277°). 2-Hydroxy-4-methylthiazole (II) and 20% oleum at 100° (bath) give 2-hydroxy-4-methylthiazole-5-sulphonic acid, m.p. $129-130^{\circ}$ (+ 1H₂O), then solidifies and decomposes at $\sim 212^{\circ}$ (anhyd. form, decomp. $\sim 225^{\circ}$) (Zn salt). (II) and HNO₃-H₂SO₄ at 0° give 5-nitro-2-hydroxy-4-methylthiazole, m.p. 158-159°. (I) and NaNH, in decahydronaphthalene at 150° afford 2-amino-4-methylthiazole (III), converted by 20% oleum at 0° or 100° (bath) respectively, into 4-methylthiazole-2-sulphonamic acid (IV), decomp. 256° (Ba salt), or 2-amino-4-methylthiazole-5-sulphonic acid (V), decomp. $>340^{\circ}$ (Ba salt), respectively; (IV) and H_2SO_4 at 100° (bath) give (V). (III) and $HNO_3-H_2SO_4$ give 5-nitro-2-nitroamino-4-methyl-thiazole, decomp. 185°. Theoretical aspects of the results are discussed. A. T. P.

Benzthiazole derivatives. III. 1-Aminobenzthiazole derivatives. N. S. DROZDOV and V. I. STAVROVSKAJA (J. Gen. Chem. Russ., 1939, 9, 409-414).—1-Chloro-5-nitrobenzthiazole (I) is reduced (Fe in AcOH) to 1-chloro-5-aminobenzthiazole, m.p. 164°, from which 1-chloro-5-iodo- (II) or 1:5-dichlorobenzthiazole is prepared (Sandmeyer). When heated with a no. of NH, Ph derivatives, (I) yields 5-nitro-1anilino-, -1-o-toluidino-, m.p. 204-205°, and -1-p-dimethylaminoanilino-benzthiazole, m.p. 234°, whilst with arsanilic acid the product is 4-di-(5'-nitro-1'-63°. benzthiazolyl)aminophenylarsinic acid, m.p. 1-Chlorobenzthiazole and γ -amino- α -piperidino- β -hydroxypropane heated at 100° for 1 hr. yield 1-(γ piperidino-B-hydroxypropyl)aminobenzthiazole, an oil, whilst with β -amino- ε -diethylaminopentane (IV) the product is $1-(\delta$ -diethylamino- α -methylbutyl)aminobenzthiazole, an oil. (I), (II), or (III) and (IV) similarly afford 5-nitro-, 5-iodo-, or 5-chloro-1-(8-diethylamino-amethylpropyl)aminobenzthiazole (oils). None of the products described possessed any antimalarial R. T. activity.

Substitution of thiazole. E. OCHIAI and F. NAGASAWA (Ber., 1939, 72, [B], 1470-1476).-The C₍₂₎ position of thiazole is active towards electrondonating reagents and the activity of the $C_{(2)}$ and $C_{(5)}$ positions towards electron acceptors is slight. The activity of the C(5) position towards electron acceptors is greatly enhanced by the presence of NH₂ or OH at $C_{(2)}$. 4-Methylthiazole is not attacked by Br in 20% H₂SO₄ or in CHCl₃. Under similar conditions 5-bromo-2-amino-4-methylthiazole, decomp. 105-108.5°, is obtained from 2-amino-4-methylthiazole (II). 2-Hydroxy-4-methylthiazole (II) is converted by Br in CHCl₃ into 5-bromo-2-hydroxy-4-methylthiazole, decomp. 147.5°, and by the successive actions of $Hg(OAc)_2$ in dil. AcOH, NaCl, and Br in CHCl₃ into dibromo-4-methylthiazole, decomp. 151°. AcCl, AlCl₂, and (III) in PhNO₂ or C₂H₂Cl₄ afford 2-hydroxy-5-acetyl-4-methylthiazole (semicarbazone, decomp. 244°). Under similar conditions (II) yields 2-acetamido-4-

methylthiazole (IV), m.p. 134°, whereas (I), (IV), and 2-thiol-4-methylthiazole are largely unchanged. (III) is transformed by HCN and HCl in $C_2H_2Cl_4$, followed by H_2O , into 2-hydroxy-4-methylthiazole-5aldehyde, decomp. 248° (p-nitrophenylhydrazone, decomp. 297—300°), also obtained by the action of KOH and CHCl₃. In these circumstances (I) is unattacked. H. W.

Syntheses of 2-thio-4-arylthiazolines. F. B. DAINS and O. A. KROBER (J. Amer. Chem. Soc., 1939, 61, 1830-1831).-ArCO·CH₂·SCN (prep. from ArCO·CH₂Cl by KCNS in hot EtOH) adds PhCS₂H to give NHBz·CS·S·CH₂Ar, which with hot, dil. HCl yields BzOH and the 2-thio-4-arylthiazoline. MeCS₂H is also added, but the thiazoline is formed directly. The following are thus obtained : p-bromo-, m.p. 147°, p-chloro-, m.p. 135°, p-iodo-, m.p. 152°, p-methoxy-, m.p. 121°, and 4-nitro-, m.p. 119°, -phenacyl thiocyanate; phenacyl N-benzoyldithiocarbamate, m.p. 95°; p-chloro-, m.p. 148°, p-bromo-, m.p. 158°, and m-nitro-, m.p. 157°, -benzoyldithio-carbamate; 2-thio-4-p-chloro-, m.p. 148°, -4-p-bromo-, m.p. 214°, -4-p-iodo-, m.p. 220°, and -4-m-nitro-, m.p. 209°, -phenylthiazoline; 2-thio-4-phenyl-, m.p. 168°, 2-thio-4-p-anisyl-thiazoline, m.p. 194°. and COPh-CHPh-CNS and MeCS₂H give 2-thio-4:5-diphenylthiazoline, m.p. 214° (2-CH_2Ph thioether, m.p. 106°), also obtained by PhCS₂H by way of an intermediate compound, m.p. 132-133° (cf. a compound, m.p. 137°, of Wheeler et al., A., 1901, i, 705). CH(CO₂Et)₂·CNS and PhCS₂H in C₆H₆ give rhodanine. R. S. C.

Thiophen series. XLVIII. Thiophen analogues of 2:4:6-triphenylpyridine. W. STEIN-KOPF and W. POPP (Annalen, 1939, 540, 24-30).-Thiophen-2-aldehyde (I), COPhMe, and 40% NaOH in boiling EtOH give az-diketo-az-diphenyl-y-2-thienyl-npentane (II), m.p. 104°, and some an-diketo-δ-benzoylan-diphenyl-yz-di-2-thienyl-n-heptane, m.p. 251°. PhCHO and 2-acetylthiophen (III) give similarly az-diketo-az-di-2-thienyl-y-phenyl-n-pentane (IV), m.p. 103°, and αη-diketo-δ-2-thienoyl-γε-diphenyl-αη-di-2thienyl-n-heptane, m.p. 266°. (I) and (III) give azdiketo-aye-tri-2-thienyl-n-pentane (V), m.p. 103°, and an-diketo-8-2-thienoyl-ayen-tetra-2-thienyl-n-heptane, m.p. 268°; furfuraldehyde and (III) give az-diketo-y-2furyl-az-di-2-thienyl-n-pentane (VI), m.p. 107°, and $a\eta$ -diketo- δ -2-thienoyl- γ z-di-2-furyl- $a\eta$ -di-2-thienyl-n-heptane, m.p. 239°. NH₂OH,HCl and P₂O₅ in boiling abs. EtOH convert (III), (IV), and (V) into 2:6diphenyl-4-2'-thienylpyridine, m.p. 157° (stable picrate, m.p. 212°; 3': 5'-Br2-derivative, m.p. 163°), 4-phenyl-2 : 6-di-2'-thienylpyridine, m.p. 126° (unstable picrate, m.p. 166°; 3': 5': 3'': 5''- Br_4 -derivative, m.p. 252°), and 2:4:6-tri-2'-thienylpyridine, m.p. 132° (unstable picrate, m.p. 148°; 3':5':3'':5'':3''':5'''-Br₆-derivative, m.p. 316°); however, (VI) is resinified by this treatment. The picrates illustrate the decrease in basicity caused by C_4H_3S . The similar m.p. of the analogous ketones are lowered by admixture.

R. S. C.

Reaction of organic sulphur compounds with hydrogen peroxide. XIV. Constitution of antipyrine and related compounds. III. Mechanism of desulphurisation of thiopyrine to antipyrine. XV. Compounds containing C:C·S. XVI. Synthesis of compounds of a new type. Thioperimino-acids. R. KITAMURA (J. Pharm. Soc. Japan, 1938, 58, 238—242, 243—246, 246—250). —XIV. Thiopyrine is converted into antipyrine by H_2O_2 more completely in presence of KOH than of K_2CO_3 in H_2O or 67% EtOH. The reaction is partly this conversion and partly formation of the trioxide, which yields antipyrine much more slowly.

XV. CHPh:C(SH)·CO₂H, SH·CPh:CH·CO₂H, and CHPh:CH·CH:C(SH)·CO₂H are indifferent to alkaline H_2O_2 , which renders their structure doubtful. 10 cyclic compounds containing C:C·S react, although incompletely.

XVI. RCS·NH₂ and H₂O₂ (1 mol.) give thioperimino-acids, NH:CR·S·OH. Thus are prepared benzoic (I), m.p. 128-129°, phenylacetic (II), m.p. 135-136°, benzamidoacetic, m.p. 137-138°, and anilinophenylacetic, m.p. 124-125°, perimino-acid, all unstable in air or light. When heated, (I) gives PhCN and 3: 5diphenyl-1:2:4-thiodiazole (III) with a little SO2 and NH₂Bz. (I) is sol. in 0.1N-KOH, but fairly rapidly decomposes therein. It is a weak acid, neutralising $\ll 1$ KOH (phenolphthalein). With Me₂SO₄-KOH, (I) gives PhCN. The perimino-acids give an indigo FeCl₃ reaction, give platinichlorides and picrates, reduce AuCl₃ and AgNO₃, and liberate a little I from acidified KI. They react with $3 H_2O_2$, giving H.SO4 quantitatively. With NH2OH, (I) gives S and NH:CPh•NH•OH nearly quantitatively; with fuming NH.CPh'NH-OH nearly quantitatively; with luming HNO_3 and H_2SO_4 it gives S and $m-NO_2\cdot C_6H_4\cdot CN$; with boiling H_2O it gives PhCN, much (III), and a little NH_2Bz . Tautomeric forms, $NH:CPh\cdot S(H) \rightarrow O$, $^+NH_2:CPh:SO^-$, and $NH_2\cdot CPh:S \rightarrow O$, are probably present. With PhCN, NH_2Bz , or, best, $PhCS\cdot NH_2$ at $115-120^\circ$, (I) gives (III). At $115-120^\circ$ PhCS· NH_2 and (II) give 3-phenyl-5-benzyl-1:2:4-thiodiazole, m.p. 76-76.5°. (I) is an intermediate in the prep. of (III) from PhCS·NH by (NH) S.O. or I of (III) from PhCS·NH₂ by (NH₄)₂S₂O₈ or I.

