BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS ## A., II.—Organic Chemistry DECEMBER, 1939. Separation of organic compounds containing oxygen from their mixtures with hydrocarbons. A. S. Osokin (J. Gen. Chem. Russ., 1939, 9, 1315—1325).—Alcohols, aldehydes, ketones, esters, and acid anhydrides are pptd. from their solutions in light petroleum by dry MgCl₂. If a mixture of hydrocarbons with substances containing O is present, the acids, phenols, etc. are eliminated by alkali, the rest is pptd. by MgCl₂, and the residue containing aromatic ethers, furan, etc. is analysed by combustion. Cadmium-photosensitised reactions of ethane. —See A., 1939, I, 620. Isomerisation of butanes and their equilibrium ratios. B. L. Moldavski and T. V. Nisovkina (Compt. rend. Acad. Sci. U.R.S.S., 1939, 23, 919—920).—The equilibrium $n\text{-}\mathrm{C}_4\mathrm{H}_{10} \rightleftharpoons iso-\mathrm{C}_4\mathrm{H}_{10}$ has been examined in the liquid phase at 70° in presence of $\mathrm{AlCl}_3 + \mathrm{CuSO}_4$, $\mathrm{2HCl}$ and at $\mathrm{110}\mathrm{-180}^\circ$ by passing the vapours, mixed with HCl, over AlCl_3 . Kinetics of cyclisation of dissobutyl at platinised charcoal catalyst.—See A., 1939, I, 618. Polymerisation of gaseous butadiene.—See A., 1939, I, 614. Catalysed polymerisation of butadiene at a liquid-gas interface.—See A., 1939, I, 619. Structure of the mixed polymeride of butadiene and acrylonitrile. E. N. ALEXEEVA (J. Gen. Chem. Russ., 1939, 9, 1426—1430).—Butadiene and CH₂:CH·CN are heated at 60° for 116 hr. in presence of 1% of BzO₂H, and the reaction product is treated successively with O₃ and H₂O₂. The ozonolysis products are succinic, butanetri-, hexanetetra-, and dodecanepenta-carboxylic acids. These results are explicable on the assumption that the polymerisation product consists of chains of ·CH₂·CH·CH·CH₂· and ·CH₂·CH(CN)· units. R. T. Synthesis of piperylene from furfuraldehyde. I. A. M. BERKENHEIM and T. F. DANKOVA (J. Gen. Chem. Russ., 1939, 9, 924—931).—Piperylene was obtained from furfuraldehyde (I) by the following reactions, the yields being shown in parentheses: (I) with CH₂O and NaOH yields furfuryl alcohol (90—91%), which is converted by HCl into CH₂Ac·CH₂·CO₂H (62—64%), reduced to γ-valerolactone by Na-Hg (81·5%)), or electrolytically (88%), from which OH·CHMe·[CH₂]₃·OH is obtained by reduction with Na-EtOH in xylene (59%), converted into CHMeBr·[CH₂]₃·Br by saturated HBr at 0°, from which a bromopentene, b.p. 127—128° (59— 60%), is obtained by heating with NPhMe₂ at 175—180°, converted by KOH–EtOH into CHMe:CH·CH:CH₂ (60%) and an ether, C_5H_9 ·OEt, b.p. 120—123° (17%). V. A. P. Fluorocarbons. Reactions of fluorine with carbon. J. H. SIMONS and L. P. BLOCK (J. Amer. Chem. Soc., 1939, 61, 2962—2966).—F₂ was passed direct from the generator through a Cu tube containing finely-divided C and 1% of a Hg^I or Hg^{II} salt, and heated to a dull redness. The reaction takes place steadily and without explosion and the gas, after successive treatment with aq. NaOH, H.O. aq. NaOH, conc. H₂SO₄, and P₂O₅, was fractionated by means of a low-temp, fractionating column. Besides CF₄ and C₂F₆ and a mixture (of fluorocarbons) boiling from 25° to 160°, six fractions of const. b.p. have been obtained and analysed. Various physical data (m.p., b.p., ρ, v.p., heats of vaporisation) are given for these fractions, which correspond with octofluoropropane, decafluorobutane (two isomerides), decafluorocyclopentane, dodecafluorocyclohexane, tetradecafluorocycloheptane. Since their properties are not those of hydrocarbon derivatives a new nomenclature is suggested for them. The mixture (b.p. 25-160°) consists essentially of two parts, one of b.p. 25-95° probably containing fluorocarbons of from 3-8 C atoms, the other, b.p. 95-160°, probably containing fluorocarbons with 8-12 C. Halogenation of hydrocarbons. Chlorination of olefines and olefine-paraffin mixtures at moderate temperatures; induced substitution. H. P. A. GROLL, G. HEARNE, F. F. RUST, and W. E. VAUGHAN (Ind. Eng. Chem., 1939, 31, 1239—1244).— Analyses for free Cl₂ in olefine-Cl₂ mixtures are liable to error, owing to extraneous catalysed reactions in the absorption vessel. Cl may be determined, e.g., with C₂H₄, by 10% aq. KOH at room temp. or 10% aq. KI at 80°; with C₃H₆ or n-C₄H₈, 10% aq. KOH at 80°; with \(\Delta^{\beta}_{-}\) or \(\Delta^{\chi}_{-}\) Cl₂(O₂-free) only slowly, if at all, in the gas phase over clean Pyrex glass at 125—135°. Packing with Pyrex rods, or saturation of C2H4 with C2H4Cl2 or H₂O, has no effect. Illumination (high-intensity Hg are) of a non-reacting equimol. mixture of C2H4 and Cl₂ at 25° allows complete utilisation of Cl₂; once begun, reaction proceeds in absence of light, owing to presence of a liquid phase (cf. Stewart et al., A., 1936, 37). If the temp. of reactor through which $C_2H_4 + Cl_2$ are flowing at 135° is lowered, no reaction occurs until 20—23°, when all the Cl₂ reacts rapidly. "Onset temp." are also recorded for the above olefines, with or without N2 dilution; % Cl substituted or added is given. Once started, reaction proceeds at temp. \gg onset val.; e.g., chlorination of C_2H_4 begun at 20° continues at 65°. The compositions of the products of chlorination of the olefines are recorded. In presence of O₂, the % Cl reacting by substitution with olefines or mixtures, e.g., C₃H₆ + C_3H_8 , $C_4H_8 + C_4H_{10}$, is decreased; substitution into the paraffin is more strongly inhibited than that into the additive product (induced reactions; Stewart et al., A., 1931, 610). Even when catalysts, e.g., CaCl₂, are present, O₂ strongly inhibits some substitution reactions in the liquid phase. Reaction in liquid phase, once begun, is little, if at all, affected by catalyst. Catalytic vapour-phase chlorination of olefines or olefine-paraffin mixtures, e.g., C4H8 + C4H10 at 80-100°, occurs in absence of liquid. Concurrent substitution reactions are not inhibited by O2 (even in large amount) and are thus due to thermal and catalytic conditions, rather than to induction. Action of hexachloroethane on Grignard reagents. V. V. Korschak (J. Gen. Chem. Russ., 1939, 9, 1153—1154).—The action of various Grignard reagents on C₂Cl₆ does not lead to the substitution of the Cl of C₂Cl₆ by alkyl R. The products are C₂Cl₄, CHCl₂·CHCl₂, CCl₃·CH₂Cl, and C₂HCl₅, the last three formed by reduction of C₂Cl₆, with products derived from the free radical formed in the reaction $C_2Cl_6 + 2MgRBr = C_2Cl_4 + 2R + 2MgClBr$, such as C_2H_6 and C_2H_4 resulting from the disproportionation G. A. R. K. Aliphatic chloro-derivatives. XVI. Vicinal effect. D. V. TISCHTSCHENKO (J. Gen. Chem. Russ., 1939, 9, 1380—1388).—The velocity of hydrolysis in aq. NaOH–EtOH of (CH₂·CMe₂Cl)₂, CH₂(CMe₂Cl)₂, (CHMeCl)₂, (CH₂·CHMeCl)₂, CH₂(CHMeCl)₂, (CMe₂Cl)₂, Cl·[CH₂]₃·Cl, and Cl·[CH₂]₂Cl rises with increasing distance when the Cl, and falls in the order CH Cl of CHMeCl of CMa Cl falls in the order $CH_2Cl < CHMeCl < CMe_2Cl$. Peroxide effect in the addition of reagents to "Normal" unsaturated compounds. XXI. and "abnormal" additions of hydrogen bromide. M. S. KHARASCH, S. C. KLEIGER, and F. R. Mayo (J. Org. Chem., 1939, 4, 428-435).—Study has been made of the addition of HCI and HBr to CH₂·CHMe, CH₂·CMe₂, CH₂·CH·CH₂Br, CH₂·CH·CH₂CH·CH₂CMeCl, CH₂·CMeCl, CH₂·CHCl, CH2:CHBr, CCl2:CHCl, CHBr:CHMe, and CHCI:CHMe in the presence and absence of FeCl₃ as catalyst. The direction of addition of HCl is the same as that of the "normal" addition of HBr. FeIII halides greatly accelerate the rate but do not change the "normal" direction of addition of both halogen acids. It is suggested that the "normal" addition of HBr be defined as that corresponding with the following equiv. additive reactions: the addition of HCl with or without FeCl3 and the addition of HBr in the presence of FeCl₃. Mechanism of the oxygen effect on hydrogen bromide reacting with ethenoid compounds. Y. URUSHIBARA and O. SIMAMURA (Bull. Chem. Soc. Japan, 1939, 14, 323—336).—In the presence of traces of $\rm O_2$, addition of HBr to $\rm CH_2:CH:CH_2Br$ gives CH₂(CH₂Br)₂ exclusively. Peroxides and H₂O are formed only in presence of excess of O2. The reversal of the normal addition of HBr to allyl and vinvl bromides, and the isomerisation of isostilbene by HBr and O2, can be explained by a chain mechanism involving initial formation of Br radicals by Br atoms. Aliphatic chloro-compounds. XV. Chlorination of isobutylene. I. DIAKONOV and D. TISCH-TSCHENKO (J. Gen. Chem. Russ., 1939, 9, 1258—1264).—CMe₂:CH₂ and Cl₂ combine to give Bu^γCl, isobutenyl chloride (I), and a mixture of 40% of CHCl.CMe CH₂Cl and 60% of CH₂.C(CH₂Cl)₂, identified by ozonisation to chloro- and dichloro-acetone respectively. A similar mixture of unsaturated Clocompounds is produced by chlorination of (I) in presence of Na₂CO₃. The production of these Cl₂-compounds is due to an abnormal Lvov-Kondakov reaction and is less marked than with CMe2:CHMe, in which steric hindrance plays a greater part in preventing the normal addition of Cl_2 to the double linking, in agreement with the theoretical considerations already put forward. G. A. R. K. Isomeric transformations of halogen derivatives of unsaturated aliphatic hydrocarbons. II. Hydrolysis of α-chloro-γ-methylallene. T. A. Favorskaja (J. Gen. Chem. Russ., 1939, 9, 1237—1242).—CMe2:C:CHCl (I) when heated with H₂O and CaCO₃ yields γ-chloro-γ-methyl-Δ^a-butinene (II), a large amount of α-chloro-γ-methyl-Δαγ-butadiene, a small amount of dimeric chloride C₁₀H₁₄Cl₂ (A., 1930, 574), and allylene (III), identified by conversion into mesityl oxide by H₂SO₄. The formation of (III) is thought to proceed through the intermediate formation of the unstable 4-chloro-2-methyl- Δ^{1} -cyclobutene, which then breaks up into (III) and vinyl chloride, this being polymerised. ββ-Dimethylacraldehyde is also formed; the production of it from OH·CMe₂C:CH is now interpreted as an anionotropic change, similar to the formation of (I) from (II) (cf. A., 1939, II, 354). G. A. R. K. Exchange reactions in deuteroalcohol. II. W. G. Brown, M. S. Kharasch, and W. R. Sprowls (J. Org. Chem., 1939, 4, 442—455; cf. A., 1937, II, 364).—Re-investigation shows that NPhMe, does not exchange H for D in EtOH in the absence of acid. NHPh, exchanges 1 H (presumably from NH) in the absence of acid whilst in presence of acid the exchange no. is 6. The most probable val. for the no. of exchangeable H is 7 and it is therefore likely that the exchange reaction in the presence of acid involves the *ortho* and *para* positions in each ring in addition to the H of NH. NPh₃ behaves similarly, the observed exchange no., 7.9, corresponding with the exchange of 9 H. There is, therefore, no marked diminution in the ability of the nuclear H atoms to exchange which would parallel the very great decrease of basicity in the series NPhMe2, NHPh2, and NPh3; these results provide convincing evidence against the normal salt (or ion) as an intermediate in the exchange reaction. Under the experimental conditions adopted o-NO₂·C₆H₄·NMe₂ exhibits no exchange. With p-NO₂·C₆H₄·NMe₂ 2 H are completely replaced in presence of acid whereas with m-NO₂·C₆H₄·NMe₂ the theoretical limit of 3 is not attained. The possibilities of steric hindrance and damped resonance are discussed. The alkali-catalysed exchange reaction of fluorene is representative of a different type of H lability, viz., a type in which labile H is acidic; it is found also in xanthone, indene, and 9-phenylfluorene but not in CHPh₃, which is less acidic. The origin of the lability of H is to be sought in the cyclopentadiene nucleus, which would be converted by formation of an anion by loss of a proton into a structure in which various possibilities for resonance are present. In neutral solution 9-fluorenol exchanges 1 H whilst in presence of alkali a second H, presumably attached to C(9), is also replaced. In acid solution the compound decomposes rapidly to didiphenylene-ethylene. 9-Methoxyfluorene also decomposes in acid solution but no change is observed in neutral or alkaline solution. 9-Amino- and 9-dimethylamino-fluorene suffer decomp. in neutral, acid, or alkaline solution. The exchange reaction of acetomesitylene (I) takes place to a greater extent than the corresponding reaction of COPhMe, the difference being particularly noticeable in neutral solution where, under the experimental conditions adopted, the (I) change is ~50% complete whilst that of COPhMe is ~5% complete. The process of enolisation in the former, whether acid- or base-catalysed, is appreciably faster than in COPhMe. Contrary to previous observations, the exchange of 2-methylquinoline at 110° for 106 hr. corresponds with somewhat < 1 atom. The change is subject to acid catalysis. Synthesis of an alcohol with two conjugated triple linkings. J. S. Salkind and M. A. Aizi-kovitsch (J. Gen. Chem. Russ., 1939, 9, 961—964).— (OH·CMe₂·CiC)₂, when heated with KOH, Ba(OH)₂, or CaO, yields COMe₂, (CH:C)₂, and ε-methyl-Δ^{αγ}-hexadi-inen-ε-ol, b.p. 59—61°/6 mm. R. T. Catalytic action of p-toluenesulphonic acid on acetylene γ -glycols. I. $\beta\epsilon$ -Dimethyl- Δ^{γ} -hexinene- $\beta\epsilon$ -diol and $\gamma\zeta$ -dimethyl- Δ^{δ} -octinene- $\gamma\zeta$ -diol. A. Babajan (J. Gen. Chem. Russ., 1939, 9, 1410—1411).—The glycols when heated at 140—150° with p-C₆H₄Me·SO₃H give (CH₂:CMe·C:)₂ or (CHMe:CMe·C:)₂ in >90% yield. R. T. Synthesis of glycols of the diacetylene series. J. S. Salkind and I. M. Gverdtziteli (J. Gen. Chem. Russ., 1939, 9, 971—974).—Acetylenic alcohols react with CuCl and NH₄Cl in H₂O, at room temp., as follows: OH·CHR·C:CH \rightarrow (OH·CHR·C:C)₂. The following were thus prepared: $\alpha \delta \cdot di \cdot (1 - hydroxy \text{cyclopentyl})$ - $\Delta^{\alpha \gamma}$ -butadi-inene, m.p. $133 \cdot 2 - 134 \cdot 2^{\circ}$ [hydrogenated (Pt-black) to $\alpha \delta \cdot di \cdot (1 - hydroxy \text{cyclopentyl})$ ethane, m.p. $91 \cdot 8 - 92 \cdot 5^{\circ}$], (OH·CHMe·C:C·)₂, $\Delta^{e\eta}$ -dodecadi-inene- δ : 9-diol, b.p. $159 - 162^{\circ}/7$ mm., and $\alpha \zeta$ -diphenyl- $\Delta^{8\delta}$ -hexadi-inene- $\alpha \zeta$ -diol, m.p. $132 - 133^{\circ}$. Preparation of ethers. P. G. Stevens and S. A. V. Deans (Canad. J. Res., 1939, 17, B, 290—292).—The Na derivative of C₁₀H₈ or Ph₂ prepared in (CH₂·OMe)₂ according to Scott et al. (A., 1937, II, 55) is cooled and the intensely coloured solution is treated gradually with the alcohol (I) which is to be converted into its Me ether. The colour disappears when one equiv. of (I) has been added. MeI or Me, SO, is added slowly, keeping the solution at >20°, and the mixture is kept overnight. If the ether has a low b.p. Me₂SO₄ is used and the products can be fractionally distilled directly. If it has a high b.p. MeI is used and the mixture is treated with H₂O and the product extracted with Et₂O, dried, and distilled. In some cases the hydrocarbon can be removed by distillation with steam. Alcohols of lower mol. wt. give less satisfactory results owing to manipulative losses. The difficulties may be partly overcome by use of Me₂O as solvent, thus avoiding the separation of CH2:CH-OMe formed by cleavage of (CH2-OMe)2. OH-compounds with other functional groups, e.g., OH. CHMe. CO. Et, can be etherified in this manner by merely reversing the process of addition. The yields are lower but about equal to those obtained by Purdie's method. Optically active alcohols yield ethers of high rotatory power. The process has been applied to Pr⁸OH, Bu'OH, CHMeBu OH, linalool, cholesterol, and OH·CHMe·CO, Et. Ether peroxides. M. S. Kharasch and M. Gladstone (J. Chem. Educ., 1939, 16, 498).— Triacetone peroxide (I) has been isolated from an old sample of $\Pr^{\beta}_{2}O$. (I) explodes on rubbing or heating, and with diacetone peroxide may be responsible for the explosions during the distillation of old $\Pr^{\beta}_{2}O$ (A., 1936, 1091). L. S. T. Isomerisation of geranyl acetate. V. I. IsSAGULIANTZ and G. A. SEREBRENNIKOV (J. Gen. Chem. Russ., 1939, 9, 917—923).—Geranyl acetate (I) and 85% H₃PO₄ at -5° give cyclogeranyl acetate (22% yield) + terpin hydrate + an alcohol, b.p. 174— 175°. (I) and 92% H₃PO₄ at -5° yield 36% of cyclo-isomeride. Cyclisation is not effected by ZnCl₂, ZnBr₂, p-C₆H₄Me·SO₃H, or HCO₂H. cycloGeranyl butyrate, b.p. 106°/6 mm., and hexoate, b.p. 126°/5 mm., are described. V. A. P. X-Ray and thermal examination of glycerides. VII. Unsymmetrical mixed triglycerides, COR·O·CH,·CH(O·COR)·CH,·O·COR'. M. G. R. CARTER and T. MALKIN (J.C.S., 1939, 1518-1521; cf. A., 1939, II, 403).—The following unsymmetrical triglycerides have been prepared by the methods used previously (A., 1939, II, 97) and all exist in four solid modifications, vitreous, α , β' , and β , the m.p. being given in that order; a-decodimyristin (15°, 32°, 38° 43·5°), α -laurodipalmitin (32°, 45°, 49·5°, 54°), α -myristodistearin (44°, 54°, 57·5°, 62°), α -myristodidecoin (3°, 20°, 31°, 34·5°), α -palmitodilaurin (20°, 33°, 43°, 46·5°), α-stearodimyristin (36°, 46°, 52°, 56°), α-decodipalmitin (23°, 37°, 41°, 45·5°), α-lauro-distearin (36°, 47°, 52°, —), α-palmitodidecoin (2°, 24°, 32°, 35°), α-stearodilaurin (20°, 31°, 41·5°, 45°), α -stearodidecoin (13°, 32°, 38°, 41°), α -decodistearin (33°, 42·5°, 46°, 49°). Long spacings of the above, with the exception of the first three, correspond with twice the length of a single mol., but side spacings are of the normal type. The importance of the X-ray method in the identification of natural glycerides is discussed. Reaction between the oxides of olefines and sulphur monochloride. M. S. Malinovski (J. Gen. Chem. Russ., 1939, 9, 832—839).— $(CH_2)_2O + S_2Cl_2$ yield S, $(CH_2Cl)_2$, $CHMeCl_2$, $CH_2Cl \cdot CHO$, $CH_2Cl \cdot CH_2 \cdot OH$, and $(Cl \cdot [CH_2]_2)_2SO_3$. Propylene oxide and S_2Cl_2 yield S, $\beta\beta'$ -dichlorodipropyl sulphite, $OH \cdot CHMe \cdot CH_2Cl$, and $CHMeCl \cdot CHO$. Epichlorohydrin and S_2Cl_2 when heated give S, $OH \cdot CH(CH_2Cl)_2$, and $CO(CH_2Cl)_2$. V. A. P. Xanthates. I. Reactions of some xanthic acids with metallic [salts]. K. ATSUKI and T. TAKADA (J. Cellulose Inst. Tokyo, 1939, 15, 321— 327).—Me, Et, Pr, Bu, amyl, and CH, Ph xanthates and 48 metal xanthates have been prepared from the appropriate alkoxides and hydroxides or by double decomp. between the Na xanthate and a metallic salt. The yield decreases with increasing valency of the metal, and the most stable compound is that containing the metal in its lowest valency state. The colour is characteristic of the metal, not of the alcohol, but is not the same as that of the corresponding metallic sulphide. Xanthates of univalent metals are insol. and those of multivalent metals are sol. in Et2O. The solubility in H2O decreases with increasing mol. wt. of the alcohol. Cellulose xanthates are similar to other xanthates containing the same metal, but owing to their high mol. wt. they decompose readily, and the decomp. products affect the colour. Reaction of sodamide with salts of organic acids. L. C. FREIDLIN and A. I. LEBEDEVA (J. Gen. Chem. Russ., 1939, 9, 996—1006).—NaNH2 and salts of carboxylic acids react as follows: R·CO₂M + NaNH₂ \rightarrow NH₂·CR(ONa)·OM \rightarrow MOH + NH.CR·ONa \rightarrow R·CO·NHNa (+ NaNH₂) \rightarrow NH₂·CR(NHNa)·ONa \rightarrow NaHCN₂ + NaOH + RH; R·CO₂M + MOH \rightarrow M₂CO₃ + RH (R = H, Me, Et, Ph). With dibasic acids the reactions are: Na₂C₂O₄+ 2NaNH₂ \rightarrow NaHCN₂ + Na₂CO₃ + NaOH + H₂, and (CH₂·CO₂Na)₂ + 2NaNH₂ \rightarrow NaHCN₂ + NaCN + Na₂CO₃ + NaOH + CH₄ + 2H₂. R. T. Electrolysis of mixtures of pivalates with nitrates. F. Fighter and R. Gunst (Helv. Chim. Acta, 1939, 22, 1300—1307).—The identified products of the electrolysis of the mixture are Bu'O·NO, Bu'OH, CMe₂:CH₂, NO₂·O·CH₂·CMe₂·O·NO₂, OH·CMe₂·CH₂·OH (dicarbanilide, m.p. 138°), Bu' pivalate, OBu''·CH₂·CMe₂·ONO₂, and OH·CMe₂·CH₂·OBu'. The formation of alkyl nitrate is not observed. It therefore appears that these are not formed from intermediate alkenes but that the simple members are derived from alcohol and HNO₃ and their homologues from the simpler compounds and alkenes. Glycol dinitrates with the simple or multiple mol. wt. of the hydrocarbon residue are formed from the alkene and electrolysed HNO₃. Oxidation of stearic acid by oxygen.—See A., 1939, I, 619. Effect of periodic acid on lactic acid and its degradation products (acetaldehyde, methyl alcohol, formaldehyde, formic acid). P. FLEURY and R. Boisson (J. Pharm. Chim., 1939, [viii], 30, 145—162; cf. A., 1937, II, 273).—Lactic acid (I) with HIO₄ in N-H₂SO₄ at 100° (sealed tube) in 16 days is oxidised completely to CO2 and H2O as shown by the disappearance of HIO₄ (cf. A., 1933, 486). The rate of reaction increases with the temp., the acidity, and with increasing amounts of HIO4. After 1 atom of O is used per mol. of (I), the reaction rate increases (especially under acid conditions) until 4 O per mol. is reached, the utilisation of O₂ then becoming very low. The initial reaction (1 hr.) in which 1 O is utilised per mol. of (I) liberates CO₂ and MeCHO quantitatively if the latter is removed as it is formed. MeCHO under similar conditions requires 5 O for complete oxidation, the factors governing the rate of reaction being similar to those for (I). The rates of oxidation of MeCHO determined by a reduction method (cf. Malaprade, A., 1934, 1090) and by the rate of disappearance of HIO₄ do not agree, because CH₂O which is identified in the reaction product after 13.5 hr. is an intermediate degradation product. HCO₂H and MeOH are also identified. HCO₂H, CH₂O, and MeOH are oxidised under similar conditions to CO₂ and H₂O. Catalytic hydrogenation of the oxides of unsaturated acids. G. V. Pigulevski and Z. J. Rubaschko (J. Gen. Chem. Russ., 1939, 9, 829—831).—Catalytic hydrogenation (Pd-black in abs. EtOH at room temp.) of the oxide of Et oleate (new m.p. 21°) leads to rupture of the oxide ring with formation of Et 1-hydroxystearate. V. A. P. Diethyl methylenemalonate. G. B. BACHMAN and H. A. TANNER (J. Org. Chem., 1939, 4, 493-501).—Yields between 4% and 17% of Et2 methylenemalonate (I) are obtained when CH₂(CO₂Et), and CH₂O [as formalin, paraformaldehyde (II), or a solution of CH₂O in the ester] are passed over AlPO₄, glass wool, soda-lime, Al₂O₃, Na₃PO₄, Na₂HPO₄, or Ca₃(PO₄)₂ at temp. varying from 250° to 420°. (I), b.p. 210°/760 mm., is obtained in 40% yield by heating a mixture of CH₂(CO₂Et)₂ (II), Ca(OAc)₂, and KOAc in glacial add the at 100° until a clear solution is obtained and then distilling the product under diminished pressure. Impure (I) polymerises only with difficulty. The ease with which freshly prepared (I) polymerises is probably due to the presence in it of acrylic acid or Et acrylate, both of which polymerise with great ease and are capable of initiating the polymerisation of (I). The polymeride obtained from highly purified (I) is a colour-less, transparent glass which changes rapidly to a hard but brittle porcelain-like solid. It dissolves slowly in AcOH, COMe₂, or EtOH and is pptd. by H₂O or light petroleum as a white, granular powder. It decomposes at 230-240° to the monomeride and products of high b.p. It co-polymerises with butadiene to Et_2 Δ^3 -cyclohexene-1:1-dicarboxylate. b.p. $117^{\circ}/6$ mm., with β -methylbutadiene to Et_2 3-methyl-Δ3-cyclohexene-1:1-dicarboxylate, b.p. 127°/6 mm., with $\beta\gamma$ -dimethylbutadiene to Et_2 3: 4-dimethyl- Δ^3 -cyclohexene-1:1-dicarboxylate, b.p. 136°/6 mm. [acid, m.p. 186·5—188° (decomp.), decarboxylated to 3:4-dimethyl- Δ^3 -cyclohexene-1-carboxylic acid, m.p. 80—81°], and with anthracene to a compound, m.p. 126—127°. (I) does not resemble maleic anhydride (II) in the ease or completeness of its co-polymerisation with other olefines. Also there is no apparent tendency to form co-polymerides in a definite ratio with other unsaturated substances. The films obtained from (I) and vinyl acetate, Me methacrylate, Me_2 itaconate, styrene, and Et vinyl ether in presence of Bz_2O_2 are described. (I) does not appear to react with (II) or Me isopropenyl ketone under these conditions. H. W. Ethyl hydrogen methyldiglycollates. P. Vrèles and M. Amir (Compt. rend., 1939, 209, 457—459).—dl-Methyldiglycollic anhydride with EtOH gives Et H dl-methyldiglycollate (I), b.p. 168—170°/20 mm. Partial saponification of the Et ester of (I) gives (I) and probably some Et H dl-methyldiglycollate (II), b.p. 168—170°/20 mm., which is more rapidly esterified than (I). (I) with excess of boiling MeOH and a little CuSO₄ gives Me Et dl-methyldiglycollate, b.p. 126—128°/25 mm., [\alpha]_{5461}^{25} -12.6° (cf. A., 1936, 823). J. L. D. Chloralides. Condensation of butylchloral with α-hydroxycarboxylic acids. N. M. Shah (J. Indian Chem. Soc., 1939, 16, 285—286; cf. A., 1934, 869).—Citric, malic, and tartaric acids with CHMeCl·CCl₂·CHO,H₂O in conc. H₂SO₄ give their respective butylchloralides, CHMeCl·CCl₂·CH $\stackrel{\text{O}}{\text{CHR}}$, m.p. 187—188°, 139°, and 156°. E. W. W. Citric acid compounds of zinc. F. S. SCHPILEV (J. Gen. Chem. Russ., 1939, 9, 1286—1293).—1 mol. of $ZnSO_4+1$ mol. of Na_3 citrate (I) give in a neutral solution $Zn_3(C_6H_5O_7)_2$ (II), and in an alkaline solution $Na_2ZnC_6H_4O_7$. An excess of (I) gives with (II) in acid solution $Na_3ZnH(C_6H_5O_7)_2$, in almost neutral solution $Na_4Zn(C_6H_5O_7)_2$, and in alkaline solution $Zn(Na_3C_6H_4O_7)_2$. The mechanism of the reactions is discussed. J. J. B. Optical activity of vitamin-C.—See A., 1939, III, 1073. Oxalate formation in ascorbic acid solutions. A. E. Jurist and W. G. Christiansen (Amer. J. Pharm., 1939, 111, 347—350).—Solutions of Na, Ca (kept for 3 months), and monoethanolamine ascorbate are stored at 27° or 38° for ~ 1 year, and the $\rm H_2C_2O_4$ is determined. The process is probably one of auto-oxidation (cf. Ghosh, A., 1938, II, 217). Discrepancy between loss of ascorbic acid and formation of $\rm H_2C_2O_4$ is attributed to presence of other oxidation products. A. T. P. Synthesis of *l*-ascorbic acid (vitamin-*C*). V. I. Maximov, V. V. Nikonova, A. F. Lazarev, and L. A. Zvereva (J. Gen. Chem. Russ., 1939, 9, 936—943).—The prep. of *l*-ascorbic acid from *l*-sorbose has been improved to give a yield of 52—54%. Catalytic hydrogenation of *d*-glucose (+ 2% of chalk) with Raney Ni at 120—130°/8—10 atm. yields *d*-sorbitol in quant. yield. Oxidation with *Bacterium melanogenum* gives *l*-sorbose (70% yield), from which disopropylidene-*l*-sorbose is obtained in 90—92% yield by treating with COMe₂, anhyd. CuSO₄, and H₂SO₄. Oxidation with KMnO₄—KOH yields 65—68% of α-ketodiisopropylidene-*l*-gulonic acid, isolated as the hydrate, from which *l*-ascorbic acid is obtained in 76—78% yield by heating with HCl–EtOH in CHCl₃ at 60—62° for 45 hr. V. A. P. Synthesis of uronic acids. M. STACEY (J.C.S., 1939, 1529—1531).— β -d-Glucose 1:2:3:4-tetraacetate oxidised in AcOH with KMnO₄ in COMe₂ yields d-glucuronic acid tetra-acetate, which on hydrolysis with Ba(OH)₂ gives glucurone. By the same method, galactose 1:2:3:4-tetra-acetate yields d-galacturonic acid. J. D. R. Reactivity of the mercaptido-group. V. N. Hellström (Arkiv Kemi, Min., Geol., 1939, 13, A, No. 6, 7 pp.; cf. A., 1932, 26).—An oxidation-reduction action is observed between SH·CH₂·CO₂H and CH₂I·CO₂H, CH₂I·CO·NH₂, CHMeI·CO₂H, CO₂H·CH₂·CHI·CO₂H, and CHBr(CO₂H)₂ without solvent at 20° or in presence of H₂O at 20—25° and sometimes at 100° or in presence of C₆H₆ at 20—25° and occasionally at 60°. Such action is not observed between SH·CH₂·CO₂H and I·[CH₂]₂·CO₂H, CH₂Cl(Br)·CO₂H, CH₂Cl(Br)·CO·NH₂, or CO₂H·CH₂·CHBr·CO₂H. The mode of reaction appears to be due to vicinal CO₂H, which exert a more marked effect on I than on Br. H. W. Esters of aliphatic thio-acids of high mol. wt. A. W. Ralston, E. W. Segebrecht, and S. T. Bauer (J. Org. Chem., 1939, 4, 502—505).—The following esters have been obtained as stable compounds which can be distilled under reduced pressure without decomp. by the action of the appropriate acid chloride on the requisite mercaptan: Me, b.p. 112—115°/1 mm., Et, b.p. 115—117°/1 mm., Pra, b.p. 126—128°/1 mm., and Bua, b.p. 133—135°/1 mm., thiolaurate; Me, m.p. 34—35°, Et, b.p. 134—136°/1 mm., Pra, b.p. 148—150°/1 mm., and Bua, b.p. 149—151°/1 mm., thiomyristate; Me, m.p. 44—45°, Et, b.p. 172—175°/1 mm., Pra, m.p. 27—28°, and Bua, m.p. 29—30°, thiopalmitate; Me, m.p. 50—51°, Et, m.p. 38—39°, Pra, m.p. 34—35·5° and Bua, m.p. 31—32°, thiostearate; Pra thio-oleate, b.p. 175—178°/1 mm. Racemisation of optically active α -alkyl- and α -phenyl-sulphonylpropionic acids.—See A., 1939, I, 618. Kinetics of oxidation of aldehydes by selenium dioxide.—See A., 1939, I, 616. Formation of formaldehyde by electrolysis of acetate. E. BAUR (Helv. Chim. Acta, 1939, 22, 1120-1123).-CH2O is formed as anodic, "trivial" product during the electrolysis of solutions of AcOH; $AcOH \rightarrow OH \cdot CH_2 \cdot CO_2H \rightarrow CH_2O + CO_2$. It is determined when a diaphragm is used. Without the latter there is a greater production of CH2O owing to the change: $AcO_{1} \rightarrow AcO_{2}H \rightarrow CH_{2}O + CH_{4} + O_{2}$. The production depends on the use of d.c. and concentric Pt gauze electrodes. Formation is not observed when commutated d.c. is used and is not favoured by addition of preformed AcO2H in Et2O to the catholyte. Addition of EtOAc is very advantageous. The experiments support the view that the esterified CO₂H of photodynamic dyes is responsible for the CH₂O observed when they are exposed to light. Decomposition of acetaldehyde and deuteroacetaldehyde.