R. S. C.

Isosteric and structurally similar compounds. XII. Preparation and properties of 4:4'-dithiazolyl. H. ERLENMEYER and H. UEBERWASSER (Helv. Chim. Acta, 1939, 22, 938—939).—HCS·NH₂ and (CO·CH₂Br)₂ in Et₂O–EtOH and then in EtOH at 70° yield 4:4'-dithiazolyl (I), m.p. 170—171°. It is almost insol. in H₂O; a colour is not developed in presence of FeSO₄ but (I) dissolves to a clear solution in the hot liquid and does not separate when the solution is cooled, thus indicating the possible formation of a colourless complex. There is no indication of the production of mixed crystals in the systems, (I)-2: 2'-dithiazolyl or -2: 2'-dipyridyl. H. W.

Synthetic experiments concerning eserine. VI. Constitution of methyleserethole. II. T. KOBAYASHI (Annalen, 1939, 539, 213-218).—The structure of methyleserethole (I) (A., 1938, II, 511) is confirmed by synthesis. 1:2-Dimethylindole with MgEtI in Et₂O, followed by $(CH_2Br)_2$, gives 2:3dimethyl-2- β -bromoethylindolenine, an oil, converted by NH₃-EtOH at 100-105° into dinordeoxy-9methyleseroline. Skatole similarly gives dinordeoxyeseroline. p-OEt·C₆H₄·N₂Cl and CH₂Ac·CO₂Et in aq. NaHCO₃ yield Et 5-ethoxyskatole-2-carboxylate, m.p. 171—172°, hydrolysed by alkali to the derived acid, m.p. 184—185° (decomp.) (Me ester, m.p. 178— 179°), which at 200° gives 5-ethoxyskatole, m.p. 65— 66°. With MgEtI in Et₂O, followed by (CH₂Br)₂, this gives dinoreserethole or, if the indolenine is heated with NH₂Me or NHMe₂ in EtOH at 100—105°, isonoreserethole or (I), respectively. R. S. C.

Alkaloids of Arthrophytum leptocladum, M. Pop. N. K. JURASCHEVSKI (J. Gen. Chem. Russ., 1939, 9, 595—597).—The dry leaves contained 0.7%of alkaloids, of which leptocladine, $C_{13}H_{16}N_2$, m.p. 109—110° [hydrochloride, m.p. 234—235° (decomp.); platinochloride, decomp. at 197—198°; picrate, sinters at 94—95°, m.p. 112—114°; Bz derivative, m.p. 132—133°], was isolated. R. T.

Lupine. XIII. Octalupine, an alkaloid from Lupinus sericeus, var. flexuosus, C. P. Smith. J. F. COUCH (J. Amer. Chem. Soc., 1939, 61, 1523— 1524; cf. A., 1937, II, 434).—This plant yields octalupine, $C_{15}H_{22}O_2N_2$, m.p. $167\cdot5-169\cdot5^{\circ}$, b.p. 270—280°/6 mm., hygroscopic, $[\alpha]_{25}^{25} +52\cdot3^{\circ}$ in EtOH [dihydrochloride, $+1\cdot5H_2O$ ($0\cdot5H_2O$ lost at 110°), m.p. 298—299°, $[\alpha]_{25}^{25} +36\cdot3^{\circ}$ in H_2O , and $+H_2O$, m.p. 288—289°; methiodide, m.p. 259°; aurichloride, m.p. 208—209°], which is stable to acid KMnO₄, is reduced electrolytically to d-lupanine and sparteine, and is thus probably 2:16-diketosparteine. M.p. are corr. R. S. C.

Lupin alkaloids. XVIII. Synthesis of allo-Inpinine. K. WINTERFELD and F. W. HOL-SCHNEIDER (Arch. Pharm., 1939, 277, 221–237; cf. A., 1939, II, 395).— δ -Ethoxy- γ -valerolactone [prep. from CH₂(CO₂Et)₂ and epichlorohydrin described] with Et picolinate and Na in C6H6 yields 2-pyridyl a-(8-ethoxy-y-valerolactonyl) ketone, b.p. 173-175°/0.4 mm. [HgCl₂ compound, m.p. 98-99°, clearing at. 117°; p-sulphophenylhydrazone, m.p. 234—236° (decomp.); reineckate, m.p. 128—130°, decomp. 161—162°], which gives a red colour with FeCl₃. With conc. HCl this yields 2-pyridyl γ -hydroxy-δ-ethoxy-n-butyl ketone, b.p. 110—120°/0·3 mm. [HgCl₂ compound, m.p. 75°, clearing at 103°; p-sul-phophenylhydrazone, m.p. 235°, decomp. 248—252°; reineckate, m.p. 117°, decomp. 175—178°; 2:4-dinitrophenylhydrazone, m.p. $164-165^{\circ}$; phenylhydrazone and aurichloride (oils)], reduced (H₂, PtO₂ in AcOH) to al-dihydroxy-e-ethoxy-a-2-piperidyl-n-propane [HgCl2 compound, m.p. 129°; reineckate, m.p. 129-130°; Bz and PhCNO derivatives (oils)], which gives a deep red colour with Na nitroprusside and MeCHO. Cyclisation (PBr₃ followed by NaOEt) of this yields a mixture of 1-bromo-4-ethoxymethyloctahydro- and 4-ethoxymethyl-∆10-hexahydroquinolizine which with H2-Pd-CaCO3 in EtOH-KOH yields 4-ethoxymethyl-, b.p. 142—144° (aurichloride, m.p. 85—87°; HgCl₂ compound, m.p. 125—126°; reineckate, m.p. 143—145°), hydrolysed (HI) to 4-hydroxymethyl-octahydroquinolizine (allolupinine), m.p. 123-125° [HgCl2 compound, m.p. 201° (decomp.); reineckate, m.p. 152-153°; aurichloride and picrate (oils)]. abieta (il) anombroo religit A. LI.

Microcrystalline narcotine oxalate and phthalate. Y. VOLMAR, P. DUQUÉNOIS, and M. ELLERT (Compt. rend., 1939, **208**, 2000—2001).—Equimol. amounts of *l*-narcotine (I) and $H_2C_2O_4, 2H_2O$ crystallise from COMe₂ as narcotine oxalate, m.p. 174°, $[\alpha]_{D^0}^{20}$ +39.5° in H_2O . Equimol. amounts of (I) and o- $C_6H_4(CO_2H)_2$ crystallise from EtOH as narcotine phthalate, m.p. 160°, $[\alpha]_{D^0}^{25}$ +115° in CHCl₃. J. L. D.

Synthesis of hydrohydrastinine derivatives. M. TOMITA and M. SATOMI (J. Pharm. Soc. Japan, 1938, 58, 165-168).-Phenylacethomopiperonylamide, m.p. 97-98° (from COPh CHN2, homopiperonylamine, and Ag₂O), is converted (POCl₃ in PhMe) into 6:7-methylenedioxy-1-benzyl-3:4-dihydroisoquinoline (I) [methiodide, m.p. 258° (decomp.)], the methochloride of which is reduced (H2-PtO2 or Sn-HCl) to 6:7-methylenedioxy-1-benzyl-2-methyl-1:2:3:4-tetrahydroisoquinoline (1-benzylhydrohydrastinine) [hydrochloride (+2H₂O), m.p. 110-Hydrassinine) [Hydrosinicide (+24120); http://ide. 120°; platinichloride, decomp. 205°; methiodide, ($+H_2O$), m.p. 240° (decomp.)]. Reduction (H_2 , PtO₂) of (I) gives the $1:2:3:4\cdot H_4$ -derivative (1benzylnorhydrohydrastinine) [hydrochloride (+H₂O), m.p. 105-110°]. Similarly, p-anisylacethomopiperonylamide, m.p. 90°, is converted into 6 : 7-methylenedioxy-1-p-methoxybenzyl-3: 4-dihydroand [hydrochloride -1:2:3:4-tetrahydro-isoquinoline (+H₂O), m.p. 105°] and 6:7-methylenedioxy-1p-methoxybenzyl-2-methyl-1:2:3:4-tetrahydroiso-(1-p-methoxybenzylhydrohydrastinine) quinoline [platinichloride, decomp. 184°; methiodide, m.p. 184° H. B. (decomp.)].

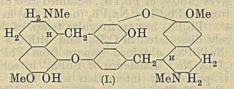
Conversion of quinine into quinotoxin. A. MACHADO (Rev. Soc. Brasil. Quím., 1939, 8, 59—61). —Quinine in olive, cotton seed, or manobi oil at 140° for 1 hr. yields quinotoxin. F. R. G.

Syntheses in the series of Cinchona alkaloids. V. PRELOG, R. SEIWERTH, V. HAHN, and E. CERKOV-NIKOV (Ber., 1939, 72, [B], 1325-1333).-Condensation of Et β -4-tetrahydropyranylpropionate with Et cinchoninate by NaOEt in C₆H₆ at 80–90° gives 4'-quinolyl β -4-tetrahydropyranylethyl ketone (I), b.p. 187°/0.02 mm., m.p. 46° (hydrochloride, m.p. 166— 166.5°; picrate, m.p. 154.5-155°; semicarbazone, m.p. 182°; oximino-derivative, m.p. 158.5-159.5°). Under similar conditions Et quinate affords 6'methoxy-4'-quinolyl B-4-tetrahydropyranylethyl ketone (II), b.p. 195-205°/0.2 mm., m.p. 54.5-55.5° [hydrochloride, m.p. (indef.) 204-205°; picrate, m.p. 173-173.5°; oximino-derivative, m.p. 167.5-168°]. Reduction (PtO₂ in MeOH) of (I) yields α -4'-quinolyl- γ -4-tetrahydropyranylpropanol (III), m.p. 126.5—127° (hydrochloride, m.p. 177-178°; picrate, m.p. 180-181°). Analogously (II) affords a-6'-methoxy-4'-quinolyly-4-tetrahydropyranylpropanol (IV), non-cryst. (hydrochloride, m.p. 185-186°; picrate, m.p. 178-178.5°). The appropriate oximino-derivative is reduced (PtO₂ in EtOH) to β -amino- α -4'-quinolyl- (V), m.p. 171.5— 172° (corr.), and -a-6'-methoxy-4'-quinolyl- (VI), m.p. (indef.). $180-181^{\circ}$, $-\gamma$ -4-tetrahydropyranylpropanol dihydrochloride. α -4-Tetrahydropyranyl- γ -4-quinolylpropane, b.p. 160-170°/0.02 mm. (picrate, m.p. 198.5°), obtained from the appropriate semicarbazone and NaOEt-EtOH at 180°, is transformed by 73%

HBr at 180° into a-bromo-8-4'-quinolul-y-B'-bromoethylhexane hydrobromide, m.p. 114°, which is transformed by MeOH-NH3 into a-4-piperidyl-y-4'-quinolylpropane [rubatoxan], b.p. 185°/0.02 mm. (dihydrochloride, m.p. 197°; platinichloride, m.p. >360°; dipicrate, m.p. 203-205°), and by K2S in boiling EtOH into a-4-tetrahydrothiopyranyl-y-4'-quinolylpropane, m.p. 61°. 67% HBr at 100° converts (I) into α - bromo - ζ - 4'-quinolyl- γ - β' - bromoethylheptan - ζ - one hydrobromide, m.p. 142-143°, which with Br-HBr at 100° gives αε-dibromo-ζ-4'-quinolyl-γ-β'-bromoethylheptan-ζ-one hydrobromide, m.p. 136-137°, and with KOH-EtOH yields ζ-4-quinolyl-y-vinyl-Δa-hexen-ζone, m.p. 59° (hydrobromide, m.p. 207°; picrate, m.p. 204-208°). Et 2-ethoxycinchoninate is converted by condensation followed by hydrolysis with 10% HCl into 2'-hydroxy-4'-quinolyl β-4-tetrahydropyranylethyl ketone (VII), m.p. 179-180° (H4-derivative, m.p. 203-204°; oximino-derivative, m.p. 213°). (I), (II), (III), (IV), (V), and (VI) have no antimalarial action. H. W.

Cinchona alkaloids in pneumonia. VII. Amyl and hydroxyalkyl apocupreine ethers. M. H. GREEN, A. G. RENFREW, and C. L. BUTLER (J. Amer. Chem. Soc., 1939, 61, 1783—1784; cf. A., 1938, II, 341).—The following are prepared by standard methods: β -, b.p. 128—132°/6 mm.; and δ -benzyloxyn-butan- α -ol, b.p. 146—149°/6 mm.; γ -benzyloxyn-butan- β -ol, b.p. 122—125°/6 mm.; CHEt₂, m.p. 37°, β -hydroxy-n-propyl, m.p. 46°, and β -benzyloxy-sec.butyl, m.p. 47°, p-toluenesulphonate; apocupreine δ benzyloxy-n-butyl, m.p. 104°, $[\alpha]$ —152° in EtOH, β hydroxy-n-propyl, m.p. 104°, $[\alpha]$ —152° in EtOH, β hydroxy-n-propyl, m.p. 107°, $[\alpha]$ —180° in EtOH (dihydrochloride, $[\alpha]$ —216° in H₂O), β -hydroxyisobutyl, m.p. 102°, $[\alpha]$ —169° in EtOH (dihydrochloride, $[\alpha]$ —218° in H₂O), δ -hydroxy-n-butyl, m.p. 178°, $[\alpha]$ —179° in EtOH (dihydrochloride, $[\alpha]$ —213° in H₂O), α -hydroxymethyl-n-propyl, amorphous, $[\alpha]$ —165° (dihydrochloride, $[\alpha]$ —202° in H₂O), β -hydroxy-sec.butyl, amorphous, $[\alpha]$ —163° (dihydrochloride, $[\alpha]$ —212° in H₂O), n-amyl, m.p. 146°, $[\alpha]$ —178° in EtOH (dihydrochloride, $[\alpha]$ —210° in EtOH (dihydrochloride, $[\alpha]$ —212° in H₂O), n-amyl, m.p. 146°, $[\alpha]$ —178° in EtOH (dihydrochloride, $[\alpha]$ —210° in H₂O), isoamyl, m.p. 175°, $[\alpha]$ —181° in EtOH (dihydrochloride, $[\alpha]$ —212° in H₂O), sec.-amyl, amorphous, $[\alpha]$ —163° in EtOH (dihydrochloride, +2H₂O, $[\alpha]$ —212° in H₂O), and α -ethyl-n-propyl, amorphous, $[\alpha]$ —163° in EtOH (dihydrochloride, +1·5H₂O, $[\alpha]$ —212° in H₂O), and α -ethyl-n-propyl, amorphous, $[\alpha]$ —163° in EtOH (dihydrochloride, +1·5H₂O, $[\alpha]$ —212° in H₂O), and α -ethyl-n-propyl, amorphous, $[\alpha]$ —163° in EtOH (dihydrochloride, +1·5H₂O, $[\alpha]$ —212° in H₂O), and α -ethyl-n-propyl, amorphous, $[\alpha]$ —163° in EtOH (dihydrochloride, +1·5H₂O, $[\alpha]$ —212° in H₂O), ether. The in vitro bacteriostatic activity and toxicity of the apocupreine alkyl and hydroxyalkyl ethers are recorded. OH reduces both effects. R. S. C.

Methiodides of quinidine and hydroquinidine. F. VON KONEK (Math. nat. Anz. ung. Akad. Wiss., 1936, 54, 821—829; Chem. Zentr., 1937, i, 1694).— Quinidine (I) [methiodide, m.p. 235—236° (decomp.)] and KI in HCl give the hydriodide, which forms a MeI compound (II) with excess of MeI and MeOH $(>100^\circ; 2-4$ hr.). Hydroquinidine methiodide, m.p. 242—243° (decomp.), hydriodide (MeI compound), and MeI compound (impure) are similarly prepared. A. J. E. W.


Reduction studies in the morphine series. IX. Hydroxycodeinone. R. E. LUTZ and L. SMALL (J.

Org. Chem., 1939, 4, 220-233).-Thebaine in glacial AcOH is oxidised by 30% H₂O₂ to hydroxycodeinone (I), m.p. $275-276^{\circ}$ (vac.), $[\alpha]_{D}^{25}-111^{\circ}$ in 10% AcOH [hydrochloride dihydrate, m.p. $272-274^{\circ}$ (vac.), $[\alpha]_{D}^{25}$ -80° in H₂O; hydriodide (+1H₂O), m.p. 255-260° (vac.), $[\alpha]_{D}^{22} - 74^{\circ}$ in H₂O; perchlorate (+2H₂O), m.p. 241—242° (decomp.), $[\alpha]_{D}^{23} = 80^{\circ}$ in H₂O; Ac derivative, m.p. 185°, $[\alpha]_{D}^{25} + 21^{\circ}$ in 10% AcOH, and its hydrom.p. 185 , $[\alpha]_{\rm D}^{-}$ +21 m 10% AcOH, and its hydro-chloride, m.p. 260—261° (vac.), $[\alpha]_{\rm D}^{35}$ +15.7° in H₂O]. Reduction (Pd-BaSO₄ in 10% AcOH) of (I) affords dihydrohydroxycodeinone (II), m.p. 218°, $[\alpha]_{\rm D}^{25}$ -97° in 10% AcOH [hydrochloride (+2.5H₂O), m.p. 270— 272° (decomp.), $[\alpha]_{\rm D}^{25}$ -123° in H₂O], which is not affected by Zn and AcOH at 80—90° and is trans-formed by Zn and AcOH at 80—90° and is transformed by Zn-Hg and conc. HCl into dihydrohydroxythebainone, m.p. 143°. Boiling Ac₂O containing NaOAc transforms (II) into acetoxydihydrocodeinone enol acetate, m.p. 207.5°, $[\alpha]_{D}^{25}$ -167° in EtOH. Zn dust and glacial AcOH at 50-55° convert (I) into hydroxythebainol and hydroxycodeine $(+1H_2O)$, m.p. $304-305^{\circ}$ (vac.), $[\alpha]_{D}^{25}-143^{\circ}$ in 10% AcOH [hydrochloride, m.p. $269-275^{\circ}$ (decomp.)]; the base is reduced (PtO₂ in 10% AcOH) to dihydrohydroxy-codeine-A, m.p. $301-302^{\circ}$ (vac.), $[\alpha]_{D}^{29}-64^{\circ}$ in 10%AcOH, which has no phenolic properties and does not give a cryst. Ac1 or Ac2 derivative. Hydrogenation (PtO₂ in 10% AcOH) of (II) slowly yields dihydrohydroxycodeine-B (III), m.p. 145–145.5°, $[\alpha]_{\rm D}^{26}$ –136° in 10% AcOH, and -C (IV), m.p. 166–167°, $[\alpha]_{p}^{23}$ -152° in 10% AcOH. (III) is transformed by Ac₂O and C₅H₅N at 100° into its Ac₂ derivative, m.p. 181-182°, $[\alpha]_{D}^{22} - 127^{\circ}$ in 10% AcOH [*H* tartrate mono-hydrate, m.p. 181–182°, $[\alpha]_{D}^{20} - 78^{\circ}$ in H₂O (c = 0.72)]. Excess of MeI at 100° transforms (III) into the methiodide, m.p. 223—224° (decomp.), $[\alpha]_{\text{D}^1}^{21}$ —87° in H_2O , transformed by boiling aq. NaOH into dihydro-hydroxycodeine-B-methine, m.p. 103°, $[\alpha]_{\text{D}^1}^{21}$ —70° in 10% AcOH [H tartrate (+4H₂O), m.p. 190—191° (decomp.), $[\alpha]_{p}^{21} - 25^{\circ}$ in H_2O]; this is hydrogenated (PtO₂ in 75% AcOH) to *dihydrohydroxycodeine*-Bdihydromethine, m.p. 168°, $[\alpha]_{D}^{22} - 44^{\circ}$ in 10% AcOH [acetate (+1.5H₂O)]. PCl₅ and (III) in CHCl₃ at room temp. yield dihydrohydroxychlorocodide (V), m.p. 213·5—214°, $[\alpha]_{D}^{23}$ —151° in 10% AcOH, which is not reduced by Pt-H₂ in 5% AcOH, or by Clemmensen's method; it is transformed by NaOEt at 140° into liquid phenolic products free from halogen whilst it is indifferent to gentler treatment. SOCl₂ at room temp. converts (III) into chlorodihydrohydroxycodeine-B (hydrochloride, m.p. 238–239°, $[\alpha]_p^{21}$ –106° in H₂O), which is unaffected by boiling 10% AcOH or by Clemmensen reduction and is converted by Na and abs. EtOH under N2 into (III). SOCl2 and (V) give chlorodihydrohydroxychlorocodide, m.p. $163 \cdot 5^{\circ}$, $[\alpha]_{D}^{22}$ -141° in 10% AcOH, also obtained by use of PCl₅. Reduction of (V) with Na and boiling EtOH affords dihydrodeoxyhydroxycodeine, m.p. 137—138°, $[\alpha]_{p}^{p2}$ —19° in 10% AcOH, hydrogenated (PtO₂ in 3% AcOH) to tetrahydrodeoxyhydroxycodeine (perchlorate, m.p. 242—244°, $[\alpha]_{p}^{p1}$ —28° in H₂O). PCl₅ and (IV) in CHCl₃ give a compound, m.p. 136—139°, which contains P. With SOCl₂ (IV) affords a substance which can be distilled in a high vac. but does not give cryst. derivatives. Deacetyldihydrohydroxycodeine-C, m.p. 203°, [a]23 -107° in 10% AcOH [H tartrate