—See A., 1939, I, 615. Use of hydrogen sulphide in acetone. Péronnet and R. H. Rémy (J. Pharm. Chim., 1939, [viii], 30, 170—172).—Pure COMe₂ saturated with dry H₂S forms a solution (22·4 g. per l.) stable for 6—12 months. The H₂S is not readily lost by exposure to air. After ~1 year thicketones (?) are formed in solution. J. L. D. Transition from carbohydrates to carbocyclic compounds. I. Transformation of glucose into phenol. P. Schorigin and N. N. Makarova-Semlianskaja (Compt. rend. Acad. Sci. U.R.S.S., 1939, 23, 915—918).—When Na is added gradually to a solution of trimethyl-β-glucosan in liquid NH₃ and the solution kept at room temp. for several days, PhOH is formed in ~20% yield. Ring-closure between C₍₁₎ and C₍₆₎ is caused by addition of Na org. compounds which are slowly formed to the bridge O and subsequent removal of O. In support of this theory it is shown that CHPh:CH₂ (I) is obtained in ~75% yield by the action of Na on Ph·[CH₂]₂·OH (II): (II) + Na → Ph·[CH₂]₂·ONa (III) + H; (IIII) → (I) + NaOH; (II) + NaOH = (III) + H₂O. Production of reducing sugars from glycosides by ultra-violet light.—See A., 1939, I, 620. Oxidation of aldoses by hypoiodite.—See A., 1939, I, 615. Kinetic study of the formation of d-glucosephenylhydrazone.—See A., 1939, I, 616. Biochemical synthesis of higher β-galactosides. I. Vintilesou, C. N. Ionesou, and M. Solomon (Bul. Soc. Chim. România, 1938, 20, 115—125).— From determination of the solubility of galactose in mixtures of n-C₅H₁₁·OH and COMe₂ and polarimetric investigation of the competing reactions therein induced by emulsin, it is shown that β-n-amylgalactoside, m.p. 115—116°, $[\alpha]_D^{20} - 9 \cdot 50^\circ$ in H₂O, is best obtained in 2:5n-C₅H₁₁·OH—COMe₂. The galactoside is quantitatively hydrolysed by HCl or emulsin. R. S. C. Structure of cellulose and other polymerides related to simple sugars. W. N. HAWORTH (Chem. and Ind., 1939, 917—925).—A lecture. Arrangement of substituents in cellulose derivatives.—See A., 1939, I, 552. Hydrolysis of glucosaminides by an enzyme in Helix pomatia. A. Neuberger and R. V. Pitt Rivers (Biochem. J., 1939, 33, 1580—1590).—An enzyme has been prepared from H. pomatia which hydrolyses only the β-forms of N-acetylmethylglucosaminides: it is freed from β-glucosidase by filtration through bauxite. Acyl compounds other than N-CHO and N-Ac are not hydrolysed, nor are non-acylated glucosaminides. The following have been prepared: N-p-toluenesulphonylglucosamine tetra-acetate, m.p. 128—129°, [α]_D—3° in CHCl₃; 1-bromo-N-p-toluenesulphonylglucosamine triacetate, m.p. 148°, [α]_D+63·5° in CHCl₃; N-p-toluenesulphonylphenylglucosaminide, m.p. 213—214°, [α]_D—83° in C₅H₅N, and its triacetate, m.p. 200—201°, [α]_D—52·8° in C₅H₅N; N-carbobenzyloxy-β-methylglucosaminide triacetate, m.p. $147-149^{\circ}$, $[\alpha]_{\rm D}+15^{\circ}$ in CHCl $_{3}$; β -methylglucos-aminide formate triacetate, m.p. 120° ; N-formyl- β -methylglucosaminide, m.p. $204-205^{\circ}$, $[\alpha]_{\rm D}-47\cdot2^{\circ}$ in H $_{2}$ O, and its triacetate, m.p. 165; N-propionyl- β -phenylglucosaminide, m.p. 230° (decomp.), $[\alpha]_{\rm D}+8^{\circ}$ in C $_{5}$ H $_{5}$ N, and its triacetate, m.p. $197-197\cdot5^{\circ}$; N-butyryl- β -phenylglucosaminide triacetate, m.p. $178-179^{\circ}$, $[\alpha]_{\rm D}-10^{\circ}$ in CHCl $_{3}$. Enzymic experiments support the theory that chitobiose, chitotriose, and chitin have a β -configuration. P. G. M. Synthesis of a-amino-alcohols from the pyrolysis products of gas oil and the identification of some hydrocarbons contained in them. L. S. Dedusenko (J. Gen. Chem. Russ., 1939, 9, 1294—1302).—The light oil, b.p. 27—50° (I), obtained by the pyrolysis of gas oil at 700° was converted by addition of HOCI and distillation with KOH (or preferably NaOH, which gives a 10% better yield) into oxides in ~30% yield; of these 50% boiled at the b.p. of amylene oxides. Previous removal of a small amount of cyclopentadiene by maleic anhydride has little effect on the yield. The oxides were converted by NH₃ into α-NH₂-alcohols from which the picrate of OH·CMe2·CHMe·NH2 (II), m.p. 134—135°, was isolated and also synthesised; this points to the presence of CMe₂.CHMe in (I). (II) forms a H oxalate, m.p. 121-122°, and a normal oxalate, m.p. 210-210.5°, but the separation of the mixed NH₂alcohols through their oxalates was impracticable. α-Glycols obtained as by-products in the prep. of the oxides were dehydrated to COMePr^β and COEt₂, showing the presence of glycols derived from CMe₂:CHMe and CHMe:CHEt in (I). They gave with PhNCO the urethanes of an amylene glycol, m.p. 220°, and of cis-cyclopentanediol, the latter derived from cyclopentene in (I). The mono- and di-urethane of OH·CMe₂·CHMe·OH, m.p. 125·5° and 134·4— 135.5°, respectively, have been prepared. G. A. R. K. Amino-derivatives of pentaerythritol. II. Tetra (aminomethyl) methane. III. Di (hydroxymethyl) di (aminomethyl) methane. F. Govaer and M. Beyaer (Proc. K. Akad. Wetensch. Amsterdam, 1939, 42, 637—640, 641—648; cf. A., 1934, 638).—II. C(CH₂·NH₂)₄, +H₂O, m.p. 41—42°, b.p. 108°/0·7 mm. gives a s-Ac₄, m.p. 60°, b.p. 72·5—73°/2 mm., and s-tetracarbamido-derivative, m.p. 230° (decomp.), dicarbonate, m.p. 125° (evolution of CO₂), and dimercurichloride, B,2HgCl₂. III. C(CH₂Br)₂(CH₂·OH)₂, obtained in 50% yield with some Br₁- and Br₂-derivative from C(CH₂·OH)₄ by 66% HBr at 140°, is converted by NH₃-EtOH (saturated at 0°) at 150° into mixed bases, whence Ac₂O-NaOAc yields among other products 3:3-di- acetamido-1-oxacyclobutane, $O<\frac{CH_2}{CH_2}>C(CH_2\cdot NHAc)_2$, m.p. 79°, b.p. 79—80°/0·1 mm., which with boiling 48% HBr gives β-bromomethyl-β-hydroxymethylpropylene- $\alpha\gamma$ -diamine dihydrobromide, m.p. 246° (decomp.). $C[(CH_2)_2O]_2$ (modified prep.) is converted by H_2O at 150—160° quantitatively into $C(CH_2\cdot OH)_4$, is unaffected by liquid NH₃ at 100° but decomposed at 200°, and with aq. NH₃ (saturated at 0°) at 190° gives 78% of ββ-di(hydroxymethyl) propylene- $\alpha\gamma$ -diamine, +H₂O, cryst., b.p. ~200°/0.002 mm. [H₂ oxalate, m.p. 168° (decomp.); dipicrate, m.p. 223° (decomp.); carbonate at 164° gives CO₂ and the diamine hydrate]. Syntheses of basic amino-acids and glycine. D. W. Adamson (J.C.S., 1939, 1564—1568).—Slow addition of HN₃ in CHCl₃ to d-glutamic acid in H₂SO₄–CHCl₃, followed by pptn. with phosphotungstic acid and decomp. of the phosphotungstate with Ba(OH), gives $d-\alpha\gamma$ -diamino-n-butyric acid (isolated as oxalate) (dipicrate, m.p. 180-181°). NaN3 may be used in place of HN3, and after decomp. of the phosphotungstate with Ba(OH)2, the NH2-acid may be isolated, via the picrate, as the dihydrochloride, m.p. 195—196° (decomp.). Similarly, α-aminopimelic acid (I) in CHCl₃-H₂SO₄ treated with HN₃ in CHCl₃ or with NaN₃ yields dl-lysine (II) (isolated as monopicrate or dihydrochloride via the phosphotungstate) (dipicrate, m.p. 188—190°). Et cyclohexanone-2-carboxylate and HN₃ in C₆H₆, on treatment with HCl (gas) yield impure (I), and (II). The reaction also succeeds in CHCl₃ using HCl (gas) or conc. aq. HCl. a-Aminoadipic acid in H₂SO₄, when treated with HN₃ in CHCl₃, yields dl-ornithine (III) [sulphate, m.p. 223° (decomp.) (lit. 213° to 234°)]. Et cyclopentanone-2-carboxylate and HN₃ in CHCl₃, treated with HCl, also yields (III). Treatment CH₂(CO₂H)₂ in H₂SO₄ with HN₃ in CHCl₃ yields glycine. Poly-condensation of α -amino-acid esters. M. Frankel and E. Katchalski (Nature, 1939, 144, 330-331).—Solutions of NH₂·CH₂·CO₂Et (I) in solvents such as C6H6 or xylene on keeping at room temp. or at the b.p. deposit horn-like products insol. in H₂O and containing polypeptide esters of different chain lengths. (I) gradually solidifies, and after keeping for several weeks hexadecaglycine Et ester was isolated from the O2-treated ester and eikosiglycine Et ester from that treated with H₂. Under suitable conditions NH2 CHMe CO2Et yields, inter alia, condensation products which give a strong biuret reaction and appear to be alanine polypeptide esters. L. S. T. Condensation of the hexapeptide ester of glycine into the 96- and higher (3×2^n) peptide esters. E. Pacsu (Nature, 1939 .144, 551).—At $102^{\circ}\pm1^{\circ}$, the hexapeptide ester undergoes the type of condensation characteristic of the tripeptide ester yielding, in a series of successive bimol. reactions, the 12-, 24-, 48-, 96- (3×2^n) peptide esters. With n>4 the average rate of the reaction, with 1 hr. as the time unit, is $k = 150 \times 10^{-4}$. The activation energy is ~38 kg.-cal. Neither "cyclol 6" nor nonapeptide ester is formed during the reaction. The esters obtained are colourless, amorphous substances, slightly sol. in cold H₂O, insol. in EtOH, sol. in conc. HCl and in conc. aq. CO(NH₂)₂; the biuret reaction is strong. Configuration of glutamic and aspartic acids from pathogenic bacteria.—See A., 1939, III, 1015. Combination of cysteine with sugars. M. P. SCHUBERT (J. Biol. Chem., 1939, 130, 601—603; cf. A., 1936, 824).—Cysteine hydrochloride and the sugar are shaken with H₂O and the solution is kept нн* (А., П.) for 48 hr. at room temp., after which C₅H₅N is added after an additional period of 50-70 hr., and then abs. EtOH is introduced. Cysteine (I) thus give compounds, $C_8H_{15}O_6NS$, with d-arabinose (Zn salt) and d-xylose, m.p. 153° and 133° respectively, substances, $C_9H_{17}O_7NS$, with d-glucose (II), d-mannose (acetate, m.p. 150-152°), and d-galactose (III), m.p. 167°, 171°, and 138°, and compound, C15H27O12NS, m.p. 130°, with lactose (IV). Fructose does not form a compound with (I). The properties of these compounds are similar to those of the thiazolidines formed by condensation of (I) with simple aldehydes. Their solutions are acid to litmus. In solutions containing an excess of NaHCO3 none of these compounds gives a positive SH test with Na nitroprusside (V). In a dil. solution of NH₃ and (NH₄)₂SO₄ only the compounds formed from (II) and (IV) give fair tests with (V); the remainder give only very faint reactions. Aq. solutions of all these compounds absorb I as rapidly as does free (I) and in amount equiv. to the (I) which they contain; such solutions which have been titrated with I slowly deposit crystals of cystine. In solutions containing NaHCO, in which a negative test with (V) is given, these compounds rapidly yield S-carboxymethylcysteine with CHoI·COoNa. In glacial AcOH (III) gives gelatinous galactose-2: 4-dinitrophenylhydrazone, m.p. 171-173°; under these conditions the compound from (I) and (III) remains unaffected. (III) does not appear to unite with SH·CH₂·CO·NH₂ or SH·CPh₂·CO₂H. H.W. Reaction of a-thiocyanopropionic acid with water.—See A., 1939, I, 617. Reduction of certain amides and substituted amides. I. Electro-reduction of cyclopeptide and open peptide groups. N. I. GAVRILOV and A. V. KOPERINA (J. Gen. Chem. Russ., 1939, 9, 1394— 1401).—The CO group of amides of aromatic acids readily undergoes electro-reduction. For the amides R·CO·NHR' or R·CO·NR₂' reduction is possible when R = H or Me and R' = Me or Ph, but not when R contains >1 C. The CO group of peptides does not, but those of diketopiperazine do, undergo reduction at a Pb cathode. R. T. Silico-organic compounds. I. Preparation of silicon analogues of aliphatic ortho-esters. H. W. Post and C. H. Hofrichter, jun. (J. Org. Chem., 1939, 4, 363—364).—The esters are prepared by heating Si(OEt)4 with a Grignard reagent and treating the product with an aliphatic alcohol, e.g., $Si(OEt)_4 + MgEtBr \rightarrow MgBr \cdot OEt + SiEt(OEt)_3$ $(I) + 3Pr^{\alpha}OH \Longrightarrow 3EtOH + SiEt(OPr^{\alpha})_3$. an individual case SiCl₄ is treated with a Grignard reagent followed by Pr^aOH. The following are described: Et_3 , b.p. 158—160°, Pr_3 , b.p. 202—204°/760 mm., Bu_3 , b.p. 235—238°/760 mm., tri-n., b.p. 285°/760 mm. and -iso-amyl, b.p. 266-269°/760 mm., orthosilicopropionate, Et, orthosilicobutyrate, b.p. 179- $180^{\circ}/760$ mm.; Et₃, b.p. $235-238^{\circ}/760$ mm., and Pr_{3}^{a} , b.p. $192^{\circ}/7$ mm., orthosilicobenzoate, n-heptyl orthosilicate, b.p. $213\cdot5^{\circ}/4$ mm. H. W. Organic reineckates. M. Coupechoux (J. Pharm. Chim., 1939, [viii], 30, 118-129).-Limiting concns., the Cr and CNS contents, and the solubilities in $\rm H_2O$ and MeOH at room temp. and in EtOH at 96° of the reineckates of 45 org. bases, prepared by adding a solution of the base in 5% HCl to excess of $\rm [Cr(NH_3)_2(CNS)_4]NH_4,H_2O$, are recorded. New reineckates are those of betaine (I), β -methylcholine, bromocholine, neurine, $\rm N(C_2H_4\cdot OH)_3$ (II), $p\text{-NH}_2\cdot C_6H_4\cdot OH$, o- and $p\text{-}C_6H_4(NH_2)_2$ (III), $1:2:5\cdot C_6H_4Me(NH_2)_2$, benzidine, hydroxyquinoline, $\rm C_{10}H_7\cdot NH_2$, brucine, stovaine, cocaine, and ephedrine. The small amounts of CNS' left in solution can be determined by the method described previously (A., 1936, 1219). Most of the reineckates are micro-cryst.; The small amounts of CNS' left in solution can be determined by the method described previously (A., 1936, 1219). Most of the reineckates are micro-cryst.; (I) forms lance-shaped plates; (II), small hexagonal plates; and (III), fern-like leaflets. The reineckates are anhyd., stable at room temp., slowly hydrolysed by cold and rapidly by hot H₂O. In general, the formula is [Cr(NH₃)₂(CNS)₄]₂base¹; the reineckates of antipyrine, pyramidone, and quinine are not well-defined. All are sol. in COMe₂. Factors affecting solubility are discussed. L. S. T. New class of ammines. Complex thiostannates.—See A., 1939, I, 622. New complex ammines belonging to the group of iron and cobalt dinitrosothiosulphates.—See A., 1939, I, 623. Constitution of complex metallic salts. X. Further evidence for the structure of bridged dipalladium derivatives. J. CHATT and F. G. MANN (J.C.S., 1939, 1622-1634).-n-C₈H₁₇·SH with CH, Br, and NaOEt gives ethylene-aB-bis-(n-octyl sulphide), m.p. 29°, which with (NH₄), PdCl₄ (I) yields ethylene-αβ-bis-(n-octyl sulphide)dichloropalladium (II), darkens ~270°, m.p. ~280°. o-Phenylenebis(dimethylarsine) in EtOH with (I) gives di-o-phenylenebis(dimethylarsine) palladium dichloride, which with (I) in HCl-EtOH gives di-o-phenylenebis(dimethylarsine)palladium palladochloride and o-phenylenebis(dimethylarsine)dichloropalladium (III). o-Phenylenebis(di-n-butylarsine) similarly gives di-o-phenylenebis(di-nbutylarsine)-palladium dichloride tetrahydrate and -dichloropalladium (IV), m.p. 273-275°. AsPhCl, with the Grignard reagent from BuaBr gives phenyldi-nbutylarsine, b.p. 158-161°/21 mm., which with (I) bis(phenyldi-n-butylarsine)dichloropalladium, m.p. 47°, which when boiled with (I) in EtOH or COMe2 yields dichlorobis(phenyldi-n-butylarsine)-u-dichlorodipalladium, m.p. 166°. PPh₃ with (I) in EtOH bis(triphenylphosphine)dichloropalladium, decomp. ~250-270°, which with (I) in EtOH and yields dichlorobis(triphenylphosphine)-u-di-CHCl₃ chlorodipalladium (V). Ethylene-αβ-bis(diphenylarsine) with (I) yields ethylene-αβ-bis(diphenylarsine)dichloropalladium (VI), decomp. at high temp. The BuPh (VII), α-form, m.p. 172-174°, and β-form, m.p. 185—186°, derivative was prepared similarly. AsBu^a₂Cl with NaOH and C₂H₄Br₂ yields ethylene-αβ-bis(arsinic acid), m.p. 201—202° (decomp.), which in dil. HCl with aq. KI gives ethylene-αβ-bis(butylchloroarsine), b.p. 160-165°/0.05 mm., and this with the Grignard reagent from Bu^aBr under H₂ provides ethylene-αβ-bis(dibutylarsine), b.p. 161—162°/0·04 mm., which with (I) yields ethylene-αβ-bis(dibutylarsine)dichloropalladium (VIII), m.p. 221°. All attempts to bridge (II), (III), (IV), (V), (VI), (VII), and (VIII) with (I) were unsuccessful. Diehlorobis-(tributylarsine)-μ-diehlorodipalladium (IX) in Et₂O with NH₃ (2 mols.) in EtOH gives diehloromonoamminotributylarsinepalladium, m.p. 73—74° (decomp.), which in cold cyclohexane deposits (IX). AsBu^a₃ with K₂Pd(NO₂)₄ yields (Bu₃As)₂Pd(NO₂)₂ but with K₂Pd(SCN)₄ gives both (Bu₃As)₂Pd(SCN)₂ and (Bu₃As₂)Pd₂(SCN)₄. It is concluded that reactions previously described (A., 1936, 1184, 1496) do not support an unsymmetrical structure for bridged dipalladium derivatives, the tautomerism deduced from the dipole moments being attributed to the cis and trans symmetrical forms. F. R. G. Kinetics of vapour-phase reaction of cyclopropane with iodine.—See A., 1939, I, 615. Isomerisation of polymethylene hydrocarbons with aluminium chloride. M. B. Turova-Pollak and Z. Makaeva (J. Gen. Chem. Russ., 1939, 9, 1279—1282).—When heated with AlCl₃ for 20 hr. at 110—115° ethylcyclopentane (I) is isomerised to the extent of 97% into methylcyclohexane (II), recognised by dehydrogenation with Pt-asbestos at 300—310° to PhMe. (II) with AlCl₃ only gives 6·3% of (I). G. A. R. K. Synthesis of tert.-butyl- and tert.-amyl-cyclopentane and of intermediate products. H. PINES and V. N. IPATIEV (J. Amer. Chem. Soc., 1939, 61, 2728—2730).—H₂-Ni at 125°/100 atm. converts p-C₆H₄Bu^y·OH and p-tert.-amylphenol into 4-tert.butyl-, m.p. 82°, and 4-tert.-amyl-cyclohexanol, m.p. 24-25°, b.p. 154-155°/40 mm. (α-naphthylurethane, m.p. 113°), oxidised by 50% HNO3 in presence of a little NH₄ vanadate to β-tert.-butyl-, m.p. 117°, and β-tert.-amyl-adipic acid, m.p. 77-78°, which with Ba(OH), at 280° give 3-tert.-butyl-, b.p. 200-201°/ 759 mm. [semicarbazone, m.p. 194-194.5° (decomp.); 2: 4-dinitrophenylhydrazone, m.p. 139°], and 3-tert.amyl-cyclopentanone, b.p. 120°/27 mm. (semicarbazone, m.p. 189°; 2:4-dinitrophenylhydrazone, m.p. 174.5°), respectively. H_2 -Ni at $80^\circ/100$ —60 atm. then gives 3-tert.-butyl-, b.p. 196— $198^\circ/744$ mm. (α -naphthylurethane, m.p. 95°), and 3-tert.-amyl-cyclopentanol, b.p. $217^\circ/738$ mm. (α -naphthylurethane, m.p. 82°), dehydrated by activated Al₂O₃ at 345° to 3- or 4-tert. butýl-, b.p. $139\cdot6^\circ/760$ mm., and -tert.-amyl- Δ^1 -cyclopentene, b.p. $163-165^\circ/743$ mm., hydrogenated (Ni; $60^{\circ}/100$ atm.) to tert.-butyl-, m.p. $-96^{\circ}\pm0.2^{\circ}$, b.p. 145.2°/760 mm., and tert.-amyl-cyclopentane, b.p. 173.9°/760 mm., respectively. Physical consts. of the products are given. Hydrogenation catalysis of phenylcyclopentane and its homologues. J. I. Denisenko (J. Gen. Chem. Russ., 1939, 9, 1068—1076).—Phenylcyclopentane is hydrogenated (Pt–C catalyst at 300°) to a mixture of α -, β -, and γ -phenylpentane, showing that rupture of the cyclopentane ring takes place in all three possible positions. The same applies to cyclopentylphenyl-methane, -ethane, -propane, -butane, and -pentane, which yield mixtures of isomeric hexyl-, heptyl-, octyl-, nonyl-, and decyl-benzene, respectively. Contact isomerisation of ε -cyclohexyl- Δ^a -pentene and ε -cyclohexyl- Δ^a -pentinene. P. J. Levina, G. B. Golub, and K. M. Smirnov (J. Gen. Chem. Russ., 1939, 9, 825—828).—A mixture of amylbenzene and amylcyclohexane in the proportions of 1:2 and 2:1, respectively, is formed from ε-cyclohexyl-Δ^α-pentene and from ε-cyclohexyl-Δ^α-pentinene, by passage over Pt–C at 200—205°. V. A. P. Directive influence of the electric moment on substitution in the benzene ring.—See A., 1939, I, 551. Electronic interpretation of the halogenation of toluene. A. P. Kreschkov (J. Gen. Chem. Russ., 1939, 9, 1251—1257).—Theoretical. The author introduces the term "electronisation" to denote the electron density surrounding a given atom, which is affected both by structure and external conditions, and explains the behaviour of PhMe in terms of this. Side-chain halogenation is due to tautomerism which includes as one of the limiting phases one with a semicyclic double linking (Schorigin); this form is favoured by external activation. G. A. R. K. Ozonisation of o-xylene and the structure of the benzene ring. J. P. Wibaut and P. W. Haav-Man (Nature, 1939, 144, 290).—Ozonisation of o-xylene (I) in CHCl₃ at -25° and conversion of the decomp. products of the ozonides into oximes [20% yield on (I)] gave dimethylgloxime (0·88 mol.), methylglyoxime (2 mols.), and glyoxime (3·2 mols.). This supports the qual. results of Levine et al. (A., 1932, 259), and affords chemical evidence for the occurrence of two resonating Kékulé structures in (I). L. S. T. Mechanism of aromatisation. Thermal isomerisation of the xylenes. A. F. Dobrianski and F. J. SAPRIKIN (J. Gen. Chem. Russ., 1939, 9, 1313-1314).—Pyrolysis of o- (I), m- (II), and p- (III) -xylene in a porcelain tube heated in an electric oven at 700—770° gives in each case PhMe, condensation products, gases, and unchanged xylene. The recovery of (II) was the highest and it appears to be the most stable, (I) the least stable and the most easily demethylated. Some isomerisation of (I) into (II) and (III) and of (III) into (II), but not into (I), is also observed; (II) is not isomerised. It is probable that demethylation and isomerisation proceed concurrently and that (II) is not an intermediate in the formation of PhMe. G. A. R. K. Relative reactivity of chloro- and bromo-nitrobenzenes. N. N. Voroshcov, jun., and V. A. Kobelev (J. Gen. Chem. Russ., 1939, 9, 1047—1048). —Na₂SO₃ does not react with o-, m-, or p-C₆H₄Cl·NO₂ or -C₆H₄Br·NO₂ under the conditions of Sprung's experiments (A., 1930, 759). The alleged reactivity of halogens in the m-position is thus not confirmed. Properties of nitro-groups. Trinitrobenzene derivatives. D. RADULESCU, L. NOVAC, I. PETRE-ANU, and S. POPA (Bul. Soc. Chim. România, 1938, 20, 49—88).—An electronic interpretation of the structure of additive compounds of C₆H₃(NO₂)₃ etc. is given; formation of such complexes loosens substituents such as CO₂H, CHO, and NO₂, and even H (reaction with BzCl in absence of AlCl₃). 1:2:4:6-C₆H₂Me(NO₂)₃ with NO-compounds gives products (A), in which R = p-C₆H₄·NMe₂ (cf. Secăreanu, A., 1931, 752), Ph, m.p. 146—149° (explosive), p-, m.p. 151—153° (explosive), m-, m.p. 155—157° (explosive), and o- C_6H_4Me , m.p. 147—149° (explosive), and p- $C_6H_4\cdot NPh_2$ (I), m.p. 221—223° (decomp.), which lose NO₂ NR—CH₂ 223° (decomp.), which lose NO₂ when heated alone or in neutral solvents [in COMe₂ or CHCl₃ for (I)] and give only small amounts of the amine and $(NO_2)_3C_6H_2$ CHO (II) when hydrolysed. 2:4:6-Trinitro- benzylidene-p-, m.p. 201—202° (decomp.), -m-, m.p. 193-194° (decomp.), and -o-toluidine, m.p. 197-198° (decomp.), and di-2:4:6-trinitrobenzylidine-p phenylenediamine, m.p. 208° (explosive), are prepared from (II) and the appropriate amine, are readily hydrolysed to the components, and do not lose NO, when heated. In accordance with electronic considerations, o-, m-, and p-NO· C_6H_4 · CO_2H , p- C_6H_4 (NO)₂, NO·C₆H₄·Hal, and C₆HMe₂(NO₂)₃ do not give compounds of type (A), but failure by $C_6H_2Et(NO_2)_3$ is inexplicable. $5:1:2\text{-NO}\cdot C_6H_3(NH_2)\cdot CO_9Me$ C₆H₂Me(NO₂)₃ give a compound which is neither a Schiff's base nor of type (A). 2:4:6:1:3-(NO_2) $_3C_6H(CO_2H)_2$ (III), m.p. $204-206^\circ$, is best obtained by adding solid KMnO₄ to 1:3:2:4:6-(CHM, (NO)) in plant (A) 1.27 to it leaves 2.00 $C_6HMe_2(NO_2)_3$ in oleum $(d\ 1.87)$; it loses 2 CO_2 when heated in H_2O . Trinitrotrimesic acid (IV), m.p. $\sim 208^{\circ}$ (decomp.) (Ag salt), is similarly obtained in presence of 0.5—0.7% of fuming HNO₃ as catalyst from 2:4:6:1:3:5-C₆Me₃(NO₂)₃. (III) and (IV) are very sol. in H₂O, EtOH, etc., insol. in hydrocarbons, give sol. salts, are fully ionised (all CO₂H) in 0.0001 M. aq. solution, and, as also is (NO2)3 C6H2 CO2H, are determined by their nitron salts (1 mol. of nitron per CO_2H). s- $C_6H_3(NO_2)_3$ (V) and saturated aq. $Ba(OH)_2$ at 40° in absence of air give a red salt, $[C_6H_3(NO_2\cdot OH)_3]_2Ba_3$, $+12H_2O$, which with HCl regenerates (V) and over H_2SO_4 at room temp. in vac. gives the reddish-brown "salt," $C_6O_6N_3Ba_{1.5}$, $+3H_2O$; further drying at 140° over P_2O_5 in vac. then gives the "salt," $C_6(NO_2)_3Ba_{1.5}$, unusually stable to acid and converted thereby into a brown insol., micro-cryst. substance, $[C_6H_3^i(NO_2)_3]_x$. The Ba in the last-mentioned "salt" is considered to be attached to the nuclear C. Sr(OH), gives an unstable, hydrated salt, converted by drying at 110° into an explosive, reddish-brown "salt," [C6(NO2)3]2Sr3. TIOH gives only a reddish-violet, hydrated Tl, salt, converted over H₂SO₄ at room temp. into a substance, C₆H₃(NO₂)₃,TIÕH. Guanidine gives a red salt, $[C_6H_3(NO_2)_3]_2,(CH_5N_3)_3, +H_2O.$ 2:4:6:1, $(NO_2)_3C_6H_2 \cdot CO_2H$ and $Ba(OH)_2$ give first the normal, colourless $Ba_{0.5}$ salt and then a red "salt," $(NO_2)_3C_6Ba \cdot CO_2Ba_{0.5}, Ba_{0.5}OH, +3H_2O$, dehydrated at 114° to the anhyd. "salt"; "salts," C₇H₃O₈N₃Sr₂, + 2.5H₂O and anhyd., are similarly obtained. (III) gives a salt, $[C_6H(NO_2)_3 \cdot CO_2]_2Ba_5(OH)_6 + H_2O$, dehydrated in vac. [C₆H(NO₂)₃·CO₂]₂Ba₅(OH)₆,+H₂O, dehydrated in vac. and reconverted by HCl into (III). (IV) and BaCO₃ give a colourless $Ba_{1\cdot 5}$ salt, +12H₂O and anhyd., converted by Ba(OH)₂ into a "salt," $[C_6(NO_2)_3(CO_2)_3](BaOH)_3$, $+6H_2O$ and anhyd., reconverted into (IV) by HCl. $[C_6H_2(NO_2)_3]_2$ and $Ba(OH)_2$ give, with loss of NO_2 , an impure product, $C_{12}H_4(NO_2)_6[Ba(OH)_2]_3$, which at 114° loses $\sim 4H_2O$. 1:2:4:6- $C_6H_2Me(NO_2)_3$ gives a mixture, $C_6H_2Me(NO_2)_3[Ba(OH)]_n$, in which n is partly 2 and partly 3. $C_6HMe_2(NO_2)_3$ gives a coloured solution, but no solid salt, and $C_6Me_3(NO_2)_3$ does not give even a colour. $2:4:6\cdot(NO_2)_3C_6H_2\cdot OH$ gives a product, $C_6H_2(NO_2)_3\cdot OH,(BaOH)_2,+0\cdot 5H_2O$, which at $107-110^\circ/\text{vac}$. loses H_2O . 2:4:6:1:3-(NO2)3C6H(OH)2 gives a substance, $[(NO_2)_3C_6HO_2]Ba_3(OH), +2H_2O.$ Trinitro-orcinol gives only the Ba_1 salt, $+2H_2O$. n are recorded for some polynitro-compounds. R. S. C. Synthesis of sulphonyl chlorides by chlorination of sulphur compounds. T. B. Johnson (Proc. Nat. Acad. Sci., 1939, 25, 448-452).—The production of RSO₂Cl by the action of Cl₂-H₂O on $SR \cdot C \stackrel{N:CX}{\searrow} CH$ (I), $SR \cdot C(NR') \cdot NR'_2$ (e.g., R' =H or Me), and RSCN (cf. Johnson et al., lit. 1935— 1939) is considered to involve preliminary formation of the sulphoxide (A) and then RSOCI; (A) may undergo oxidation (to the sulphone) or hydrolysis (to RSO₂H or RSOCI). SR·C NH·CO CH can be differentiated from (I) since these give CO NH-CH(OH) CCl₂ and RSO₃H. Preparation of styrenes by the action of organomagnesium compounds on p-cyclohexylacetophenone. I. Zugravescu and (MME.) S. Zugrav-ESCU (Bul. Soc. Chim. România, 1938, 20, 225-230).—p-cycloHexylacetophenone and the appropriate Mg alkyl bromide give β-p-cyclohexyl-Δβ-nbutene, b.p. 169°/4 mm., -n-pentene, b.p. 157—158°/12 mm., and -n-hexene, b.p. 191—192°/15 mm. MgPhBr gives α-p-cyclohexylphenylstyrene, b.p. 223— 224°/13 mm. The structure of the products is proved by KMnO₄-oxidation. Ease of polymerisation of substituted styrenes in relation to their structure. II. P. P. Schor-IGIN and N. V. SCHORIGINA (J. Gen. Chem. Russ., 1939, 9, 845—854).—Polymerisation at 100° and at 170° in absence of catalysts has been studied in the cases of styrene, o- and p-bromo-, o- and p-methoxy-, and o- and p-amino-styrene, \(\Delta^a\)-octene, cyclohexylethylene, anethole, safrole, isosafrole, eugenol, isoeugenol, CHPh:CHMe, CPhMe:CH2, CPh2:CH2, and CHPh:CHBr. It is concluded that in substituted ethylenes, polymerisation takes place only when the double linking is conjugated with an aromatic nucleus. Polymerisation of the styrenes is retarded by substitution at α and β and by increase of mol. wt. Rise in temp. leads to increase in velocity of polymerisation, but to decrease in chain length of the polymeride. The following are described: β-pdiphenylylethyl alcohol, m.p. 93-94°, from (CH2)20 and p-C₆H₄Ph·MgI; α-p-, b.p. 145°/20 mm., and $\alpha\text{-}o\text{-}bromophenylethyl alcohol}, b.p. 128°/15 mm., from <math display="inline">p\text{-}$ and o-C $_6\mathrm{H_4Br}\text{-}\mathrm{CHO}$ and MeMgI. Dehydration of the ethanols with KHSO₄ at 130—140° gives p- and o-bromostyrene, b.p. 102—104°/20 mm. and 102— 104°/22 mm., respectively. V. A. P. Effect of substitution on the dissociation of hexa-arylethanes. VIII. Disproportionation of tri-p-tolylmethyl. C. S. MARVEL, W. H. RIEGER, and M. B. MUELLER. IX. Disproportionation of hexa-p-alkylphenylethanes. Effect of o-, m-, and p-alkyl groups on the dissociation of hexaarylethanes. C. S. MARVEL, M. B. MUELLER, C. M. Himel, and J. F. Kaplan (J. Amer. Chem. Soc., 1939, 61, 2769—2771, 2771—2775; cf. A., 1939, II, 498).—VIII. It is shown by χ (extrapolated to zero time) that, when pure $(p\text{-}\mathrm{C_6H_4Me})_3\mathrm{CCl}$ (I) is shaken with Ag in C_6H_6 , 20% of $(p \cdot C_6H_4M_6)_3C$ (II) is present in 0.05M. solution. After a few hr. at $25-30^\circ$, the orange colour has completely disappeared and x shows absence of (II). This is due to disproportionation of (II) to $(p-C_6H_4Me)_3CH$ (which is recovered by distillation at $\sim 85^{\circ}/10^{-4}$ mm.) and $(p-C_6H_4Me)_3CH$ C₆H₄Me)₂C:C₆H₄:CH₂, which polymerises to a colourless glass. A similar glass is obtained from (I) by C₅H₅N in absence of O₂. IX. It is shown by χ that $(p\text{-}C_6H_4R)_3C$ (R = Et, Pr^a, Pr^{\beta}, CHMeEt, or Bu^{\beta}), when kept at 30°, disproportionate into $(p\text{-}C_6H_4R)_3CH$ and $(p\text{-}C_6H_4R)_3CH$ $C_6H_4R)_2C:C_6H_4:CHR'$ (A). However, decolorisation does not occur, since (A) are coloured and do not polymerise. The relative rates of disproportionation decrease in the order of R given above. Initial degrees of dissociation (extrapolated to zero time) are R = Et 17, Pr^a 21, Pr^b 26, CHMeEt 33, and Bu^b 27% (all $\pm 2\%$). This interpretation of the results is supported by the fact that $(m-C_6H_4Me)_3C$, which exists <40% as free radical and cannot yield a quinonoid disproportionation product, is quite stable in C_6H_6 . o- C_6H_4 Me·CPh₂Cl gives an ethane, dissociated to 25 $(\pm 1)\%$ to a stable radical; the stability and high degree of dissociation are probably due to steric reasons. (p-C₆H₄Bu^γ·CPh₂) dissociates to 8—9 (± 1)% to a radical, which is stable as it cannot give a quinonoid product, but (p- $C_6H_4Me\cdot CPh_2$)₂ and (p- $C_6H_4Pr^\beta\cdot CPh_2$)₂ dissociate to 5 and 8—10 (± 1)%, respectively, to radicals which disproportionate, but more slowly than does (p-C₆H₄R)₃C. The following data are incidentally recorded. Diphenyl-p-isopropyl-, m.p. 90—91°, and -p-tert.-butyl-phenylmethyl chloride, m.p. 133—134°; diphenyl-o-tolyl-, m.p. 148—149°, -p-isopropylphenyl-, m.p. 139—140°, and -p-tert.-butylphenyl-methyl peroxide, m.p. 156-157°. R. S. C. Cracking of decalin under pressure.—See A., 1939, I, 615. Conversion of 1- into 2-bromonaphthalene. H. E. FISHER and R. H. CLARK (Canad. J. Res., 1939, 17, B, 251-252).-Conversion of 1- into 2-C₁₀H₇Br (I) by AlCl₃-CS₂ (method : Roux, A., 1886, 806) gives a max. yield of 9·1%. Addition of Ni, Mo, W, Sb, Se, or Cr increases the yield of (I) to $25 \cdot 5$, $25 \cdot 0$, $23 \cdot 5$, $22 \cdot 5$, 16, or $14 \cdot 4\%$, respectively. Replacement of CS₂ by COMe₂, C_6H_6 , EtOH, aq. EtOH, dioxan, aq. or anhyd. C_5H_5N , or MeNO₂, or of AlCl₃ by FeCl₃, gave no conversion. A. T. P. Dehydrogenation. IV. [Tetrahydronaphthal-enespirocyclopentanes.] S. C. Sen-Gupta (J. Indian Chem. Soc., 1939, 16, 349—356).—The anhydride (I) of 1-carboxycyclopentane-1-acetic acid in PhMe with AlCl₃ gives 1-p-tolacyleyclopentane-1-carboxylic acid (II), m.p. 149—150° (semicarbazone, m.p. 164—165°), the Me ester, b.p. 170—175°/5 mm., of which is obtained from Me cyclopentane-1-acetate-1-carboxyl chloride (III), PhMe, and AlCl, [during which reaction a rearrangement of (III) is assumed]. Zn-Hg in conc. HCl reduces (II) to 1-β-p-tolylethylcyclopentane-1-carboxylic acid, m.p. 68-69°, b.p. 186-190°/5 mm. (anilide, m.p. 124°; Et ester, b.p. 160—162°/5 mm.), converted by 85% H₂SO₄ into the 1-keto-derivative, b.p. 160—163°/5 mm. (semicarbazone, m.p. 141—142°), of 7-methyl-1:2:3:4tetrahydronaphthalene-2: 2-spirocyclopentane (IV), b.p. 135-136°/6 mm., to which it is reduced by Zn-Hg in conc. HCl. Se dehydrogenation of (IV) at 340— 350° gives 3-methylphenanthrene and 2-methylanthracene (?). With PhEt and AlCl₃ in CS₂, (I) and (III) give respectively 1-p-ethylphenacylcyclopentane-1-carboxylic acid (V), m.p. 128-129° (semicarbazone, m.p. 130°), and its Me ester, b.p. 195-198°/10 mm. (V) is reduced to 1-β-p-ethylphenylethylcyclopentane-1-carboxylic acid, m.p. 51-53°, b.p. 200—202°/9 mm. (anilide, m.p. 117°; Et ester, b.p. 144-146°/5 mm.). This gives the 1-keto-derivative, b.p. 175°/9 mm., of 7-ethyl-1:2:3:4-tetrahydronaphthalene-2: 2-spirocyclopentane, b.p. 154-156°/9 mm., dehydrogenated to 3-ethylphenanthrene and 2-ethylanthracene (?). The mechanism proposed by Linstead (Ann. Rep. Chem. Soc., 1936, 33, 304) for dehydrogenations of this type (cf. A., 1934, 1003) is rejected in favour of 1: 2-fission of the cyclopentane ring during dehydrogenation. E. W. W. Halogen derivatives of acenaphthene. M. M. DASCHEVSKI and A. P. KARISCHIN (Prom. Org. Chim., 1939, 6, 507—511).—Acenaphthene and SO₂Cl₂ in presence of I at room temp. give 3:4-dichloroacenaphthene (I), in 50—60% yield. (I) and H₂SO₄ (1 hr. at 100°) give 3:4-dichloroacenaphthene-1-sulphonic acid, m.p. 192° (decomp.) [chloride, m.p. 179°; amide, m.p. 270—272° (decomp.)], oxidised (K₂Cr₂O₇) to 4:5-dichloro-2-sulphonaphthalic acid, m.p. 229—230° (anhydride, m.p. 160°; chloride, m.p. 219—220°; amide, decomp. 380—382°). 3:4-Dichloroacenaphthene-1:6-disulphonic acid, m.p. 265—266° (decomp.) (chloride, m.p. 198—200°; diamide, m.p. >400°), prepared analogously to (I), is oxidised (K₂Cr₂O₇) to 4:5-dichloro-2:7-disulphonaphthalic acid, m.p. 176—177° (decomp.). 3:4-Dibromoacenaphthene-1-sulphonic acid, m.p. 240° (decomp.) (chloride, m.p. 190—191°; amide, m.p. 260—262°), and -1:6-disulphonic acid, m.p. 252° (decomp.) [chloride, m.p. 197—198° (decomp.); amide, m.p. 274—275°], and 4:5-dibromo-2-sulpho-, m.p. 235—236°, and -2:7-disulpho-naphthalic acid, m.p. 159—160°, were prepared analogously. R. T. Dehydration of cholesterol. J. C. Eck and R. L. van Peursem (Iowa State Coll. J. Sci., 1939, 13, 115—128).—Cholesterol (I) when warmed (65°) briefly (3 min.) with 1:1 (vol.) $H_2O-H_2SO_4$ affords a- (II), m.p. 344° (block), 240—265° (decomp.) (tube) (lit. 240°; 260° after sintering at 210—220°), $[\alpha]_5^{23} + 96.85^\circ$ in CCl₄, and c- (III), m.p. 200° (block), 144—172° (decomp.) (tube) (lit. 127°), $[\alpha]_5^{23} + 34.5^\circ$ in CCl₄, but no b-cholesterylene. (I) with Br-CHCl₃ and (II) with Br-AcOH-Et₂O yield bromides, m.p. 245° (block) and 235° (block), respectively, with evolution of HBr. (II) is also formed from (I), cholesterylene (IV), cholesteryl acetate, and cholesterol Bu ether, but not from cholestene, cholesteryl chloride, and dicholesteryl ether (V), with AcOH-H₂SO₄ at 85—90°. (II) may be related to *i*-cholesterol, from which it is obtained [but not from (I)] by Ac₂O-H₂SO₄ at 85—90°. Other conditions for the prep. of (II) are given. A detailed review of the literature is given and it is suggested that Δ^{2:4}-cholestadiene, (II), (III), (IV), and (V) should be regarded as different dehydration products of (I). Synthesis of derivatives of chrysene. W. E. Bachmann and W. S. Struve (J. Org. Chem., 1939, 4, 456—463; cf. A., 1936, 1380).—Clemmensen reduction of β-2-phenanthroylbutyric acid leads to γ-2phenanthryl-β-methylbutyric acid, m.p. 127·5—129° cyclised by SOCl₂ in Et₂O containing a little C₅H₅N followed by SnCl₄ in dry C₆H₆ at 0° to 6-keto-4-methyl-3:4:5:6-tetrahydrochrysene, m.p. 141—142°, which is reduced to 4-methyl-3:4:5:6-tetrahydrochrysene, thin leaflets or thin prisms, m.p. 141.5—142° (hemipicrate, $2C_{19}H_{18}$, $C_6H_3O_7N_3$, m.p. $145\cdot5$ — 146°); this is dehydrogenated by Pd–C at 300— 320° to 4-methylchrysene, m.p. 229—230° (corr.) (rather unstable picrate, m.p. 143—146°). 2-n-Propylphenanthrene, obtained by reduction of the propionyl derivative, has m.p. 35—36° (picrate, m.p. 92—93°). Non-cryst. 3-n-propylphenanthrene and its picrate, m.p. 107— 108°, are described. β-2-9: 10-Dihydrophenanthroylpropionic acid, Zn-Hg, AcOH, conc. HCl, and PhMe yield γ-2-9: 10-dihydrophenanthrylbutyric acid, m.p. 91-92°, which is esterified with MeOH, dehydrogenated by Pd-C at 240-260°, and then hydrolysed to γ-2-phenanthrylbutyric acid, m.p. 133—134°. This is cyclised to 6-keto-3:4:5:6-tetrahydrochrysene (I), m.p. 125—126°, which is transformed by MgMeI in Et₂O–C₆H₆ into 6-hydroxy-6-methyl-3:4:5:6-tetrahydrochrysene, m.p. 124—125°, converted by Pd-C at 300—320° into 6-methylchrysene, m.p. 151—151-2° (corr.) (picrate, m.p. $134-135^{\circ}$). Al(OPr^{β})₃ reduces (I) to 6-hydroxy-3:4:5:6-tetrahydrochrysene (II), m.p. 160—162°, which yields a Me ether, m.p. 79-80.5°, and an acetate, m.p. 119—120.5°. Dry HCl transforms (II) suspended in dry C6H6 containing CaCl₂ at room temp. into 6-chloro-3:4:5:6-tetrahydrochrysene, m.p. $115-117^{\circ}$ (decomp.) and, after re-solidification, m.p. $174-178^{\circ}$, which is transformed by boiling C_5H_5N into 3:4-dihydrochrysene (III), m.p. $182\cdot5-184\cdot5^{\circ}$ (picrate, m.p. $155-156^{\circ}$). (I) is reduced (Clemmensen) to 3:4:5:6-tetrahydrochrysene, m.p. $180\cdot5-181\cdot5^\circ$ (picrate, m.p. $134-135\cdot5^\circ$), which, like (III), is dehydrogenated by Pd-C in N₂ at $300-320^\circ$ to chrysene. Reactions of tetrahydrophenanthrene. Synthesis of triphenylene and methyltriphenylene. W. E. Bachmann and W. S. Struve (J. Org. Chem., 1939, 4, 472—479).— $C_{10}H_8$, (' CH_2 ·CO) $_2$ O, and AlCl $_3$ in PhNO $_2$ give a mixture of β -1- and -2-naphthoyl-propionic acid which is reduced (Clemmensen) and then cyclised by SOCl $_2$ in abs. Et $_2$ O containing a little C_5H_5 N followed by SnCl $_4$ in C_6H_6 at 0° to 1- and 4-keto-1:2:3:4-tetrahydrophenanthrene, which are converted (Clemmensen) into 1:2:3:4-tetrahydrophenanthrene (I), m.p. 32·5-33·5°. AcCl, (I), and AlCl, afford 9-acetyl-1:2:3:4-tetrahydrophenanthrene (II), m.p. 56.5-58°, dehydrogenated by S at 210-220° to 9-acetylphenanthrene. Addition of 1-C₁₀H₇Et to a solution of (•CH,•CO),O and AlCl, in PhNO, at 0° gives 3-4-ethyl-1-naphthoylpropionic acid, m.p. 129.5— 131°, reduced by Zn-Hg, AcOH, and conc. HCl in presence of PhMe to y-4-ethyl-1-naphthylbutyric acid, m.p. 115-116.5°. This is cyclised to 1-keto-9-ethyl-1:2:3:4-tetrahydrophenanthrene, m.p. 52-53°, which is reduced (Clemmensen) to 9-ethyl-1:2:3:4tetrahydrophenanthrene, m.p. 23—25° (picrate, m.p. 125·5—126·5°), also obtained similarly from (II); it is dehydrogenated (Pd-C at 300-320°) to 9-ethylphenanthrene, m.p. 63·5—64·5° (picrate, m.p. 120·5— 122.5°). (II) is converted by Br in well-cooled Et₂O into 9-bromoacetyl-1:2:3:4-tetrahydrophenanthrene, m.p. 90·5—91·5°; this is condensed with CHNa(CO₂Et)₂ in C₆H₆ and the product is hydrolysed and then decarboxylated to β -9-1 : 2 : 3 : 4-tetrahydrophenanthroylpropionic acid, m.p. 167·5—169°, also obtained from (I), (·CH₂·CO)₂O, and AlCl₃ in PhNO₂. This is reduced to γ -9-1 : 2 : 3 : 4-tetrahydrophenanthrylbutyric acid (III), m.p. 133—134°, the Me ester of which is dehydrogenated (Pd–C at 250—270°) and then hydrolysed to γ -9-phenanthrylbutyric acid, then hydrolysed to γ -9-phenanthrylbutyric acid, m.p. 171—172°. (III) is cyclised to 1-keto-1:2:3:4:9:10:11:12-octa-hydrotriphenylene (IV), m.p. 121—122°, whence 1:2:3:4:9:10:11:12-octahydrotriphenylene, m.p. 120·5—10:12° (picrate, m.p. 193—195°), which is dehydrogenated (Pd-C at 300—320°) to triphenylene, m.p. 196·5—197·5°. MgMeI and (IV) in Et₂O-C₆H₆ yield 1-hydroxy-1-methyl-1:2:3:4:9:10:11:12-octahydrotriphenylene, m.p. 104—105°, dehydrated and dehydrogenated (Pd-C at 300—320°) to 1-methyltriphenylene, m.p. 93—94° (picrate, m.p. 172·5—174°). H. W. Methyl homologues of triphenylene. L. F. FIESER and L. M. JOSHEL (J. Amer. Chem. Soc., 1939, **61**, 2958—2961).—y-Keto-y-9-phenanthryl-nbutyric acid [prep. from Mg 9-phenanthryl bromide (I) and (•CH2•CO)2O improved to give a 45% yield], m.p. 179·5—180·5° (Me ester, new m.p. 88·6—89·4°, does not condense with MgMeCl or MgMeI), and Zn-Hg–PhMe–HCl give γ -9-phenanthryl-n-butyric acid (79%), m.p. 172·8—174°, cyclised by anhyd. HF at 0° to 87% of 1-keto-1:2:3:4-tetrahydrotriphenylene, m.p. 97—99°. With MgMeCl this gives a carbinol, which by dehydration by I at 200-220° and subsequent heating with S at 230° and then at 230— 250° gives 1-methyltriphenylene (42·5%), m.p. 93·4—94·2° (picrate, m.p. 177·2—178·2°). With methylsuccinic anhydride, (I) yields similarly y-keto-y-9phenanthryl-a-methyl-n-butyric acid (33%), m.p. 155— 156° (structure proved by conversion by Br-CHCl3, followed by NaOH-EtOH-H2O, into 9-acetophenanthrene), γ-9-phenanthryl-α-methyl-n-butyric acid, m.p. 136·6—137·4°, and 1-keto-2-methyl-1:2:3:4tetrahydrotriphenylene (II), m.p. 85-86.5°. Zn-Hg-PhMe-HCl and (II) give 2-methyl-1:2:3:4-tetrahydrotriphenylene, m.p. 116·2—116·8°, converted by Pd-C-No at 215-230° and then at 310° into 2-methyltriphenylene, m.p. 102-6—103-6° (picrate, m.p. 192-4— 193°), which is also obtained directly from (II) by Pd-C-N₂ at 300—310°. With MgMeCl in C₆H₆-Et₂O, (II) gives a crude carbinol, converted by Pd-C at 290—315° into 1:2-dimethyltriphenylene, m.p. 86·8— 87.4° (picrate, m.p. 154-155°). OMe·CH₂·CN and (I) in boiling $C_6H_6^r$ give 9-phenanthryl methoxymethyl ketone, m.p. 67·2—68°, b.p. 220—225°/3 mm., converted by MgMeCl in C_6H_6 at room temp. into α -9phenanthryl-β-methoxyisopropyl alcohol, m.p. <0°, b.p. 192—195°/1 mm. KHSO₄ at 180° then yields α-9-phenanthrylpropaldehyde, m.p. 65·5-67·6°, which with CH₂(CO₂H)₂ and a little piperidine in C₅H₅N at 100° gives γ-9-phenanthryl-Δ^a-pentenoic acid, m.p. 178·8—179·4° (softens at 173°), hydrogenated (PtO₂; AcOH) to y-9-phenanthryl-n-valeric acid, m.p. 83-85°. This is cyclised by HF at room temp. to 1-keto-4-methyl-1:2:3:4-tetrahydrotriphenylene (82%), m.p. 99-100.5°, which affords (Grignard reaction; I; S) 1:4-dimethyltriphenylene (35%), m.p. 108·4—109·2° (picrate, m.p. 148·4—149·4°). M.p. are corr. R. S. C. Syntheses of picene. N. L. DRAKE and W. C. McVey (J. Org. Chem., 1939, 4, 464-471).-C₁₀H₈ and (·CH,·CO),O are condensed to a mixture of β-1- and -2-naphthoylpropionic acids, the separation of which is described. γ -1-Naphthylbutyric acid in C_6H_6 is converted by successive treatments with PCl₅ and AlCl₃ into 1-keto-1:2:3:4-tetrahydrophenanthrene (I), b.p. 145-150°/1 mm., m.p. 95-96° [2:4-dinitrophenylhydrazone, m.p. 283-285° (decomp.)]. o- and p-C6H4Me MgBr and (CH2)2O yield β-o-, b.p. 99—105°/1 mm. (3:5-dinitrobenzoate, m.p. 126—128°), and β-p-tolylethyl alcohol, b.p. 100—106°/1 mm., 235°/atm. pressure (3:5-dinitrobenzoate, m.p. 147-149°), respectively, converted by SOCl₂ and NPhMe₂ into the respective chlorides, b.p. 80—84°/ 1 mm., 223°/atm. pressure, and b.p. 81—85°/1 mm., 222°/atm. pressure. CH₂Ph·CH₂·MgBr and (I) in Et₂O-C₆H₆ (1:1) afford 1-phenylethyl-3:4-dihydrophenanthrene (II), b.p. 185—187°/0·5—1 mm., m.p. 62-63° [additive compound, m.p. 91-92°, with s-C₆H₃(NÕ₂)₃]. Similarly prepared are 1- β -o- (III), b.p. 190—195°/0·5—1 mm. [additive compound, m.p. 101·5—102·5°, with s-C₆H₃(NO₂)₃], and 1-β-p- (IV), b.p. 200—205°/0·5—1 mm., m.p. 79·5—81° (picrate, m.p. 101—102°), -tolylethyl-3: 4-dihydrophenanthene. (II) is dehydrogenated by Pd-C at 270-320° to 1-phenylethylphenanthrene, m.p. 86·5—89·5° [additive compound (1:2), m.p. 149—151° with s-C₆H₃(NO₂)₃], which yields only tarry material from which picene (V) cannot be extracted when cyclisation is attempted with AlCl₃ in CS₂ at the b.p. or at a lower temp. Cyclisation of (II) by AlCl₃ in CS₂ at 0—5° gives a pasty product which does not give a compound with $2:4:6-C_6H_2(NO_2)_3\cdot OH$ or $s-C_6H_3(NO_2)_2$; it is dehydrogenated by Pd–C at $390-400^\circ$ to 1% of (V), m.p. $367-368\cdot 5^\circ$, which is also obtained by a similar procedure from (III). (IV) could not be converted into (V). H.W. Synthesis of rubicene from fluorenone, using metallic calcium. V. I. Chmelevski and G. I. Fedorov (J. Gen. Chem. Russ., 1939, 9, 1423— 1425).—Fluorenone and Ca when heated give rubicene in 13% yield. 9:10-Diphenylanthracene is obtained analogously from COPh, (20% yield). Hydroxy-derivatives of diphenylethylamine. A. LESPAGNOL, J. TURLUR, and L. LESPAGNOL (Bull. Sci. Pharmacol., 1939, 41, 305—311).—CH. Ph. CO. H. o-C₆H₄(OH)₂, and ZnCl₂ at 150° yield 3: 4-dihydroxydeoxybenzoin, the oxime, m.p. 83°, of which is reduced (Na-Hg, EtOH-AcOH) to β-phenyl-α-3: 4-dihydroxy-phenylethylamine, m.p. 135° (hydrochloride, m.p. 186°). The oxime, m.p. 121—122°, of 4'-hydroxydeoxybenzoin (I) similarly yields α-phenyl-β-p-hydroxyphenylethylamine, m.p. 159°. 4-Nitrobenzil is reduced (Sn, aq. EtOH-HCl) to 4'-aminodeoxybenzoin [hydrochloride, m.p. 265° (decomp.)], converted (diazomethod) into (I). R. T. Kinetics of reaction of o-chloronitrobenzene with aqueous ammonia.—See A., 1939, I, 616. Alkanolamines. VII. Condensation products of monoethanolamine and the isomeric dichloronitrobenzenes. C. B. KREMER and A. BENDICH (J. Amer. Chem. Soc., 1939, 61, 2658-2661; cf. A., 1939, II, 366).—Nitration of 2:4:1-C6H3CloNH9 gives at best very poor yields. $p\text{-NO}_2\cdot C_6H_4\cdot NH_2$ and $HCl\text{-KClO}_3$ at 70° give varying amounts of 4:2:1- $NO_2\cdot C_6H_3Cl\cdot NH_2$ and 4:2:6:1- $NO_2\cdot C_6H_2Cl_2\cdot NH_2$, the latter product being converted by a diazo-reaction into $3:5:1-C_6H_3Cl_2\cdot NO_2$, m.p. 65° . Sn-HCl then gives $3:5:1-C_6H_3Cl_2\cdot NH_2$, m.p. 51° , the Ac derivative, m.p. 186° , of which with HNO₃ $(d\ 1.51)$ yields 4:3:5:1- (I), m.p. 222° , and 2:3:5:1- NO₂·C₆H₂Cl₂·NHAc (II), m.p. 138° . Hydrolysis (conc. H₂SO₄ at 110°) and a subsequent diazoreaction convert (I) into 2:6:1-C₆H₃Cl₂·NO₂, m.p. reaction convert (1) into $2:6:1-C_6H_3Cl_2\cdot NO_2$, m.p. 70.5° , b.p. $100-101^{\circ}/4-5$ mm., and (II) into $2:4:1-C_6H_3Cl_2\cdot NO_2$, m.p. 34° , b.p. $105-107^{\circ}/3-4$ mm. $m-NO_2\cdot C_6H_4\cdot NHAe$ and HNO_3 ($d\cdot 1\cdot 5$) at 20° give (mainly) $2:3:1-(NO_2)_2C_6H_3\cdot NHAe$, m.p. $186-187^{\circ}$, and thence (with H_2SO_4 at 110°) $2:3:1-(NO_2)_2C_6H_3\cdot NH_2$, m.p. 127° , and (diazo-reaction) $1:2:3\cdot C_6H_3Cl_2\cdot NO_2$, m.p. 61° . Condensation of the appropriate $C_6H_3Cl_2\cdot NO_2$ in boiling BuOH with 2-3 mols of $NH_2\cdot ICH_2\cdot I\cdot OH$ or slightly 1 mol in mols. of NH₂·[CH₂]₂·OH or slightly >1 mol. in presence of MgO (1 mol.) gives 6-, b.p. 155—157°/2 mm., 5-, m.p. 116° [also from 1:3:4-C₆H₃Cl(NO₂)₂], 4-, m.p. 107.5°, and 3-chloro-2-nitro-, m.p. 78.5°, and 6-chloro-4-nitro-N-β-hydroxyethylaniline, m.p. 120°, reduced by alkaline Na₂S₂O₄ to 6-, b.p. 135—137°/2 mm., 5-, m.p. 104·5°, 4-, m.p. 122·5°, and 3-chloro-2amino-, m.p. 74°, and 6-chloro-4-amino-N-3-hydroxyethylaniline, decomp. 185°/1 mm. 2:6:1-C₆H₃Cl₂·NO₂ is the least reactive isomeride. 2:5:1- is more reactive than $3:4:1-C_6H_3Cl_2\cdot NO_2$. M.p. are corr. R.S. C. Separated auxo-enoid systems. VII. fluence of a second auxo-group on the coloration of nitrobenzylarylamines. V. A. Izmailski and V. I. Stavrovskaja (J. Gen. Chem. Russ., 1939, 9, 1007—1014).—m- or p-Substitution in the Ph of 2:4:1-(NO₂)₂C₆H₃·CH₂·NHPh has a bathochromic effect, the auxochromes being ·NH·C₆H₄R (R = mor p-Me or -NHAc). The following compounds are described: 2:4-dinitrobenzyl-m-, m.p. 86°, and -p-toluidine, m.p. 101° (lit. 93°), -m-, m.p. 136°, and -p-acetamidoaniline, m.p. 131°. [Condensation of] aromatic amines and 2bromo-5: ω-dinitrostyrene. D. E. WORRALL and J. FINKEL (J. Amer. Chem. Soc., 1939, 61, 2969—2970). —o-C₆H₄Br·CHO, MeNO₂, and NEt₃ at 25—30° give o-bromo-ω-nitrostyrene (I), m.p. 84°, which with fuming HNO₃ gives 2-bromo-5:ω-dinitrostyrene (II), m.p. 144—145°, oxidised by KMnO₄ to 5:2:1-NO, C, H, Br CO, H. The corresponding chlorodinitrocompound was previously (A., 1939, II, 57) wrongly named. With Br, followed by warm KOAc-EtOH, (II) gives 2 : ω-dibromo-5 : ω-dinitrostyrene (III), m.p. 146—147° (corresponding ω-chloro-2-bromo-compound, m.p. 140—141°). By adding the appropriate amine in hot EtOH, (II) gives α-nitro-β-o-, m.p. 108— 109°, -m-, m.p. 103—104°, and -p-toluidino-, m.p. 132—133°, -o-, m.p. 139—140°, -m-, m.p. 159—160° (?), and -p-anisidino-, m.p. 105—106°, -p-phenetidino-, m.p. 134—135°, -p-dimethylaminoanilino-, m.p. 140— 141°, and -phenylhydrazino-β-2-bromo-5-nitrophenylethane, m.p. 147-148°, and NN'-di-(β-nitro-α-2bromo-5-nitrophenylethyl)-amine, m.p. 146-147°, -p-phenylenediamine, and -benzidine, m.p. indefinite. Similarly, (I) gives NN'-di-(β-nitro-α-o-bromophenylethyl)-p-phenylenediamine, m.p. 146-147°, and (III) gives a similar product, m.p. indefinite. p-C₆H₄Me·NH₂ adds to (III), yielding a product, m.p. 103-104°. Structure of naphthalene, hydrindene, and tetrahydronaphthalene derivatives. R. B. SAN-DIN and T. H. EVANS (J. Amer. Chem. Soc., 1939, 61, 2916-2919).-Fixation of ethylenic linkings in aromatic compounds may be judged by the relative lability of Br (replacement by H on treatment with SnCl₂-HCl) in bromo-hydroxy- and -amino-derivatives, lability being caused by separation of the Br from OH or NH, by an ethylenic linking or a conjugated system. Results with 1:2-, 4:1-, and 3:2- $C_{10}H_6Br \cdot NH_2$ and $1:3:2-C_{10}H_5Br_2 \cdot NH_2$ indicate stability of the Erlenmeyer system, which is also borne out by the results of Franzen et al. (A., 1920, i, 730; 1922, i, 450). Results with 4:6-dibromo-5-amino- (I) and 4-bromo-5-amino-hydrindene [prep. from (I) by SnCl2-HCl], m.p. 54-55°, favour the Mills-Nixon formula. Br is removed fairly readily from 5-bromo-6-amino-1:2:3:4-tetrahydronaphthalene. Fairly ready removal of Br from o-C6H4Br·NH2 favours existence of both Kékulé or resonating forms. R. S. C. Steric nature of the ortho effect in the hydrogen exchange reactions of aromatic tertiary amines.—See A., 1939, I, 617. Cleavage of quaternary ammonium salts by sodium sulphide. II. H. R. SNYDER and J. C. Speck (J. Amer. Chem. Soc., 1939, 61, 2895—2897; cf. A., 1939, II, 207).—CH₂Ph·NR₃Cl are decomposed by Na₂S most readily if the N carries or is part of an aromatic ring, but even more stable salts decompose at higher temp. With hot, aq. Na,S, CH,Ph.NMe,Br, NPhMe₃I, and NBu^a₄I are unaffected; cyclohexylbenzyldiethylammonium chloride, m.p. 179° (decomp.), is only slightly affected, (CH₂Ph)₂NEt₂I gives only 3% of (CH₂Ph)₂S (I) in 3 hr., and benzylpyridinium chloride gives 65% of C₅H₅N and 69% of (I). CH₂Ph·NMe₃Br with Na₂S,9H₂O in (OH·[CH₂]₂)₂O at 135—150° gives 54% of NMe₃ and 47% of (I). NBu^a₄I at 175° similarly gives 70% of NBu^a₃. Phenyltrimethylallylammonium bromide, hygroscopic, and aq. Na₂S give 41% of NPhMe₂ and 44% of (CH₂:CH·CH₂)₂S. CH₂Ph·NPhMe₂Cl and boiling, aq. Na₂S₂O₄ give 58% of NPhMe₂ and 60% of CH₂Ph·S·SO₃NPhMe₂·CH₂Ph, possibly owing to prior hydrolysis of the Na₂S₂O₄ to Na₂S₂O₃ and NaHSO₃. R. S. C. Preparation of sulphanilamide. O. Bane (J. Chem. Educ., 1939, 16, 278).—The reactions involved in the synthesis of the amide from NH₂Ph are discussed. The prep. is suitable as a laboratory experiment. L. S. T. Purification of p-acetamidobenzenesulphonyl chloride. L. H. Pence and H. C. Winter (J. Amer. Chem. Soc., 1939, 61, 2977—2978).—p-NHAc·C₆H₄·SO₂Cl (70) (stable if pure), from NHPhAc (67·5) and ClSO₃H (290 g.), is obtained pure by suitable crystallisation from Et₂O + C₆H₆. N1N4-Di-Sulphanilamide derivatives. IV. acyl- and N¹-acyl-sulphanilamides. M. L. Cross-LEY, E. H. NORTHEY, and M. E. HULTQUIST (J. Amer. Chem. Soc., 1939, 61, 2950—2955; cf. A., 1938, II, 439).—N¹-Acylsulphanilamides are prepared, usually best by condensing p-NHAc·C₆H₄·SO₂·NH₂ (I) with RCOCl in C₅H₅N at 100—110° (less well in boiling PhMe etc.) and hydrolysing the diacyl derivative by boiling with a slight excess of aq. NaOH. Alternatively, (I) is heated with (RCO)₂O at 70-80° or the Na derivative of (I) is heated with RCOCl in dioxan or C_5H_5N . The following are described. N^1N^4 -Diacetylsulphanilamide, new m.p. $253\cdot5-255^\circ$; N^4 -acetyl- N^1 -propionyl-, m.p. $242\cdot5-244\cdot3^\circ$, -n-, m.p. $238\cdot2-240^\circ$, and -iso-butyryl-, m.p. $247-248^\circ$, -isovaleryl-, m.p. 215—217·5°, -β-ethylbutyryl-, m.p. 270—272°, -hexoyl-, m.p. 191—193°, -heptoyl-, m.p. 205—207·5°, -β-ethylhexoyl-, m.p. 214—215·6° (Na and Mg salts), -octoyl-, m.p. 195—197.6°, -decoyl-, m.p. 143.2— 144.8°, -undecoyl-, m.p. 153.2—155°, -dodecoyl-, m.p. 130—136°, -tetradecoyl-, m.p. 144·2—145°, -Δ'-octadecenoyl-, m.p. 131—135°, -chaulmoogryl-, -benzoyl-, m.p. 280—285°, -hexahydrobenzoyl-, m.p. 210—222°, m.p. 280—285, -ne.tanyarovenzoyl-, m.p. 210—222, -p-nitrobenzoyl-, m.p. 270—272°, -p-aminobenzoyl-, m.p. 260—263°, -β-phenylpropionyl-, m.p. 202·8—205·4° (sinters at 160°), -cinnamoyl-, m.p. 228—229·5°, -diphenylacetyl-, m.p. 248·5—251°, -2'-furoyl-, m.p. 240·5—241·5°, -2'-phenylcinchoninyl-, m.p. 166—170°, and -nicotinyl-, m.p. 295—300°, -sulphanilamide, N.1N4 didodecovlesylphanilamide, m.p. 144, 145°, N4 N¹N⁴-didodecoylsulphanilamide, m.p. 144—145°; N⁴p-acetamidobenzenesulphonyl-, m.p. 150—152° (sinters at 120°), and N4-sulphanilyl-, m.p. 102-104°, -N1dodecoylsulphanilamide; N1-acetyl-, m.p. 182-184° (Na, $+H_2O$, NH_4 , and NH_2Et_2 salts), -propionyl-, m.p. $134-135^\circ$, -n-, m.p. $125\cdot 4-126\cdot 6^\circ$, and -isobutyryl-, m.p. 198·5—200°, -β-ethylbutyryl-, m.p. 189—193·5°, -hexoyl-, m.p. 129·2—129·9°, -heptoyl-, m.p. 121·8—123·6°, -β-ethylhexoyl-, m.p. 165·5—168°, -octoyl-, m.p. 101—103°, -decoyl-, m.p. 119—121°, -undecoyl-, dimorphic, m.p. 112·5—114·5° and 115°, -dodecoyl- (II), m.p. 127—128.5° (Ag, HgII, and Ca salts), -tetradecoyl-, m.p. 113.5—117.7°, -octadecoyl-(crude), m.p. 98-102°, -Δ'-octadecenoyl-, amorphous, -hexahydrobenzoyl-, m.p. 198.5—200°, -chaulmoogryl-, m.p. 97.9—99°, -benzoyl-, m.p. 181.2—182.3°, -pnitrobenzoyl-, m.p. 235-240°, -p-aminobenzoyl-, m.p. 197·8—199°, -β-phenylpropionyl-, m.p. 160·3—161·5°, -cinnamoyl-, forms, (a), m.p. 174—175°, and (b), m.p. 145° (immediate; resolidifies) (sinters at 130°), -pcarboxybenzoyl-, m.p. >225° (decomp.), -mandelyl-, m.p. 192·5—194·5° (decomp.), -diphenylacetyl-, m.p. 210·5—212°, -2′-furoyl-, m.p. 191·5—192°, -2′-phenylcinchoninyl-, m.p. 305—310°, -nicotinyl-, m.p. 256—257·5°, and -3'-hydroxy-2'-naphthoyl-, m.p. 245— 250°, -sulphanilamide. Acylation of the appropriate nitrobenzenesulphonamide and subsequent reduction by Fe-AcOH yields N1-acetyl-, m.p. 153.5-155°, and -tetradecoyl-metanilamide, m.p. 113.5—114.2°, and N¹-dodecylsulphanilmethylamide, m.p. 59·3—60·5°. The long-chain amides are sol. in fats and their absorption after oral administration is accelerated by feeding fats. (II) is at least as effective as p-NH₂·C₆H₄·SO₂·NH₂ against various β-hæmolytic streptococci in mice and very effective in preventing spread of mycobacterium tuberculosis in guinea-pigs. R. S. C. Para- and dia-magnetic tetramminonickel salts of phenylethylenediamines.—See A., 1939, I, 624. Colour and dyeing properties of alkyl, alkoxy-, and aryloxy-derivatives of aminoazobenzene. J. C. EARL and A. O. ROBSON (J. Proc. Austral. Chem. Inst., 1939, 6, 268—278).—By coupling diazotised NH₂R with NH₂R', the following are prepared: 4-dimethylamino-2'-methyl-, m.p. 67-68° m.p. corr.), and -2: 2'-dimethyl-, m.p. 79—80°, 3: 2'-dinitro-4-amino-, m.p. 199—200°, and 4-amino-2: 3'-dimethyy-, m.p. 165—166° (from m-OMe·C₆H₄·NH₂) diazotised by NaNO2-AcOH in presence of K2C2O4 and saponin), -2-phenoxy-, m.p. 129-130°, and -2methoxy-azobenzene, m.p. 160-161°. The extinction coeffs. (\(\lambda\) of heads of bands recorded) and dyeing properties of these and 6 other aminoazo-compounds show that a 2-substituent in the 4-NH₂-ring has the most pronounced effect and causes colour-deepening in the order OMe > Me > OPh; NO₂ or Cl in this position has a lightening effect. Diazotised NH₂Ph and (?) m-NH₂·C₆H₄·O·C₁₀H₇ give a compound, m.p. 90—91°, which is not 4-amino-2-naphthoxyazobenzene. Alleged isomerism of α- and β-p-azophenol. W. M. Lauer, H. P. Klug, and S. A. Harrison (J. Amer. Chem. Soc., 1939, 61, 2775—2779).—The α- and β-forms of p-azophenol (I) are shown by X-ray powder photographs, ebullioscopy, and polarographic analysis to be identical and not cis-trans-isomerides (cf. Willstätter et al., A., 1907, i, 566). Only one set of derivatives could be prepared, viz., (NO₂)₂· (prep. by conc. HNO₃-AcOH at 0°), m.p. 235—236°, (NO₂)₄- (prep. by fuming HNO₃-AcOH at <0°), m.p. 261—262° (decomp.), Br₄-, m.p. 273—274° (diacetate, m.p. 263—264°; dibenzoate, m.p. 297—298°), and dibromodinitro-derivative, m.p. 281—282°. (I) exists in hydrated and green and red anhyd. forms. Diazo-chemistry. H. H. Hodgson (Rec. trav. chim., 1939, 58, 928—930).—Controversial with Schoutissen (A., 1939, II, 209). A. T. P. Preparation of diazo-compounds through the agency of organo-metallic derivatives. L. G. Markova and A. N. Nesmejanov (J. Gen. Chem. Russ., 1939, 9, 771—779).—The action of NO-N₂O₃ on aromatic organo-metallic compounds leads to the formation of diazonium nitrates: $2N_2O_3 \rightarrow N_2O_4 + 2NO$; $MPh_2 + 2N_2O_4 \rightarrow 2PhNO + M(NO_3)_2$; $PhNO + 2NO \rightarrow PhN_2 \cdot NO_3$. The following were studied (yield of diazonium nitrate in parentheses): $HgPh_2$ (85%); $HgPh \cdot OAc$ (quant.); $SnPh_4$ (40%); $SnPh_3Cl$ (48%); $SnPh_2Cl_2$ (49%); $SnPhCl_3$ (80%); $PbPh_4$ (quant.); $PbPh_3Cl$ (50%); $BiPh_3$ (54%); $TiPh_2Cl$ (8%); MgPhBr (15%). The yields were considerably reduced by using only N_2O_3 . The diazonium salt was not obtained using LiPh, $AsPh_3$, $SbPh_3$, $PbPh_2Cl_2$, $SiPh_4$, and $ZnPh_2$. Structure of diazoamino-salts. F. P. DWYER (J. Proc. Austral. Chem. Inst., 1939, 6, 348—361).— The theory advanced by Mangini et al. (A., 1934, 68; 1935, 969) to account for highly coloured forms of metal salts of diazoamino-compounds is untenable, since such forms are actually derived from diazoaminoazo-compounds either present in the starting materials or formed (e.g., under the influence of acid) during the prep. of the salts. Details are given for the prep. of the K and HgII salts of diazoaminobenzene (I), the Ag salt of 3-nitro- and the Ag (II) and HgII salts of 4-nitro-diazoaminobenzene. These salts exist in one (yellow) form; (II) dissolves in C5H5N to a red solution (see following abstract). The HgII salt of diazoaminoazobenzene and the Ag salts of 3- and 4nitrobenzenediazoaminoazobenzene are all red (varying shades). 