monohydrate, m.p. 209—210°, $[\alpha]_{\rm D}^{29}$ -67° in H₂O (c = 0.80)], does not appear to be isomerised by prolonged treatment with boiling Ac₂O-C₅H₅N. H. W.

Strychnos alkaloids. XXI. Synthesis of isomeric pyrroloquinolines and an isomeride of vomipyrine. L. HORNER (Annalen, 1939, 540, 73-83; cf. A., 1938, II, 514).-6-Amino-8-ethylquinoline, m.p. 89° (yellow hydrochloride), is prepared from o-C6H4Et NHAc by way of 4:2:1- $NO_2 \cdot C_6 H_3 Et \cdot NH_2$, m.p. 58°, and 6-nitro-8-ethyl-quinoline, m.p. 68° [hydrochloride, m.p. 150° (decomp.)], and gives a hydrazone, which with Pr°CO· CO_2H gives the hydrazone, $C_{16}H_{19}O_2N_3$, m.p. 135°, converted by ZnCl₂ into 8:4'-diethylpyrrolo-2':3'-6:5-quinoline, m.p. 142° [hydrochloride, m.p. 244° (decomp.); not vomipyrine (I)]. Decarboxylation of the 10-carboxylic acids by molten ZnCl, (heating with Cu powder is without effect) yields pyrrolo-2': 3'-5: 6-, m.p. 236-238°, and -1': 2'-8: 7-quinoline, m.p. 94-96°. Absorption spectra are detailed for these and other tricyclic bases containing two nitrogenous rings, and it is concluded therefrom that (I) is a pyrroloquinoline, the position of the substituents remaining, however, uncertain. CHPhMeEt and HNO₃-H₂SO₄ give mixed o- and p-NO₂-derivatives, reduced to the mixed amines, b.p. 115°/12 mm., which yield an Ac derivative, m.p. $122-124^{\circ}$; with fuming HNO₃ in AcOH this gives p-NO₂·C₆H₄·NHAc and p- $NO_2 C_6H_4 NH_2$, and with $HNO_3-H_2SO_4$ gives p-NO $C_6H_4 NH_2$, R. S. C. $NO_2 \cdot C_6 H_4 \cdot NH_2$.

Curare alkaloids. IV. Bebeerine and tubocurarine. Orientation of phenolic groups. H. KING (J.C.S., 1939, 1157-1164).-Ethylation (EtI) of the Na salt of bebeerine (I) gives O-ethylbebeerine, the methochloride of which on Hofmann degradation in two stages affords O-ethylbebeerilene (II), m.p. 168—169°; this is oxidised (KMnO₄) to a mixture of two acids, $C_{18}H_{16}O_9, H_2O$, m.p. 197° (efferv.), and C18H16O9, 0.5H2O, m.p. 255°. Diazotised NH2Ph and o-4-xylenol give a mixture of 2-hydroxy-4:5and 6-hydroxy-2: 3-dimethylazobenzene; (III) reduction $(Na_2S_2O_3)$ of the Me derivative of (III) yields NH_2Ph , 5:1:2:4-OMe $C_6H_2Me_2 \cdot NH_2$, and 4'-amino-3: 4-dimethyldiphenylamine, m.p. 114-115° (monohydrochloride, m.p. 205°). Nitration, followed by esterification, of 4:1:2-OMe $C_6H_3(CO_2H)_2$ (IV) gives some 2-Me 1-H 3-nitro-4-methoxyphthalate, m.p. 186—187°, and $5:4:1:2-\text{NO}_2 \cdot \text{C}_6\text{H}_2(\text{OMe})(\text{CO}_2\text{Me})_2$, reduced (Pd–C–H₂) to *Me* 5-amino- (V), m.p. 149⁵, and 5-azoxy-4-methoxyphthalate, m.p. 175-180°. (V) is converted into the corresponding -I-derivative (VI), m.p. 111-112°, which condenses (Cu) with Me isovanillate to give veratric acid, 4-methoxyphthalic acid, and 4:5:5'-tricarboxy-2:2'dimethoxydiphenyl ether, identical with the compound obtained by degradation and oxidation of O-methylbebeerine. Demethylation (HBr) of O-ethylvanillic acid affords some protocatechuic acid and 3-hydroxy-4-ethoxybenzoic acid, m.p. 218-219°, the Me ester, m.p. 127-128°, of which condenses with (VI) to give 4:5:5'-tricarboxy-2-methoxy-2'-ethoxydiphenyl ether, m.p. 258-259° [identical with one of the acid oxidation products from (II)], 3:4OMe·C₆H₃(OEt)·CO₂H, (IV), and *m*-hemipinic acid. NaOH with Cu (trace) and (VI) yields *O*-methylnor-*m*-hemipinic acid, which is brominated to 3bromo - 4 - hydroxy - 5 - methoxyphthalic acid, the Me_2 ester, m.p. 153—154°, of which is ethylated (C₂H₄N₂) to *Me* 3-bromo-5-methoxy-4-ethoxyphthalate, m.p. 83—84° [acid, m.p. 206° (efferv.); 1-Et 2-H ester, m.p. 131°]. This ester condenses with *p*-OH·C₆H₄·CO₂Me to give anisic acid, 5-methoxy-4-

ethoxyphthalic acid [monohydrate, m.p. 192° (efferv.)], and 5:6:4'-tricarboxy-3-methoxy-2-ethoxydiphenyl ether (+H₂O), m.p. 195° (efferv.), identical with the second oxidation product from (II). These syntheses fix the structure of (I) as shown.

F. R. S. Constitution of cassaine and partial synthesis of the alkaloid. F. FALTIS and L. HOLZINGER (Ber., or the alkaloid. F. FALTIS and L. HOLZINGER (Ber., 1939, 72, [B], 1443—1450).—Cassaine (I), m.p. 140°, $[\alpha]_{20}^{\infty}$ —104·2° in 96% EtOH, —114·6° in 0·1N-HCl, from *Erythrophleum guineense*, Don., is hydro-lysed to cassaic acid (II), $[\alpha]_{20}^{\infty}$ —111·6° in COMe₂, *allo*cassaic acid (III), $[\alpha]_{20}^{\infty}$ —109·7° in COMe₂, and NMe₂·[CH₂]₂·Cl. Its partial syntheses from Na cassaate (III) and the base in boiling xylene is de-varibation (III) and we have a substantial to the set of the set o scribed. Analogously (III) and NEt₂·[CH₂]₂·Br afford [diethylaminoethyl cassaate], m.p. homocassaine 107-109° after softening at 106°. Diethylaminoethyl bromide hydrobromide, m.p. 203° (decomp.), is obtained from $NEt_2 \cdot [CH_2]_2 \cdot OH$ and HBr (saturated at 0°) at 100°. CH_2N_2 and (II) yield *Me cassaate*, m.p. 188–189° after softening at 183°, which does not depress the m.p. of the compound obtained similarly from (III). (II) contains one double linking since it is hydrogenated (Pd-sponge in AcOH) to dihydro-cassaic acid (IV), m.p. 229-235° after softening at 224°, also obtained from (III) [Me ester, m.p. 108°, and its semicarbazone, m.p. 185-187° (decomp.) after softening at 177°]. CrO3 in AcOH oxidises (IV) to dehydrodihydrocassaic acid C₂₀H₃₀O₄, m.p. 228-229° (decomp.) after softening at 215° (Me ester, m.p. 98.5-99°, and its disemicarbazone, m.p. 249-250°). H. W.

Veratrine alkaloids. V. Selenium dehydrogenation of cevine. L. C. CRAIG and W. A. JACOBS (J. Biol. Chem., 1939, **129**, 79–87).—Se dehydrogenation of cevine in H₂ yields various volatile products including β -picoline, 5-methyl-2-ethylpyridine, and a base, C₈H₉ON (*picrate*, m.p. 150–151°). The nonvolatile products, on chromatographic adsorption in C₆H₆, yield the following: cevanthridine (C₂₃H₂₅N, m.p. 211–212°); unidentified bases possibly homologous with cevanthridine; a base, C₂₅H₂₅N, m.p. 229–230°; a base, C₂₄H₂₅N or C₂₃H₂₃N, m.p. 186°; a hydrocarbon, C₁₇H₁₆, m.p. 138–150°, possibly derived from cevanthrol; a hydrocarbon, C₁₈H₁₈, m.p. 116– 118°; and cevanthrol, C₁₇H₁₆O, m.p. 195–196°.

to any [OH bure OH of States TP. G. M.