2:2'-Dinitrodiazoaminobenzene (in COMe₂) with C₅H₅N-MeOH-AgNO₃ + NaOAc gives a red (aci) Ag salt (+ C₅H₅N), which loses C₅H₅N at 100°/2 hr. and yields the yellow (triazen) Ag salt. 3:3'-Dinitrodiazoaminobenzene similarly affords only a yellow Ag salt, sol. in hot C5H5N to an orangeyellow solution. The above and previous results (A., 1938, II, 483; 1939, II, 152) show that pure (I) and its (nuclear) Me derivatives give no colour with EtOH-alkali and yield only yellow salts. Diazoamino-compounds with o- or p-NO $_2$ give intense colours with alkali and are strongly adsorbed on Mg(OH), with formation of brilliantly coloured lakes; m-NO2-compounds similarly give an orange colour and are only feebly adsorbed. In all cases, methylation of the labile H causes loss of salt-forming properties. Structures for the different types of salts are elaborated (cf. loc. cit.). Isomerism of diazoamino-salts. F. P. DWYER (J. Proc. Austral. Chem. Inst., 1939, 6, 362—368).—3:4'-Dinitrodiazoaminobenzene (I), m.p. 225—226° [obtained in small yield from carefully neutralised m·NO₂·C₆H₄·N₂Cl and p·NO₂·C₆H₄·NH₂ in COMe₂-EtOH-NaOAc (large excess)], is dissolved in EtOH-NaOH and added to C₅H₅N-MeOH-AgNO₃ + NaOAc at 20°; the pptd. salt (II) dissolves in hot C₅H₅N to a deep red solution from which EtOH ppts. the pure, yellow (triazen) Ag salt (III). Suitable crystallisation from C₅H₅N at <-5° to -2° affords the scarlet H H ** (A., II.) (aci) Ag salt (+C₅H₅N) (IV), which when freed from C₅H₅N (at 100° or in boiling COMe₂) affords a yellow $$(\text{IV.}) \begin{array}{c} m\text{-NO}_2\text{-}\text{C}_6\text{H}_4\text{-}\text{N:N}\text{-}\text{N}-\text{Ag} \! \leftarrow \! -\text{C}_5\text{H}_5\text{N} \\ & \downarrow \\ p\text{-}\text{C}_6\text{H}_4\text{:N} \longrightarrow 0 \end{array}$$ salt [= (III)] which is a mixture of the two possible isomerides since this with MeI–COMe₂ gives a mixture (A), m.p. 153—157° (shrinks at 145—146°), of m-NO₂·C₆H₄·NMe·N·N·C₆H₄·NO₂-p and m-NO₂·C₆H₄·N·N·NMe·C₆H₄·NO₂-p. (A) is also similarly distributed in the control of $NO_2^{\bullet}\cdot C_6^{\circ}H_4^{\bullet}\cdot N:N\cdot NMe\cdot C_6^{\circ}H_4^{\bullet}\cdot NO_2^{\circ}\cdot p.$ (A) is also similarly obtained from (I), (II), or (III). Suitable treatment with, and crystallisation from, cold C_5H_5N also affords a scarlet $salt~(+C_5H_5N)$ from the yellow Ag salt (V) of 4-nitrodiazoaminobenzene (preceding abstract). Removal of C_5H_5N [as for (IV)] and subsequent methylation show that (V) is a mixture of isomerides since a mixture (B), m.p. 94—95°, of $p\text{-NO}_2\cdot C_6H_4\cdot N:N\cdot NPhMe \ and p-NO_2\cdot C_6H_4\cdot NMe\cdot N:NPh \ is obtained. Proof of the mixture (B) is afforded by hydrolysis with cone. <math>HCl\text{-CuCl}$ at room temp. whereby $PhCl, p\text{-}C_6H_4\text{Cl}\cdot NO_2, p\text{-}NO_2\cdot C_6H_4\cdot NHMe, and NHPhMe are obtained.}$ H. B. Mechanism of halogenation of phenols. E. A. Schilov (J. Gen. Chem. Russ., 1939, 9, 780—781).—Polemical (cf. A., 1938, II, 405). V. A. P. Reaction between diphenylketen and phenylacetylene. L. I. SMITH and H. H. HOEHN (J. Amer. Chem. Soc., 1939, 61, 2619—2624).—Contrary to Staudinger (Annalen, 1907, 356, 94), CPh;CH adds CPh₂;CO at room temp., giving 3:4-diphenyl-anaphthol (I), dimorphic, m.p. 143—144° and 154° [positive Folin reaction; 1 active H; acetate, m.p. 162—162.5°: Ma ather m.p. 203—203.5° 12 NO. $162-162\cdot 5^{\circ}$; Me ether, m.p. $203-203\cdot 5^{\circ}$ $(2-NO_2-162\cdot 5^{\circ})$, but in light petroleum reaction is much slower. (I) is sol. in KOH-MeOH and unstable in air. Pb(OAc)4 in AcOH oxidises (I) to 3: 4-diphenyl-1: 2-naphthaquinone (II), m.p. 249— 250° (phenazine derivative, m.p. 274—275°), obtained also in poor yield as sole product by HNO3-H2SO4-CHCl₃, but $K_2Cr_2O_7$ -AcOH gives BzOH, 6-C₆H₄Bz·CO₂H, and a substance, m.p. 280—286°. Zn in AcOH-H₂O (10:1) or Na₂S₂O₄ reduces (II) to the quinol, which readily regenerates (II) in air, but Zn dust and NaOAc in Ac2O give 1:2-diacetoxy-3:4-diphenylnaphthalene, m.p. 166—167°. With p-SO₃H·C₆H₄·N₂Cl and NaOAc in AcOH, (I) gives the red 2-azo-compound, reduced by alkaline Na₂S₂O₄ to an unstable amine, which is oxidised by FeCl₂ to (II). Br-Et₂O converts (I) into the 2-Br-derivative, m.p. 157—158° (acetate, m.p. 199—200°; Me ether m.p. 209-210°), which with CrO₃-AcOH at 100° yields (II). Franssen's interpretation (A., 1925, i. 1146) of the reaction of 1:4-naphthaquinone and MgPhBr is incorrect; 5 mols. of MgPhBr in Et₂O give 1-hydroxy-4-keto-1: 2-diphenyl-1: 2: 3: 4-tetra-hydronaphthalene, m.p. 207° (oxime, m.p. 196—197°), oxidised by K₂Cr₂O₇ in AcOH to (II), BzOH, and o-C₆H₄Bz·CO₂H, dehydrated by a little H₂SO₄ in boiling AcOH to (I) or in boiling Ac₂O to the Ac derivative thereof. R. S. C. α-Nitro-β-naphthol.—See A., 1939, I, 625. Bromination of 2-hydroxyanthracene. J. S. Joffe, L. S. Efros, and C. N. Schtscheglova (J. Gen. Chem. Russ., 1939, 9, 1128—1132).—2-Acetoxyanthracene and Br in AcOH at room temp. yield 9-bromo-2-acetoxyanthracene, m.p. 110-112°, oxidised by K₂Cr₂O₇ in AcOH to 2-acetoxyanthraquinone, and hydrolysed (dil. NaOH) to 9-bromo-2-hydroxyanthracene, m.p. 112-114° (1-p-nitrobenzeneazo-derivative, m.p. 254°). Bromination of 2-hydroxyanthracene gives 2-hydroxy-1:1':9:2'-dianthrylene oxide and 1:10-dibromo-2-hydroxyanthracene, m.p. 198-199°, which with p-NO2·C6H4·N2Cl gives 10-bromo-2hydroxy-1-p-nitrobenzeneazoanthracene, m.p. 284°. Acetylation of the bromination product gives 1:10-, m.p. 198-199°, and 1: 9-dibromo-2-acetoxyanthracene, m.p. 157—159°, both yielding 1-bromo-2-acetoxy-anthraquinone, m.p. 174°, when oxidised (K₂Cr₂O₇ in AcOH). αy-Di-p-hydroxyphenylpropane, m.p. 104—105°. Diacenaphthylidene diketone, m.p. 285—286°.—See A., 1939, III, 982. Diaryls and their derivatives. XXI. Oxidation of α-naphthol. J. S. Joffe and B. K. Kritschevtzov. XXII. Diphenanthryl dioxide. J. S. Joffe (J. Gen. Chem. Russ., 1939, 9, 1136—1142, 1143—1144).—XXI. α-C₁₀H₇·OH and aq. FeCl₃ at 70—80° yield a mixture of 4:4'-dihydroxy-1:1'-(I), m.p. 300° (Ac₂, m.p. 217°, and 3-mono- and 3:3'-di-p-nitrobenzeneazo-derivatives), and 1:1'-dihydroxy-2:2'-dinaphthyl (II), m.p. 220° (Ac₂, m.p. 169°, and 4-mono- and 4:4'-di-p-nitrobenzeneazo-derivatives). (I) yields 3:10-dihydroxyperylene when heated with AlCl₃. (II) and ZnCl₂ similarly give 2:2'-dinaphthyl : 1'-oxide. XXII. 2:2'-Dihydroxy-1:1'-diphenanthryl and CuO in C_6H_6 (6 hr. at the b.p.) yield 1:1'-diphenanthryl 2:10':10:2'-dioxide, m.p. 280° . R. T. Use of tri-iodophenyl ethers for the identification of alkyl halides. R. D. Drew and J. M. Sturtevant (J. Amer. Chem. Soc., 1939, 61, 2666).—Alkyl bromides are characterised by boiling with $2:4:6:1\cdot C_6H_2I_3\cdot OH$ and NaOEt-EtOH (cf. Brenans, A., 1901, i, 643), which give $2:4:6\cdot C_6H_2I_3$ Pr^{β} , m.p. 43°, Me, m.p. 98·5°, Et, m.p. 83·5°, Pr^a, m.p. 82°, Bu^a , m.p. 66°, Bu^{β} , m.p. 48°, n-amyl, m.p. 47°, n-hexyl, m.p. 44·5°, CH_2Ph , m.p. 122·5°, $[CH_2]_2\cdot Ph$, m.p. 88°, $[CH_2]_3\cdot Ph$, m.p. 63·5°, p- $NO_2\cdot C_6H_4\cdot CH_2\cdot$, m.p. 207·5°, $[CH_2]_2\cdot OH$, m.p. 137·5°, $CH_2\cdot CO_2$ Et, m.p. 124° (lit. 128·5°), and $CHMe\cdot CO_2Et$ ether, m.p. 80·5°. M.p. are corr. R. S. C. Molecular compounds of α-naphthyl methyl ether with dinitro-compounds. S. I. Burmistrov (Trans. Ivanovo Chem. Tech. Inst., 1939, 14—17).— This ether forms equimol. compounds with m- $C_6H_4(NO_2)_2$ (m.p. 57·5°), 1:2:4- $C_6H_3Me(NO_2)_2$ (m.p. 71°), 2:4-dinitrophenol (m.p. 96°), 2:4-dinitroanisole (m.p. 66°), 1:2:4- $C_6H_3Cl(NO_2)_2$ (m.p. 66·5°), and 3:5:4:1- $(NO_2)_2C_6H_2Cl$ - CO_2H (m.p. 124°). Condensation of diarylcarbinols with naphthyl ethers. S. I. Burmistrov (Trans. Ivanovo Chem. Tech. Inst., 1939, 17—20).—By condensation with ZnCl₂ in AcOH there have been obtained diphenyl-4-methoxy-1-naphthylmethane, m.p. 151°, phenyl-p-xenyl-4-methoxy-1-naphthylmethane, m.p. 155° (de- comp.), diphenyl-4-ethoxy-1-naphthylmethane, m.p. 159·5°, phenyl-p-tolyl-4-methoxy-1-naphthylmethane, m.p. 132·5°, phenyl-4-methoxy-1-naphthylmethane, m.p. 161—162°, di-p-xenyl-4-ethoxy-1-naphthylmethane, m.p. 114—116°, and phenyl-p-xenyl-4-ethoxy-1-naphthylmethane, m.p. 163—165°. R. C. Iodo-derivatives of diphenyl ether. II. Orientation. R. Q. Brewster and H. S. Choquill (J. Amer. Chem. Soc., 1939, 61, 2702—2704; cf. A., 1934, 293).—Halogenation of o- (I) and p-OPh·C₆H₄·OMe (II) occurs in position 4' (if free), but nitration is guided by the OMe and is homonuclear. (II), obtained in 70% yield from KOPh and p-C₆H₄Br·OMe or in 20% yield from p-OH·C₆H₄·OMe and PhBr, is converted by ICl in AcOH at 100° into 4-iodo-4'-methoxydiphenyl ether (III), m.p. 115°, which is also obtained from the 4-NH2-derivative by the Sandmeyer reaction. AlCl3, first at 130° and then at 140—150°, converts (II) into p-OPh·C₆H₄·OH, m.p. 84°, the benzoate, m.p. 97° of which with ICl-AcOH at 100° gives 4-iodo-4'benzoyloxy-, m.p. 122°, and thence (boiling NaOHaq. EtOH) 4-iodo-4'-hydroxy-diphenyl ether, m.p. 116°. 4:3:1-OMe·C₆H₃(NO₂)·OPh (IV), prepared by HNO₃-AcOH in 70% yield, is quantitatively hydrogenated (PtO₂) to 3-amino-4-methoxydiphenyl ether, m.p. 70° (Ac derivative, m.p. 148°), which affords (diazo-reactions) 3-iodo- (V), m.p. 76°, and 3-bromo-4-methoxydiphenyl ether (VI), m.p. 55°, b.p. 182—187°/10 mm. ICl and Br convert (VI) and (III), respectively, in AcOH into 3-bromo-4'-iodo-4-methoxydiphenyl ether, m.p. 88°. ICl-AcOH converts (III) or (V) into 3:4'-di-iodo-4-methoxydiphenyl ether (VII), m.p. 101°. ICl-AcOH converts (IV) into 4'-iodo-3-nitro-4-methoxydiphenyl ether, m.p. 92°, obtained also from (III) by HNO₃ (d 1.42) in AcOH and reduced by Fe powder in AcOH to 4'-iodo-3-amino-4methoxydiphenyl ether, m.p. 85° [gives (VII) by a diazo-reaction]. 2-Nitro-4'-methoxydiphenyl ether (VIII), m.p. 77°, is obtained in 70% yield from o-C₆H₄Cl·NO₂ and p-OH·C₆H₄·OMe, and with ICl-AcOH gives 4-iodo-2-nitro-4'-methoxydiphenyl ether, m.p. 70°, and thence (Fe powder; AcOH) 4'-methoxydiphenyl ether, m.p. 100°. amino-4'-methoxydiphenyl ether, m.p. 102°. Nitration of (VIII) gives (? 3:2'-)dinitro-4-methoxydiphenyl ether, m.p. 132° . 1:2:4-C₆H₃Cl(NO₂)₂ and p-OH·C₆H₄·OMe give 2:4-dinitro-4'-methoxydiphenyl ether, m.p. 110° . o-OMe·C₆H₄·O·C₆H₄·NH₂-p gives (Sandmeyer) 4-iodo-2'-methoxy-, b.p. 228°/28 mm., and thence (HNO₃-AcOH) 4'-iodo-5-nitro-2-methoxydiphenyl ether (IX), m.p. 115°. Nitration of (I) or condensation of KOPh with 2:1:5-OMe·C₆H₃Br·NO₉ gives 5-nitro-2-methoxydiphenyl ether, m.p. 72°, previously (Lea et al., A., 1926, 397) considered to be the 6-NO₂-compound and converted by ICl-AcOH into (IX). 5-Iodo-4'-nitro-2-methoxydiphenyl ether, m.p. 109°, is obtained from o-OMe·C₆H₄·O·C₆H₄·NO₂-p by ICl or from $2:5:1-OMe\cdot C_6H_3I\cdot OK$ and $p-C_6H_4F\cdot NO_2$. Labile union of oxygen to carbon. Spontaneous dissociation of dimethoxydiphenylanthracene photo-oxide. C. Dufraisse, L. Velluz, and (MME.) L. Velluz (Compt. rend., 1939, 209, 516—518).—Dissociation of 1: 4-dimethoxy-9: 10-diphenyl- anthracene photo-oxide (I) (cf. A., 1939, II, 365) is a unimol. reaction which proceeds regularly up to 33% decomp. and then progressively more slowly, probably due to dissolution of solid (I) in the decomp. product. Decomp. occurs at the same rate even at 140 atm. pressure of O_2 so that the reaction is probably irreversible. (I) separated from a photographic plate by black paper produces an image which indicates that activated O_2 (O_3 or H_2O_2 from moisture present) is probably liberated in the reaction. (I) is luminous in the dark, the luminosity increasing with rise in temp. (cf. A., 1933, 1284). J. L. D. Manufacture of 4:4'-diaminodiphenyl sulphone and its monoacyl derivatives.—See B., 1939, 1102. Chemistry and chemotherapy of 4:4'-diamino-diphenyl sulphone, 4-amino-4'-hydroxydiphenyl sulphone, and related compounds. G. W. RAIZISS, L. W. CLEMENCE, M. SEVERAC, and J. C. MOETSCH (J. Amer. Chem. Soc., 1939, 61, 2763—2765).—p-NO₂·C₆H₄·S·C₆H₄·NH₂·p (prep. from p·C₆H₄Cl·NO₂ and an excess of aq. Na₂S), new m.p. 145°, is reduced by Sn-HCl to (p·NH₂·C₆H₄)₂S, m.p. 108°, the Ac₂ derivative, new m.p. 223—224°, of which with K₂Cr₂O₇-H₂SO₄-AcOH gives (p·NHA·C₆H₄)₂SO₂, new m.p. 285°, hydrolysed (HCl) to (p·NH₂·C₆H₄)₂SO₂ (I), new m.p. 175°. p·NO₂·C₆H₄·S·C₆H₄·NHA·c-p, new m.p. 198°, gives 4-nitro-4'-acetamidodiphenyl sulphone, m.p. 229—230°, reduced by SnCl₂-EtOH to 4-amino-4'-acetamidodiphenyl sulphone, m.p. 242—243°, which by a diazo-reaction affords 4-amino-4'-hydroxydiphenyl sulphone, m.p. 193—194° (N·Ac, m.p. 274—275°, and NO-Ac₂ derivative, m.p. 171—172°). (I) is superior, and some of the other products are equal, to sulphanilamide in therapeutic effect. R. S. C. Reactions of αβ-unsaturated cyclic aldehydes and ketones. V. dl-Cryptone and cis- and trans-dl-cryptol. D. T. C. GILLESPIE and A. K. MACBETH (J.C.S., 1939, 1531—1534; cf. A., 1939, II, 165).—dl-Cryptone (prep. from a crude l-cryptone by boiling Et₂O + conc. HCl), b.p. 78°/2.8 mm. (semicarbazone, m.p. 188°; p-nitro-, m.p. 160-161°, and 2: 4-dinitro-phenylhydrazone, m.p. 130-131°), and Al(OPr^{\beta})3-Pr^{\beta}OH (prep. described) give readily trans-, b.p. 90°/4 mm. [isolated as p-nitrobenzoate, m.p. 76·5°; α-naphthyl-, m.p. 136°, and phenyl-urethane, m.p. 108°; H phthalate, m.p. 97—97·5°; 3:5-dinitrobenzoate, m.p. 108° (α-C₁₀H₇·NH₂ compound, m.p. 140°)], and with difficulty cis-dl-cryptol, b.p. 86°/6 mm. [isolated as 3:5-dinitrobenzoate, m.p. 96.5° (α -C₁₀H₇·NH₂ compound, m.p. 102—104°); α-naphthylurethane, m.p. 105·5°; p-nitrobenzoate, m.p. 34.5—35.5°]. Structures of the products are proved by hydrogenation (Pd-C) to the known H₂-derivatives. R. S. C. Isomerisation of β-substituted styrene oxides. Effect of degree of unsaturation of the substituent. M. TIFFENEAU and P. K. KURIAKI (Compt. rend., 1939, 209, 465—468; cf. A., 1935, 750; 1937, Π, 415; 1939, Π, 419).—cycloHexene with CH₂Ph·COCl in presence of SnCl₄ gives cyclohexenyl benzyl ketone, m.p. 54°, b.p. 192—194°/25 mm. (semicarbazone, m.p. 167°; oxime, m.p. 118°), con- verted by $Al(OPr^{\beta})_3$ into α -cyclohexenyl- β -phenylethyl alcohol, b.p. 149-151°/7 mm. (p-nitrobenzoate, m.p. 79°), dehydrated (H₂SO₄ on pumice) to α-cyclohexenylβ-phenylethylene, b.p. 137°/5 mm., which with NH₂·CO·NHCl in aq. AcOH gives a chlorohydrin, converted by KOH into α-cyclohexenyl-β-phenylethylene oxide (I), b.p. 147-150°/7 mm. (I) with hot MgBr₂ etherate gives cyclohexenylphenylacetaldehyde, b.p. $150-152^{\circ}/10$ mm. (semicarbazone, m.p. 203° ; oxime, m.p. 156°), oxidised (Ag₂O) to the corresponding acid, m.p. 162°, which is reduced (H₂-Raney Ni) to cyclohexylphenylacetic acid (II), m.p. 150°. cyclo-Hexylphenylcarbinol with SOCl₂ gives the chloride, m.p. 27°, b.p. 153—154°/15 mm., the Mg derivative of which with CO₂ gives (II). β-cycloHexyl-α-phenyl-ethyl alcohol, b.p. 156—157°/17 mm. (from PhCHO and Mg cyclohexylmethyl iodide), with H₂SO₄ gives α-cyclohexyl-β-phenylethylene, b.p. 148—150°/17 mm. (dibromide, m.p. 153°), oxidised (perphthalic acid) to α-cyclohexyl-β-phenylethylene oxide (III), b.p. 158-160°/15 mm. When (III) is heated with MgBr, etherate it gives cyclohexyl benzyl ketone (IV) (50—60%), m.p. 26°, b.p. 163—165°/15 mm. (semicarb-azone, m.p. 142°). CH₂Ph·CHO with Mg cyclohexyl chloride gives α-cyclohexyl-β-phenylethyl alcohol, m.p. 57°, b.p. 167—168° (p-nitrobenzoate, m.p. 18°), oxidised (CrO₂) to (IV). Hydrogenation of acetylenic compounds. XXXI. Catalytic hydrogenation of acetylenic γ-glycols with a cyclopentyl radical. J. S. Salkind and I. M. Gverdetell (J. Gen. Chem. Russ., 1939, 9, 855—862).—cycloPentanone and (iC·MgBr)₂ yield αβ-di-(1-hydroxycyclopentyl)acetylene, m.p. 109·8—110·8° (diacetate, m.p. 44·5—45·5°), hydrogenated (Pd on starch) to isomeric ethylenic glycols, m.p. 82—83° and 129·6—130·6°, converted by dil. H₂SO₄ into the γ-oxide, m.p. 81—82°, and completely hydrogenated (Pt-black) to αβ-di-(1-hydroxycyclopentyl)-ethane, m.p. 131·2—132·4°. γ-Hydroxy-α-(1-hydroxycyclopentyl)-γ-methyl-Δ°-butinene, m.p. 56—58°, b.p. 125—126°/6 mm., synthesised from MgEtBr, CH:C·CMe₂·OH, and cyclopentanone, is hydrogenated CH:C·CMe₂·OH, and *cyclo* pentanone, is hydrogenated (Pd) to the H_2 -derivative, m.p. 89—90°. It is concluded that the rates of hydrogenation of ditertacetylenic glycols are influenced by steric hindrance and by the mol. wts. and vols. of the substituents. Behaviour of cis- and trans-isomerides in the dehydration of 1-methylcyclopentane-1: 2-diols and dehalogenation of the corresponding halogenohydrins. M. TIFFENEAU and G. VAISSIÈRE (Compt. rend., 1939, 209, 449-453; cf. A., 1935, 340; 1938, II, 97).—2-Chlorocyclopentanone (I) with MgMeBr affords cis-2-chloro-1-methylcyclopentanol (II), the ·O·MgBr derivative (prep. by MgEtBr) of which when heated gives (after hydrolysis) 2-methylcyclopentanone (III) (semicarbazone, m.p. 184°) by a semipinacolic change. 1-Methyl- Δ^1 -cyclopentene with NH2·CO·NHCl in aq. AcOH gives trans-(II), similarly converted into (III). (I) with boiling $H_2O(+BaCO_3)$ affords a ketol converted by MgMeBr into cis-1methylcyclopentane-1: 2-diol (IV), b.p. 105°/15 mm., m.p. 23° , dehydrated by hot 10% H_2SO_4 to (III). trans-(IV) with hot dil. H₂SO₄ gives only resins but the vapour passed over Al_2O_3 at $300^{\circ}/20$ mm. gives unsaturated hydrocarbons and their polymerides and a small amount of (III). J. L. D. Triarvlcarbinols. VII. Diphenyl-4'-dimethylaminodiphenylylcarbinol and its relation to the theory of colour of dyes. A. A. MORTON and W. H. WOOD. VIII. Occurrence of colour with trixenylcarbonium salts. A. A. MORTON and L. F. McKenney (J. Amer. Chem. Soc., 1939, 61, 2902—2905, 2905—2908; cf. A., 1938, II, 137).— VII. Diphenyl-4'-dimethylamino-p-diphenylylcarbinol, m.p. $177-178^{\circ}$ [prep. from $p-C_6H_4Br\cdot C_6H_4\cdot NMe_2-p$ (I), COPh2, and Na in boiling C6H6], gives no colour with dil. acids; the NMe2 is more basic than the COH, and halochromism is not observed until after neutralisation of the NMe2. This does not accord with the carbenium theory of CHAr, dyes. The following orders of basicity are established: $(p-C_6H_4Ph)_3C^{\bullet}OH > NH_2Ac$, $NH_2Bz > CPh_3^{\bullet}OH$; $m-\geqslant o$ -, p-NO $_2$ -C $_6H_4^{\bullet}NH_2$. The yield of (I) from p-C $_6H_4Br$ -C $_6H_4^{\bullet}NH_2$ -p, MeOH, and conc. HCl at 140—150° is much greater in a short than in a long VIII. Trixenylcarbonium perchlorate (I), $219.5-220^{\circ}$, and sulphate (impure), $(C_6H_4Ph)_3CX$, HX, are prepared by adding HX to (C6H4Ph)3COH (II) in Ac.O. The nitrate is prepared by HNO₃ (d 1.6). Salts of weaker acids could not be obtained, but HCl produces a colour with (II) in AcOH if a trace of H₂O, MeNO₂, MeCN, HCO·NH₂, CO(NH₂)₂, MeOH, NH₂Bz, etc. is present. HNO₃ gives a colour in AcOH in presence of a little MeNO₂. Electrolysis of (I) in org. solvents causes disappearance of colour at the cathode; with a very dil. solution of (I) in PhNO2 there is appearance of colour at the anode. With (I) in MeNO₂ the bulk of the (II) is recovered from the cathode compartment. CPh3·ClO4 behaves similarly. Colour is thus dependent on presence of ClO₄'. With crystal-violet, however, colour follows the ammonium ion. R. S. C. Saponins and sapogenins. XIII. Precipitability of steroid sapogenins by digitonin. C. R. Noller (J. Amer. Chem. Soc., 1939, 61, 2717—2719; cf. A., 1939, II, 517).—The solubility products of digitonides of steroid sapogenins, all > those of cholesterol and β-cholestanol digitonides, have configurational val. only when epimeric pairs are compared. Behaviour under arbitrary conditions is misleading. R. S. C. Steroids and sex hormones. LVIII. Transformation of 17-acetylenylandrostene-3:17-diol into pregnadien-3-ol. L. Ruzicka, M. W. Goldberg, and E. Hardeger (Helv. Chim. Acta, 1939, 22, 1294—1300).—Gradual addition of a solution of Δ^5 -17-acetylenylandrostene-3:17-diol in abs. EtOH to a suspension of Na in boiling xylene and treatment of the product with $\text{Ac}_2\text{O-C}_5\text{H}_5\text{N}$ gives pregnadien-3-ol acetate, m.p. $143-144^\circ$, [α]_D $-70\cdot3\pm0\cdot3^\circ$ in CHCl₃, hydrolysed (KOH-MeOH) to pregnadien-3-ol (I), m.p. $132-133^\circ$, [α]_D $-74\pm1^\circ$ in CHCl₃. This is oxidised [Al(OBu $^\nu$)₃-C₆H₆-COMe₂] to pregnadien-3-one, m.p. $142-143^\circ$, [α]_D $+117\cdot5\pm1^\circ$ in CHCl₃. (I) is hydrogenated (PtO₂ in EtOH-AcOH) to allopregnan-3-ol, m.p. $137-138^\circ$, [α]_D $+16\pm1^\circ$ in CHCl₃ (acetate, m.p. 115—116°), which is oxidised (CrO $_3$ in AcOH) to allopregnan-3-one, m.p. 116—117° [semicarbazone, m.p. ~230° (decomp.)]. The corresponding hydrazone, m.p. ~226° (decomp.), is transformed by N $_2$ H $_4$,H $_2$ O and NaOEt in EtOH at 200° into allopregnane, m.p. 84—85°, [α] $_{\rm b}$ +18·0±0·7° in CHCl $_3$. M.p. are corr. Stigmasterol 22: 23-dibromide. E. Fernholz and H. E. Stavely (J. Amer. Chem. Soc., 1939, 61, 2956—2957).—Stigmasteryl acetate tetrabromide and NaI in C_6H_6 —EtOH at room temp. (not when heated) give the acetate 22: 23-dibromide (60%), m.p. 212—213°, $[\alpha]_D^{25}$ +30° in CHCl₃, hydrolysed by hot 5% KOH–MeOH to stigmasterol 22: 23-dibromide, m.p. 209—210°, which with Al(OBu')₃ in C_6H_6 —COMe₂ gives stigmastadienone 22: 23-dibromide, m.p. 182—184°, $[\alpha]_D^{22}$ +53° in CHCl₃, and thence (Zn dust—AcOH; 100°) stigmastadienone, m.p. 124—125°, $[\alpha]_D^{25}$ +63° in CHCl₃, also obtained from stigmasterol by Al(OPr^β)₃ in cyclohexanone–PhMe. R. S. C. Introduction of nitrogen into sterols. III. Preparation of deoxycholamine. M. Vanghelovici (Bul. Soc. Chim. România, 1938, 20, 231—235; cf. A., 1938, II, 405).—Deoxycholhydrazide (modified prep. from the acid by way of the Et ester) gives the azide, decomp. ~67°, and thence the urethane, m.p. 110°, which, when distilled with CaO at 4 mm., gives deoxycholamine, m.p. 118° [hydrochloride, m.p. 247° (decomp.); platinichloride, decomp. 194°]. R. S. C. Action of sulphur monochloride on phenylacetonitrile. V. V. Korschak and A. F. Lisseenko (J. Gen. Chem. Russ., 1939, 9, 1329—1331).— CH₂Ph·CN and S₂Cl₂ in the cold yield CHClPh·CN (I), CCl₂Ph·CN (II) and (:CPh·CN)₂ (III); on heating (I) is no longer formed and the principal product is s-dichlorodiphenylsuccinodinitrile, m.p. 189—190°, hydrolysed by KOH-EtOH to αβ-diphenylmaleic anhydride and converted into (III) by heating. G. A. R. K. Stereochemical studies. XX. Optically active phenylethylthiolacetic acids and phenylethyl mercaptans. B. Holmberg (Arkiv Kemi, Min., Geol., 1939, 13, A, No. 8, 9 pp.).—r-α-Phenylethylthiolacetic acid (I) is resolved by α-phenylethylamine in H₂O. The non-cryst. (-)-acid (II), [a]D -333.2° in abs. EtOH, -234° in H_2O , -208° in 0·1N-HCl [(-)-phenylethylamine, m.p. 124-125°, [α]_D -180.8° in abs. EtOH, and β- $C_{10}H_7$ · NH_2 , m.p. 76— 77°, $[\alpha]_D$ -193.5° in abs. EtOH, salts], and the (+)acid (III) [(+)-phenylethylamine, m.p. $124-125^{\circ}$, $[\alpha]_{\text{b}}+180\cdot7^{\circ}$ in abs. EtOH, and β - $C_{10}H_7\cdot NH_2$, m.p. $76-77^{\circ}$, $[\alpha]_{\text{b}}+191\cdot7^{\circ}$ in abs. EtOH, salts] are described. (I) gives cryst. salts, m.p. 53—55°, 56—57·5°, 65—66°, and 105—106°, respectively, with NH₂Ph, m- and p-C₆H₄Me·NH₂, and β -C₁₀H₇·NH₂, whereas that with o-C₆H₄Me·NH₂ is non-cryst. With benzenoid bases (II) and (III) yield non-cryst. salts. Slight racemisation is observed when (II) or (III) is heated in neutral and possibly in alkaline aq. solution but not in 0.1N-HCl. (II) is oxidised by KSO, to the sulphinacetic acid, m.p. 126—127° (decomp.), $[\alpha]_{\rm D}$ -120.2° in abs. EtOH, which is converted by H_2SO_4 into (-)- α -phenylethyl mercaptan (IV), b.p. 82—83°/10 mm., $[\alpha]_{20}^{20}$ —105·6°, $[\alpha]_{D}$ —89·0° in abs. EtOH. Oxidation of (III) with H_2O_2 gives an acid, m.p. 126—127° (decomp.), $[\alpha]_{D}$ +142·0° in abs. EtOH, which gives (+)- α -phenylethyl mercaptan (V), b.p. 81—83°/10 mm., $[\alpha]_{20}^{20}$ +105·8°. Oxidation (EtOH–I) of (V) and (IV) gives (+)- (VI) and (-)-di- α -phenylethyl) disulphide, $[\alpha]_{D}$ +271·9° and -272·1° in abs. EtOH, respectively. Prolonged treatment of (V) with H_2O_2 yields (VI) and α -phenylethanesulphonic acid (Na, $[\alpha]_{D}$ +4·7° in H_2O , and β - $C_{10}H_7$ ·NH₂ salt, m.p. 196—197° after darkening, $[\alpha]_{D}$ +9·5° in abs. EtOH). 3:5-Di-iodo-l-tyrosine, its properties and preparation. A. J. Savitzki (J. Gen. Chem. Russ., 1939, 9, 1342—1344).—l-Tyrosine in aq. NH $_3$ affords with I in KI at 6—8° >80% of crude di-iodotyrosine, which is purified by repptn. from HCl; the yield of pure product, m.p. 200—203°, is \sim 72%. It has 2H $_2$ O of crystallisation, which it loses on prolonged drying over H $_2$ SO $_4$. The dl-compound retains 1H $_2$ O under the same conditions and is therefore a true racemate, not a mixture of the two forms. G. A. R. K. α -Benzoyl-, m.p. 200—202°, $[\alpha]_{\rm p}+3\cdot3^{\circ}$ in $\rm H_2O$ (2·8%), and α -hippuryl-l-lysine amide hydrochlorides, m.p. 255—258°, $[\alpha]_{\rm p}^{28}-11\cdot7^{\circ}$ in $\rm H_2O$ (5%); ε-carbobenzyloxy- α -hippuryl-lysine, m.p. 148—149°.—See A., 1939, III, 1009. Hydrolysis of benzoic and related esters in varying media.—See A., 1939, I, 615. Interaction of sulphuryl chloride with arylamides of aromatic acids. II. Orienting influences of groups in substitution reactions in aromatic compounds. N. W. HIRWE, G. V. Jadhav, and D. R. Sukhtankar (J. Indian Chem. Soc., 1939, 16, 281—284; ef. A., 1939, II, 263).— Salicyl-anilide and -o-, -m-, and -p-toluidide and SO₂Cl₂ in boiling C₆H₆ give respectively 5-chlorosalicyl-anilide, m.p. 203—204°, and -4'-chloroanilide, saticyl-anitide, m.p. 203—204°, and -4-chloroanitide, m.p. 215—216°, and 3:5-dichlorosalicyl-2':4'-dichloroanilide, m.p. 174—175°; 5-chloro-, m.p. 171—172°, and 3:5-dichloro-salicyl-5'-chloro-o'-toluidide, m.p. 197—198°; 5-chlorosalicyl-m'-toluidide, m.p. 221—222°, and 3:5-dichlorosalicyl-4':6'-dichloro-m'-toluidide, m.p. 214—215°; and 5-chlorosalicyl-p'-toluidide, m.p. 216—217°, and 3:5-dichlorosalicyl-y'-toluidide, m.p. 216—217°, and 3:5-dichlorosalicyl-3'-chloro-p'-toluidide, and a Methovyberg apilide, and a a' a nigidide toluidide. o-Methoxybenz-anilide and -o'-anisidide give o-methoxybenz-p'-chloroanilide, m.p. 75-76°, and -5'-chloro-o'-anisidide, m.p. 135-136°. o-Tolu-anilide and -o'-, -m'-, and -p'-toluidide give respectively o-tolu-p'-chloroanilide, m.p. 133—134°, and -2': 4'-dichloroanilide, m.p. 128°, -5'-chloro-o'-toluidide, m.p. 182°, -4': 6'-dichloro-m'-toluidide, m.p. 120—121°, and -3'-chloro-p'-toluidide, m.p. 119—120°. o-Chlorobenz-anilide and -m'-chloroanilide give o-chlorobenz-p'-chloro-, m.p. 119—120°, and -3': 4'-dichloro-anilide, m.p. 143°. The structures of the products are proved by hydrolysis to known amines and acids, and in three cases by synthesis. E. W. W. Stereochemistry of diphenyls. XLVIII. Comparison of the racemisation rates of three isomeric 2:2':6-nitrocarboxymethyldiphenyls. R. ADAMS and J. B. HALE. XLIX. Comparison of the racemisation rates of the 2:2':6-nitrocarboxymethoxydiphenyls. R. Adams and G. C. FINGER (J. Amer. Chem. Soc., 1939, 61, 2825-2828, 2828—2830; cf. A., 1939, II, 505).—XLVIII. $3:2:1-NO_2\cdot C_6H_3Br\cdot CO_2Me$, $o\cdot C_6H_4MeI$, and Cu powder at 225—230° give an ester, hydrolysed to powder at 225—230 give an ester, hydrolysed to 6-nitro-2'-methyldiphenyl-2-carboxylic acid (15%), m.p. $162-163^{\circ}$, resolved to the l-, m.p. $153-155^{\circ}$, [α]₅ = -65° in EtOH [quinine salt (+xH₂O), m.p. $135-140^{\circ}$ and (anhyd.) m.p. $168-171^{\circ}$, [α]₅ = $-133 \cdot 5^{\circ}$ in CHCl₃], and d-acid (I), m.p. $153-156^{\circ}$, [α]₅ + $61 \cdot 5^{\circ}$ in EtOH [quinine salt, m.p. (+xH₂O) $118-123^{\circ}$ and (anhyd.) 128—131°, $[\alpha]_{\rm D}^{25}$ (+xH₂O) –105° in CHCl₃]. 3:2:1-128—131°, $[\alpha]_{\rm p}^{\rm p3}$ (+xH₂O) —105° in CHCl₃]. 3:2:1-C₆H₃MeI·CO₂Me, o-C₆H₄I·NO₂, and Cu powder at 230° (later 250°) give 2'-nitro-2-methyldiphenyl-6-carboxylic acid (50%), m.p. 157°, resolved by brucine in MeOH into the d-, m.p. 179—181°, $[\alpha]_{\rm p}^{\rm p5}$ +73·5° in CHCl₃ (brucine salt, m.p. 165—167°, $[\alpha]_{\rm p}^{\rm p5}$ +48° in CHCl₃), and 1-acid (II), m.p. 175—179°, $[\alpha]_{\rm p}^{\rm p5}$ —72·6° in CHCl₃ (brucine salt, m.p. 153—160°, $[\alpha]_{\rm p}^{\rm p5}$ —51° in CHCl₃). d- and 1-6-Nitrodiphenic acid (III) are prepared having $[\alpha]_{\rm p}^{\rm p5}$ +39·0° and —37·5° in EtOH. 3:2:1-NO₂·C₆H₃Br·CO₂Me, o-C₆H₄I·NO₂, and Cubronze at 220—225° give 2:2'-dinitrodiphenyl-6-carboxylic acid (30%), m.p. 164°, resolved by quinine carboxylic acid (30%), m.p. 164°, resolved by quinine in 75% EtOH into the d-, m.p. 135—137°, $[\alpha] + 201.5°$ in EtOH (quinine salt, m.p. 195—197°, $[\alpha]_D^{25} + 52.5^\circ$ in CHCl₃), and l-acid (IV), m.p. 127—130°, $[\alpha]_D^{25} - 199.5^\circ$ in EtOH (quinine salt, m.p. 121—125°, $[\alpha]_D^{25} - 238^\circ$ in CHCl₃). [α] are given for the acids also in other solvents. Relative stability against racemisation is 2-nitro-6-methyldiphenyl-2'-carboxylic acid > (II) >(I), which does not accord with theory. (III) is more stable than (IV) in Bu OH, but less stable in AcOH or aq. NaOH. XLIX. 1:2:3-OMe·C₆H₃I·CO₂Me, o·C₆H₄I·NO₂, and Cu-bronze at 200° give 2'-nitro-2-methoxydiphenyl-6-carboxylic acid, m.p. 234—236°, which affords the l-acid (V), m.p. 229—232°, $[\alpha]_D^{27}$ —213·3° in EtOH (brucine salt, m.p. 222—225°, $[\alpha]_D^{27}$ —47·1° in CHCl₃). 1:2:3-OMe·C₆H₃CI·NO₂ (prep. described), o·C₆H₄I·CO₂Me, and Cu-bronze at 255—280° give 6-nitro-2-methoxydiphenyl-2'-carboxylic acid, m.p. 196—198° (and 6:6'-dinitro-2:2'-dimethoxydiphenyl, m.p. 226—228°), resolved by brucine in abs. EtOH into the l-acid (VI), m.p. 195—199°, $[\alpha]_D^{27}$ —127·9° in abs. EtOH (brucine salt, m.p. variable, $[\alpha]$ ~0). Half-life periods of (V) and (VI) in abs. EtOH are 271 and 219—288 min., respectively, but that of 2-nitro-2'-methoxydiphenyl-6-carboxylic acid, $[\alpha]_D^{27}$ +59·4° in abs. EtOH, is only 10·2 min. R. S. C. Naphthenic acids (from Grosny petroleum). I. I. I. LAPKIN (J. Gen. Chem. Russ., 1939, 9, 1332—1341).—Fractionation and analysis of the Me esters of naphthenic acids suggest that they contain from 10 to 18 C; C₁₀ and C₁₁ are monocyclic, C₁₂ and C₁₃ mono- and di-cyclic, and above C₁₄ dicyclic only; no tri- or poly-cyclic acids were detected. No appreciable amounts of aliphatic acids can be present in the original mixture, judging from the max. crit. solution temp. in NH₂Ph, of the hydrocarbons prepared by reducing the esters to the alcohols, conversion into the iodides, and reduction with Zn dust. The parachors of the esters below C_{13} point to the presence of 5- and 6-membered rings. The rate of esterification of the acids is in agreement with the primary character of the $\rm CO_2H$ group. G. A. R. K. Cyclisation of benzylbenzylidenesuccinic acid. E. Bergmann and A. Weizmann (Compt. rend., 1939, 209, 539—540; cf. A., 1938, II, 415; Dufraisse and Houpillart, A., 1938, II, 194).—Interaction of Me benzylsuccinate and PhCHO gives a product (I) which when distilled in a vac. is converted into 1-hydroxy-2-benzyl-3-naphthoic acid, b.p. 184—188°/0.02 mm., m.p. 65—68°. (I) with AcOH gives α-benzyl-α'-benzylidenesuccinic acid, converted by conc. H₂SO₄ at 70°/1 hr. into 1:5-diketo-2:3:6:7-dibenzo-1:4:5:10-tetrahydronaphthalene, m.p. 265°, which with a large excess of LiPh gives 6-hydroxy-12-phenylnaphthacene, m.p. 255°. J. L. D. Alkyl hydrogen phthalates from normal aliphatic alcohols. J. F. Goggans, jun., and J. E. Copenhaver (J. Amer. Chem. Soc., 1939, 61, 2909—2910).—Heating ROH with o-C₆H₄(CO)₂O under reflux (R = Me to Bu) or, in other cases, at 105—110° gives Me, m.p. 82·4—82·7°, Et, Pr, m.p. 54·1—54·4°, Bu, m.p. 73·1—73·5°, amyl, m.p. 75·4—75·6°, heavyl, m.p. 24·6—25·4°, C_7H_{15} , m.p. 16·5—17·5°, C_8H_{17} , m.p. 21·5—22·5°, C_9H_{19} , m.p. 42·4—42·6°, $C_{10}H_{21}$, m.p. 37·8—38·0°, $C_{11}H_{23}$, m.p. 43·8—44·1°, $C_{12}H_{25}$, m.p. 50·2—50·4°, $C_{13}H_{27}$, m.p. 52·4—52·7°, $C_{14}H_{29}$, m.p. 59·8—60·0°, $C_{15}H_{31}$, m.p. 60·3—60·5°, $C_{16}H_{33}$, new m.p. 66·7—66·9°, $C_{17}H_{35}$, m.p. 66·6—66·8°, $C_{18}H_{37}$, m.p. 72·4—72·6°, $C_{19}H_{39}$, m.p. 70·8—71·0°, and $C_{20}H_{41}$, m.p. 77·1—77·3°, H phthalate. All alkyl are n. M.p. are corr. Reaction of the Grignard reagent with homophthalic anhydride. C. C. PRICE, F. M. LEWIS, and M. MEISTER (J. Amer. Chem. Soc., 1939, 61, 2760—2762).—Under all conditions, homophthalic anhydride (I) and MgMeI give dimethylhomophthalide. (I) is readily prepared from o-C₆H₄Me·CO₂H by way of o-C₆H₄Me·COCl, o-CH₂Br·C₆H₄·COBr, o-CH₂Br·C₆H₄·CO₂Et, o-CN·CH₂·C₆H₄·CO₂Et, and o-CO₂H·C₆H₄·CH₂·CO₂H (by 50% H₂SO₄ at 100°) in 70—75% over-all yield. Phthalide and KCN at 180—190° give 80—85% of o-CO₂H·C₆H₄·CH₂·CN. Friedel and Crafts reactions affected by steric hindrance. B. Hor (Compt. rend., 1939, 209, 562—564; cf., A., 1939, II, 429).—When phthalonic or homophthalic anhydride is submitted to the Friedel-Crafts reaction or to esterification, the incoming group is always separated from the ring by 2 C because of steric effects. J. L. D. Steroids and sex hormones. LV. Preparation of $\Delta^{5:17}$ -3-hydroxypregnadiene-21-carboxylic acid and its hydrogenation products. P. A. Plattner and W. Schreck (Helv. Chim. Acta, 1939, 22, 1178—1184).— Δ^5 -3:17-Dihydroxyandrostene-17-acetic acid yields a Me ester, m.p. 159°, [α]₀ $-89\pm2^\circ$ in CHCl₃ (3-acetate, m.p. 117°, [α]₀ $-68\pm2^\circ$ in CHCl₃), the diacetate, two forms, m.p. 113° and 121°, [α]₀ $-70\pm2^\circ$ in CHCl₃, of which is converted by distillation under 15 mm. into Me $\Delta^{5:17}$ -3-acetoxypregnadiene-21-carboxylate (I), m.p. 159°, $[\alpha]_{\rm b} - 69 \pm 2^{\circ}$ in CHCl₃, hydrolysed by KOH-MeOH to $\Delta^{5:17}$ -3-hydroxypregnadiene-21-carboxylic acid, m.p. 249—250°, $[\alpha]_{\rm b} - 82 \pm 1^{\circ}$ in dioxan [Me ester (II), m.p. 188—189°, $[\alpha]_{\rm b} - 73 \pm 1^{\circ}$ in dioxan]. (II) in COMe₂ is oxidised by Al(OBu³)₃ in C₆H₆ to Me $\Delta^{4:17}$ -3-ketopregnadiene-21-carboxylate, m.p. 151—152°, $[\alpha]_{\rm b} + 80 \pm 1^{\circ}$ in dioxan. Hydrogenation (PtO₂ in EtOH) of (I) affords Me Δ^{5} -3-acetoxypregnene-21-carboxylate, m.p. 128—129°, $[\alpha]_{\rm b} 57 \pm 1^{\circ}$ in CHCl₃, which is hydrolysed (KOH-MeOH) to Δ^{5} -3-hydroxy-pregnene-21-carboxylic acid, m.p. 241—242°, $[\alpha]_{\rm b} - 56.4 \pm 1^{\circ}$ in dioxan, converted by CH₂N₂ into the Me ester (III), m.p. 132—133°, $[\alpha]_{\rm b} - 63.5 \pm 1^{\circ}$ in dioxan. Oxidation [Al(OBu³)₃ in C₆H₆-COMe₂] of (III) affords Me Δ^{4} -3-ketopregnene-21-carboxylate, m.p. 146—147°, $[\alpha]_{\rm b} + 84 \pm 1^{\circ}$ in dioxan. (I) is hydrogenated (Pt in AcOH) to Me 3-acetoxyallopregnane-21-carboxylate, m.p. 150—151°, $[\alpha]_{\rm b} 0 \pm 1^{\circ}$ in dioxan. All m.p. are corr. Introduction of nitrogen into the sterol molecule. IV. Condensation of bile acid hydrazides with carbonyl compounds. M. Vanghelovici (Bul. Soc. Chim. România, 1938, 20, 237—241).—Cholhydrazide and RCHO in dil. HCl give the CHPh., m.p. 148°, p-OMe·C₆H₄·CH.; m.p. 140°, salicylidene, m.p. 160°, CHPh:CH·CH.; m.p. 150°, furfurylidene, m.p. 145°, CH₂.; m.p. 210°, and CO₂Et·CH₂·CMe.; m.p. 210° (could not be cyclised), derivatives. Deoxycholhydrazide gives the CH₂.; m.p. 214° (decomp.), furfurylidene, m.p. 136°, p-OMe·C₆H₄·CH.; m.p. 167°, and CHPh. derivative, m.p. 75°. Cholanhydrazide gives CH₂.; m.p. 130°, and CHPh. derivatives, m.p. 146°. Other alkylidene derivatives could not be obtained. Sterols. LXXII. Oxidation products of sarsasapogenin. C₁₉-Dibasic acid. R. E. Marker and E. Rohrmann (J. Amer. Chem. Soc., 1939, 61, 2722—2724).—(?) 3-Hydroxyætiobilianic acid (I), m.p. 220—222° [Me₂ ester, m.p. 121—122° (acetate, m.p. 103—104°); acetate anhydride, m.p. 203—204°, hydrolysed to (I) by KOH-EtOH], is obtained by CrO₃ from sarsasapogenin acetate at 85° (cf. A., 1939, II, 322), sarsasapogenic acid acetate (12% yield) at 90—95°, or tetrahydrosarsasapogenin acetate at 90—95°. CrO₃-AcOH at room temp., followed by hot Zn-Hg-HCl, converts (I) into (?) ætiobilianic acid, m.p. 230—232° (anhydride, m.p. 205-5—207°). Degradation of αθ-diphenyloctatetraene to ζ-phenylheptatrienal. P. KARRER and H. OBST (Helv. Chim. Acta, 1939, 22, 1191—1192).—αθ-Diphenyloctatetraene in CHCl₃ is oxidised by acid KMnO₄ to trans-trans-trans-ζ-phenylheptatrienal, m.p. 112·5—113° [oxime, m.p. 186—187° (decomp.)]. Polyene series. I. E. BARRACLOUGH, J. W. BATTY, I. M. HEILBRON, and W. E. JONES. II. I. M. HEILBRON, W. E. JONES, and A. SPINKS. III. J. W. BATTY, I. M. HEILBRON, and W. E. JONES. IV. I. M. HEILBRON, A. W. JOHNSON, and W. E. JONES (J.C.S., 1939, 1549—1554, 1554—1556, 1556—1560, 1560—1563).—I. Data in brackets refer to max. of absorption spectra. Citral, CHMe:CH:CHO, piperidine, and AcOH (excess) give (cf. A., 1937, II, 342) citrylidenecrotonaldehyde-a (I) [3140 A.; ϵ 12,490] (semicarbazone, m.p. 160° [3255 A.; ϵ 27,100]) and less -b (II) [3160 A.; ϵ 12,800] (semicarbazone, m.p. 206° [3255 A.; ϵ 24,400]), yields of both products being increased by addition of SiO2 gel; use of piperidine acetate and SiO₂ gel gives somewhat larger amounts; use of NaNH₂ in Et₂O leads to (I) [no (II)] and a cyclic aldehyde (III), C14H20O (semicarbazone, m.p. 186° [2860 A.; € 50,000], absorbs 4 H₂). Citral, MeCHO, and NaNH₂ in Et₂O give citrylideneacetaldehyde (semicarbazone, m.p. 166-168° [3045 A.; ϵ 49,000]), and a little (III). Al(OPr^{β})₃- $Pr^{\beta}OH$ reduces (I) and (II) to $\eta \lambda$ -dimethyl- $\Delta^{\beta \delta \zeta_r}$ dodecatrien-α-ol, b.p. 200-210°/30 mm. [2680 A.; ϵ 12,000] (absorbs 4 H₂), and an alcohol [2650 A.; ε 10,000], respectively. Citral, CMe₂:CH·CHO, and NaNH₂ in Et₂O give ψ-ionylideneacetaldehyde-a (IV) [3150 A.; ϵ 14,700] (semicarbazone, m.p. 178—179° [3250 A.; ϵ 33,000], absorbs 5 H₂) and -b (V) [3150 A.; ϵ 11,000] (semicarbazone, m.p. 112° [3240 A.; ϵ 24,000]), reduced to alcohols [2650 and 2660 A.; ϵ 11,000 and 10,000, respectively]. O₃ yields 0.77 mol. of COMe2 from (I) and 0.70 mol. from (IV), but no MeCHO from either. CHPh:CH·CHO, MeCHO, and NaNH,-Et,O give CHPh:CH·CH·CH·CHO (semicarbazone, m.p. 218—218·5° [3390 A.; ϵ 52,460]). COMe₂, (I), and NaOEt–EtOH at 0° give $\kappa\xi$ -dimethyl- $\Delta^{\nu\epsilon\eta\nu}$ -pentadecapentaen-β-one, b.p. 140—145°/1 mm. [3580 A.; ϵ 14,500] (semicarbazone, m.p. 171° [3500 A.; ϵ 15,750]); (IV) gives similarly $\zeta\kappa\xi$ -trimethyl- $\Delta^{\nu\epsilon\eta\nu}$ -pentadecapentaen-β-one, b.p. 164°/0·5 mm. [3580 A.; ϵ 15,400] (semicarbazone, m.p. 161° [3500 A.; ϵ 15,000]). II. The semicarbazone [2995 A.; ϵ 45,400] of ψ-ionone [2910 A.; ε 21,800] and H₃PO₄ (d 1.75) at room temp. give (after subsequent hydrolysis) nearly pure β-ionone [2935 A.; ϵ 9,200] (semicarbazone [2765 A.; ϵ 23,300]), but ψ -ionone itself gives mainly α -ionone [2285 A.; ϵ 14,300]. The semicarbazone [3045 A.; ϵ 47,200] of citrylideneacetaldehyde [2900 A.; ε 15,960] gives similarly β-cyclocitrylideneacet- $[\beta-2:6:6-\Delta^{1}$ -cyclohexenylacraldehyde] aldehyde [2930 A.; € 8,000] (semicarbazone, m.p. 186—187° [2950 A.; ϵ 27,000]), yielding with O₃ geronic acid and with COMe, NaOEt-EtOH ζ-2:6:6-Δ1-cyclohexenvl-Δ^{γε}-hexadien-β-one, b.p. 140—145°/0·17 mm. [3190 A.; € 8280] (semicarbazone, m.p. 186° [3160 A.; € 38,000]). III. The semicarbazone of (I) and H_3PO_4 give (?) 5:5:9-trimethyl-5:6:7:8:9:10-hexahydro-1-naphthaldehyde, m.p. $60-61^{\circ}$ [3210 A.; ϵ 13,260] (semicarbazone, +MeOH, m.p. 114° [3230 A.; ϵ 28,000]; 2:4-dinitrophenylhydrazone, m.p. 186°), reduced by Al(OPr^{β})₃- $Pr^{\beta}OH$ to the corresponding alcohol [2680 A.; ϵ 10,000] (absorbs 3 H_2) and yielding with O_3 a keto-dicarboxylic acid, $C_{12}H_{18}O_5$ (semicarbazone, m.p. 163°), and no geronic acid. The semicarbazones of (II), (IV), and (V) yield similarly dicyclic aldehydes, m.p. $56\cdot5-60\cdot5^{\circ}$ [2350 A.; ϵ 14,000] (semicarbazone, m.p. $221-222^{\circ}$ [2680 A.; ϵ 33,300]; 2:4-dinitrophenylhydrazone, m.p. $253-254^{\circ}$; gives the derived alcohol, an oil, showing no selective ultra-violet absorption), an oil [3160 A.; ϵ 10,900] (semicarbazone, m.p. 189° [3250 A.; ϵ 24,000]; derived alcohol, an oil [2720 A.; ϵ 9,000]; with O_3 gives no geronic acid), and an oil [2400 A.; ϵ 8000] (semicarbazone, m.p. 214—215° [2670 A.; ϵ 27,500]). IV. Vitamin-A, Al(OPr^{β})₃, and COMe₂ in boiling C_6H_6 give the same ketone, now termed axerophthylideneacetone (VI), as is obtained by Al(OBu^{γ})₃–COMe₂ (A., 1938, II, 126). Al(OPr^{β})₃–Pr^{β}OH reduces this to the corresponding alcohol [3545 A.; $\epsilon^{1,\infty}_{1,\infty}$ 1250] [which, as also does (VI), gives geronic acid with O₃], but once a hydrocarbon [3700, 3900, and 4110 A.] was obtained. CHPh:CH-CH₂·OH with Al(OBu^{γ})₃–COPr^{β}, in C_6H_6 gives 5% of Al(OBu^{\(\gamma\)})₃-COPr^{\(\gamma\)}₂ in C₆H₆ gives 5% of CHPh:CH·CHO, but with Al(OBu^{\(\gamma\)})₃-COEt₂ in C₆H₆ gives δ -phenyl- α -methyl- Δ ^{\(\alpha\'\)}-butadienyl Et ketone, m.p. 63° [3220 A.; ϵ 33,400] (2:4-dinitrophenylhydrazone, m.p. 232°). With Al(OBu^{\(\gamma\)})₃-COEt₂ in C₆H₆, CH₂Ph·OH and 2-furfuryl alcohol give α -benzylidene-, b.p. 160°/20 mm. [2730 A.; ϵ 25,000] (semicarbazone, m.p. 187°), and α -2-furfurylidene-ethyl Et ketone, b.p. 135—140°/21 mm. (semicarbazone, m.p. 181° [3160 A.; ϵ 74,000]; 2:4-dinitrophenylhydrazone, m.p. 188°), respectively. R. S. C. Vapour-phase production of o-tolualdehyde and phthalic anhydride from o-xylene.—See B., 1939, 1098. Acylation of aldoximes. II. Inversion of configuration in the preparation of carbanilinoaldoximes from phenylcarbimide and syn-aldoximes. A. E. RAINSFORD and C. R. HAUSER (J. Org. Chem., 1939, 4, 480—492).—Brady's conclusion that PhNCO is capable of converting certain synaldoximes (I) into carbanilino-derivatives of the anti-compounds is confirmed and an explanation based on the intermediate formation of an "inner" salt is described. Inversion does not occur when (I) are treated with PhNCO in the presence of certain tert. amines, thus supporting the hypothesis that there is no inversion of configuration during the prep. of acyl derivatives when the reaction is carried out in solution in the presence of a sufficiently strong base. Investigation has been made of the action of C5H5N and NH, Bua on carbanilino-derivatives of syn-3: 4-methylenedioxy-, syn- and anti-m-nitro-, synand anti-p-dimethylamino-benzaldoxime and on the α-naphthylearbanilino-compounds of syn- and anti-3: 4-methylenedioxy-, syn-p-methoxy-, syn-p-dimethylamino-, and anti-m-nitro-benzaldoxime. Brady's conclusion that there is no inversion of configuration when (I) are treated with $1 \cdot C_{10}H_7 \cdot NCO$ has been confirmed. α -Naphthylcarbanilino-synaldoximes may be recovered unchanged from C_5H_5N but are decomposed by NH_2Bu^a to syn-aldoximes; the corresponding anti-isomerides give nitriles with C_5H_5N or NH_2Bu^a . Carbanilino-syn-3: 4-methylene-dioxybenzaldoxime, m.p. 127°, is new. H. W. Structure of barbatolic acid. E. E. SUOMINEN (Suomen Kem., 1939, 12, B, 26—28).—Prolonged extraction of Alectoria implexa with boiling Et₂O gives barbatolic acid (3%) (I), decomp. 205—206° (dioxime, decomp. 207—208°), which with CH₂N₂ ir Et₂O-dioxan at -5° gives Me barbatolate (II), decomp. 193° (sinters at 190°), converted by AcOH at 140—145° (sealed tube)/15 hr. into 2:6:4:1- (OH)₂C₆H₂Me·CHO (atranol) (III) and 2:6-dihydroxy-3-carboxy-4-hydroxymethylbenzaldehyde (barbatol-carboxylic acid) (IV), decomp. 243—244°, which indicates that the CO₂H of (I) is in the barbatol nucleus. (II) with HI (d 1·7)—AcOH—Zn dust at 70—100° (or H₂—Pd–C) gives a compound (V), C₁₉H₂₀O₈, decomp. 189—190° (sinters at 186°), as well as β-orcinol and Me β-orcinolcarboxylate, which indicates that (III) and (IV) are probably linked through the CH₂·OH of (IV). (V) with CH₂N₂ in Et₂O gives a product, hydrolysed (boiling 0·2N-EtOH—KOH) to rhizoninic acid, its Me ether, and the lactone, m.p. 173·5°, of 2:6-dimethoxy-4-hydroxymethyl-m-toluic acid (Ag salt). (I) is thus 3:5-dihydroxy-4-aldehydo-2-carboxybenzyl 3:5-dihydroxy-4-aldehydo-toluate. J. L. D. cycloHexane series. II. Synthesis of ketones. G. VASILIU and S. RADVAN (Bul. Soc. Chim. România, 1938, 20, 243—250; cf. A., 1938, II, 408).—cyclo-Hexylphenylacetonitrile (I) and 4 mols. of certain Grignard reagents give moderate yields of the ketones by way of the imine hydrohalides, but α-cyclohexylα-phenylpropionitrile (prep. from CHPhMe·CN by cyclohexyl bromide and NaNH₂ in Et₂O), b.p. 166°/11 mm., and C₆H₁₁·CPhR·CN (R = Et, Pr, or cyclohexyl) do not react in Et₂O, C₆H₆, or PhMe. Thus are obtained α-cyclohexylbenzyl Et (by MgEtBr in Et O), b.p. 162° 164°/14 mm. [comicsubaccent m. p. Et₂O), b.p. $163-164^{\circ}/14$ mm. [semicarbazone, m.p. 189° ; imine hydrobromide, m.p. $\sim 220^{\circ}$ (decomp.)], Pr^{α} (by MgPr^aBr in Et₂O), b.p. $174^{\circ}/13$ mm. (oxime, m.p. 104°; imine hydrobromide, m.p. 193-194°), Pr^{\$} (by MgPr^{\$}Br in PhMe), m.p. 66-67° [imine hydrobromide, m.p. ~270° (decomp.)], and CH2Ph ketone (by CH2Ph-MgCl in PhMe), m.p. 74°, b.p. 219-220°/10 mm. Other CO-derivatives could not be obtained. MgMeI, MgBu°Br, and Mg cyclohexyl bromide do not react with (I). MgPhBr and (I) in Et₂O give cyclohexyldeoxybenzoin, m.p. 121° R. S. C. Relative rates of reaction between ketones and liquid ammonia.—See A., 1939, I, 615. Effect of nuclear and side-chain substitution on the oxonium-ion catalysed iodination of acetophenone derivatives. Kinetics of the iodination of acetophenone in sulphuric and perchloric acid solutions. Mechanism of the acid-catalysed enolisation of acetophenone derivatives.—See A., 1939, I, 617. Isomerisation of cyclohexylphenylacetaldehyde. E. D. Venus-Danilova and A. I. Bolschuchin (J. Gen. Chem. Russ., 1939, 9, 975—984).—α-cycloHexyl-β-phenylethylalcohol(I) in AcOH and CrO₃ in H₂SO₄ at room temp. yield cyclohexyl benzyl ketone (II). β-cycloHexyl-α-phenylethyl alcohol (III) is oxidised similarly to Ph hexahydrobenzyl ketone (IV), b.p. 161—162°/10 mm. (semicarbazone, m.p. 192—193°; oxime, m.p. 99°). (II) when heated with KOH yields CH₂Ph·CO₂H and (I), whilst (IV) gives only (III) under these conditions. cycloHexylphenylacetaldehyde yields (I), together with a small amount of a dimeride, m.p. 150—151°, when treated with HgSO₄ in H₂SO₄ (6 hr. at 128—135°), or with H₂SO₄ at -5°. R. T. Chalkones. I. Chalkones derived from resacetophenone and its dimethyl ether. J. B. Lal (J. Indian Chem. Soc., 1939, 16, 296—300).—2:4:1-(OMe)₂C₆H₃·COMe (I), isovanillin, MeOH, and 30% KOH-MeOH at 50—60° (24 hr.) give 2:4-dimethoxyphenyl 3'-hydroxy-4'-methoxystyryl ketone, m.p. 115°. With 6:2:1-, 3:2:1- (II), and 5:2:1-OMe·C₆H₃(OH)·CHO, MeOH, and 50% aq. KOH, (I) gives 2:4-dimethoxyphenyl 2'-hydroxy-6'-methoxy-, m.p. 116·5°, 2'-hydroxy-3'-methoxy-, m.p. 117°, and 2'-hydroxy-5'-methoxy-styryl ketone, m.p. 129°, respectively. 2:4:1-(OH)₂C₆H₃·COMe and (II) similarly give 2:4-dihydroxyphenyl 2'-hydroxy-3'-methoxystyryl ketone, m.p. 211°. Varying yields of the above substances under varying conditions are reported. Functional aptitude of the methyl group. IV. Derivatives of acetophenone and chalkone. L. CHARDONNENS and J. VENETZ (Helv. Chim. Acta, 1939, 22, 1278—1286; ef. A., 1939, II, 419).—Interaction of 3:4:1-NO₂·C₆H₃Me·COMe (I) and p-NO·C₆H₄·NMe₂ (II) in boiling EtOH containing Na₂CO₃ gives a very complex mixture of products which appear to be formed by changes involving both Me groups; under these conditions COPhMe does not react. $m\text{-NO}_2\cdot C_6H_4\cdot \text{COMe}$ and (II) yield a very small amount of $3\text{-}nitrophenylglyoxal-}\omega: p'\text{-}di$ methylaminoanil, m.p. 170° after softening; under like conditions $p-\bar{\text{NO}}_2\cdot\text{C}_6\text{H}_4\cdot\text{COMe}$ gives a rather better yield of the $4-NO_2$ -isomeride, m.p. 158—160°, whilst o-NO₂·C₆H₄·COMe gives only 4: 4'-bisdimethyl-aminoazoxybenzene, m.p. 242°, which arises from (II). PhCHO and (I) in aq. EtOH containing NaOH at room temp. or at 140° in presence of a little piperidine give 2-nitro-p-tolyl styryl ketone, m.p. 151-152°, which condenses with (II) in COMe2-EtOH containing to 2-nitro-4-cinnamoylbenzald-4'-dimethylaminoanil, decomp. ~210° (yield 38%), and with PhCHO containing piperidine at 190—200° to 2-nitro-4-cinnamoylstyrylbenzene, m.p. 164—165°. 2:6-Di-nitro-p-toluoyl chloride, m.p. 59—60°, from the acid and SOCl₂, is converted by condensation with CHAcNa·CO2Et and hydrolysis of the product with H₂SO₄ into 3:5-dinitro-4-methylacetophenone, b.p. 198—200°/15 mm., m.p. 66—67° [phenylhydrazone, m.p. 255° (decomp.)]. This condenses with PhCHO in presence of piperidine at 140° to 2:6-dinitro-4cinnamoyltoluene, m.p. 206-207° (yield 58%), transformed by PhCHO at 170° into 2: 6-dinitro-4-cinnamoylstyrylbenzene, m.p. 191°. The yield is scarcely better than that obtained with the (NO₂), derivative, possibly owing to the thermal instability of the chalkones. H. W. Benzoylformic acid from styrene. C. D. HURD, R. W. McNamee, and F. O. Green (J. Amer. Chem. Soc., 1939, 61, 2979—2980).—BzCO₂H is readily obtained from styrene (<50% pure) by KMnO₄-NaOH at 70°. R. S. C. Mixed magnesium alkoxides and their molecular compounds. IV. Action of ketones on ethereal magnesium butoxyiodide. V. M. Tolstopiatov and A. T. Riskaltschuk (J. Gen. Chem. Russ., 1939, 9, 1148—1150).—MgI·OBu^a (I) in Et₂O and $p\text{-}C_6H_4\text{Me}\text{-}COPh$ yield $MgI_2,3p\text{-}C_6H_4\text{Me}\text{-}COPh$. In these conditions fluorenone and CO(CH:CHPh)₂ give 1:1 compounds with (I). R. T. 4:4'-Dihydroxy-3:3'-dimethylbenzophenone. M. H. Hubacher (J. Amer. Chem. Soc., 1939, 61, 2664—2665).—Contrary to Doebner et al. (A., 1890, 898), o-cresol-benzein or -phthalein with KOH at 260—265° gives $4:4'\text{-}dihydroxy\text{-}3:3'\text{-}dimethylbenzophenone},$ m.p. $247\text{--}247\cdot8^\circ$ [diacetate, m.p. $106\cdot8\text{--}107\cdot2^\circ$; Me_1 , m.p. $203\cdot7\text{--}204\cdot2^\circ$, and Me_2 ether, m.p. $113\cdot7\text{--}114\cdot2^\circ$ (oxime, m.p. $160\cdot9\text{--}161\cdot2^\circ$)], slowly converted by KOH at 280° into o-cresol and $4:3:1\text{-}OH\cdot C_6H_3\text{Me}\cdot \text{CO}_2\text{H}$. M.p. are corr. R. S. C. Preparation of nitrophenyl α-naphthyl ketones. J. S. Joffe and S. S. Bravina (J. Gen. Chem. Russ., 1939, 9, 1133—1135).—m- or p-NO₂·C₆H₄·COCl and C₁₀H₈ yield (Friedel-Crafts) m-, m.p. 124° (lit. 117°) (phenylhydrazone, m.p. 194°), and p-nitrophenyl α-C₁₀H₇ ketone, m.p. 89° (lit. 95°). R. T. Substituted ring compounds. I. Synthesis of 2:2:4-trimethylcyclopentanone. M. QUDRAT-I-KHUDA and S. K. GHOSH (J. Indian Chem. Soc., 1939, 16, 287—295).—COMe·CH₂·CMe₂·CO₂Et (I) (semicarbazone, m.p. 165°) with CH, Br. CO, Et and Mg in C₆H₆ gives (dil. H₂SO₄) Et ααγ-trimethylbutyrolactone-y-acetate, b.p. 148-150°/7 mm. (with a product, b.p. 170-175°/6 mm.), which with PCl₅ followed by EtOH yields Et2 y-chloro-aay-trimethyladipate, b.p. 113—115°/5 mm., reduced (Zn-AcOH) to the Et_2 ester (II), b.p. 145—146°/16 mm., of $\alpha\alpha\gamma$ -trimethyladipic acid (III), m.p. 80°. Alternatively, (I) and CN-CH₂·CO₂Et (piperidine; Na₂SO₄) give Et_2 α-cyano-βδ-dimethyl- Δ^a -pentene-αδ-dicarboxylate, b.p. $162^\circ/4$ mm., reduced (Al-Hg in Et_2O-H_2O) to Et_2 α-cyano-βδ-dimethylpentane-αδ-dicarboxylate, b.p. 155-156°/8 mm., which is hydrolysed (conc. HCl) to (III). With NaOEt-EtOH, (II) gives Et 2:2:4-trimethylcyclopentanone-5-carboxylate, b.p. 88-90°/5 mm., converted by boiling dil. HCl into 2:2:4-trimethylcyclopentanone (IV), b.p. 65-66°/45 mm. (semicarbazone, m.p. 173°; 5-CHPh: derivative, m.p. 125-126°). The compound obtained by Wallach (A., 1916, i, 487) from the dibromodihydroisophorone (V), m.p. 90°, and regarded by him as 2:4:4-trimethylcyclopentanone, is identical with (IV); intermediate products in its prep. from (V) (now regarded as 2:2-dibromo-3:3:5-trimethylcyclohexanone) are 3:3:5-trimethylcyclohexane-1:2-dione, m.p. 168-169° (Wallach, m.p. 89-90°), and 2:2:4-trimethyleyclopentan-1-ol-1-carboxylic acid, m.p. 90° (cf. loc. cit.). E. W. W. Tetrahydrocitrylidene- and citronellylidene-acetic acids. Syntheses of sec.-isooctylcyclopentane derivatives. H. N. Rydon (J.C.S., 1939, 1544—1549).—Tetrahydrocitral, $CH_2(CO_2H)_2$, and (a) $N([CH_2]_2 \cdot OH)_3$ or (b) C_5H_5N give mixtures containing (a) 66% and (b) 25% of Δ^{β} -isomeride, separated by preferential esterification of that isomeride, yielding $\delta\theta$ -dimethyl- Δ^{β} - (I), b.p. $162^{\circ}/13$ mm. (Et, b.p. 134— $135^{\circ}/15$ mm., and p-bromophenacyl ester, m.p. 39°), and $-\Delta^{\alpha}$ -decenoic acid, b.p. 158— $160^{\circ}/7$ mm. (p-bromophenacyl ester, m.p. 47°), equilibrated [47% of (I)] by NaOH-EtOH-H₂O. The structure of (I) is proved by oxidation to αε-dimethylheptoic acid. In conc. H₂SO₄ at room temp. (I) gives y-sec.-isooctyl-ybutyrolactone, b.p. 158-162°/13 mm. When kept in HBr-AcOH at room temp. and then esterified, (I) gives (?) Et γ-bromo-δθ-dimethyldecoate, b.p. 145— 150°/1.5 mm., obtained also from the lactone by HBr-EtOH and condensing poorly with CN·CHNa·CO₂Et. Partial esterification of citronellylideneacetic acid gives δθ-dimethyl-Δ^{αη}-decadienoic acid, b.p. 173—175°/13 mm., and 28% of Et δθ-dimethyl- $\hat{\Delta}^{\beta\eta}$ -decadienoate, b.p. 139—141°/13 mm., hydrolysed to the $\Delta^{\beta\eta}$ -acid (II), b.p. 163—165°/1 mm. Equilibration by alkali gives 75% of (II). The K derivative of Et cyclopentanone-2-carboxylate and Pr^{β} [CH₂]₃·CHMeI (III) in boiling xylene give Et 2-sec.-isooctylcyclopentanone-2-carboxylate, b.p. 165-175°/14 mm., converted by boiling aq. Ba(OH)2 into 2-sec.-isooctylevelopentanone (IV), b.p. 134-136°/16 mm. (2: 4-dinitrophenylhydrazone, m.p. 86-87°), and α-sec.-isooctyladipic acid, m.p. 54° [with Ba(OH)₂ at 350—360° gives 52% of (IV)]. MgMeI in Et₂O converts (IV) into a carbinol, dehydrated by boiling aq. H₂C₂O₄ to yield 1-methyl-2-sec.-isooctyl-(?Δ¹)-cyclopentene, b.p. 112-115°/18 mm. Grignard condensation of (III) and cyclopentanone failed. cycloPentyl bromide, CH2Ac CO2Et, and NaOEt-EtOH give Et cyclopentylacetoacetate, b.p. 125-130°/18 (yields 4-cyclopentyl-1-phenyl-3-methyl-5-pyrazolone, m.p. 133-134°), which with NaOEt-EtOH-MeI gives Et cyclopentylmethylacetoacetate, b.p. 128-131°/13 mm., hydrolysed by 10% aq. KOH to α-cyclopentylethyl Me ketone, b.p. 76—79°/17 mm. (semicarbazone, m.p. 98°). Catalytic oxidation of cycloheptylamine. V. S. SMIRNOV (J. Gen. Chem. Russ., 1939, 9, 1283—1285).—cycloHeptylamine on oxidation with O₂ in presence of Cu-bronze affords suberone in yields up to 64%. G. A. R. K. Products of the cyclising dehydration of 1-β-phenylethylcyclohexanol and synthesis of spirocyclohexane-1:1-indan-3-one. M. Levitz, D. Perlman, and M. T. Bogert (Science, 1939, 90, 114—115).—Formulæ showing the stages in the synthesis of spirocyclohexane-1:1-indan-3-one, m.p. 58—59° [oxime (I), m.p. 137—137·8°; NO₂-derivative, m.p. 192°, also obtained by nitration (KNO₃-H₂SO₄) of (I) and subsequent hydrolysis], are given. The product from 1-β-phenylethylcyclohexanol and 85% H₂SO₄, when oxidised and oximated, affords (I) and oximes, m.p. 187—188° and 123—124° (derived NO₂-ketone, m.p. 149—150°); the oxime, m.p. 177°, of Cook et al. (A., 1939, II, 103) could not be isolated. The oxime, m.p. 187·5° (Cook), may be that of transketo-octahydrophenanthrene. M.p. are corr. L. S. T. Sulphonation. IV. Sulphonation of benzanthrone. J. S. Jofffe and N. N. Melteva. V. Sulphonation of phenyl α-naphthyl ketone. J. S. Jofffe and G. Z. Naumova (J. Gen. Chem. Russ., 1939, 9, 1104—1108, 1121—1123).—IV. Benzanthrone and 22% oleum (24 hr. at room temp.) yield a mixture of benzanthrone-2- and -3-sulphonic acid (quinine salts, m.p. 80—82° and 240—242°, respectively). A mixture of disulphonic acids is obtained by sulphonation with 100% H₂SO₄ at 170°. V. α -C₁₀H₇·COPh and 95% H₂SO₄ at 160—170° afford BzOH and C₁₀H₆(SO₃H)₂. With 10% oleum at room temp. the product is 1:5-C₁₀H₆Bz·SO₃H. Spirans. XXIII. Derivatives of phenylindanedione. D. RADULESCU and F. BARBULESCU (Bul. Soc. Chim. România, 1938, 20, 29—37; cf. A., 1938, II, 31).—When bis-1: 3-diketo-2-hydrindenvl (I) (1 mol.) and KOH-EtOH (2 mols.) are evaporated to dryness and the resulting K2 salt is boiled with Br·[CH₂]₃·Br (II) (1 mol.) in PhOMe, 2:2'-trimethylenebis-1: 3-diketo-2-hydrindenyl, m.p. 253°, is obtained. Replacement of (II) by o-C6H4(CH2Br)2 leads to 2:3diphthaloyl-1:2:3:4-tetrahydronaphthalene, 268° (becomes yellow in light), which in KOH-EtOH gives a transient blue colour and then a colourless substance, m.p. 285°. Although these products are colourless, substituted 2:2'-diaminobis-1:3-diketo-2-hydrindenyls and 2-amino-1: 3-diketohydrindenes are yellow and very feebly basic, which confirms the structure ascribed to the product obtained from (CH₂·NH₂)₂ (A., 1924, i, 215). The 2:2'-Br₂-derivative of (I) with NHEt2 in boiling abs. EtOH gives bis-2-diethylamino-1:3-diketo-2-hydrindenyl, m.p. 219°, yellow. 2-Bromo-1: 3-diketo-2-phenylhydrindene and an excess of the appropriate amine in a little boiling EtOH or C6H6 give 2-anilino- (III), m.p. 212°, 2-p-toluidino- (IV), m.p. 195°, and 2-1'-piper-idino-1: 3-diketo-2-phenylhydrindene, m.p. 142°, and 1 : 4-di-1' : 3'-diketo-2'-phenyl-2'-hydrindenylpiperazine, m.p. 275°, with varying amounts (even in absence of air) of bis-1: 3-diketo-2-phenyl-2-hydrindenyl, m.p. 210°, which is obtained with a product, m.p. 277°, also by photochemical oxidation of 1:3diketo-2-phenylhydrindene in EtOH. Hot KOH-EtOH hydrolyses (III) and (IV) to o-carboxyphenyl α-anilino-, m.p. 175° (decomp.) (Na and Ba salts), and α-toluidino-benzyl ketone (K salt), respectively, ringclosure of which could not be effected. Sterols. LXXIV. Acetic acid derivatives of cestrone and α -cestradiol. R. E. Marker and E. Rohrmann (J. Amer. Chem. Soc., 1939, 61, 2974).— $\Delta^{1:3:5}$ -Estratrien-17-on-3-oxyacetic, m.p. 209—211° [oxime, m.p. 230—232° (decomp.); Me ester, m.p. 130—132°], α - $\Delta^{1:3:5}$ -estratrien-17-on-3-oxypropionic, m.p. 195—198° (Me ester, m.p. 137—139°), and $\Delta^{1:3:5}$ -estratrien-17(α)-ol-3-oxyacetic acid, m.p. 182—184° (Me ester, m.p. 94—96°), are prepared by condensing the appropriate alcohol and CHRCl-CO₂Et by boiling NaOEt-EtOH (excess) and subsequently hydrolysing by KOH-EtOH. R. S. C. Δ^5 -3-Hydroxy-7-ketoætiocholenic acid and related compounds. T. Reichstein and H. G. Fuchs (Helv. Chim. Acta, 1939, 22, 1160—1170).