Alkaloids of Sinomenium and Cocculus. XLIX. Alkaloids of Stephania cepharantha, Hayata. VI. Systematic method of separation of the alkaloids. H. KONDO, M. TOMITA, M. SATOMI, and T. IKEDA (J. Pharm. Soc. Japan, 1938, 58, 276-279).—isoTetrandrine (I) (3 g.) is obtained by crystallisation of the total alkaloids (12 g.) from COMe2. The residue from the COMe2 motherliquors is extracted with aq. HCl and the sol. material separated by KOH and Et_2O into phenolic (A) and non-phenolic (B) (5 g.) fractions. Fractional crystallisation of (B) from COMe, and then COMe,- C_6H_6 gives methylisochondodendrine (0.25 g.), then 3 g. of cepharanthine, m.p. 155° (non-cryst.) as the cryst. adduct, decomp. 103°, with $1C_6H_6$ (also + 1PhMe, decomp. 98°), and finally amorphous base. Fractional crystallisation of (A) from C_6H_6 affords a Fractional crystallisation of (A) from C_6H_6 allords a little berbamine (II), m.p. 170° [as adduct, m.p. 127° (decomp.), with 1.5 C_6H_6 ; also +4 H_2 O, m.p. 156° (decomp.)], $[\alpha]_D^{25}$ +106.3° in CHCl₃ [diperchlorate, m.p. 278° (decomp.); dihydrochloride, m.p. 270° (decomp.); hydrobromide, m.p. 283° (decomp.); hydriodide, m.p. 260-264° (decomp.); methiodide, m.p. 261° (decomp.)], and amorphous base. Methylation (CH₂N₂) of (II) gives (I). H. B.

Sinomenine. XLVI. Constitution of tudaranine. K. Goto and H. SHISHIDO (Annalen, 1939, 539, 262—265; cf. A., 1937, II, 435).—The structure of tudaranine is proved by synthesis of its dl-N-Et derivative Et ether ethiodide (I) and the degradation thereof already announced (A., 1939, II, 189). and now detailed. 2:4:1-NO₂·C₆H₃(OEt)·CH₂·COCl and 2:4:1-(OMe)₂C₆H₃·[CH₂]₂·NH₂ give 2'-nitro-4'ethoxyphenylacet - β - 2:4 - dimethoxyphenylethylamide, m.p. 127—128·5°, converted by P₂O₅ in hot PhMe into 1-2'-nitro-4'-ethoxybenzyl-6:7-dimethoxy-3:4-dihydroisoquinoline, m.p. 145—147°, the ethiodide, m.p. 160—162°, of which is reduced by Zn dust in HCl to 1 - 2' - amino - 4 - ethoxybenzyl - 6:7 - dimethoxy -1:2:3:4-tetrahydroisoquinoline, m.p. 116—118°. Diazotisation and treatment with Cu-bronze gives 5:6 - dimethoxy - 3 - ethoxy - N - ethylnoraporphin [hydrobromide, m.p. 246—248°; hydrochloride, m.p. 234—236°; ethiodide = (I)]. R. S. C.

Kurchi alkaloids. II. Extraction of conessine and accompanying bases. A. BERTHO (Arch. Pharm., 1939, 277, 237–237; cf. A., 1933, 728).— The extraction of the following bases is described : conessidine (I), $[\alpha]_{2}^{\text{pt}} - 63 \cdot 5^{\circ}$ in CHCl₃ [dimethiodide, m.p. 269° (decomp., slow heating)], conkurchine (II), $[\alpha]_{2}^{\text{pt}} - 43 \cdot 8^{\circ}$ in 96% EtOH [dinitrate (+1.5H₂O), darkens at 180° and then explodes; diperchlorate, decomp. 272° (rapid heating); Ac₃ derivative, m.p. 263° (the derivative reported in A., 1933, 728 was not completely acetylated)], kurchine (A., 1932, 406), a ditert. base, $[\alpha]_{2}^{\text{pt}} + 10.6^{\circ}$ in EtOH [diperchlorate, m.p. 250° (decomp.); dimethiodide, m.p. 286.5°], and conkurchinine (III), C₂₅H₃₆N₂, a ditert. base containing no NMe, m.p. 161°, $[\alpha]_{2}^{\text{pt}} - 47.0^{\circ}$ in EtOH [diperchlorate (+2H₂O), darkens at 260° but does not melt at <330°; dimethiodide, m.p. 255–256° (decomp.)]. Since (III) is decomposed by dil. HNO₃, giving the nitrate of (II), and gives a red colour with fuchsin-SO₂, it probably contains the grouping •N:CH•[CH₂]₃•N:. Many of these bases, in presence of alkali, or when recrystallised or kept, form mol. associates (also formed from mixed bases); some of these occur in the crude alkaloids, and they yield the unimol. forms when treated with conc. HCl and then aq. NH₃. (I) gives an amorphous form, m.p. 288—289° or >300°, and (II) gives an associate m.p. 323°, and another, m.p. 335—336°, identical with "kurchenine" (A., 1933, 728). The "norconessine" of Haworth (A., 1932, 406) is probably impure kurchine. The properties of the *Kurchi* alkaloids are summarised. A. Li.

Constitution of matrine. XXI. Curtius degradation of methyl methylmatrate. E. OCHIAI and K. NODA (J. Pharm. Soc. Japan, 1938, 58, 174— 176).—Methylmatrhydrazide, m.p. 94° (CMe_2 : derivative, m.p. 128.5°), from the Me ester and N₂H₄, H₂O at 100° (bath), is converted by HCl and amyl nitrite in EtOH into a compound, C₁₆H₂₈O₂N₂, b.p. 145°/ 0.02 mm. (platinichloride, decomp. 231°), and by NaNO₂-aq. HCl into a little decarbonylmethylmatrinamine, m.p. 120°, also obtainable in better yield by the Hofmann degradation. isoPropylidenebenzhydrazide has m.p. 144.5°. H. B.

Alkaloid (hydrobromide, m.p. 287°) from Twan Chan Tsao.—See A., 1939, III, 639.

Organoboron-nitrogen compounds. I. Reaction of boron chloride with aniline. R. G. JONES and C. R. KINNEY (J. Amer. Chem. Soc., 1939, 61, 1378-1381).-BCl₃ reacts violently with NH₂Ph, but only very slowly with NH₂Ph,HCl. With NH₂Ph (0.8 mol.) in C_6H_6 it gives the additive compound (I), BCl₃,NH₂Ph (not obtained quite pure), m.p. ~100°, belg, M_2 in (not obtained quite pure), m.p. ~100°, decomp. ~120°, which decomposes in moist air and dissociates in boiling C₆H₆. With NH₂Ph in C₆H₆, (I) gives a very poor yield of the *compound*, BCl₂·NHPh, NH₂Ph, decomposed by H₂O to NH₂Ph, HCl, and H₃BO₃. When NH₂Ph is added to BCl₃ in C H at -15° and the mixture fort let at C_6H_6 at -15° and the mixture first kept at room temp. and then boiled, trichlorotriphenyltriboron nitride, BCl<NPh·BCl>NPh (II), sinters at 255-260°, decomp. 265-270°, is obtained (cf. Rideal, A., 1889, 769). With cold H₂O (II) gives trihydroxytriphenyltriboron nitride [as (II) with OH replacing Cl] m.p. indefinite, 95-130°, sol. in aq. NaOH and readily hydrolysed to H3BO3 and NH2Ph. With 5 mols. of $\dot{\rm NH}_2 {\rm Ph}$ in boiling $C_6 \dot{\rm H}_6$, (I) gives boric trianilide (III), B(NHPh)₃, m.p. 166-169° (decomp.; softens at 155°, if heated slowly), which gives no additive compound with NH₂Ph, is readily hydrolysed by H₂O, and with dry HCl in C_6H_6 gives (II). BCl₂·NHPh is a probable intermediate in formation of (II) by both methods. The "tert. B triethylimine," B(NHEt)₃, of Kraus et al. (A., 1931, 77) is renamed (ortho)boric triethylamide, this name and that of (III) showing the relation to H_3BO_3 . BCl_3 and $NPhMe_2$ in C_6H_6 give the 1:1 additive compound, sinters at 125-130°, molten at 146°, after resolidification remelts at 144-145°, which is stable in C_6H_6 or over P_2O_5 , loses HCl in moist air, reacts with H_2O in C_6H_6 but in H_2O alone forms an unreactive, insol. coating, reacts with MeOH to give NPhMe₂, Me₃BO₃, and HCl, and is decomposed by NH₂Ph. Analysis of the products is discussed.

Et₃BO₃ and NH₂Ph do not react, even if boiled (cf. carboxylic esters). R. S. C.

Preparation and reactions of lead triphenyl derivatives. L. S. FOSTER, W. M. DIX, and I. J. GRUNTFEST (J. Amer. Chem. Soc., 1939, 61, 1685— 1687),—PbPh₄ (prep. in $\geq 81\%$ yield from PbCl₂ and MgPhBr in boiling xylene) and I in CHCl₃ give PbPh₃I, m.p. 142° (uncorr.), which with Na in liquid NH₃ gives $\geq 90\%$ of Pb₂Ph₆, obtained also in similar yield from PbPh₃Cl by Na₄Pb₉ (not by Na) in NH₃ at $-33\cdot4^{\circ}$. Pb₂Ph₆ has an irregular temp. of decomp., is largely dissociated in C₆H₆, and with Na in NH₃ gives NaPbPh₃, obtained impure from PbPh₃Cl or PbPh₃I by Na. Existence of PbPh₃° in solution in NH₃ is proved by interaction with EtBr to give PbPh₃Et. NaPbPh₃ and NH₄Br in NH₃ give NH₄PbPh₃ (not isolated owing to its solubility), which is ionised in solution (proof : formation of PbPh₃Et) and destroyed only by a large excess of NH₄°. Reaction of NaPbPh₃ with CH₂Cl₂ is complex.

R. S. C.

Lead tetraphenyl and lead diphenyl dihalides. W. C. SETZER, R. W. LEEPER, and H. GILMAN (J. Amer. Chem. Soc., 1939, 61, 1609—1610).—Adding PbCl₂ slowly to MgPhBr in Et₂O-PhMe and then heating gives 82—83% of PbPh₃, m.p. 225—226°, with sometimes, 6% of PbPh₃Br. PbPh₃ and MgBr₂ give PbPh₃Br, but PhPh₄ is unaffected by MgBr₂ or Mg + MgBr₂. PbPh₃ is thus an intermediate in the prep. of PbPh₄. Adding PbPh₄ to boiling, conc. HNO₃ gives PbPh₂(NO₃)₂, which with NaBr or NaI in very dil. HNO₃ gives 96% of PbPh₂Er₂ or 98% of PbPh₂I₂ and conc. HCl give 93% of PbPh₂Cl₂. PbPh₂I₂ and KF in aq. EtOH give 92% of PbPh₂F₂, m.p. >300°, which with MgPhBr gives PbPh₄.