— Me Δ^5 -3(β)-acetoxyætiocholenate is oxidised by CrO₃ in AcOH at 55° to Me Δ^5 -7-keto-3(β)-acetoxyætiocholenate (I), m.p. 182—186° (corr.), $[\alpha]_{2}^{p4}$ $-74\cdot8\pm2^{\circ}$, $[\alpha]_{5461}^{24}$ $-89\cdot7\pm3^{\circ}$ in COMe₂, and some Me Δ^3 :5-7-ketoætiocholadienoate, m.p. 197—199° (corr.), also obtained from boiling MeOH–HCl and (I). Hydrogenation (PtO₂ in AcOH) of (I) gives a mixture of Me 7(α + β)-hydroxy-3(β)-acetoxyætioallocholanate, which is oxidised (CrO₃ in AcOH) at 30° to Me 7-keto-3(β)-acetoxyætioallocholanate, m.p. 176—179° (corr.), and is converted by Ac_2O in C_5H_5N at $70-80^\circ$ into Me $3(\beta):7(\alpha)-$ (II), m.p. $147-149^\circ$ (corr.), $[\alpha]_5^{24}+64\cdot1\pm6^\circ$, $[\alpha]_{5461}^{24}+77\cdot7\pm6^\circ$ in COMe2, and $3(\beta):7(\beta)-$ (III), m.p. $159-162^\circ$ (corr.), $[\alpha]_5^{24}-3\cdot1\pm1^\circ$, $[\alpha]_{5461}^{24}-2\cdot30\pm1\cdot5^\circ$ in COMe2, -diacetoxyæticallocholanate. (II) is hydrolysed by KOH-aq. MeOH to $3(\beta):7(\alpha)$ -dihydroxyæticallocholanic acid, m.p. $252-257^\circ$ (corr.; decomp.) [Me ester (IV), m.p. $194-197^\circ$ (corr.)], transformed by Ac_2O and C_5H_5N at 100° into the $3(\beta):7(\alpha)-Ac_2$ acid, m.p. $237-241^\circ$ (corr.), whereas (III) yields $3(\beta):7(\beta)$ -dihydroxyæticallocholanic acid, m.p. $\sim 230^\circ$ [Me ester (V), m.p. $224-229^\circ$ (corr.)]. (IV) or (V) is oxidised by CrO_3 in AcOH at room temp. to Me=3:7-diketoæticallocholanate, m.p. $194-197^\circ$ (corr.). This is reduced by Zn-Hg and conc. HCl to æticallocholanic acid, m.p. $228-230^\circ$ (corr.) [Me ester, m.p. $143-144^\circ$ (corr.)]. Constituents of the adrenal cortex and related substances. XXVIII. alloPregnane-3:21-diol-20-one diacetate and allopregnan-21-ol-3:20dione acetate. T. REICHSTEIN and J. VON EUW (Helv. Chim. Acta., 1939, 22, 1209—1212).—3-Acetoxyætioallocholanic acid is converted by the successive actions of SOCl₂ at 5° and CH₂N₂ in abs. Et₂O at -10° into 21-diazoallopregnan-3-ol-20-one acetate, m.p. 134-134.5° (decomp.), which with KOH-H₂O-MeOH at room temp. gives 21-diazoallopregnan-3-ol-20-one, m.p. 170-172° (decomp.), converted by AcOH at 95-100° into 21-acetoxyallopregnan-3-ol-20-one (I), m.p. 202-204°, which with Ac₂O-C₅H₅N at room temp. yields the 3:21-diacetate, m.p. 151—152·5° after becoming opaque at 90—100°. CrO₃ in AcOH oxidises (I) to allopregnan-21-ol-3: 20dione acetate, m.p. 197-199°. M.p. are corr. H. W. Constituents of the adrenal cortex and related substances. XXIX. Action of lead tetra-acetate allopregnanolone acetate, pregnenolone acetate, and progesterone. T. REICHSTEIN and C. Montigel (Helv. Chim. Acta, 1939, 22, 1212— 1221; cf. Ehrhart et al., A., 1939, II, 327).—allo-Pregnan-3-ol-20-one acetate is oxidised by Pb(OAc) in glacial AcOH preferably containing AcoO at 68-70° mainly to allopregnane-3:21-diol-20-one diacetate, m.p. $152-153\cdot5^{\circ}$, with $\sim2\%$ of (?) allopregnane- $3(\beta): 17(\beta): 21$ -triol-20-one triacetate (I), m.p. 190—192° (corr.). Hydrolysis of (I) by KHCO₃ in aq. MeOH at room temp. followed by oxidation of the product with HIO₄ and subsequent energetic hydrolysis leads to 3(β): 17(β)-dihydroxyætioallocholanic acid, m.p. 272-274° (corr., decomp.) [Me ester, m.p. 238—242° (decomp.)]. Similarly pregnenolone acetate gives mainly pregnene-3: 21-diol-20-one diacetate, m.p. 164—165° (corr.), and a (?) pregnenetriolone triacetate, m.p. 182—185° (corr.). Contrary to B.P. 502,474 (B., 1939, 995) and Ehrhart (loc. cit.) it has not been found possible to isolate deoxycorticosterone acetate as the main product of the oxidation of progesterone; refined methods of isolation result in a yield of ~3% but the method has no practical significance. Steroids and sex hormones. LVII. Addition of aniline to Δ^5 -17-acetylenylandrostene-3:17-diol. M. W. Goldberg and R. Aeschbacher (Helv. Chim. Acta, 1939, 22, 1188—1190).— Δ^5 -17- Acetylenylandrostene-3:17-diol, HgCl₂, and NH₂Ph $COMe_2$ to Δ^4 -3-keto-17-hydroxypregnenone-20-anil, m.p. 221—223°, $[\alpha]_D$ —19±1° in CHCl₃. Δ^5 -3:17-Diacetoxypregnenone-20-anil has m.p. 207—209°, $[\alpha]_D$ -155±2° in CHCl₃. All m.p. are corr. (vac.). H. W. Steroids. XXIII. Homologues of the testicular hormone. I. K. MIESCHER and A. WETT-STEIN (Helv. Chim. Acta, 1939, 22, 1262—1268; cf. A., 1939, II, 431).—Addition of EtOH to Me Δ^5 -3-hydroxyætiocholenate (I) and finely divided Na in xylene at 160—170° gives Δ5-17-hydroxymethylandrosten-3-ol (II), m.p. 209-211° (diacetate, m.p. 136—137°), and a little Δ⁵-3-hydroxyætiocholenic acid. Successive bromination, oxidation (CrO₃, AcOH), and debromination of (II) leads to Δ^4 -3-ketoætiocholenic acid (III), m.p. 258-262° [Me ester, m.p. 134-135°, also obtained by treatment of (I) with $Al(OPr^{\beta})_3$ in boiling PhMe-cyclohexanone]. (II) is dehydrogenated by $Al(OPr^{\beta})_3$ and the ketone fraction is isolated by Girard's reagent; it is separated by $$(\cdot CH_2 \cdot CO)_2 O$$ into the doubly unsaturated ketone (IV), m.p. $190-193^\circ$, which with $1:4-C_{10}H_6(OH)_2$ gives a marked yellow colour with intense green fluorescence, and Δ^4 -17-hydroxymethylandrosten-3-one (V), m.p. $158-159^{\circ}$ [acetate, m.p. $114-115^{\circ}$ (semicarbazone, m.p. $214-215^{\circ}$)], which does not give a colour with $1:4\cdot C_{10}H_6(OH)_2$. Oxidation (CrO₃ in AcOH) of (V) yields (III). M.p. are corr. Steroids and sex hormones. LVI. formation of Δ^5 -17-acetylenylandrostene-3:17diol into progesterone. M. W. GOLDBERG and R. AESCHBACHER (Helv. Chim. Acta, 1939, 22, 1185— 1188).—Successive treatments of Δ⁵-17-acetylenylandrostene-3: 17-diol with Hg(NHAc), in boiling abs. EtOH and H₂S give Δ^{5:16}-3-hydroxypregnadien-20one, m.p. 211—213° [acetate, m.p. 175—177°, [α]_D $-30.1\pm1.5^{\circ}$ in 95% EtOH; oxime, m.p. 219—220° (decomp.)], hydrogenated to Δ5-3-hydroxypregnen-20-one, which is oxidised (Oppenauer) to progesterone, m.p. 127° , $[\alpha]_{D} + 185 \cdot 3 \pm 2 \cdot 5^{\circ}$ in 95% EtOH. Sterols. LXXI. Urane derivatives. R. E. MARKER and E. ROHRMANN (J. Amer. Chem. Soc., 1939, 61, 2719—2722).—Urane-3:11-dione (I), Br, and a little HBr in AcOH give a (? 4-)Br-derivative, m.p. 202—203° (decomp.), converted by boiling C5H5N into a pyridinium salt, m.p. >300°, which, when heated at 5—10 mm., gives a urenedione, m.p. $168-170^{\circ}$. H_2-PtO_2 at $25^{\circ}/3$ atm. reduces (I) in abs. EtOH to uran-3(β)-ol-11-one (II), m.p. 205—208° [acetate, m.p. 170·5—172°; CrO₃ gives (I)], as sole product. Al(OPr⁸)3-Pr⁸OH also gives mainly (II), the epi-isomeride not being isolated. Urane-3:11-diol is oxidised by CrO₃ to (II), but by cyclohexanone–Al(OPr^{β})₃ in PhMe to uran-11-ol-3-one, m.p. $169\cdot5$ — 171° [acetate, m.p. 195— 197° ; semicarbazone, m.p. 251— 253° (decomp.)]. Zn–HCl–EtOH reduces (I) to uran-11-one, m.p. 135-136.5° (no semicarbazone), hydrogenated (PtO, ; AcOH; 25°/3 atm.) to uran-11-ol, m.p. $\sim 110^{\circ}$ (acetate, m.p. 140—142°). Zn-HCl-EtOH reduces uranetrione to urane-11:20dione, m.p. 199-201°. R. S. C. Constituents of the adrenal cortex and related substances. XXVI. Proof of the adherence of substance S to the $17(\beta)$ -series. T. Reichstein, C. MEYSTRE, and J. VON EUW (Helv. Chim. Acta, CO·CH₂·OH 1939, 22, 1107—1113; cf. A., 1939, II, 77).— OH The annexed formula of substance S (I) is confirmed. (I) is converted by successive (I.)treatments with HIO, and CH₂N₂-Et₂O into Me 17(β)-hydroxy-3-keto-Δ⁴ætiocholenate (II), m.p. 216—218° (corr.). Saturation of the double linking of Me $3(\beta)$: $17(\alpha)$ -dihydroxy- Δ^5 ætiocholenate (III) with Br followed by cautious oxidation with CrO₃ and debromination with Zn affords Me $17(\alpha)$ -hydroxy-3-keto- Δ^4 -ætiocholenate, m.p. 182-185° (corr.), which is very difficult to purify and is better obtained by oxidation of (III) with boiling ${\rm COMe_2-C_6H_6}$ and ${\rm Al(OBu^9)_3}$ followed by purification with Girard's reagent T. Although not obtained pure it is certainly not identical with (I). (II) is also obtained (Oppenauer) from Me 3(β): 17(β)-dihydroxy-Δ5-ætiocholenate. H. W. Constituents of the adrenal cortex and related substances. XXX. Substance T. T. REICH-STEIN and J. von Euw (Helv. Chim. Acta, 1939, 22, 1222—1227; cf. A., 1938, II, 499).—The initial material consists of fractions C17, A2 and 3 (A., 1936, 1382) which are distributed (after hydrolysis with aq. MeOH-KHCO₃ at room temp.) between C₆H₆ and H₂O. Separation of the amorphous mixture present in C₆H₆ yields (after acetylation) the acetates of substances N, S, Fa, M, dehydrocorticosterone, corticosterone, and a diacetate (I), $C_{25}H_{34-36}O_6$, m.p. 212—213° (corr.). (I) does not reduce alkaline Ag solution at room temp. and hence does not contain a ketol group. The absorption spectrum proves it to be an αβ-unsaturated ketone. Hydrolysis of (I) with K₂CO₃ in aq. MeOH gives substance T CH·CH2·OH (II), which is oxidised by CrO₃ in AcOH to Δ^4 -3: 11-diketoætiocholenic acid [Me (II.) ester, m.p. 178-180° (corr.)]. Under similar conditions (I) is stable towards H. W. CrO_3 . Constituents of the adrenal cortex and related substances. XXVII. A4-3-Ketoandrostenyl-17glyoxal and related substances. H. Reich and T. REICHSTEIN (Helv. Chim. Acta, 1939, 22, 1124-1138).—Δ⁵-21-Chloro-3-hydroxypregnen-20-one (improved prep.) is converted by C₅H₅N at 100° into the pyridinium chloride, m.p. 289-293° (corr.; decomp.) [corresponding bromide, m.p. ~300° (corr.; decomp.)], either of which is converted by p- ${ m NO \cdot C_6 H_4 \cdot NMe_2}$ in presence of alkali into Δ^5 -3-hydroxyætiocholenoyl- ${ m N \cdot p}$ -dimethylaminophenylnitrone (+1H₂O), m.p. 133-134°. This is transformed by dil. HCl into \(^5-3-hydroxypregnen-20-one-21-al,\) two forms, (+ H₂O) m.p. 135-136° (corr.) and 170° (corr.), which are difficult to purify and are possibly different hydrates or polymerides. Both forms reduce Ag-diammine solution and gave the same Me, acetal (II), m.p. 112—113° (corr.), $\lceil \alpha \rceil_{\rm D}^{22} + 39.1 \pm 1^{\circ}$, $\lceil \alpha \rceil_{5461}^{22}$ +52.2±1° in MeOH, when treated with MeOH-HCl at room temp. or, more rapidly, when heated. A dioxime, m.p. 285-290° after becoming transformed into needles at ~225°, a quinoxaline derivative, C₂₇H₃₄ON₂, m.p. 229—231° after becoming converted into needles at 200°, and a dianil, m.p. 85—90°, have been prepared. (II) is oxidised by $COMe_2-C_6H_6$ and $\mathrm{Al}(\mathrm{OBu}^{\gamma})_3$ to Δ^4 -pregnene-3: 20-dione-21-al Me_2 acetal, m.p. $84-86^{\circ}$, $[\alpha]_{D}^{21} + 170 \cdot 3 \pm 2^{\circ}$, $[\alpha]_{5461}^{21} + 207 \cdot 9 \pm 3^{\circ}$ in COMe2, which has the absorption spectrum characteristic of αβ-unsaturated ketones. Cautious hydro- lysis with acids gives with difficulty impure (IV) (below). (I) is readily oxidised by COMe₂ and Al(OBu²)₃ to 21-chloroprogesterone (III), m.p. 203—205° (corr.), $\lceil \alpha \rceil_{54}^{24} + 209 \cdot 5 \pm 6$ °, $\lceil \alpha \rceil_{546}^{22} + 255 \cdot 2 \pm 7$ ° in CHCl₃, with, possibly, Δ^4 -3-ketoætiocholenic acid [Me ester, m.p. 170—174° (corr.)]. (III) is converted by NaOAc–AcOH into deoxycorticosterone acetate, m.p. 159—160° (corr.), from which it is regenerated by PCl₅ and CaCO₃ in CHCl₃. 21-Bromoprogesterone has m.p. 190—191° (decomp.). (III) yields the corresponding pyridinium chloride, m.p. 274—275° (corr.; decomp.), and bromide, m.p. 265—268° (corr.; decomp.), the former of which with p-NO·C₆H₄·NMe₂ gives Δ^4 -3-ketoætiocholenoyl-N-p-dimethylaminophenylnitrone, m.p. 112—118°, converted by dil. HCl in Et₂O into Δ^4 -pregnene-3: 20-dion-21-al [Δ^4 -3-ketoandrostenyl-17-glyoxal] (IV), m.p. 104—106°. Steroids. I. 6-Ketoprogesterone and the stereochemical configuration of several 3:5:6triols. M. EHRENSTEIN (J. Org. Chem., 1939, 4, 506—518).—Androstan-5-ol-3:6:17-trione, m.p. 249.5-251° (decomp.), is obtained by direct oxidation of dehydroisoandrosterone (I) with CrO3 in glacial AcOH, by transforming dehydroisoandrosterone acetate by H₂O₂ in AcOH into androstane-3(β): 5:6-(trans)-triol-17-one, m.p. 295-298°/(decomp.), which is oxidised further by CrO₃, and by converting (I) by OsO₄ in Et₂O into androstane-3(3): 5:6-(cis)-triol-17one, m.p. 243—245.5°, $[\alpha]_D^{20} + 79.5°$ in MeOH, which is oxidised by CrO_3 in AcOH. *Pregnan-5-ol-3*: 6:20trione (II), m.p. 267-268° (slight decomp.), is obtained by direct oxidation of Δ5-pregnen-3-ol-20-one (III) with CrO3 in AcOH. Alternatively (III) is transformed into its acetate, which is oxidised (30% H2O2 in AcOH) and then hydrolysed to pregnane-3(β): 5:6-(trans)-triol-20-one, m.p. 256-258°, which is further oxidised by CrO₃. In a third method (III) is oxidised by OsO_4 in abs. EtOH or dioxan to pregnane-3(β): 5: 6-(cis)-triol-20-one, m.p. 231—232·5° after softening at 229°, $\lceil \alpha \rceil_D^{26} + 59\cdot 8$ ° in MeOH, which is further oxidised to (II). (II) is converted by HCl in CHCl₃ at 4° into Δ^4 -pregnene-3: 6: 20-trione (6-ketoprogesterone), m.p. 185—188°. The stereochemical configurations of the substances are discussed. H. W. 5-Anilino-4-hydroxy-1:2-benzoquinone, m.p. 210° (decomp.), and prep. of $1:2:4-C_6H_3(OH)_3$.—See A., 1939, III, 1008. The blue alkali salts of α-phylloquinone (vitamin-K₁) and similar compounds. P. Karrer (Helv. Chim. Acta, 1939, 22, 1146—1149).— Reasons are advanced for assigning the mesomeric formulæ: $R' = :CMe \cdot [CH_2]_3 \cdot (CHMe \cdot [CH_2]_3)_2 \cdot Pr^{\beta}$ to the blue salts of α -phylloquinone; related salts are discussed. H. W. Derivative of vitamin- K_1 . H. J. ALMQUIST and A. A. KLOSE (J. Biol. Chem., 1939, 130, 791—793).— Description is given of the prep. of a compound, (?) $C_{31}H_{50}O_4$, from the oily pigment obtained by the alkaline hydrolysis of $-K_1$. During the hydrolysis no appreciable fission occurs but there is an increase in mol. wt. accompanied by the addition of 2 O and several H. At least one added O is phenolic. The absence of fission strongly indicates that the side structure is united to the 1:4-naphthaquinone nucleus by a C-C linking and for this group phytyl appears the only logical choice. The purest synthetic specimens of 2-methyl-3-phytyl-1:4-naphthaquinone have nearly the same activity as $-K_1$, with which they are probably identical. Synthesis of iodinated benzoylbenzoic acids and anthraquinones. R. W. Higgins and C. M. Suter (J. Amer. Chem. Soc., 1939, 61, 2662—2664).— $4:5:1:2\cdot C_6H_2I_2(CO)_2O$ (I) (1 mol.) and AlCl₃ (2·2 mols.) in boiling C_6H_6 give 80% of $4:5\cdot di\cdot iodo\cdot 2-benzoylbenzoic acid, m.p. 244—245°, converted by <math>100\%$ H_2SO_4 at 140° (more dil. acid causes loss of I) into $2:3\cdot di\cdot iodoanthraquinone$ (80% yield), m.p. 291—292° (cf. Eckert et al., A., 1929, 701). Similarly are obtained (?) $3:4\cdot$, m.p. 223—224°, and $3:6\cdot di\cdot iodo\cdot 2-benzoylbenzoic acid,$ m.p. 218—220°, and thence $1:2\cdot$, m.p. 236—237°, and $1:4\cdot di\cdot iodoanthraquinone$, m.p. 218—219°. $3:4:6:1:2\cdot C_6HI_3(CO)_2O$ yields approx. equal amounts of $3:4:6\cdot$ and $3:5:6\cdot triiodo\cdot 2-benzoylbenzoic acid$ (acids, m.p. 257—258° and 225—227°, were isolated), each cyclised at 105° in 25% yield to $1:2:4\cdot tri\cdot iodoanthraquinone$, m.p. 202—204°. $o\cdot C_6H_4(CO)_2O$ could not be caused to react with $m\cdot C_6H_4I_2$. $3:4:5:6:1:2\cdot C_6I_4(CO)_2O$ or (I) reacts (AlCl₃) with PhOMe, $o\cdot$ or $m\cdot C_6H_4$ Me·OMe, but not with $o\cdot C_6H_4(OMe)_2$ or $4:1:2\cdot C_6H_3Cl(OMe)_2$. I in iodoanthraquinones is determined by Na-EtOH, followed by digestion of the crude AgI with dil. HNO₃. M.p. are corr. R. S. C. o-Quinonemono-oxime inner complexes. H. M. HAENDLER [with G. McP. SMITH] (J. Amer. Chem. Soc., 1939, 61, 2624—2626).—Adding the metal acetate in EtOH or H_2O to phenanthra-9: 10-quinone-9-oxime in hot EtOH and adjusing the $p_{\rm H}$ by aq. NH₃ or AcOH to effect coagulation gives coloured complexes, $\left(C_{14}H_{8} \left(\begin{array}{c} O \\ N \cdot O \end{array}\right)_{2}M$, in which M=Cd (un- stable compound $+ xC_5H_5N$), Cu, Pb, Mn, UO_2 , anhyd. and + 2EtOH. Chrysenequinonemono-oxime gives similar complexes, in which M = Cu, Pb, Mn, Ni (prep. by NiČl₂), UO₂, anhyd. and + 2EtOH. Cr, Hg^{*}, Pd, Rh, and Zn also give complexes. Retenequinone- and 2- and 4-nitrophenanthraquinone-oximes also give complexes. R. S. C. Sulphonation. VI. Sulphonation of 1:2benzanthraquinone. J. S. Joffe and E. N. Kaschnitzkaja (J. Gen. Chem. Russ., 1939, 9, 1124-1127).—1: 2-Benzanthraquinone and 95% H2SO4 at 140—150° yield a mixture of 1: 2-benzanthraquinone-2'-, -3'-, and -4'-sulphonic acids. Preparation of dibenzpyrenequinone. I. Reaction of benzanthrone with benzoyl chloride. N. K. Moschtschinskaja (J. Gen. Chem. Russ., 1939, 9, 1376—1379).—Benzanthrone, BzCl, and AlCl₃ at 125°/2 hr. yield a mixture of 2- and 3-benzoylbenzanthrone. The latter is converted quantitatively into dibenzpyrenequinone by passing O2 through its melt with AlCl, and NaCl at 155-160°. R. T. Effect of high-tension electrical discharge on Catalytic reaction. IV, V. I. Seto and M. Ozaki (J. Soc. Chem. Ind. Japan, 1939, 42, 271— 274B).—IV. dl- + l-Menthone (94%) + menthol (6%, free and combined), in paraffin oil, are reduced by H₂-Ni at 135—155° under ordinary pressures (apparatus: A., 1937, I, 470). The system is subjected to a high electric tension which promotes catalytic action of Ni and thus increases speed of reaction. Optimum conditions, viz., 145° for 3 hr., give 78.5% of menthol (I) (dl + dl-neo + -iso- + -neoiso-menthol). V. Thymol (II) at 140—160° for 2—3 hr. similarly gives 66-68% of (I). Initial formation of menthone (dl- + -iso-menthone) suggests that (II) gives menthenol, converted into menthone and thence into (I). d-Menthyl phenylurethane, m.p. $112-113^{\circ}$ (corr.), $[\alpha]_D^{20} + 75.7^{\circ}$ in CHCl₃, and 3:5-dinitrobenzoate, m.p. 153—154° (corr.), $[\alpha]_D^{20} + 771$ ° in CHCl₃, and glycuronide, m.p. 120—122°, $[\alpha]_D^{20} + 6\cdot4$ ° in EtOH [NH₄ salt, m.p. 200—202° (decomp.), $[\alpha]_D^{20} + 8\cdot1$ ° in H₂O].—See A., 1939, III, 998. Intramolecular rearrangements occurring during the dehydration of ditertiary dicyclic glycols of the camphene series. I. L. J. BRIU-SOVA (J. Gen. Chem. Russ., 1939, 9, 905—911).— 2:3-Dihydroxy-2:3:4-trimethylcamphane, m.p. 132— 135°, formed from 4-methylcamphoquinone and MeMgI, yields on dehydration (KHSO₄-Na₂SO₄; 5 hr. at 150—155°) a ketone, b.p. 126—127°/20 mm., characterised by a semicarbazone, C₁₄H₂₅ON₃, m.p. 193— 194°. 2:3-Dihydroxy-2:3-dimethylcamphane similarly gives an unsaturated ketone, $C_{12}H_{20}O$, b.p. $104\cdot 8-105^\circ/10$ mm. (oxime, m.p. $108-112^\circ$), isolated through the semicarbazone, m.p. 180-181°. Reduction of the ketone with Na-EtOH gives the unsaturated alcohol, C₁₂H₂₂O, b.p. 122-123°/10 mm., and with H₂-Raney Ni, the saturated ketone, b.p. 110-110.5°/12 mm. Possible structures are discussed and it is concluded that dehydration of the glycols is accompanied by rupture of the dicyclic system and formation of monocyclic ketones. Action of acetic acid on camphene in presence of boroacetic anhydride or acetic anhydride and boric trioxide. M. IMOTO (J. Soc. Chem. Ind. Japan, 1939, 42, 267—268B; cf. A., 1939, II, 434).—Camphene (I), AcOH, and B(OAc)₃ or Ac₂O-B₂O₃ at 110—120° for 23 hr. give esters, hydrolysed to isoborneol (reaction A). The reaction is reversible. with isobornyl acetate (II) and Ac2O-B2O3-AcOH at 110-120° for 22 hr. the amount of (II) is reduced from 97 to 67%, and some (I) is formed. Addition of H₂SO₄ to reaction A at 50—60° for 3—4 hr. gives A. T. P. increased yields. Intramolecular asymmetric induction. A. McKenzie and A. D. Wood (J.C.S., 1939, 1536-1544).—(-)-Menthyl H, m.p. 166—167°, $[\alpha]_D^{20}$ —55·8° in EtOH, di-(-)-menthyl, m.p. 61—62°, $[\alpha]_D^{20}$ —74° in EtOH, (—)-bornyl H (I), m.p. 178—179°, $[\alpha]_D^{20}$ $-28\cdot9^\circ$ in CHCl₃, and di-(-)-bornyl 4:4'-dinitro-diphenate, m.p. 201—202°, $[\alpha]_D^{20}$ $-46\cdot9^\circ$ in EtOH, are lævorotatory in all solvents and show no sign of intramol. asymmetric induction during prep. Similarly (I) gives (by way of the acid chloride, m.p. 48-49°) (+)-bornyl (-)-bornyl 4:4'-dinitrodiphenate, m.p. 212—213°, which is inactive although unesterified H ester has a slightly altered a. Kuhn's views (A., 1932, 269) are disputed on the basis of these and other facts. The following are also described. (-)-Menthyl, The following are also described: (—)-inertifyl, $[\alpha]_D^{20} - 81 \cdot 3^\circ$ in EtOH, and (—)-bornyl m-nitro-benzoate, m.p. 76—77°, $[\alpha]_D^{20} - 36 \cdot 4^\circ$ in EtOH; (—)-dimenthyl phthalate, $[\alpha]_D^{20} - 96 \cdot 9^\circ$ in EtOH; di-(—)-bornyl phthalate, new m.p. $104 - 105^\circ$, $[\alpha]_D^{20} - 82 \cdot 9^\circ$ in EtOH; di-dl-bornyl 4:4'-dinitrodiphenate, m.p. $200 - 201^\circ$, α 0. Cinchonine, m.p. $220 - 221^\circ$, $[\alpha]_D^{18} - 185 \cdot 6^\circ$ in CHCl₃, quindine, $[\alpha]_D^{20.5} - 87^\circ$ in CHCl₃, and quining H 4:4' dinitrodiphenate m.p. 229 - 100and quinine H 4:4'-dinitrodiphenate, m.p. 229—231°, $[\alpha]_{\rm p}^{21}$ (anhyd.) $+102\cdot4^{\circ}$, $(+2C_6H_6)$ $+87\cdot2^{\circ}$ in $CHCl_3$. [α] of the esters for other solvents are also detailed. R. S. C. New method of resolving a racemic compound. G. M. HENDERSON and H. G. RULE (J.C.S., 1939, 1568—1573; cf. A., 1938, II, 286).—By repeating the process previously described on activated lactose a complete micro-resolution of dl-p-phenylenebisiminocamphor has been obtained. A partial resolution has been achieved in the case of β-naphtholazo-F. R. S. mandelic acid. Vitexin. E. Péteri (J.C.S., 1939, 1635—1637).— Oxidation of vitexin (I) with H₂O₂, Fehling's solution, and K₃Fe(CN)₆ gives no new degradation products. Nitration (15% HNO₃) of (I) gives tetranitroapigenin. Sublimation of (I) with Zn (vac.) gives a polyphenol, $C_{15}H_{19}O_8$, acetylated to triacetylapigenin. F. R. S. Bitter principle from Andrographis paniculata, Nees. I. A. MOKTADER and S. S. GUHA-SIRCAR (J. Indian Chem. Soc., 1939, 16, 333-338).-Andrographolide, $C_{20}H_{30}O_5$ (I), new m.p. 220° (decomp.), heated with aq. EtOH–KOH and acidified gives isoandrographolic acid, $C_{20}H_{32}O_6$, m.p. 156° [Ba salt, also obtained from (I) and aq. Ba(OH)₂], which with warm aq. NH₃ followed by HCl gives andrographolic acid, m.p. 180°. With Br, (I) in conc. HCl gives a product, C₂₀H₃₀O₅Br₂ (?), m.p. 128—140°, or in AcOH a compound, C₂₀H₃₀O₅Br₂ (?), m.p. 110—112°. In aq. HBr, (I) gives a hydrobromide, m.p. 117—124°; with HCl in AcOH a hydrochloride, m.p. 56—57°. I—ICl₃ shows only one double linking. With Pd—12 in MeOH (I) gives dihydroandrographolide, m.p. 205° (decomp.), and with SnCl2-HCl an isomeride, m.p. 200° (decomp.) (mixed m.p. 183—185°). When heated with Ac₂O-NaOAc for 5—10 min., (I) is unchanged, Gorter's Ac₃ derivative (A., 1914, i, 1204) not being obtained; after 1 hr., a product, C₄₀H₅₈O₉ (?), is formed. With POCl₃, (I) gives a product, m.p. 85-90° (decomp.), containing P and Cl, but lacking the CH₂O₂ group of (I); with PhNCO, (I) forms a product, m.p. 90—95°. E. W. W. Ethereal extract of bark of Cajaput tree. M. Ish and Y. Osima (J. Agric. Chem. Soc. Japan, 1939, 15, 841—842).—Extraction of the bark of *Melaleuca leucadendron*, Linn., yields 20% of material which contains a resinol, *melaleucin*, C₂₈H₄₅O₃, m.p. 304° (monoacetate, m.p. 280°). J. N. A. Kikyo root. VIII. Constitutional formula of platycodigenin. IX. Mol. wt. of platycodigenin. M. Tsujimoto and R. Senju (J. Agric. Chem. Soc. Japan, 1939, 15, 857—861, 862—864; cf. A., 1939, II, 470).—VIII. Platycodigenin, m.p. $242-243^{\circ}$, $[\alpha]_D^{317}+59\cdot45^{\circ}$, is an unsaturated monobasic acid and gives a positive Liebermann sterol reaction. It can be purified by crystallisation of the K salt or by adsorption on Al_2O_3 and elution with $COMe_2$. ${ m COMe_2}$. IX. Determination of mol. wt. by titration, Barger's method, micro-Pregl titration, and analysis of K salt confirms the formula ${ m C_{30}H_{48}O_7}$. J. N. A. Velocity of reaction of aldehydes with ammonia. I. Reaction of furfuraldehyde with ammonia. E. K. Nikitin and M. A. Abramova (J. Gen. Chem. Russ., 1939, 9, 1347—1355).—The velocity of formation of furfuramide at 12.5° is greatest when 2 vols. of a solution containing 27—30 g. of Na₂CO₃ and 7.5—8.5 g. of NH₃ per 100 ml. are added per vol. of aq. furfuraldehyde (I). The conen. of (I) solutions is determined by comparing the time required for appearance of turbidity with that found for solutions of known conen. R. T. Dihydro-1: 4-pyrans. VI. Opening and closing of the ring. R. C. Fuson, R. E. Christ, and C. K. Bradsher (J. Org. Chem., 1939, 4, 401—409).— Et α-hydroxy-δ-2: 4: 6-trimethylbenzoylsorbate (I) (benzoate, m.p. 109°) is hydrogenated (Raney Ni in EtOH) and then hydrolysed by boiling 10% ag. Na₂CO₂ to 2-mesityl-5: 6-dihydro-1: 4-pyran-6-carboxylic acid (II), m.p. 149-150°, which is not hydrogenated in presence of PtO2, Ni, or Pt, is not reduced by Na-Hg, but is converted by boiling HI containing red P into adipic acid. (II) is unchanged by alkaline H_2O_2 but is oxidised by O_3 or boiling dil. HNO₃ to $2:4:6\cdot C_6H_2Me_3\cdot CO_2H$. Br in CCl₄ converts (II) into a compound, $C_{15}H_{17}O_3Br$, m.p. 139°. Treatment of (II) with conversity 5:6 diludes 1:4 gives 3-nitro-conversity 5:6 diludes 1:4 gives 3-nitro-conversity 1:4 gives 2-3': 5'-dinitromesityl-5: 6-dihydro-1: 4-pyran-6-carboxylic acid, m.p. 255° [Me ester (III), m.p. 162—163°]. Boiling MeOH containing conc. H, SO₄ transforms (V) into Me α -hydroxy- δ -2: 4: 6-trimethylbenzoylvalerate, m.p. 43-44°. The crude ester obtained from (I) gives on alkaline hydrolysis an oily acid which is shown to contain α-hydroxy-δ-2:4:6-trimethylbenzoylvaleric acid by the isolation of the 1-naphthylurethane, C₂₆H₂₇O₅N, m.p. 145—146°. Under reduced pressure the acid can be distilled almost without residue but is converted under these conditions into (II). Oxidation by KMnO₄ of the hydrolysed pure ester and treatment of the non-cryst. acid with conc. H2SO4-conc. HNO3 affords $3:5:2:4:6-(NO_2)_2C_6Me_3\cdot CO_2H$. Nitration of the ester yields (III). With MgPhBr the ester gives a solid, $C_{27}H_{30}O_3$, m.p. $134-135^\circ$, and a liquid which has not been identified. Liquid NH3 converts the ester into the amide, m.p. 111.5—112.5°. Hydrogenation (PtO2 in acidic EtOH) of (I) gives 10-15% of (II) and an oil from which by treatment with Na, CO3, followed by $p\text{-}\mathrm{C}_6\mathrm{H}_4\mathrm{Ph}\text{-}\mathrm{CH}_2\text{-}\mathrm{COBr}$, p-phenylphenacyl δ -2: 4: 6-trimethylbenzoylvalerate, m.p. 79°, is isolated; fractional distillation of the oil and hydrolysis of the fraction of highest b.p. yields (?) α -keto- ϵ -hydroxy- ϵ -2:4:6-trimethylphenylhexoic acid, m.p. 81° (phenylhydrazone, m.p. 103—104°). δ -2:4:6-Trimethylbenzylvaleric acid (IV), m.p. 60°, is obtained with αδ-di-2:4:6-trimethylbenzoylbutane, m.p. 106°, by the action of AlCl₃ on adipic anhydride and mesitylene in CS_2 . Bromination of (IV) in CCl_4 at 0° affords the compound, $C_{15}H_{19}O_3Br$, m.p. $90-92^\circ$, whilst oxidation of it gives (CH₂·CO₂H)₂ and mesitylglyoxylic acid. Structure of fluorescein, sulphonefluorescein, and their halogenated derivatives. R. B. SANDIN, A. GILLIES, and S. C. LYNN (J. Amer. Chem. Soc., 1939, 61, 2919—2922).—Bromination (Phillips, A., 1932, 400) of fluorescein and sulphonefluorescein gives first the 4:5-Br₂-derivatives, since hydrolysis of the products gives $2:1:3-C_6H_3Br(OH)_2$. 4:5-Dibromofluorescein, m.p. 285°, gives a diacetate, m.p. 228—229° (lit. 211°). SnCl₂-HCl in dioxan-AcOH (10:1) converts tetrabromofluorescein into 2:7-dibromofluorescein, m.p. 300-301° (diacetate, m.p. 259° after darkening), hydrolysed to 4:1:3-C₆H₃Br(OH)₂ and (?) o-5'-bromo-2': 4'-dihydroxybenzoylbenzoic acid, m.p. 240-241° after darkening and sintering. 2:7-Dichloro-4: 5-dibromofluorescein [prep. from the 2: 7-Cl₂compound (I) (modified prep.) by Br (2 mols.)] similarly gives (I). These replacements indicate a fixed bond structure for the fluorescein derivatives. Simple hydroxychromans and hydroxycoumarans. P. Karrer, R. Escher, and H. Rentschler (Helv. Chim. Acta, 1939, 22, 1287—1291; R. S. C. cf. A., 1938, II, 450; 1939, II, 174).— γ -Methyl- Δ^{β} -butenyl bromide, from CH₂:CH·CMe₂·OH and PBr₃ in light petroleum at -15° and subsequently at $10-15^{\circ}$, and trimethylquinol (I) in presence of ZnCl₂ give exclusively 6-hydroxy-2:2:5:7:8-pentamethyl-chroman, m.p. 95°. The prolonged action of COEt·CHNa·CO₂Et on (I) in C₆H₆ at room temp. yields 4-hydroxy-3:5:6-trimethyl-1-ethylcoumarone, m.p. 108°, reduced (Pd–C in MeOH) to the corresponding coumaran (II), m.p. 120° (allophanate, m.p. 214°). (II) is obtained as by-product of the condensation of (I) with crotyl bromide. Steric relationships of α -tocopherol and further investigation of the lower homologues of α-tocopherol. P. KARRER, H. KOENIG, B. H. RINGLER, and H. Salomon (Helv. Chim. Acta, 1939, 22, 1139-1145; cf. A., 1939, II, 335).