Ammino-compounds of lead triphenyl chloride. L. S. FOSTER, I. J. GRUNTFEST, and L. A. FLUCK (J. Amer. Chem. Soc., 1939, 61, 1687—1690).—By measuring the vol. of NH₃ absorbed and by isolating the compounds, it is shown that at -33.4° PbCl₂ with NH₃ vapour gives compounds containing 9.65, 2.7, 1.8, or 1.3 mols. of NH₃. Only the firstmentioned compound was examined in detail.

R. S. C. Synthesis in the selenophen series. IV. Introduction of side-chains into the selenophen nucleus. S. UMEZAWA (Bull. Chem. Soc. Japan, 1939, 14, 155—161; cf. A., 1937, II, 172).—C₄H₄Se and AcCl with SnCl₄ in C₆H₆ or CS₂ yield α -acetoselenenone (I), b.p. 107°/14·5 mm. (phenylhydrazone, m.p. 114—116°), oxidised (dil. NaOH-KMnO₄) to α selenenylglyoxylic acid, m.p. 92—94° [monohydrate, m.p. 44—46·5°; semicarbazone, m.p. 192—193°; Ba salt (+H₂O)], which with H₂O₂ yields α -selenenoic acid (II), m.p. 122—124° (Ag salt). α -Chloromercuriselenophen, m.p. 201—202° (from C₄H₄Se, NaOAc, and HgCl₂ in aq. EtOH), with EtCOCI at 100° yields ' α propioselenenone, b.p. 115°/14 mm. [also prepared as (I)] (semicarbazone, m.p. 175—176°), oxidised (dil. NaOH-KMnO₄) to (II). C₄H₄Se and BzCI with P₂O₅, or with SnCl₄ in CS₂, give Ph α -selenenyl ketone (poor yield), m.p. 57—58° (phenylhydrazone, m.p. 175— 176·5°). (I) with PhCHO and HCl gas at - 10° yields styryl a-selenenyl ketone, m.p. $81-82\cdot5^{\circ}$ (dibromide, m.p. $155\cdot5-156^{\circ}$). These ketones are much more stable than C_4H_4Se . (I) and (II) give the indophenin reaction. A. LI,

Relative reactivities of organometallic compounds. XXVII. Thallium triphenyl. H. Gu-MAN and R. G. JONES (J. Amer. Chem. Soc., 1939, **61**, 1513—1515; cf. A., 1939, II, 350).—TIPh₃ (prep. from LiPh and TIPh₂Br in 70% yield), m.p. 169—170° (in N₂), is less reactive than AlR₃, but undergoes some of the reactions of moderately reactive organometallic compounds. It gives the colour test (modified) with Michler's ketone (A., 1925, ii, 1011). With PhCHO in C₆H₆ it gives CHPh₂·OH (76%) and TIPh₂·OH. With PhNCO it gives NHPhBz (40%). With BzCl it gives COPh₂ (89%) and TIPh₂Cl (97%). With COPh·CH:CHPh in C₆H₆ it gives COPh·CH₂·CHPh₂ (41%) and COPh·CH(CHPh₂)·CHPh·CO·COPh (30%). With Hg in hot C₆H₆ it gives HgPh₂ (45%) (obtained in 90% yield from TIPh₂Br and Hg in hot, dry C₅H₅N). With O₂ in C₆H₆ it gives 11% of PhOH and some Ph₂. With CO₂ in boiling xylene it gives BzOH (70%) and Ph₂ (73%). It gives oils with COPh₂ or CO₂ in C₆H₆.

Structure of proteins. L. PAULING and C. NIE-MANN (J. Amer. Chem. Soc., 1939, 61, 1860-1867).-X-Ray data are shown in a crit. review to be incompatible with the cyclol structure of proteins instead of supporting it as assumed by Wrinch. Bond energy vals. and heats of combustion each show that the cyclol structure would be less stable than the polypeptide chain by about 28 kg.-cal. per mol. of NH2acid, so that at most 3% of the $\dot{\rm NH}_2$ -acid residues possess the former structure. Other evidence against the cyclol theory is assembled and accepted, and Wrinch's more important arguments are refuted in detail. Moreover, the necessary overlapping of sidechains at corners and edges, contrasted with the rather uniform distribution of matter revealed by crystal structure analysis, is held to refute all cage structures and not merely Wrinch's particular choice. Proteins are considered to consist of polypeptide chains or rings built up from several hundred NH2-acids; small nos. of residues held together by H bonds etc. would be at once disrupted in acid or alkali, which is not the case. The chains are given definite shapes by NH₂-CO₂H, S-S, and ester linkings, but mainly by H bonds, which latter, although individually weak, are very effective in aggregate. If the structure thus assumed is the most stable possible, denaturation is reversible (trypsin, hæmoglobin); if not, denaturation is irreversible, as with antibodies, the initial structure of which is enforced by the antigen during synthesis. The nature of the end-groups is important only for enzymic attack and biological action, but not for structure. Whilst the periodicity proved by Bergmann indicates 288 residues in the mol. of many proteins, this no. will be modified by side-groups or occasional variations in assembly of the residues and will often be only approx. The significance of this no. is not clear. Favoured mol. wts. probably have a biological rather than a chemical cause, viz., retention of this protein property throughout evolution of the species. 902 of 87.0 A-16-0 R. S. C.

X-Rays and the cyclol hypothesis. J. D. BERNAL, I. FANKUCHEN, and D. RILEY (Nature, 1939, 143, 897).—A reply to Wrinch (A., 1939, II, 397). L. S. T.

Casein. III. Fractionation of casein and paracasein by ammonium chloride. IV. Hammarsten's proteose is not a degradation product of casein. E. CHERBULIEZ and J. JEANNERAT (Helv. Chim. Acta, 1939, 22, 952-959, 959-961).-III. Casein is dissolved in aq. NH₄Cl with the aid of NaOH and fractionally pptd. by HCl and COMe,; the process leads essentially to two fractions, casein- α_1 and $-\gamma$ with a little δ . Each contains a little Ca but the presence of this ion does not influence the result since no difference is observed if NaOH is replaced by $Ca(OH)_2$. Rennet is practically without action on casein- δ and has its max, action on the mixture of $-\alpha_1$ and $-\gamma$, whereas each of the latter separately is only incompletely coagulated. Paracasein is obtained by the action of rennet on a solution of Ca caseinate, whereby it is pptd. as its Ca salt free from casein; elimination of Ca from the ppt. necessitates repeated dissolution and pptn. Alternatively a solution of casein is treated with rennet in the absence of alkalineearth ions, whereby the product is as free as the original material from Ca but is liable to be contaminated with unchanged case in. Fractionation of paracase in gives essentially α_1 and γ with less δ than is the case with casein.

IV. Hammarsten's proteose is identical with casein- δ in content of P, S, and methionine, in the coloration with CH₂O and HCl in presence of H₂SO₄, and in physical properties. Proteose is therefore not a degradation product of casein formed under the proteolytic influence of rennet, but a preformed constituent in the mixture, casein. H. W.

Pantothenic acid. IV. Formation of β -alanine by cleavage. H. H. WEINSTOCK, jun., H. K. MITCHELL, E. F. PRATT, and R. J. WILLIAMS (J. Amer. Chem. Soc., 1939, 61, 1421—1425; cf. A., 1939, II, 172).—Pantothenic acid is synthesised by yeast only if the medium contains β -alanine, which is shown by quant. chemical, physical, and biological tests to be formed by acid or alkaline degradation of the acid and is isolated from the products as β *naphthalenesulphonyl* derivative, m.p. 135:5—136:5°. The acid is probably a protein, ~80% pure, yielding 1 equiv. of β -alanine. R. S. C.

Eisinin, $C_{13}H_{20}O_6N_4$, m.p. 225–226° (decomp.), $[\alpha]_{5}^{14} - 54.3^{\circ}$ in H_2O , from *Eisenia bicyclis*.—See A., 1939, III, 733.

Precipitation of proteins with complex salts.— See A., 1939, III, 885.

Organic chemical operations with small amounts of material. J. ERDös and B. László (Mikrochem., 1939, 27, 211–215).—A review.

Organic micro-analysis. VII. Improvements to Pregl's micro-analytical apparatus. S. SAKAMOTO (J. Pharm. Soc. Japan, 1938, 58, 304– 306).—An improved CO₂ generator and pressure regulator are described. S. H. H.

Refractive index measurements in qualitative organic micro-analysis. P. L. KIRK and C. S. GIBSON (Ind. Eng. Chem. [Anal.], 1939, 11, 403).— A method of measuring n of small quantities of org. liquids is described. For solids immersion methods can be applied when the val. of n is known. Determination of n is a valuable adjunct to the identification of org. compounds. L. S. T.

Handling of hygroscopic substances in the micro-determination of carbon and hydrogen. C. J. RODDEN (Ind. Eng. Chem. [Anal.], 1939, 11, 405). —The apparatus described and illustrated consists of a jacketed drying tube arranged so that it may be kept at a const. temp., and a weighing bottle of special design. The sample is dried, weighed, and introduced into the C and H combustion tube without contact with moisture. L. S. T.

Quantitative organic elementary micro-analysis without a micro-balance. J. B. NIEDERL, V. NIEDERL, R. H. NAGEL, and A. A. BENEDETTI-PICHLER (Ind. Eng. Chem. [Anal.], 1939, 11, 412— 414; cf. A., 1939, I, 341).—Micro-procedures with minor changes, such as in the time factors in the C and H determination and in the Dumas N method, can be employed when an assay balance or an ordinary analytical balance of suitable precision is available. Changes in equipment and micro-apparatus are unnecessary. Typical results thus obtained in the determination of metals, neutralisation equiv., N by the Kjeldahl and micro-Dumas methods, C and H, and mol. wt. are recorded. L. S. T.

Detection of nitrogen in the organic laboratory. A. G. EPPRECHT and B. HORNUNG (Helv. Chim. Acta, 1939, **22**, 925—927).—A few mg. of the substance are mixed with CaO in a glass tube ≥ 5 mm. in diameter; if NO₂- or azo-compounds are present a little Cu powder is added. A drop of HCl (1:1) on a Pt or glass loop or placed in filter-paper is brought into the tube, which is moderately heated. The loop of paper is placed in a drop of Riegler's solution to which an excess of CaO is added. If N is present a distinct red colour due to NH₄ is developed in the solution after a short time. A micro-analytical modification of the test is described. H. W.