—The 3:5-dinitrobenzoate, allophanate, and p-nitrophenylurethane of dl- α tocopherol (I) from synthetic phytol (II) have been further purified so that their m.p. agree with those of the corresponding compounds prepared from natural (II). The compounds are therefore identical and hence dl-α-tocopherol (III) from natural (II) is a racemic compound or mixture of racemic compounds with respect to the asymmetric centres δ and θ . Conclusions with regard to the spatial relationships in the aliphatic side-chain of natural (I) are not warranted since it is not impossible that racemisation occurs during the isolation of (II) from chlorophyll or that only a definite form of (IV) is used in the enzymic synthesis of (III) in the plant. The bromocamphorsulphonate of (I) has now been separated into a series of fractions of differing m.p. so that (I) is almost certainly a mixture of diastereoisomerides; it cannot at present be decided whether the sample, m.p. 52°, is identical with the derivative of natural (I). Biologically there appears no measurable difference between natural (I) and the diastereoisomeric forms of synthetic (I). (I) (5:7:8-trimethyltocol) is biologically the most active of all the tocols. Elimination of Me from the aromatic nucleus somewhat diminishes the activity (apparently least with 5: 7-dimethyltocol) and replacement of Me by Et is accompanied by slight weakening of the activity. Improvements in the methods of preparing dl-5:8- and -7:8-dimethyltocol are recorded. Vitamin-E. XIV. Absorption spectra of tocopherols, chromans, coumarans, and related compounds. T. J. Webb, L. I. Smith, W. A. BASTEDO, jun., H. E. UNGNADE, W. W. PRITCHARD, H. H. HOEHN, S. WAWZONEK, J. W. OPIE, and F. L. Austin (J. Org. Chem., 1939, 4, 389—396).—The absorption spectra of o-allyl-, 3:5:6-trimethyl-2allyl-, and 2:6-dihexenyl-phenol, 2:2-dimethyl-3:4-1-methyl-1: 2-dihydrodihydrocoumaran, 1:3:5:6-tetramethyl-1:2-dihydro-benzfuran, methoxy-2:2:3-trimethyl-3:4-dihydro- and 6-hydroxy-2:2:5:7:8-pentamethyl-3:4-dihydro-coumaran, 4-hydroxy-1:3:5:6-tetramethyl-1:2-dihydro-4-hydroxy-1:3:5:6-tetramethylbenzbenzfuran, furan, 6-hydroxy-5:7:8-trimethyl-3:4-dihydro- and 6 - hydroxy - 3 - carbethoxy -7: 8- dimethyl - coumarin, 6-hydroxy-2:5:7:8-tetramethyl-2-hexadecyl-3:4dihydro- and 6-hydroxy-2:5:7-trimethyl-2-hexadecyl-3: 4-dihydro-coumaran are described and discussed. H. W. Vitamin-E. XV. Extension of the analytical method of Furter and Meyer. H. E. Ungnade and L. I. Smith (J. Org. Chem., 1939, 4, 397—400).— Examination of several simple chromans and coumarans by the colorimetric method of Furter and Meyer (A., 1939, III, 404) shows the method to be sp. for all tocopherols and for 6-hydroxychromans (I) generally. By this means it is possible to distinguish clearly between (I) and 4-hydroxycoumarans. H. W. Constitution of natural tannins. VI. Colouring matters derived from 2:5-dihydroxyacetophenone. A. Russell and S. F. Clark (J. Amer. Chem. Soc., 1939, 16, 2651—2658; cf. A., 1937, II, 206). -Passage of dry HCl into an EtOAc solution of 2:5:1-(OBz)₂C₆H₃·COMe and 3:4:1-(OBz)₂C₆H₃·CHO at 0° for several days gives 2:5:3′:4′-tetrabenzoyloxy-chalkone, m.p. 182—184°, hydrolysed by KOH (special procedure essential in this and other cases) to a mixture of 2:5:3':4'-tetrahydroxychalkone (I), m.p. 225—227°, and 6:3':4'-trihydroxyflavanone (II), m.p. 218—220° (decomp.). Solid (I) and (II) are stable, but in EtOH an equilibrium mixture is formed, containing, particularly when hot, much (II). Zn dust and HCl-EtOH reduce (II) alone or in admixture with (I) to bis-(6:3':4'-trihydroxy) flavopinacol, a light red amorphous material indistinguishable by colour reactions and in adsorption on hide powder from hemlock or mimosa tannins. Similar condensations using other aldehydes give 2:5:4'-tri-, m.p. 134—136°, 2:5:3'-tri-, m.p. 174—175°, 2:5:2'-tri-, m.p. 137—139°, 2:5:2':4'-tetra-, m.p. 137—139°, and 2:5:2':4':6'-penta-, an oil, -benzoyloxy-2:5:4'-tribenzoyloxy-3'-methoxychalkone, chalkone, m.p. 145-147°, and 2:5:2':4'-tetrabenzoyloxy-6'methylchalkone, m.p. 125—127°, and thence by hydrolysis 2:5:4'-, m.p. 222—224°, and 2:5:3'-trihydroxychalkone, m.p. 204—206°, 2:5:4'-trihydroxy-3'-methoxychalkone, m.p. 172—173°, 6:3'-, m.p. 234—236°, and 6:2'-dihydroxyflavanone, m.p. 178—180° (decomp.), 2':5'-di-, +0-5H₂O, m.p. 175° (decomp.), 2':5'-di-, +0-5H₂O, m.p. 175° (decomp.) comp.), 7:2':5'-tri-, +5.5H₂O, m.p. 190° (decomp.), and 5:7:2':5'-tetra-hydroxy-2-phenylbenzpyrylium chloride, +2H₂O, m.p. >300°, and 7:2':5'-trihydroxy-2-phenyl-5-methylbenzpyrylium chloride. $+\mathrm{H_2O}$, m.p. $285-287^\circ$ (decomp.). m-Benzoyloxybenzaldehyde, m.p. $37-38^\circ$, resorcylaldehyde dibenzoate, m.p. 98°, and orcylaldehyde dibenzoate, m.p. 134—135°, are also described. R. S. C. Dunnione. I. J. R. PRICE and (SIR) R. ROBINSON (J.C.S., 1939, 1522—1529).—Partly a detailed account of work already reported (A., 1938, II, 375). Dunnione (I) [semicarbazone (II), m.p. 232—233°; 2:4-dinitrophenylhydrazone, m.p. 266—268°] is probably 2:3:3-trimethyl-6:7-benzoumaran-5:6-quinone, although other structures of the heterocyclic ring are possible, and its reactions are interpreted on this basis. With Zn dust and Ac₂O-C₅H₅N it gives dihydrodunnione diacetate, m.p. 143—144°, which with NH₂·NH·CO·NH₂ gives only (II). With o-C₆H₄(NH₂)₂ it gives a (?) phenazine, C₂₁H₁₈ON₂, dimorphic, m.p. 140—141° and ~125°. It dissolves slowly in 5% aq. NaOH, from which the red chelated Na salt is then removed by EtOAc or iso-C₅H₁₁·OH; immediate neutralisation gives a colourless solution, probably containing o-C₆H₄ CO·C·CMe₂·CHMe·OH (becomes red at once with alkali), and an excess of acid regenerates (I). After (I) has been heated in alkali, acidification gives allodunnione (II), o-C₆H₄·C·CO—O phenylhydrazone, m.p. 315° (decomp.) after darkening at ~290°], a mechanism for formation of which is suggested. When kept in 5% NaOH at room temp. or heated in 20% HCl, (I) gives α-dunnione [2:3:3trimethyl-5: 6-benzcoumaran-3: 7-quinone], m.p. 120-122° (2:4-dinitrophenylhydrazone, m.p. 278-280°), converted by alkali into (I) and (II) and by conc. H₂SO₄ at 100° into β-isodunnione [4:4-dimethyl-7:8-benzchroman-5:6-quinone], m.p. 129-131°. With boiling 20% HCl this gives α -isodunnione [4:4-dimethyl-6:7-benzcoumaran-5:8-quinone], m.p. 118—119°. With KMnO₄, (I) gives o-C₆H₄(CO₂H)₂; with H₂O₂-aq. NaOH it gives MeCHO, o-C₆H₄(CO₂H)₂, and (?) α-isopropylphthalide-α-carboxylic acid (III), m.p. 205—206°. With H₂O₂-aq. AcOH, (II) gives o-C₆H₄(CO₂H)₂, but with aq. H₂O₂-NaOH it gives MeCHO and (III), formation of which is postulated as involving fission of two rings and loss of MeCHO by a reversed aldol change. Alkaline H2O2 generates o-C₆H₄(CO₂H)₂ and COMe₂ from lapachol or βlapachone (2: 4-dinitrophenylhydrazone, sinters at ~250°, m.p. 283—285°; with CrO₃ gives 0.59 AcOH). α-Lapachone-2: 4-dinitrophenylhydrazone melts at 277-278°. CrO₃ forms 1.3 AcOH from (I) or (II) (proof of a Me in a side-chain and a CMe2) and 0.5 AcOH from (III) (proof of CMe.). R. S. C. Sumatrol. II. Synthesis of dehydrotetrahydrosumatrol. T. S. Kenny, A. Robertson, and (in part) S. W. George (J.C.S., 1939, 1601—1604).—Phlorisovalerophenone, m.p. 145° (improved prep.; 2:4-dinitrophenylhydrazone, m.p. 196°), is reduced (Zn-Hg) to isoamylphloroglucinol, m.p. 126°, which condenses with Me 2-cyanomethyl-4:5-dimethoxyphenoxyacetate, followed by hydrolysis, to give tetrahydrosumatrolic acid, m.p. 206°, and a phenolic substance, C₂₂H₃₀O₅, m.p. 134° (acetate, m.p. 51°). The acid and Ac₂O-NaOAc yield O-diacetyl-, hydro- Sterols. LXXIII. Reactions of digitogenin and gitogenin. R. E. MARKER and E. ROHRMANN (J. Amer. Chem. Soc., 1939, 61, 2724—2726).—Prep. of gitogenin (I), m.p. 266—268° [diacetate (II), m.p. 241—243°], from *Chlorogalum pomeridianum*, and of digitogenin (III) is described. (I) and (III) both form digitonides. Zn-Hg-HCl has no effect on (I) or (III). H₂-PtO₂ in AcOH at 70°/3 atm. gives dihydro-gitogenin, m.p. 195—197° (tri-p-nitrobenzoate, m.p. 189—191°; stable to SeO₂), and -digitogenin, m.p. 184—186°. SeO₂ oxidises (I) and (III). Br converts (II) into a Br-derivative, m.p. 219—220° (decomp.), reduced by Na in abs. EtOH to (I). CrO₃—AcOH at 95° oxidises (II) to gitogenin lactone diacetate, m.p. 248—251°, hydrolysed by KOH—EtOH to gitogenin lactone, m.p. 276—278° (dibenzoate, m.p. 275—278°). Similarly are obtained bromodigitogenin triacetate, m.p. 142° (decomp.), and digitogenin lactone, m.p. 279—282° (triacetate, m.p. 281—283°). Usnic acid. VII. Analogues of usnolic acid. R. T. Foster, A. Robertson, and (in part) T. V. Healy (J.C.S., 1939, 1594—1601).—A brief review et al., A., 1937, II, 347; cf. Asahina et al., A., 1939, II, 32), and supported by the work of Schöpf and Ross (A., 1939, II, 82). A new structure for usnolic acid (II) is deduced and its formation from (I) is discussed. The comparison of the analogues of (II) gives independent evidence in support of structure (II). 3-Methoxyphenoxyacetone (2:4-dinitrophenylhydrazone, m.p. 146°) is cyclised to 6-methoxy-3-methylcoumarone, which with HCN-HCl gives the 2-formyl compound, m.p. 105° (2:4-dinitrophenylhydrazone, m.p. 262°). This aldehyde with hippuric acid-Ac₂O affords the azlactone, m.p. 194°, hydrolysed (NaOH) to 6-methoxy-3-methylcoumarone-2-pyruvic acid, m.p. 196° (oxime, m.p. 166°), which with H₂O₂ yields the -acetic acid, m.p. 145° (amide, m.p. 162°). The chloride of the acetic acid condenses with CH₂Ac·CO₂Et to give 6'-methoxy-3':3-dimethyl-2':3'-dihydrobenzofurano-(2':3':5:4)-Δ²⁻⁵-cyclohexadienone-2-carboxylic acid (+H₂O), m.p. 147° (Me ester, m.p. 101°; Et ester, m.p. 122°). 2-Hydroxy-4-methoxy-3-methylacetophenone and CH, Br. CO, Et-K, CO, give Et 3-methoxy-6-acetyl-2methylphenoxyacetate, b.p. 180—185°/15 mm. (2:4dinitrophenylhydrazone, m.p. 167°; acid, m.p. 133°), which is cyclised to Et 6-methoxy-3:7-dimethylcoumarone-2-carboxylate, m.p. 75°, hydrolysed to the acid, m.p. 225° (decomp.). This acid with NaOAc-Aco forms 6-methoxy-3:7-dimethylcoumarone, b.p. 92-93°/0·1 mm. (picrate, m.p. 92°), which with HCl-HCN yields the 2-formyl derivative, m.p. 102° (2: 4-dinitrophenylhydrazone, m.p. 284°). The aldehyde condenses with hippuric acid to the azlactone, m.p. 218°, hydrolysed to 6-methoxy-3:7-dimethylcoumarone-2-pyruvic acid, m.p. 228° [oxime, m.p. 162° (decomp.)], and some 6-methoxy-2:3:7-trimethyl-coumarone, m.p. 41° (reduced to the -coumaran). Oxidation (H₂O₂) of the pyruvic acid gives 6-methoxy-3:7-dimethylcoumarone-2-acetic acid, m.p. 158° (amide, m.p. 179°), the chloride of which condenses with CH₂Ac·CO₂Et to form 6'-methoxy-3': 7': 3-trimethyl-2': 3'-dihydrobenzofurano - (2': 3': 5: 4) - $\Delta^2: 5$ - cyclo hexadienone-2-carboxylic acid, m.p. 150° (Et ester, m.p. 115°). F. R. S. Rottlerin. IV, V. Tetrahydroallorottlerin. A. McGookin, A. Robertson, and E. Tittensor (J.C.S., 1939, 1579—1587, 1587—1593).—IV. Octahydrorottlerone (I), previously assigned the structure of the H₄-compound (cf. A., 1939, II, 485), is hydrolysed by 10% NaOH or NaOH-Zn to a mixture of 5: 7-dihydroxy-8-β-phenylpropionyl-2: 2-dimethylchroman, Ph·[CH2]·CO2H, and 5:7-dihydroxy-2:2dimethylchroman [bisbenzeneazo-derivative, m.p. 256° (decomp.)]. 5:7-Dihydroxy-8-acetyl-2:2-dimethylchroman and CH₂O give 5:7:5':7'-tetrahydroxy-8:8'-diacetyl-2:2':2'-tetramethyl-6:6'-dichromanylmethane, m.p. 240°, whilst the corresponding -8β-phenylpropionyl compound similarly affords (I). C-Methylphloracetophenone with CH₂O 2:4:6:2':4':6'-hexahydroxy-5:5'-diacetyl-3:3'-dimethyldiphenylmethane, m.p. 291° (decomp.) [(OMe) $_{6}$ derivative, m.p. 103°], also obtained together with (I) from tetrahydrorottlerin (II) and AcOH. investigation of a no. of derivatives of rottlerin (III) has not evaluated (III) as either $C_{30}H_{28}O_8$ or $C_{31}H_{30}O_8$ but mol. wt. determinations exclude formulæ based on C₆₀ or C₆₂. The (OMe)₃-ether, m.p. 153°, of (II) and O-tetramethylrottlerone, m.p. 136°, are described. The isolation of 2:4:6-trihydroxy-5-acetyl-3-methylazobenzene from (II) and diazoaminobenzene confirms the presence of C-methylphloracetophenone residue in (III). This residue is joined to the rest of the mol. by CH₂ and hence the structures (II) and (III) are assigned. The available evidence shows (III) not to contain a lactone group. V. isoRottlerin (IV) (ef. Brockmann et al., A., 1938, II, 334) is hydrogenated, according to the conditions, to the H₂-derivative and tetrahydroallorottlerin (V), m.p. 241°. Methylation (Me₂SO₄–K₂CO₃) of (V) gives the (OMe)₅-derivative, m.p. 136°, which is hydrogenated (Pd–C) to O-pentamethyltetrahydroallorottlerin, m.p. 101°. Methylation of dihydroisorottlerin affords O-tetra-, m.p. 149°, and -penta-methyldihydroisorottlerin, m.p. 135°, Diazoaminobenzene and (V) yield 2:4:6-trihydroxy-5-acetyl-3-methylazobenzene and 8-benzeneazo-5:7-dihydroxy-6-β-phenyl-propionyl-2:2-dimethylchroman, m.p. 162°, identical with a synthetic specimen, and not identical with either 6-benzeneazo-5: 7-dihydroxy-8-β-phenylpropion- yl-, m.p. 181° , or -8-acetyl-2: 2'-dimethylchroman, m.p. 232° . These results indicate that (V) is constituted as shown. NaOH (4%) and (V) give octahydroallorottlerone (VI), m.p. $175-175\cdot5^{\circ}$, which has properties similar to those of (I). 5:7-Dihydroxy-6- β -phenylpropionyl-2: 2'-dimethylchroman and CH₂O afford (VI), whilst the corresponding 6-Ac derivative gives 5:7:5':7'-tetrahydroxy-6:6'-diacetyl-2:2:2':2'-tetramethyl-8:8'-dichromanylmethane, m.p. 209° . The conversion of (III) into (V) by way of (IV) is explained and the structure which has been deduced for (IV) is supported by its behaviour on hydrogenation and methylation. F. R. S. Cyclic acetals of furfuraldehyde. E. J. Salmi and I. J. Jansson (Suomen Kem., 1939, 12, B, 28—30; cf. A., 1938, II, 427).—Equimol. amounts of furfuraldehyde (I) and $(CH_2 \cdot OH)_2$ in hot C_6H_6 containing $p \cdot C_6H_4$ Me·SO₃H give the ethylene acetal ($\sim 70\%$), b.p. 91—93°/16 mm., of (I). Similarly prepared, the $\alpha\beta$ -propylene (78%), $\alpha\gamma$ -propylene, and $\alpha\gamma$ -butylene acetal, have b.p. 97—99°/19—21 mm., 114·8—116·5°/16 mm., and 121·5—122·5°/18—20 mm., respectively. J. L. D. Thio-compounds derived from o-aroylbenzoic acids. J. O'BROCHTA and A. Lowy (J. Amer. Chem. Soc., 1939, 61, 2765—2768).—Di- α -phenylphthalidyl sulphide (I), (o- C_6H_4 \subset CO \to O)₂S, m.p. 247°, is obtained from o- C_6H_4 Bz·CO₂H (II) by P_2S_5 in hot C_6H_6 or alone at 115°, or from o- C_6H_4 Bz·COCl and H_2S in hot C_6H_6 . It is converted by 5% KOH–EtOH, CrO₃— or HNO₃–AcOH, or Pb(OAc)₂–EtOH– H_2O into (II). With H_2SO_4 , (I) gives anthraquinone. 30% H_2O_2 –AcOH converts (I) into (II) and α -phenylphthalide. Cu dust or Ag converts (I) in cymene into di- α -phenylphthalidyl, m.p. 265—266°. With AlCl₃ and C_6H_6 , (I) gives thiodiphenylphthalide, o- C_6H_4 \subset CPh₂ \to S, m.p. 162°, converted by AcOH– $\rm H_2O_2$ into αα-diphenylphthalide and by $\rm P_2S_5$ into dithiodiphenylphthalide. With $\rm P_2S_5$ in boiling xylene, (II) gives 2-phenyl-3: 4-benzthiophen, m.p. 236—237°. $\rm p\text{-}C_6H_4Me\text{-}CO\text{-}C_6H_4\text{-}CO_2H\text{-}o}$ and p-C₆H₄·Cl··Co··C₆H₄·CO₂H-o give similarly di-α-p-tolyl-, m.p. 212°, and di-α-p-tolorophenyl-phthalidyl sulphide, m.p. 232°, di-α-p-tolyl-, m.p. 247—248°, and di-α-p-tolorophenyl-phthalidyl, m.p. 247°, α-p-tolyl, m.p. 128°, and α-p-tolorophenyl-phthalide, m.p. 124°, and 2-p-tolyl-, m.p. 217°, and 2-p-tolyl-, m.p. 241—242°. R. S. C. Photo-oxidation of pyrrole. F. Bernheim and J. E. Morgan (Nature, 1939, 144, 290).—Pyrrole dissolved in H₂O, EtOH, or COMe₂ and mixed with 0·5 × 10⁻⁴m-methylene-blue (I) rapidly absorbs O₂ in light but not in the dark. The rate of O₂ uptake is a linear function of the light intensity, and effective λλ lie between 5200 and 5800 Å. Eosin, but not fluorescein, can replace (I). No decarboxylation or deamination occurs. The cryst. product, C 49·1, H 5·3, N 14·1%, m.p. 102·5°, yield 58%, gives 72% of succinic acid and 14% of NH₃-nitrogen on alkaline hydrolysis. N-Methyl- and -ethyl-pyrrole are also oxidised under the same conditions, but only 1 instead of 2 O per mol. is taken up. Formation of 2:3:4:6-tetrabromopyridine during bromination of 2:6-dibromopyridine at about 500°. J. P. Wibaut and A. F. Bickel (Rec. trav. chim., 1939, 58, 994—997).—Bromination of 2:6-dibromopyridine in the gaseous phase, in presence of pumice, at 510—520°, gives 2:4:6-tribromo-and 2:3:4:6-tetrabromo-pyridine, m.p. 105·3—106° (cf. 2:3:5:6-isomeride, A., 1932, 1260), and a small amount of Br₅-derivative, m.p. 209—210°. A. T. P. Pyridine series. I. Improved synthesis of 2:3-dimethylpyridine and conversion of the latter into an analogue of thiamin. J. Finkelstein and R. C. Elderfield (J. Org. Chem., 1939, 4, 365—375).—Addition of Br [CH₂]₃OEt to CHAcNa·CO, Et in abs. EtOH gives Et δ-methoxy-αmethylvalerate, b.p. 96-97°/13 mm., hydrolysed to the acid, b.p. 137-139°/11 mm. If the substances react in dioxan the product is Et α-methyl-α-γ-ethoxypropylacetoacetate (I), b.p. 141—143°/16 mm., and an unidentified substance, b.p. 128—130°/0·5 mm. When heated with NaOH-aq. EtoH at 250° under H₂ at 1000 lb. per sq. in. (I) yields ζ-ethoxy-γ-methyl-n-hexan-β-one (II), b.p. $96-99^{\circ}/17$ mm., and a compound, b.p. $141-143^{\circ}/17$ mm. At 100° (II) is transformed by AcOH saturated with HBr at 0° into ζ-bromo-γ-methyl-n-hexan-β-one, b.p. $70-74^{\circ}/1.5$ mm., which is converted by 10% NH3-abs. EtOH into the very hygroscopic 2:3-dimethyltetrahydropyridine (III), b.p. 154—157° (picrate, m.p. 154—157°). Dehydrogenation of (III) with Zn dust gives a small yield of 2:3-dimethylpyridine (IV), b.p. 162-164° (picrate, m.p. 187—188°). In model experiments it is shown that 2-methylpyridine (V) is converted into C₅H₅N by AgNO₃ in 10% AcOH at 180°, Me being lost, and that 2-methyl-5-ethylpiperidine is dehydrogenated by Pd-asbestos at 270-280° without loss of alkyl groups. In this manner (III) is satisfactorily dehydrogenated to (IV). Successive addition of PhBr, (V), and CH₂O to Li in abs. Et₂O leads to 2-3hydroxyethylpyridine, b.p. 88-90°/2 mm. [platinichloride, m.p. 176° (decomp.)], oxidised by boiling aq. KMnO₄ containing K₂CO₃ to picolinic acid. Similarly (IV) yields 3-methyl-2-β-hydroxyethylpyridine (VI), b.p. 94-95°/1 mm. (picrate, m.p. 137-138°). Addition of (VI) to a suspension of 4-amino-2-methyl-5-bromomethylpyrimidine hydrobromide in light petroleum at 100° gives 1-4'-amino-2'-methyl-5'pyrimidylmethyl-2-β-hydroxyethylpyridinium bromide hydrobromide (VII), m.p. 240—245° (decomp.); 1-4'amino-2' - methyl - 5' - pyrimidylmethyl - 3 - methyl - 2 - 3 hydroxyethylpyridinium bromide hydrobromide (VIII), m.p. 240-242° (decomp.), is obtained similarly. (VII) and (VIII) show no antipolyneuritic activity but approximate to the activity of thiamin as measured by carbon dioxide evolution in the yeast test. H. W. Derivatives of 2-aminomethyltetrahydro-quinoline and -isoquinoline. A. Gassmann and H. Rupe (Helv. Chim. Acta, 1939, 22, 1241—1262).—Gradual addition of BzCl to a solution of KCN and 6-methoxyquinoline, b.p. 146—148°/11 mm., m.p. 28°, in H₂O at 5° affords 6-methoxy-1-benzoyl-1: 2-di-hydroquinoline-2-nitrile, m.p. 127°, converted by NH₂OH in MeOH at -3° into the amidoxime, m.p. 148-149° (decomp.), and (?) 6-methoxyquinoline-2nitrile, m.p. 176-177°, transformed by conc. HCl-Et₂O into the corresponding amide, m.p. 202-203° (hudrochloride, m.p. 237—238° after softening at 225°), and hydrolysed by boiling conc. HCl to 6-methoxyquinoline-2-carboxylic acid, m.p. 235-236° (decomp.) after softening at 233—234° (Na salt). (I) is reduced (freshly reduced Na in EtOAc) by H_2 at $\sim 90^\circ/120$ atm. to 6-methoxy-2-benzamidomethyl-1: 2:3:4-tetrahydroquinoline (II), m.p. 131—132° (NO-derivative, m.p. 138—139°). Boiling conc. HCl slowly hydrolyses (II) to 6-methoxy-2-aminomethyl-1:2:3:4-tetrahydroquinoline, b.p. 196—197°/12 mm. (tartrate, decomp. 195°; perchlorate, m.p. 278°; dihydrochloride, m.p. 224-225°), which is condensed with piperonal and then reduced (H, at 65°/100 atm.; Ni) to 6-methoxy-2-3': 4'-methylenedioxybenzylaminomethyl-1:2:3:4tetrahydroquinoline, m.p. 53-54° (sparingly sol. sulphate, nitrate, phosphate, oxalate, perchlorate, picrate, mono-, m.p. 212—213°, and di-, m.p. 179—180° after softening at 171°, -hydrochloride). Similarly (I) and veratraldehyde afford a non-cryst. Schiff's base, hydrogenated to 6-methoxy-2-3': 4'-dimethoxybenzylaminomethyl-1:2:3:4-tetrahydroquinoline (sparingly sol. sulphate, nitrate, phosphate, formate, oxalate, perchlorate, picrate; freely sol. acetate, citrate, tartrate; hydrochloride, m.p. 182—183° after softening at 179°). 1-Aminomethyltetrahydroisoquinoline and piperonal give a non-cryst. Schiff's base, hydrogenated to 1-3': 4'-methylenedioxybenzylaminomethyl-1: 2:3:4tetrahydroisoquinoline [sparingly sol. sulphate, nitrate, hydrobromide, picrate, perchlorate, oxalate, and phosphate; freely sol. formate, acetate, tartrate, and citrate; dihydrochloride, m.p. 248—249° (decomp.)]. Noncryst. 1-3': 4'-dimethoxybenzylaminomethyl-1:2:3:4tetrahydroisoquinoline gives a sparingly sol. oxalate, m.p. 197° (decomp.), picrate, perchlorate, sulphate, and hydriodide and a freely sol. dihydrochloride, m.p. 221° (decomp.), hydrobromide, nitrate, phosphate, acetate, tartrate, and citrate. Improved methods of obtaining 1-benzoyl-1: 2-dihydroquinol-ine-2-nitrile and 2-benzamidomethyltetrahydroquinoline (II) are indicated. Reduction of 1-nitrosoby Zn dust in EtOH-50% AcOH at 0° gives 1-amino-2 - benzamidomethyl - 1:2:3:4-tetrahydroquinoline, m.p. 156° [picrate, m.p. 165° (decomp.)], which shows all the properties characteristic of a hydrazine and gives a benzylidene, m.p. 158—159°, piperonylidene, m.p. 184—185° after softening at 182°, and an aphenylethylidene, m.p. 161—162°, derivative; (II) is formed as by-product and is sole product of the catalytic reduction. Hydrolysis of (II) with boiling conc. HCl gives 2-aminomethyltetrahydroquinoline (III) in 93-95% yield. Addition of nicotinyl chloride in Et₂O or C₆H₆ to (III) gives 1-nicotinyl-2nicotinamido - 1:2:3:4-tetrahydroquinoline, 175—176°. 1-Veratroyl-2-veratramido-1:2:3:4tetrahydroquinoline has m.p. 168°. Veratraldehyde and (III) give a non-cryst. product (picrate), hydrogenated (Ni in MeOH) to 2-3': 4'-dimethoxybenzylaminomethyl-1:2:3:4-tetrahydroquinoline, m.p. 75° (hydrochloride, m.p. 191—192°; sulphate, m.p. 161·5°). Similarly condensation with piperonal followed by reduction leads to 2-3': 4'-methylenedioxybenzylaminomethyl-1:2:3:4-tetrahydroquinoline (hydrochloride, m.p. 213—214°; sulphate, m.p. 177—178°; phosphate, m.p. 204—205°). 1-Methyl-2-nicotinamidomethyl-1:2:3:4-tetrahydroquinoline, m.p. 159—160°, gives a mono-, m.p. 223°, and di-hydrochloride, 1-Methyl-2-veratramidomethyl-1:2:3:4-tetrahydroquinoline, m.p. 161—162°, and its hydrochloride, m.p. 161—162°, are described. With piperonal and veratraldehyde 1-methyl-2-aminomethyl-tetrahydroquinoline gives non-cryst. Schiff's bases, reduced respectively to 1-methyl-2-3′:4′-methylenedioxybenzylaminomethyl-(hydrochloride, m.p. 207—208°) and 1-methyl-2-3′:4′-dimethoxybenzylaminomethyl-[perchlorate, m.p. 193° (decomp.)]-1:2:3:4-tetrahydroquinoline. H. W. 2-Aminomethyltetrahydroquinoline and its derivatives. H. VON BIDDER and H. RUPE (Helv. Chim. Acta, 1939, 22, 1268—1278).—2-Aminomethyl-1:2:3:4-tetrahydroquinoline (I) (improved prep. from 2-cyano-1-benzoyl-1: 2-dihydroquinoline; A., 1939, II, 345) gives a monohydrochloride, m.p. 257°, dihydrochloride, b.p. 265° (decomp.), monohydro-bromide, decomp. 235—236°, Ac derivative, m.p. 48·5—49·5°, *CHPh compound, m.p. 75—76°, formate, m.p. 117·5—118·5°, and a very hygroscopic formyl derivative, b.p. 178—180°/10 mm., m.p. between 20° and 40° (perchlorate). Addition of CH₂Cl·CO₂Et to (I) in C₆H₆ affords the non-cryst. Et 2-tetrahydroquinolylmethylaminoacetate [normal oxalate, m.p. 169-170° (decomp.)]. Similarly, (I) and ClCO₂Et afford Et 2tetrahydroquinolylmethylaminoformate, b.p. 120—125° 10 mm. (much decomp.) [hydrochloride, m.p. 135.5°; unstable perchlorate, m.p. 124°], readily converted into the iminazolone, $CH_2 \subset CH_2 - CH \cdot CH_2 > NH$, b.p. 245—247°/10 mm., m.p. 197°. (I) with $(CH_2)_2O$ at 100° gives mono-, b.p. 232—235°/10 mm., m.p. 105·5— 106.5° , and $di-2-\beta-hydroxyethylaminomethyl-1:2:3:4$ tetrahydroquinoline, b.p. 235—245°/10 mm., m.p. 92—93° [Bz₁, m.p. 115—116°, and Bz₃ derivative, m.p. 95—96°, and its primary diorthophosphate, m.p. 151— 152° (decomp.), and monohydrochloride, m.p. 100.5— 103.5° (decomp.)]. 2-Benzamidomethyltetrahydroquinoline (II) and (CH₂)₂O at 110—120° afford 2 - benzamidomethyl - 1 - β - hydroxyethyltetrahydro quinoline, m.p. 113-114.5° after softening at 110°. 1-Methyl-2-aminomethyltetrahydroquinoline (III) and (CH₂)₂O at 110° yield 1-methyldi-2-β-hydroxyethylaminomethyltetrahydroquinoline, b.p. 260-265°/12.5 mm., 177-179°/0.005 mm., which does not give cryst. salts. (III) gives a normal dicarbonate, m.p. 123—125°. Epichlorohydrin does not give useful results with (III) whereas it is converted by (II) at into 1 - benzamidomethyl - 1 - βy - oxidopropyl -118—119°. 1:2:3:4-tetrahydroquinoline, m.p. CH2Cl·COMe and CH2Br·COPh react violently with (I) whereas (II) and CH₂Br·COPh give 1-phenacyl-2benzamidomethyl-1:2:3:4-tetrahydroquinoline, m.p. 2-β-Hydroxy-β-methylamylaminomethyl-1:2:3:4-tetrahydroquinoline is a viscous, yellow liquid [hydrochloride, m.p. 171-173° (decomp.)]. Condensation of arsenic halides with hydrohalides of pyridine and quinoline. P. P. Popov (J. Gen. Chem. Russ., 1939, 9, 1264—1273).— As halides form complexes when heated with the hydrohalides of C5H5N and quinoline in CHCl3. The following are described: 2C₅H₅NHCl,AsCl₃,CHCl₃, deliquescent $C_5H_5NHBr,AsCl_3$, microcryst. powder giving colourless needles of $3C_5H_5NHBr,2AsBr_3.CHCl_3$ when crystallised from CHCl₃, and yellow needles of $2C_5H_5NHBr,AsBr_3.CHCl_3$, which lose CHCl₃ when dried at 100° and when boiled with C_6H_6 give 5C5H5NHBr,2AsBr3, a yellow powder; the reverse change can be brought about by boiling with CHCl3; $C_5H_5NHI,2AsI_3$, small red crystals giving orange crystals of C_5H_5NH,AsI_3 when boiled with CHCl₃. $C_9H_7NHCl, AsCl_3$ needles, m.p. 122—123°; $C_9H_7NHBr,AsBr_3$, greenish-yellow crystals, m.p. 147—148°; $C_9H_7NHI,2AsI_3$, pale orange ppt. giving golden-yellow leaflets of $C_9H_7NHI,4sI_3$ when boiled with CHCl₃. All these complexes are hygroscopic, those containing I less than the others. When dissolved in H₂O they decompose, the whole of the halogen becoming ionic and the CHCl, being split off intact. The new compounds and the analogous Sb and Bi compounds can be classified into 5 groups and a scheme of formulation is suggested. G. A. R. K. 4-Amino-2-phenylquinoline derivatives. U.P. Basu and P. K. Das-Gupta (J. Indian Chem. Soc., 1939, 16, 301—304).—4-Amino-2-phenylquinoline (I) heated (12—24 hr.) with NEt₂·[CH₂]₂·Br or NEt, [CH2]3 Cl (II), K2CO3, and a trace of Cu powder in xylene gives respectively 4-(β-diethylaminoethyl)-, b.p. 272-276°/6 mm. (hydrochloride; picrate, m.p. 238-239°), and 4-(y-diethylaminopropyl)-amino-2phenylquinoline, b.p. 265—270°/6 mm. (picrate, m.p. 4-Chloro-2-phenylquinoline (III) NEt₂·[CH₂]₄·NH₂ (IV), K₂CO₃, and Cu in C₅H₁₁·OH at 110—120°, or with NEt₂·[CH₂]₃·CHMe·NH₂ at 150—160°, gives respectively 4-(8-diethylaminobutyl)-(picrate, m.p. 203°) and 4-(δ-diethylamino-α-methylbutyl)-aminoquinoline (picrate, m.p. 162°). 4-Amino-6-methoxy-2-phenylquinoline (V), new m.p. 159° (cf. John, A., 1931, 965), with (II) at 160—170° followed by addition of K₂CO₃ and steam-distillation gives 4-(y-diethylaminopropyl)- (picrate, m.p. 185°), while 4chloro-6-methoxy-2-phenylquinoline with (IV) gives $4 - (\delta - diethylaminobutyl) - amino - 6 - methoxy - 2 - phenyl$ quinoline (picrate, m.p. 192°). With p-NH₂·C₆H₄·SO₂·NH₂ or p-NH₂·C₆H₄·SO₂·NEt₂ and a little Cu powder at 160—170°, (III) gives respectively 4-(p-sulphonamido)-, m.p. 250°, and 4-(p-sulphondiethylamido)-anilinoquinoline, m.p. 144°. With (I) in C_6H_6 at the b.p. or with (V) in NPhMe₂ at 150°, p-NHAc·C₆H₄·SO₂Cl gives 4-p'-acetamidobenzenesulphon-amido-2-phenyl-, m.p. 297°, and -6-methoxy-2-phenylquinoline, m.p. 268°; these are respectively hydrolysed to the 4-p'-NH₂-compounds, m.p. 293° and 268° E. W. W. 8-Hydroxyquinoline derivatives.—See A., 1939, I, 625. Action of nitric acid on polycyclic indole derivatives. XIII. Indeno-(2':3':2:3)-indole. N.M. Beyts and S. G. P. Plant (J.C.S., 1939, 1534—1536).—1-Acetylindeno-(2':3':2:3)-indole, m.p. 131°, is nitrated (HNO₃-AcOH) to a mixture of 3-nitro-2-acetoxy-1-acetyl-2:3-dihydroindeno-(2':3':2:3)- indole, m.p. 177—180° (decomp.), and 6(?)-nitro-1-acetylindeno-(2':3':2:3)-indole, m.p. 275° (decomp.); the latter compound is not identical with 5-nitro-1-acetylindeno-(2':3':2:3)-indole, m.p. 247°, prepared by acetylating the 5-nitro-indeno-compound, m.p. 255°, the product of the Fischer reaction on β-hydrindone-p-nitrophenylhydrazone. 1-Benzoylindeno-(2':3':2:3)-indole, m.p. 169—170°, does not give a similar additive product on nitration. The β-naphthyl-hydrazone of β-hydrindone, m.p. 176° (decomp.), with AcOH gives indeno-(2':3':2:1)-β-naphthindole, m.p. 208—209°, the 3-Ac derivative, m.p. 185°, of which with HNO₃—AcOH affords only ?-nitro-3-acetylindeno-(2':3':2:1)-β-naphthindole, m.p. 265° (decomp.), indicating that additive tendency is diminished by the presence of the extra C_6H_6 nucleus. F. R. S. Meso-derivatives of acridine. XII. 5-Chloro-acridine and acridol. N. S. Drozdov. XIII. Preparation and anti-malarial action of substituted 5-aminoacridines. O. M. TSCHERNTZOV and N. S. Drozdov (J. Gen. Chem. Russ., 1939, 9, 1373—1375, 1435—1440).