Semimicro-determination of halogens in organic substances. A. GIACALONE (Annali Chim. Appl., 1939, 29, 271—277).—The substance (~50 mg.) is heated with $K_2Cr_2O_7$ — H_2SO_4 (for Br or I) or Ag_2SO_4 — H_2SO_4 (for Cl); Br or Cl liberated is absorbed in aq. H_2O_2 and the HBr or HCl formed is determined gravimetrically as Ag salt. With I, HIO₃ in the (diluted) digestion liquor and the residual $CrO_4^{\prime\prime}$ are reduced by SO₂ and I is determined gravimetrically as AgI. F. O. H.

"Deflagration" with sodium peroxide as simple analytical process for determination of halogen, sulphur, and other constituents in organic substances. R. KRAUS (Z. anal. Chem., 1939, 117, 243—252).—Deflagration of solid org. substances and certain liquids by quick and short heating with a large excess of Na₂O₂ in a covered Ni crucible by the method detailed gives a quick and complete combustion with relatively little attack on

the crucible, and permits subsequent determinations of halogens, S, and P to be made accurately. Viscous liquids are first mixed with MgO, and liquids of high b.p. are absorbed in filter-paper in the crucible before mixing with the Na₂O₂. The method is limited for low % of Cl, S, etc. only by the "blank" of the Na₂O₂. It is applicable to substances, such as chlorotoluidine, which are not readily decomposed by the Carius method. The method is especially suitable for routine analyses. L. S. T.

Organic micro-analysis. IV. Simple volumetric micro-determination of ionisable organic halogen derivatives with adsorption indicators. S. UYEO and S. SAKAMOTO (J. Pharm. Soc. Japan, 1938, 58, 212—218).—Ionisable halogen in org. compounds is determined by dissolving 3—5 mg. of the substance in H₂O or aq. EtOH, adding (for Cl) bromophenol-blue and 10% AcOH or (for Br or I) eosin, and titrating with 0.01—0.002N-AgNO₃. In 102 examples the error exceeds 0.4% in 9 cases $(\pm 0.2-0.3\%$ claimed). R. S. C.

Reaction of organic sulphur compounds with hydrogen peroxide. XVII. Gravimetric microanalysis of organic sulphur compounds. III. R. KITAMURA and F. MASUDA (J. Pharm. Soc. Japan, 1938, 58, 251—254).—S in compounds containing N:C·SH, O:C·SH, S:C·SH, N·C:S, O·C:S, S(C:N)₂, or C·CS·C is determined by treating 3—5 mg. with H_2O_2 -KOH at 40°, followed by BaCl₂, and weighing the BaSO₄ produced. R. S. C.

Micro-determination of dipentadeuterethyl ether.—See A., 1939, III, 804.

Differentiating action of solvents on the strength of acids. I. Potentiometric titration of salts by the displacement method, in differentiating solvents. N. A. IZMAILOV and M. A. BELGOVA (J. Gen. Chem. Russ., 1939, 9, 453–459).—Na salts of carboxylic acids are dissolved in aq. COMe₂, and the solutions are electro-titrated with HCl. The org. acids thus liberated dissociate to a very small extent only, as compared with aq. solutions, whilst dissociation of HCl is not affected. The [COMe₂] should be $\leq 85\%$. The method is applicable to all carboxylic acids, including CCl₃·CO₂H. R. T.

Accuracy of iodometry for the determination of ascorbic acid; method for standardisation of preparations. K. SHINOHARA (J. Pharm. Soc. Japan, 1938, 58, 279-292).-Ascorbic acid (I) can be determined accurately by titration with 0.01N-I in solutions of $p_{\rm H}$ 0.7—5 containing KCNS. At $p_{\rm H}$ >6 and <9 results are too low [owing to atm. oxidation of (I)] unless titration is carried out in N₂. Direct titration of (I) in <0.5M-HCl also gives low results owing to slow reaction; excess of I and back titration with Na₂S₂O₃ give moderately accurate vals. Oxidation of dehydroascorbic acid (II) by I is negligible at $p_{\rm H} < 6$ but occurs at 6-8 and is a max. at 7.4-7.6. Aq. solutions of (I) are more stable [to atm. oxidation to (II)] than those in dil. HCl or H_2SO_4 ; KCNS (25 × 10⁻⁴M.) has a pronounced inhibitory effect and is more effective than HPO3. The procedure recommended is: (I) $(0.1761 \pm 0.0001 \text{ g.})$ is dissolved in 25×10^{-4} m-KCNS to 200 c.c. and 5 or 10 c.c. are then titrated with 0.01N-I (in 4% KI) using starch solution as indicator; the error is $<\pm 0.3\%$. H. B.

Determination of formaldehyde. I. Hydrogen peroxide method. A. FOSCHINI and M. TALENTI (Z. anal. Chem., 1939, 117, 94-99).-Sources of error in the official method of the Italian Pharmacopœia (5th edition) for the determination of CH₂O by H₂O₂ are discussed and methods for their elimination suggested. The CH2O should be measured by a micro-burette, and the alkaline mixture constantly agitated to facilitate the removal of gases. Contamination by CO₂ from gas-heated water-baths should be avoided by electrical heating. Results thus obtained are more const. and are lower than those obtained by the official method. L. S. T.

Determination of metaldehyde. SCHONBERG (Ann. Falsif., 1939, 32, 178-181).-Metaldehyde is depolymerised by heating at 65-75° for 1-2 hr. with aq. H₃PO₄, the MeCHO formed being absorbed in aq. NaHSO₃ and determined iodometrically. E. C. S.

Identification of ethers. P. P. T. SAH (Rec. trav. chim., 1939, 58, 758-760).-A small sample of the ether is passed through a quartz tube at 500° and the issuing gas passed through a solution of a reagent (o- or p-tolylsemicarbazide; m-nitro- or pchloro-benzhydrazide) by which the aldehyde or ketone is identified and the ether may be deduced. ketone is identified and the ether may be deduced. Et₂O gives C_2H_6 and MeCHO; Pr^a_2O gives C_3H_8 and EtCHO; Pr^{β}_2O gives C_3H_8 and $COMe_2$; Bu^a_2O gives C_4H_{10} and Pr^aCHO ; Bu^{β}_2O gives C_4H_{10} and $Pr^{\beta}CHO$; (sec.-Bu)₂O gives C_4H_{10} and COMeEt; $CH_2Ph\cdotOEt$ gives PhMe, C_2H_6 , MeCHO, and PhCHO; $CH_2Ph\cdotOPr$ gives PhMe, C_3H_8 , EtCHO, and PhCHO; $CH_2Ph\cdotOPr^{\beta}$ gives PhMe, C_3H_8 , COMe₂, and PhCHO; $CH_2Ph\cdotOBu^{\alpha}$ gives PhMe, C_4H_{10} , $Pr^{\alpha}CHO$, and PhCHO; $CH_2Ph\cdotOBu^{\beta}$ gives PhMe, C_4H_{10} , $Pr^{\alpha}CHO$, and PhCHO; $CH_2Ph\cdotOBu^{\beta}$ gives PhMe, C_4H_{10} , $Pr^{\alpha}CHO$, and PhCHO; $(CH_2Ph\cdotOBu^{\beta}$ gives PhMe, C_4H_{10} , $Pr^{\beta}CHO$, and PhCHO; $(CH_2Ph\cdotOBu^{\beta}$ gives PhMe, C_4H_{10} , $Pr^{\beta}CHO$, and PhCHO; $(CH_2Ph\cdotOBu^{\beta}$ gives PhMe, C_4H_{10} , $Pr^{\beta}CHO$, and PhCHO; $(CH_2Ph\cdotOBu^{\beta}$ gives PhMe, C_4H_{10} , $Pr^{\beta}CHO$, and PhCHO; $(CH_2Ph\cdotOBu^{\beta}$ gives PhMe, C_4H_{10} , $Pr^{\beta}CHO$, and PhCHO; $(CH_2Ph\cdotOBu^{\beta}$ gives PhMe, C_4H_{10} , $Pr^{\beta}CHO$, and PhCHO; $(CH_2Ph\cdotOBu^{\beta}$ gives PhMe, C_4H_{10} , $Pr^{\beta}CHO$, $Pr^{\beta}CHO$, $Pr^{\beta}CHO$, PhCHO, $(CH_2Ph\cdotOBu^{\beta}$ gives PhMe, C_4H_{10} , $Pr^{\beta}CHO$, PhCHO, Pand PhCHO; (CH₂Ph)₂O gives PhMe and PhCHO. J. D. R.

Saccharolactone as reagent for precipitating certain amines. A. C. KURTZ and D. W. WILSON (J. Biol. Chem., 1939, **129**, 693-699).—Saccharo-lactone (I) (deteriorates slowly in EtOH) and the free amine in EtOH at room temp. give NN'-dimethyl-, m.p. 188°, -ethyl-, m.p. 174°, -n-, m.p. 179— 181°, and -iso-propyl-, m.p. 176—178°, -n-, m.p. 178°, and -iso-butyl-, m.p. 159°, -n-, m.p. 173—174°, and -iso-amyl-, m.p. 138°, -n-heptyl-, m.p. 174—176°, - β -hydroxyethyl-, m.p. 129—130°, -benzyl-, m.p. 174 176°, and -β-phenylethyl-saccharimide, m.p. 185-186°. Similar derivatives from tyramine and piperidine had m.p. 204° and 191° (darkens $>140^{\circ}$), respectively. The derivatives of m.p. $<174^{\circ}$ show browning and frothing at the m.p. Some solubilities are recorded. Pptn. of the less sol. saccharimides is more rapid with the more symmetrical amines. NH2Bu gives almost immediate pptn., NH_2Bu^β after 30 min., and NH₂Bu-sec. no ppt. (CH₂·NH₂)₂, putrescine, and cadaverine give an immediate gummy ppt. (I) and NMe₄·OH, NMe₃, or NEt₃ give no ppt. Sp. pptn. of saccharimides may be used to determine certain amines in mixtures. Aromatic amines give (slowly) cryst. ppts., e.g., from NH2Ph, m.p. 204-205° (decomp.); o-, m.p. 190-191° (decomp.), and

p-C₆H₄Me·NH₂, m.p. 202—203° (decomp.); xylidine, m.p. 190—191° (decomp.); and benzidine, m.p. 275-280° (decomp.). A. T. P.