—XII. 5-Chloro- and 5-chloro-2-methyl-acridine gradually decompose in air and light, to give substances of the type $C_6H_4 < C_6H_4 < C_6H_4 < C_6H_4 < C_6H_4 < C_6H_4 < C_6H_4 < C_6H_6$, which yield acridone when distilled. To this are due the reports made by a no. of authors to the effect that acridone or acridol are obtained by distillation of 5-chloroacridine derivatives. XIII. 3 - Dimethylamino - 5 - phenoxyacridine in PhOH and γ-piperidino-β-hydroxypropylamine, heated at 100° for 1 hr., yield 3-dimethylamino-5- $(\gamma - piperidino - \beta - hydroxypropyl)$ aminoacridine, 213-215°. The following are prepared analogously: 8-chloro-3-dimethylamino-5-(γ-piperidino-β-hydroxypropyl)-, an oil, 8-chloro-3-dimethylamino-5-(y-diethylamino-β-hydroxypropyl)-, m.p. 108—109°, 3-dimethylamino - 5 - $(\delta$ - diethylamino - α - methylbutyl) -, an 8-chloro-3-dimethylamino-5- $(\delta$ -diethylamino- α -methylbutyl)-aminoacridine (I), an oil, 5-(δ-diethylamino-αmethylbutyl)amino-3-methoxy-, an oil, 2-chloro-5-(ypiperidino - β - hydroxypropyl)amino - 7 - methoxy - (II), m.p. 130—131.5° [hydrochloride, m.p. 255° (decomp.)], 3-nitro-9-(γ-piperidino-β-hydroxypropyl)amino-7-methoxy-, m.p. 170-171°, 4-nitro-5-methylamino-1-methoxyacridine, m.p. 211-213°. 2:5-Dichloro-7-methoxyacridine, sulphanilamide, and PhOH (3 hr. at 100°) afford 4-(2'-chloro-7'-methoxy-5'-acridyl)aminobenzenesulphonamide, not melting at 300°. (I) and (II) have a pronounced schizotropic action in avian malaria. Acridine derivatives as antimalarials. IV. S. J. Das-Gupta (J. Indian Chem. Soc., 1939, 16, 364—368; cf., A., 1939, I, 282).—5:2:1-SO₂Cl·C₆H₃Cl·CO₂H (I) and p-NH₂·C₆H₄·SO₂·NH₂ (2 mols.) give 2-chloro-5-p'-(amidosulphonyl)anilido-sulphonylbenzoic acid, m.p. 240°, which with p-OMe·C₆H₄·NH₂ and K₂CO₃ in C₅H₁₁·OH gives 4-p''-(amidosulphonyl)anilidosulphonyl-4'-methoxydiphonylamine-2-carboxylic acid, m.p. 246°, converted by POCl₃ at 100° into 5-chloro-3-p-(amidosulphonyl)-anilidosulphonyl-, m.p. 212—215°, which in PhOH with NH₂·CHMe·[CH₂]₃·NEt₂ and NH₂·[CH₂]₄·NEt₂ at 100° gives 3-p-(amidosulphonyl)anilidosulphonyl-5-(δ -diethylamino- α -methyl-n-butylamino)-, m.p. 254—256°, and -5-(δ -diethylamino-n-butylamino)-7-methoxy-acridine, m.p. 220—222°, respectively. Similarly (I) and p-NH $_2$ ·C $_6$ H $_4$ ·SO $_2$ ·NEt $_2$ give 2-chloro-5-p'-(diethylamidosulphonyl)anilidosulphonylbenzoic acid, m.p. 194—195°, whence 4-p''-(diethylamidosulphonyl)anilidosulphonyl - 4' - methoxydiphenylamine - 2 - carboxylic acid, m.p. 202—203°, 5-chloro-3-p-(diethylamidosulphonyl)anilidosulphonyl-, m.p. 187—189°, and 3-p-(diethylamidosulphonyl)anilidosulphonyl-5 - (δ -diethylamidosulphonyl)anilidosulphonyl-5 - (δ -diethylamino- α -methyl-n-butylamino)-, m.p. ~160°, -5-(δ -diethylamino-n-butylamino)-, m.p. ~130°, and -5-(γ -diethylamino-n-propyl)-7-methoxyacridine, m.p. ~200°, are obtained. p-NH $_2$ ·C $_6$ H $_4$ ·SO $_2$ ·NEt $_2$ and p-NHAc·C $_6$ H $_4$ ·SO $_2$ Cl give the Ac derivative, m.p. p-NHAc·C₆H₄·SO₂Cl give the Ac derivative, m.p. 228°, of p'-aminobenzenesulphonanilido-p-sulphondiethylamide, m.p. 176°, which with 2:5-dichloro-7-methoxy- or -7-methyl-acridine gives respectively 2-chloro-5-p'-(diethylamidosulphonyl)anilido-p-sulphonylanilino-7-methoxy-, m.p. 160—161°, and -7-methyl-acridine, m.p. 133—134°. E. W. W. Action of ethyl acetoacetate on 2-aminopyridine. S. N. Chitriik (J. Gen. Chem. Russ., 1939, 9, 1109—1117).—2-Aminopyridine and CH₂Ac·CO₂Et, heated at 150—160° (4—5 hr.), yield 6-methyl-1:2-benz-4-pyrimidone (II), m.p. 122° [+H₂O, m.p. 105—107°; +1½H₂O, m.p. 84°; platinichloride, m.p. 229° (decomp.); hydrochloride, m.p. 315°; picrate, m.p. 177° (decomp.); methiodide, not melting at 280°; compound with maleic anhydride, m.p. 135—136°; 5-NO₂-derivative, m.p. 184°]. At 100° (4 hr.) the product is 2-acetoacetamidopyridine, m.p. 113° [methiodide, m.p. 133—134° (decomp.)], which with H₂SO₄ (24 hr. at room temp.) gives (I). At 130° the product is the 2-pyridylamide of β-2-pyridylaminocrotonic acid, m.p. 166°. R. T. Oxidation products of indole. C. Toffoli (R. Ist. San. Pubbl., 1939, 2, 565—572).—Mg 2-methylindolyl bromide (I) and O₂ give a yellow, cryst. product (II), C₁₈H₁₆ON₂, m.p. 208° (cf. Oddo, A., 1921, i, 127), and di-(2-methyl-3-indolyl), m.p. 237—238°, also afforded by (I) with Mg Et acetoacetate. Mg indolyl bromide and O₂ give a small amount of a product, m.p. 255—260° (decomp.). Spontaneous oxidation of 2-methylindole also affords (II) and a product (2-ketoindole?), m.p. 120°. F. O. H. Molecular combination of iminomethenyl compounds. C. Toffoli (R. Ist. San. Pubbl., 1939, 2, 677—708).—The yellow compound (I), m.p. 208°, of Oddo (cf. preceding abstract) is considered to be di-(2-methyl-3-indolyl) oxide; if this is true, it should be colourless. Various reactions of (I) with alkalis, NaHSO₃, NH₂OH, etc. are always attended by formation of 2-methylindole. These and parallel reactions indicate that (I) is formed not by a reaction involving an active H, viz., —CH:N—+ HR → —CHR·NH—, but by a mol. combination of the type—CH:N···H—R. Such a concept is applicable to, e.g., theobromine and indigotin. F. O. H. Acids derived from various heterocyclic types. —See B., 1939, 1104. Canavanine picrolonate; deaminocanavanine picrate, decomp. 216—217°, and flavianate, decomp. 225—226°.—See A., 1939, III, 1004, 1005. Constitution of uric acid riboside.—See A., 1939, III, 986. Isolation and structure of bonelline, the green pigment of Bonellia viridis. E. Lederer (Compt. rend., 1939, 209, 528—530).—Bonelline (I) (prep. described), m.p. >300°, exhibits dichroism in conc. solution in org. solvents, and forms with $\mathrm{CH_2N_2}$ a OMe-derivative which gives complex Cu, Fe, and Zn salts. The absorption spectra of (I) and mesopyrrochlorin (II) in dioxan and 12% HCl and the two fluorescence spectra are nearly identical (cf. Stern and Molvig, A., 1937, I, 165). (I) is probably $\mathrm{C_{34}H_{36}O_4N_4\pm H_2}$, which is 6- γ -dihydroxymesopyrrochlorin (cf. Herrle, et al., A., 1936, 1272), the OH groups being remnants of the isocyclic ring in a-chlorophyll. Melanin and its precursors. I. W. L. C. VEER (Rec. trav. chim., 1939, 58, 949—955).—Tyrosine in $\rm H_2O$ is oxidised with $\rm O_2$ + tyrosinase ($p_{\rm H}$ 6—6·5) to give an aq. solution (I) of "red substance" (II) (cf. Raper, A., 1927, 278). (I) and NHPh·NH₂, $p\text{-NO}_2\cdot C_6 H_4\cdot NH\cdot NH_2$, or $p\text{-}C_6 H_4 \text{Br·NH·NH}_2$, in 30% aq. AcOH, give the corresponding monohydrazones, m.p. ~168° (decomp.) (indefinite) (+H₂O), m.p. ~190° (decomp.) (indefinite) (+H₂O), or m.p. ~174° (decomp.) (+2H₂O), respectively. (I) and NH₂OH, NH₂·CO·NH·NH₂, or $2:4:1-(NO_2)_2C_6H_3\cdot NH\cdot NH_2$ do not react. Results support the constitution of (II) given by Raper (loc. cit.); it may be important as an anti-pernicious anæmia principle. A. T. P. Synthesis of 4-methyl-5-β-hydroxyethylthiazole and its homologues. A. G. PESINA (J. Gen. Chem. Russ., 1939, 9, 804—813).—OH·[CH₂]₂·CHAcCl (I) is synthesised: (i) CHAcNa·CO₂Et and (CH₂Br)₂ give Et γ -bromo- α -acetylbutyrate, b.p. 67—75° [5—6 mm., converted by SO_2Cl_2 at 0° into Et α -chloro- γ bromo-α-acetyl butyrate, b.p. 119-123°/7-9 mm., yielding (I) on hydrolysis with AcOH-H₂SO₄, and (ii) CHAcNa·CO₂Et and OH·[CH₂]₂·Br yield Et γ-hydroxy-α-acetylbutyrate, b.p. 75—80°/20—22 mm., converted by SO₂Cl₂ into Et α-chloro-γ-hydroxy-αacetylbutyrate, b.p. 95—103°/12—14 mm., which gives (I) on hydrolysis with AcOH-H₂SO₄. (I) and NH:CH·SH yield 4-methyl-5-β-hydroxyethylthiazole (A., 1936, 1394). The synthesis of the following is described: 2:4-dimethyl-5- β -hydroxyethylthiazole, b.p. 130—131°/7—8 mm. (picrolonate, m.p. 139—140°); 4-methyl-2-ethyl-5-β-hydroxyethylthiazole, b.p. 133— 136°/3—5 mm. (picrolonate, m.p. 149—151°); 4-methyl-2-propyl-5-β-hydroxyethylthiazole, b.p. 140—142°/3—5 mm., and 4-methyl-5-β-hydroxyethylthiazole (picrolonate, m.p. 196—197°). Reactions in the thiazole series. II. Reaction of 1-chlorobenzthiazole with thiocarbamide in aqueous media. G. W. WATT (J. Org. Chem., 1939, 4, 436—441).—Protracted action of 1-chlorobenzthiazole and CS(NH₂)₂ in H₂O at room temp. gives 1-thiolbenzthiazole (I), m.p. 179·2—180° corr.), and 1:1'-dibenzthiazolyl sulphide (II), m.p. 98.7—99.1° (corr.). The yields of (I) and (II) are decreased with decrease in concn.; at any particular concn. the yield increases with increased time of action and the rate at which these reactions approach completion is increased by the presence of either (I) or (II). The formation of (II) is dependent on the formation and ionisation of an intermediate additive compound. H. W. High mol. wt. fatty acid derivatives. I. Characterisation of acids. H. GILMAN and G. M. FORD (Iowa State Coll. J. Sci., 1939, 13, 135—147).— Carbazole (0.01 mol.) with the acid chloride (0.01 mol.) (prepared from the acid and SOCl₂) at 100—150° until no more HCl is evolved affords the N-acylcarbazole. The following are prepared: N-lauryl-, m.p. 78—79° -myristyl-, m.p. 81—82°, -palmityl-, m.p. 85—86°, -oleyl-, an oil, and -stearyl-carbazole, m.p. 91—92°. The following N-acylphenthiazines are prepared similarly: N-lauryl-, m.p. 70°, -myristyl-, m.p. 75°, -palmityl-, m.p. 80°, -oleyl-, an oil, and -stearyl-phen-thiazine, m.p. 86°. Equiv. amounts of p-C₆H₄Me·SO₂·NH₂ and the acid chloride at 100— 125°/2 hr. afford N-lauryl-, m.p. 83-84°, -myristyl-, m.p. 89—90°, -palmityl-, m.p. 93—94°, -oleyl-, an oil, and -stearyl-p-toluenesulphonamide, m.p. 98-99°. p-C₆H₄Ph·CO·CH₂Br with the appropriate acid and Na₂CO₃ affords p-phenylphenacyl myristate, m.p. 90°, palmitate, m.p. 94°, and stearate, m.p. 97° (lit., 91°). p-NO₂·C₆H₄·NH₂ with the acid chloride affords laur-, m.p. 78°, myrist-, m.p. 84°, palmit-, m.p. 93°, and stear-p-nitroanilide, m.p. 96°. The Na derivative of saccharin (0.01 mol.) with the acid chloride (0.01 mol.) in boiling CHCl₃/3 hr. gives N-lauryl-, m.p. 88—89°, -myristyl-, m.p. 90—91°, -palmityl-, m.p. 90°, -oleyl-, an oil, and -stearyl-saccharin, m.p. 95°. The following are prepared according to Cerezo and Olay's directions (A., 1936, 1251): lauryl, m.p. 110—111°, myristyl, m.p. 118°, palmityl, m.p. 120-121°, and oleyl 2:4dinitrophenylhydrazide. Equimol. amounts of 2-nitrop-toluidine and the acid chloride at 100-150°/3 hr. give N-lauryl-, m.p. 62—63°, -myristyl-, m.p. 73—74°, -palmityl-, m.p. 78—79°, and -stearyl-2-nitro-p-toluid-ide, m.p. 85°. Similarly, Hg(p-C₆H₄Me)₂ and the acid chloride in boiling xylene/8 hr. afford Hg p-tolyl laurate, m.p. 93-94°, myristate, m.p. 95-96°, palmitate, m.p. 99°, oleate, an oil, and stearate, m.p. 102—103°. The following are prepared similarly: Hg Ph laurate, m.p. 82°, myristate, m.p. 86°, palmitate, m.p. 93°, oleate, an oil, and stearate, m.p. 95°. Equimol. amounts of PbPh4 and the acid in boiling xylene/ 10 hr. give Pb Ph₃ laurate, m.p. 91°, myristate, m.p. 102—103°, palmitate, m.p. 110°, and stearate, m.p. 112°. SnPh4 and stearic acid do not react even in presence of \$\text{SiO}_2\$ gel or when heated under pressure. Equimol. amounts of CO(NH₂)₂ and the acid chloride in boiling dry C₅H₅N afford (cf. Stendal, A., 1933, mr bolining dry C₅H₅N altord (cf. Steintal, A., 1935, 806; Jacobson, A., 1936, 1495): lauryl-, m.p. 182°, myristyl-, m.p. 178°, and palmityl-carbamide, m.p. 175°. Lauryl-, m.p. 138°, myristyl-, m.p. 135°, palmityl-, m.p. 135—136°, stearyl-, m.p. 133°, and oleyl-thiocarbamide, m.p. 112—113°, are prepared similarly. Et stearate with CS(NH₂)₂ in 25% NaOEt—C₅H₅N gives distearylthiocarbamide, m.p. 100°. Equimol. amounts of the acids and p-xenylamine (I) at 135—140°/5 hr. (sealed tube) or of the acid chloride and (I) at 150-200°/5 hr. (sealed tube) afford (cf. Kimura and Nihayashi, A., 1936, 53) laur-, m.p. 146°, myrist-, m.p. 143°, palmit-, m.p. 142°, and stear-pphenylanilide, m.p. 143°. 4-Lauryl-, m.p. 101-102°, -myristyl-, m.p. 102—103°, -palmityl-, m.p. 103—104°, and -stearyl-diphenyl, m.p. 106—107°, are prepared by the Friedel-Crafts reaction in CS₂. Carbazole (0.005 mol.), the appropriate acid chloride Carbazole (0.005 mol.), the appropriate acid chloride (0.01 mol.), and AlCl₃ (0.02 mol.) in PhNO₂ yield 3:6-dilauryl-, m.p. 176°, -dimyristyl-, m.p. 169°, and -dipalmityl-carbazole, m.p. 162°. p-NH₂·C₆H₄·CO₂H (0.01 mol.) and acid chloride (0.01 mol.) in boiling C₅H₅N/5 hr. give p-laur-, m.p. 227—228°, -myrist-, m.p. 224—225°, -palmit-, m.p. 226—227°, and -stear-amidobenzoic acid, m.p. 221°. N-Palmityland -stearyl-anthranilic acid, m.p. 100° and 113°. respectively, are prepared similarly by refluxing in CHCl₃. Equimol. amounts of 2-aminodiphenylene oxide and acid chloride at 125-160°/5 hr. give 2-palmit-, m.p. 130°, and -stear-amidodiphenylene oxide, m.p. 134°. Benzidine (0.005 mol.) with the acid chloride (0·01 mol.) in boiling dry C₅H₅N/5 hr. gives dilauryl-, m.p. 248°, dimyristyl-, m.p. 241—242°, dipalmityl-, m.p. 233°, and distearyl-benzidine, m.p. 232°. Equimol. amounts of 3-stearylcarbazole (II) and stearyl chloride at 150—200° give 3: N-distearylcarbazole (III), m.p. 86—87°. A Friedel-Crafts reaction on the same reactants gives 3:6distearylcarbazole. (III) with boiling EtOH-HCl/4 hr. gives (II) and stearic acid. J. L. D. Alkaloids of Mitragyna rotundifolia. I. G. Barger, E. Dyer, and L. J. Sargent (J. Org. Chem., 1939, 4, 418—427).—Percolation of the air-dried leaves of M. rotundifloria with 95% EtOH leads to rhynchophylline (I) and rotundifoline (II). (I) is identical with the mitrinermine of Raymond-Hamet et al. (A., 1935, 366) and the alkaloid of Ouronparia rhynchophylla. (I), $C_{22}H_{28}O_4N_2$, m.p. 208—209°, $[\alpha]_D^{15}$ —14·5° in CHCl₃, contains 2 OMe, one of which is present as CO₂Me, but no CH₂O₂. One N is tert. and basic whereas the other belongs to an indole ring. NMe is absent. The function of the fourth O is unknown since (I) gives negative tests for OH, enol. or CO. The active H (Zerevitinov) may be assigned to NH. The suggestion that (I) is a OMe-derivative of yohimbine does not appear to be supported by chemical or optical evidence. (I) is hydrolysed to amorphous *rhynchophyllic acid*, slow decomp. >150° after softening at 140°, which, when distilled with CaO, gives an unidentified oil and a neutral substance, C₁₀H₉ON, m.p. 182—184° after softening at 180°, which dissolves in boiling alkali and gives a substance yielding a positive Ehrlich action when distilled with Zn dust; it is possibly a methylcarbostyril. Degradation of (I) by heating with soda-lime gives a mixture of oxygenated indoles, NH3, and a base, C8H9ON or C₈H₁₁ON (picrate, m.p. 123—125° after softening at 115°), which resembles C₅H₅N. CO₂ is evolved when (I) is boiled with 30% H_2SO_4 and a residue resembling that derived from mitragynine is obtained. (II), m.p. 233—234°, $[\alpha]_D^{15}+124^\circ$ in CHCl₃, is $C_{22}H_{26}O_5N_2$. It contains 2 OMe (one present in CO_2 Me), but no CH2O2 or NMe. It contains 1.4 active H, part of which may be ascribed to an enolic OH since a deep red colour is produced with FeCl, in non-hydroxylic solvents. The nature of the remaining two O is uncertain since (II) does not give definite products of acetylation and does not yield a semicarbazone. One of the N is basic and tert.; the other is a member of an indole ring. (II) is hydrolysed to the amorphous, amphoteric rotundifolic acid, $C_{21}H_{24}O_5N_2$, which softens at 160°, effervesces at >165°, and becomes brown at 170°. Decarboxylation of (II) by CaO leads to the base, $C_{20}H_{24}O_3N_2$, m.p. 200—202° after softening at 198°. When heated with sodalime (II) gives a mixture of indoles, NH3, and bases resembling C5H5N. CO2 is eliminated when (II) is boiled with 30% H₂SO₄ and the residue is similar to that derived from (I). Dehydrogenation of (II) by Se gives a mixture from which the base, CoH13N (picrate, m.p. 134-135°), is isolated; it is optically inactive, does not give a NO-derivative, but yields a non-cryst. methiodide. A quantity of amorphous alkaloid, the composition of which is similar to that of (I) and (II), was isolated. Its corresponding acid yields the substances C₁₀H₉ON and C₉H₁₃N. H. W. Crystalline alkaloid of the Rubiaceæ described by Schumann as Adina rubrostipulata. RAY-MOND-HAMET (Bull. Sci. Pharmacol., 1939, 41, 327— 336).—Rubradinine (Denis, A., 1937, II, 266) is identical with mitraphylline (ibid., 217). R. T. Synthesis of the alkaloid pilosinine. A. M. Poljakova, V. A. Preobrashenski, and N. A. Preobrashenski (J. Gen. Chem. Russ., 1939, 9, 1402—1409).—(•CH₂•CO₂Et)₂ and HCO₂Et condensed in NaOMe-MeOH (2 days at 0°, then 2 days at room temp.) yield Et₂ formylsuccinate, reduced (Al-Hg) to Et₂ itaconate, converted by distillation into Et pilosininate, b.p. 273—276°, hydrolysed to pilosininic acid, CO CH₂ CH·CO₂H, m.p. 64—65°, the chloride, b.p. 107°/12 mm., of which is treated the chloride, b.p. $107^{\circ}/12$ mm., of which is treated with $\mathrm{CH_2N_2}$. The resulting pilosininyl diazomethyl ketone, shaken with Ag₂O in EtOH, yields Et homopilosininate, b.p. 161°/15 mm., hydrolysed to homo-pilosininic acid, m.p. 86·5—87·5°, the chloride, b.p. 126°/0·2 mm., of which is treated with CH₂N₂, and the homopilosininyl diazomethyl ketone thus obtained is converted into homopilosininyl acetoxymethyl ketone (I), b.p. 168°/0.5 mm., by the action of AcOH at 70°, and into the chloromethyl ketone (II), b.p. 163°/0.7 mm., by saturation of its Et₂O solution with HCl. (II) in EtOH and K phthalimide (8 hr. at 100°) give homopilosininyl phthalimidomethyl ketone, m.p. 146— 147°. This, heated with 1:1 HCl (8 hr. at the b.p.), affords homopilosininyl aminomethyl ketone (hydrochloride, m.p. 140—143°), which with aq. KCNS (8 hr. at 100°) gives 2-thiolpilosinidine, m.p. 202.5— 203°, and this is converted by boiling with aq. FeCl₃ into pilosinidine (III) (nitrate, m.p. 117-118°), from which pilosinine is prepared by treatment successively with MeI and KOH. (III) is also prepared by shaking (I) with aq. Cu(OAc)₂, aq. CH₂O, and aq. NH₃, and then passing H₂S at 100° (Weidenhagen reaction). Constitution and synthesis of the alkaloid anonaine. G. Barger and G. Weitnauer (Helv. Chim. Acta, 1939, 22, 1036—1047; cf. Santos, A., 1931, 242).—Anonaine (I), m.p. 122—123°, $[\alpha]_{\rm D}^{20}$ —52° in CHCl3, obtained by percolating the bark of Anona reticulata with 95% EtOH, is C17H15O2N. The hydrochloride has m.p. 277.5° (decomp.). It is a sec. non-phenolic base since it gives the basic N-methylanonaine [hydriodide, m.p. 246-247° (decomp.)], a neutral NO-derivative, m.p. 229—230°, and an Ac compound, m.p. 229-230°. It contains 1 active H (Zerevitinov) and CH₂O₂ but not NMe, OMe, CO₂H, or CO. Mel and (I) in H2O afford the quaternary iodide, $C_{19}H_{20}O_2NI$, m.p. 217°, transformed by KOH–EtOH– H_2O into the methine base, m.p. 87— 90°, the methiodide, m.p. 270.5° (decomp.), of which is converted into methylenedioxyvinylphenanthrene (II), m.p. 87°. This is oxidised to methylenedioxyphenanthrenecarboxylic acid, sublimes at 240° (partial decomp.), which is decarboxylated by Cu chromite in quinoline to methylenedioxyphenanthrene [picrate, m.p. 168° (decomp.)]. o-NO₂·C₆H₄·CH₂·COCl and homopiperonylamine in C6H6 afford o-nitrophenylacet-β-3: 4-methylenedioxyphenylethylamide, m.p. 119°, cyclised by POCl₃ in CHCl₃ at room temp. to 6:7methylenedioxy-1:0'-nitrobenzyl-3:4-dihydroisoquinoline (III), m.p. 165°. This is reduced (Zn dust and HCl) to the corresponding, non-cryst. NH_0 -compound (dihydrochloride, m.p. 257°). This is diazotised and reduced to dl-anonaine, m.p. 285° (decomp.) (Ac derivative, m.p. 217°). The synthetic product is degraded (Hoffmann) in the same manner at (I), thus giving (II). MeI and (III) at 100° afford 6:7methylenedioxy-1-o'-nitrobenzyl-3: 4-dihydroisoquinoline methiodide, m.p. 243° (decomp.), converted by Zn dust and HCl at 100° into 6:7-methylenedioxy-1-o'aminobenzyl - 2 - methyltetrahydroisoquinoline hydrochloride, m.p. 259—260° (decomp.)], which when diazotised and reduced gives dl-2-methylanonaine [hydriodide, m.p. 244° (decomp.); methiodide, m.p. 210—211°]. Alkaloids of Roemeria refracta, D.C. III. Alkaloids of plants of the Papaveraceæ family. R. A. Konovalova, S. Junusov, and A. P. Orekhov (J. Gen. Chem. Russ., 1939, 9, 1356—1364).—The plant contains l-ephedrine, d-\(psi-ephedrine, and roemerine, C₁₈H₁₇O₂N, m.p. 101—102·5° (hydrochloride, m.p. 262—263°; picrate, m.p. 195—196°), the methiodide, m.p. 215—216°, of which gives (by the Hofmann degradation) de-N-methylroemerine, m.p. 73—74°; the methiodide, m.p. 274—275°, of this, heated with KOH-EtOH, gives a product, $C_{17}H_{12}O_2$, m.p. 86—87°. This is oxidised (KMnO₄) 86-87°. to an acid, C₁₆H₁₀O₄, m.p. 264°, which, when heated CH_2 with Cu-Cr₂O₃, yields CO₂ CH₂O₂ ĊН and a methylenedioxyphen-NMe anthrene, m.p. 84—85° (picrate, m.p. $167-168^{\circ}$; Br_2 -deriv- CH_2 ative, m.p. 196—197°). ĆH₂ Roemerine (annexed struc- ture) yield phenanthrene when distilled with Zn dust. R. T. Dichloro-substituted phenylarsinic acids and Dichloro-substituted phenylarsinic acids and their derivatives. G. I. Braz and I. V. Tuturin (J. Gen. Chem. Russ., 1939, 9, 992—995).—2:5- $C_6H_3Cl_2\cdot NH_2$ in AcOH is diazotised in presence of AsCl₃ and CuCl, and the solution is heated at 100°, yielding 2:5-dichlorophenylarsinic acid, not melting at 250°, whence is obtained 2:5-dichlorophenyldichloroarsine, m.p. 56—57°. 2:4- and 3:4-Dichlorophenylarsinic acid, both not melting at 250°, and 2:4-, b.p. 167—168°/12 mm., and 3:4-dichlorophenyldichloroarsine, b.p. 175—176°/12 mm., are described. Certain side-chain substituted derivatives of p-tolylarsinic acid. S. M. Scherlin, G. I. Braz, A. J. JAKUBOVITSCH, and A. I. KONOVALTSCHIK (J. Gen. Chem. Russ., 1939, 9, 985—991).—p-NH₂·C₆H₄·CH₂·OH in H₂SO₄ and AsCl₃ is diazotised, and the product is heated with CuCl, yielding 4hydroxymethylphenylarsinic acid, m.p. 165-171° (decomp.), which is converted into 4-hydroxymethylphenyldichloroarsine (I), an oil, and 4-hydroxymethylphenylarsine oxide, sinters at 260°, decomp. 264-265°. (I) in C_6H_6 and PCl_3 afford 4-chloromethylphenyldichloroarsine, m.p. 29—30°, converted by aq. H₂O₂ at room temp. into 4-chloromethylphenylarsinic acid. p-NH₂·C₆H₄·CH₂·CN in MeOH is similarly converted into 4-carboxymethylphenyldichloroarsine (II), m.p. 89—90°, and 4-cyanomethylphenyldichloroarsine (III), m.p. $56-57^{\circ}$. This treated successively with NaHCO₃ and H₂O₂, affords 4-cyanomethylphenylarsinic acid (IV), not melting at 280°. (IV) in HCl and SO₂ give (III), converted into the *oxide*, sinters at 216°, m.p. 218—220° (decomp.), by aq. NaHCO₃. (IV) in conc. HCl and SO₂ afford the amide, m.p. 143-145°, of 4-carboxymethylphenyldichloroarsine, m.p. 107·5-109°. Introduction of arsenic into the aromatic nucleus by means of mercury compounds. C. D. Nenitzescu, D. A. Isācescu, and C. Gruescu (Bul. Soc. Chim. România, 1938, 20, 135—138).—HgPhCl (2 mols.) and AsCl₃ (1 mol.) at 110° give 61% of AsPh₂Cl and 8% of AsPhCl₂, separated by light petroleum. p-C₆H₄Cl·HgCl (78) and AsCl₃ (60 g.) at 110° give p-C₆H₄Cl·AsCl₂ (29 g.), converted by boiling aq. Cl₂ into p-C₆H₄Cl·AsO₃H₂ (63%), which with NaNO₃ in H₂SO₄ gives the 3-NO₂-acid and thence by 40% KOH at 100° 65% of 3:4:1-NO₂·C₆H₃(OH)·AsO₃H₂. R. S. C. Mercuration of benzene and chlorobenzene. C. D. Nenitzescu, D. A. Isăcescu, and C. Gruescu (Bul. Soc. Chim. România, 1938, 20, 127—134).—92% of HgPh·OAc is obtained by heating Hg(OAc)₂ (1 mol.) in C_6H_6 (35 mols.) and AcOH (20 mols.) at 100° for 9 hr. Other mixtures give lower yields. $p\text{-}C_6H_4\text{Cl·Hg·OAc}$, similarly obtained in 50% yield, with aq. Br gives $p\text{-}C_6H_4\text{ClBr}$, and with NaCl in AcOH gives $p\text{-}C_6H_4\text{Cl·HgCl}$, m.p. 240°. HgPh·OAc and Hg(OAc)₂ are separated by the solubilities in C_6H_6 [1·6 g. of HgPh·OAc compared with 0·008 g. of Hg(OAc)₂ per 100 c.c.]. R. S. C. Mercury derivatives of phenacetin. M. RAGNO (Annali Chim. Appl., 1939, 29, 414—418; cf. A., 1939, III, 396).—Hg(OAc)₂ and phenacetin give 2-mercuriphenacetin acetate, C₁₂H₁₅O₄NHg, m.p. 169—170° (decomp.), converted by NaI and KOH into the corresponding bromide, m.p. 225°, and hydrate, m.p. 255—258° (decomp.), respectively, and, by aq. EtOH–Na₂S₂O₄, into 2-mercuridiphenacetin, $C_{20}H_{24}O_4N_2Hg$, decomp. 245°. F. O. H. Reaction between mercury diphenyl and monobasic organic acids. M. M. Koton (J. Gen. Chem. Russ., 1939, 9, 912—916).—HgPh2 reacts with monobasic org. acids as follows: HgPh2 + R·CO2H \rightarrow C6H6 + R·CO2HgPh. The following are described: Hg Ph formate, m.p. 135—138° (lit. m.p. 171°), acetate, propionate, m.p. 80—81°, (lit. m.p. 145—165°), lactate, m.p. 154—155°, n-butyrate, m.p. 91°, a-hydroxybutyrate, m.p. 159°, hexoate, m.p. 82—83°, stearate, m.p. 90—92°, benzoate, m.p. 97—98°, and salicylate, m.p. 200°. Decomposition of iodonium salts. Reactions with mercury, tellurium, and antimony. R. B. Sandin, F. T. McClure, and F. Irwin (J. Amer. Chem. Soc., 1939, 61, 2944—2946).—IR₂Cl (R = Ph or p-C₆H₄Me) and Hg in boiling Pr^aOH or H₂O give HgRCl. Similarly, IR₂Cl (R as before) and Te in boiling Pr^aOH or H₂O-EtOH-H₂S at room temp. give TeR₂, isolated as TeR₂Br₂. Heating IPh₂Cl and Te alone gives TePh₂Cl₂. IPh₂Cl, Na₂S, and Sb in Et₂O-H₂O at room temp. give (SbPh₃)₂S. Probably some at least of the IR₂Cl decomposes by a non-ionic mechanism, the octet of the I expanding to absorb the Cl and form a complex which then decomposes to PhI, Ph, and Cl. R. S. C. Reaction between triphenylbenzylphosphonium bromide and sodium. L. N. PARFENTEEV and A. A. SCHAMSCHURIN (J. Gen. Chem. Russ., 1939, 9, 865—867).—Na reacts with PPh₃Br·CH₂Ph with elimination of HBr to give PPh₃:CHPh, identified by hydrolysis to PPh₃O and PhMe. V. A. P. Micro-gas-analytical determination of the nitrogen content of organic compounds. H. Gysel (Helv. Chim. Acta, 1939, 22, 1088—1095).— The front portion of the "supremax" tube contains wire-form CuO and three spirals of reduced Cu gauze. It is heated electrically by a fixed furnace at 720— 730°. The back portion of the tube contains the substance mixed in a porcelain boat with CuO and PbCrO₄; it is followed by a Cu gauze. This portion of the tube is heated by a movable furnace operated at 800-810°. By means of a thermo-element it is possible to obtain a graph of the relation between temp, and distance between the fixed and movable furnaces and hence to regulate suitably the temp. to which the substance is exposed. The liberated \hat{N}_2 is measured. Arrangement is made so that CO₂ can be passed through the tube in either direction, thus allowing fresh boats to be introduced during series analyses without infiltration of air or necessity of altering the heating by the fixed furnace. A complete analysis can be made in 35-45 min. and the error is $\Rightarrow \pm 0.2\%$. H. W. Potentiometric studies in oxidation-reduction reactions. VI. Iodometric determination of organic acids. VII. Determination of aromatic compounds with potassium chlorate. B. Singh and S. Singh (J. Indian Chem. Soc., 1939, 16, 343—345; 346—348).—VI. $\rm H_2C_2O_4$, tartaric, citric, malic, and glycollic acids have been determined potentiometrically by the iodometric method, using Ba, Zn, or Mg salts as pptg. agents. The liberated I was titrated with $\rm Na_2S_2O_3$ at 10°, using a Pt electrode coupled with a saturated HgCl electrode. VII. PhOH, p-NO₂·C₆H₄·NH₂, NHPh₂, and benzoquinone have been determined potentiometrically by titration against standard KClO₃, at 25°, in presence of HCl. W. R. A. Rapid determination of esters of volatile fatty acids. L. E. Grandchamp and J. Vollaire-Salva (Ann. Falsif., 1939, 32, 244—247).—Volatile acidity is determined before and after hydrolysis (NaOH; 20°). The validity of the method is supported by chemical and organoleptic tests, and its forensic application is indicated. I. A. P. [Determination of] carotene. V. E. Munsey (J. Assoc. Off. Agric. Chem., 1939, 22, 664—673).—Peterson and Hughes' method (cf. *ibid.*, 79) gives consistent results when tested by collaborative analysis. Those by Fraps' and Russell's methods are lower and more variable, but the former may be used when no spectrophotometer is available, using 0·1n-K₂Cr₂O₇ as standard. E. C. S. Colorimetric silicomolybdic acid method for determining small quantities of nicotine. G. L. SUTHERLAND, R. P. DAROGA, and A. G. POLLARD (J.S.C.I., 1939, 58, 284—288).—Hofmann's method (B., 1933, 365) is modified. Conditions of pptn. of nicotine silicomolybdate and the subsequent development of the blue colour by aq. glycine—NaHSO₃ requisite for max. colour intensity are prescribed. The method is adapted to determining nicotine (0·2 mg. upward) in steam distillates etc. using the tintometer. Details are given for determinations in soil samples. A. G. P. Colour reaction for identification of 8-(diethylaminoisoamyl)amino-6-methoxyquinoline (Plasmoquine, Praequine). A. E. TSCHITSCHIBABIN and C. HOFFMANN (Bull. Sci. Pharmacol., 1939, 41, 231—232).—5 c.c. of 10% HIO₃ are added to 10 c.c. of solution, when a violet coloration develops in presence of <0.5 p.p.m. of Plasmoquine. The reaction is sp. Reactions of diethylmalonylurea and of certain pyrazolone derivatives. A. Perotti (Boll. Chim. farm., 1939, 78, 497—505).—Colour reactions of various compounds and additive products are compared. The product from diethylmalonylurea (I), antipyrine, and 2 mols. of pyramidone appears to contain no free (I). E. W. W. Determination of riboflavin. Fluorometric and biological methods.—See A., 1939, III, 993. Determination of aneurin by thiochrome reaction with Pulfrich refractometer.—See A., 1939, III, 1070. Use of amyl alcohol in the Van Slyke method for determining the nitrogen distribution in proteins.—See A., 1939, III, 1113. Application of micro-methods in analysis of zein.—See A., 1939, III, 1020.