Semimicro-determination of amino-acids. H. R. ING and M. BERGMANN (J. Biol. Chem., 1939, 129, 603—607).—Apparatus for semimicro-determination of NH2-acids in proteins by the solubility method (cf. A., 1939, II, 236) is described. The reaction product is filtered by centrifugal means. Experiments are recorded giving results of the determination of glycine by means of Na dioxpyridate and of proline in gelatin by NH4 rhodanilate. A. T. P.

Naphthalene-2-sulphonic acid as a reagent for amino-acids. M. BERGMANN and W. H. STEIN (J. Biol. Chem., 1939, **129**, 609-618; cf. A., 1939, II, 236).-2-C₁₀H₇·SO₃H (I) and *l*-leucine or l-phenylalanine (II) in dil. HCl form sparingly sol. salts ("nasylates"), $+H_2O$ (III), m.p. 187.5–189° (decomp.) and 232–233° (decomp.), respectively. *l*-Arginine and *l*-histidine afford salts, $B_{2}(I)$, m.p. 209-211° (decomp.), and 265° (decomp.), respectively, converted by C5H5N-MeOH into the corresponding mono-salts, B,(I), m.p. 243° (decomp.) and 206-207° (decomp.), respectively, which give the di-salts with strong acids. Commercial leucine is freed from methionine by pptn. as (I) salt and treatment with C_5H_5N -EtOH at room temp.; it had $[\alpha]_D^{24} + 15\cdot 33^{\circ}$ in 21% HCl. Determination of NH2-acids by the solubility method [of their (I) salts] (loc. cit.) is illustrated. Acetyl-l-phenylalanyl-l-glutamic acid and boiling HCl give a solution, which on evaporation to dryness and treatment with (I) gives (III), converted by C_5H_5N -EtOH at 20° for 2 days into (II), $[\alpha]_D^{26}$ -34.6° in H₂O. The sparingly sol. (I) salt, m.p. 211—212° (decomp.), of glycyl-*l*-leucine can be used for its determination. Tryptophan, methionine, and cysteine give salts with (I). Flavianic acid forms sparingly sol. salts with leucine, phenylalanine, tyrosine, cystine, and tryptophan. NH_2 -acid salts can also be obtained from β-naphtholazobenzene-psulphonic acid, 4-nitro-4'-methyldiphenylamine-3-sulphonic acid, and anthraquinone-2-sulphonic acid. A. T. P.

Determination of glutamic acid. A. A. ARHIMO and T. LAINE (Suomen Kem., 1939, 12, B, 18) .---The acid is oxidised (HNO_2) to α -hydroxyglutaric acid and finally (acid KMnO4) to succinic acid, which is extracted with Et₂O and determined by titration of the Ag salt with 0.1N- or 0.005N-NH4CNS (cf. Cohen, A., 1939, III, 639). F. O. H

Volumetric determination of thiocarbamide. C. MAHR (Z. anal. Chem. 1939, 117, 91-94).-The solution of $CS(NH_2)_2$ is titrated at 35° with 0.1N-BrO₃'-Br in presence of acid (H₂SO₄, HCl, or HClO₄), KI, and starch. The formation of a stable blue colour shows when oxidation to the corresponding SS. compound is complete. Cu and Hg salts, but not small $[NO_3']$, interfere. H_3PO_4 must be added when Fe^{III} salts are present. L. S. T.

Effects of methionine, djenkolic acid, and benzylcysteine on the determination of cystine by the dropping mercury electrode. E. R. SMITH and C. J. RODDEN (J. Res. Nat. Bur. Stand., 1939, 22, 669-672).—The polarographic determination of cystine in a buffered solution containing Co^{**} is unaffected by the presence of methionine or benzylcysteine at concns. up to ~ twice the concn. of cystine. Djenkolic acid, however, reduces the height of the reduction max. of cystine. W. R. A.

Determination of arginine in the presence of other amino-acids by means of the Sakaguchi reaction. L. E. THOMAS, J. K. INGALLS, and J. M. LUCK (J. Biol. Chem., 1939, **129**, 263—271).—The Sakaguchi method of determining arginine is further modified so as to be applicable in presence of NH_4 salts and other NH_2 -acids. The colour is always fugitive (cf. lit.). The following arginine contents are determined : casein $3\cdot37$ —4·12, edestin 16·01—17·01, total protein of liver, plasma, and serum of the dog $5\cdot86$, $5\cdot59$, and $4\cdot51$, respectively, globulin II (dog) $5\cdot93$ —6·76, insulin $3\cdot31$, and protamine $68\cdot3\%$.

R. S. C.

Titrimetric modification of the glyoxalase method for the determination of reduced glutathione. E. F. SCHROEDER and G. E. WOODWARD (J. Biol. Chem., 1939, **129**, 283—294).—Reduced glutathione is determined by its accelerating effect on the conversion of AcCHO into lactic acid by glyoxalase. The amount of unchanged AcCHO is determined by a modification of the H sulphite method of Clift and Cook (cf. A., 1933, 491). E. M. W.

Drop detection of diazotisable amines. S. I. BURMISTROV (Prom. Org. Chim., 1939, 6, 328).—A no. of aromatic amines are identified from the colour developing after diazotisation and coupling with NHPh· $C_{10}H_{7}$ - α . R. T.

Micro-determination of phenols by the "volume-colorimetric" method. A. IONESCO-MATIU, C. POPESCO, and A. POPESCO (J. Pharm. Chim., 1939, [viii], **30**, 49—58).—The method, involving titration of the sol. blue compounds formed from phenols and phosphotungstic acid with $K_3Fe(CN)_6$, has been successfully applied to o- and $p-C_6H_4(OH)_2$, pyrogallol, gallic acid, and the tannins. H. G. R.

Colour reaction for the detection and determination of small quantities of β -naphthol. J. A. GAUTIER (J. Pharm. Chim., 1939, [viii], **30**, 70—76).— The method described utilises the colour reaction with NaNO₂ and HCl and will detect 10 µg. of β -C₁₀H₇·OH per c.c. H. G. R.

Colour reaction for polyhydric phenols. J. B. ASCHKINAZI (J. Appl. Chem. Russ., 1939, **12**, 309– 312).—NaOEt in EtOH is added to the substance, and the solution is shaken with air. Under these conditions polyhydric phenols give the following colorations: $o \cdot C_6H_4(OH)_2$ grass-green, changing to dull green, $1:3:4 \cdot C_6H_3Me(OH)_2$ blue, changing to red, $1:2:3 \cdot C_6H_3(OH)_3$ red, changing through brown to violet, $1:2:3 \cdot C_6H_3(OH)_2 \cdot OMe$ green, changing through blue to violet, gallic acid a white, changing to ultramarine, ppt., $m \cdot C_6H_4(OH)_2$ olive-green, orcinol rose-red, changing to cerise, phloroglucinol bluishviolet, quinol orange. Guaiacol, veratrole, safrole, *iso*safrole, piperonaldehyde, mono- and di-ethers of o-, m-, and $p \cdot C_6H_4(OH)_2$, vanillin, 1:2:3- $C_6H_3(OMe)_3$, $1:2:6 \cdot OH \cdot C_6H_3(OMe)_2$, and monohydric phenols give no colorations under the above conditions.

Colour reactions of lignin and tannins. W. G. CAMPBELL and J. C. MCGOWAN (Nature, 1939, 143, 1022).—The Mitchell colour reaction of gallotannins (A., 1923, ii, 188) and the Cl_2 -Na₂SO₃ reaction of hardwood lignin (B., 1937, 1057) are essentially similar. With lignin, reactions showing the importance of removing excess Cl_2 while the system is still acid and then rendering the solution weakly alkaline for the colour development are described. L. S. T.

Reactions between thiophen and calcium hypochlorite solutions.—See A., 1939, I, 476.

Colorimetric determination of pyrrole with isatin and the application of the method to biological materials. G. H. GUEST and W. D. Mc-FARLANE (Canad. J. Res., 1939, **17**, **B**, 133—138).— Fromm's method (A., 1935, 998) is modified and applied to the determination of pyrrole (I) produced by the dry distillation of proteinaceous substances. The (I) (yield increased by addition of Na₂O₂) obtained from gelatin (II) is derived entirely from proline (III) and hydroxyproline. CuSO₄ catalyses the oxidation of (III) to (I) by Na₂O₂. (I) is absent from the hydrolysates of (II), gliadin, and glutenin. S. H. H.

Bromometric determination of antipyrine. V. MADIS (Österr. Chem.-Ztg., 1939, 42, 290–293).— Antipyrine is determined in 0.4N-HCl containing KBr and 0.1% AuCl₃ (1 c.c.; indicator) by titrating with KBrO₃ (2 Br added). Aminopyrine, quinine salts, and codeine salts interfere, but o-OH·C₆H₄·CO₂H, NHAcPh, caffeine, or phenacetin do not. The method is adapted for micro-quant. work.

R. S. C.

Alkaloids and their reagents. C. C. FULTON (Amer. J. Pharm., 1939, **3**, 184—192).—A new systematic classification of some 100 reagents in use for identification of alkaloids is proposed, and a table is given showing them in the order of their pptg. power. Phosphomolybdic acid forms a convenient standard for dil. solutions. P. G. M.

Micro-electrophotometric determination of morphine. R. CAHEN and H. FEUER (Compt. rend., 1939, 208, 1907—1910; cf. A., 1911, ii, 79; 1915, ii, 76).—The solution containing morphine (0.02-0.20 mg.) is evaporated to dryness and the residue treated with pure H_2SO_4 (2·4 c.c.) in a boiling water-bath for 2 min. After cooling, saturated aq. NaOAc (5 c.c.) and 4% HgCl₂ (2 drops) are added; the mixture is boiled, cooled, made up to 10 c.c., and the emerald-green colour determined electrophotometrically (red, neutral, or green filter). The red and grey filters give a 1—5%, and the green a 5—10%, error. J. L. D.

Detection of ergotamine and ergotaminine in gynergen. A. KOFLER (Angew. Chem., 1939, 52, 251-253; cf. A., 1937, II, 393; 1938, II, 164; L. Kofler, A., 1939, II, 43).—The microscopical detection method is extended; Et₂O and then CHCl₃ (from NaHCO₃ mixture) extracts (also by intermediate Al₂O₃ adsorption) afford crystals of ergotaminine and ergotamine (hydrated), respectively.

A. T. P.