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Abstract

The need for transforming large amounts of data in the life sciences drives the

development of statistical and data mining algorithms for merging and validation

of biomedical experiments. Although this issue has been previously commonly ac-

knowledged in the scientific community, the constantly increasing amounts of data

require continuous efforts towards the optimization of data analysis pipelines. There-

fore, the aim of this thesis is to investigate diverse approaches for high-throughput

molecular biology integrative data analysis to enable the discovery of disease of afflu-

ence biomarkers. The work consists of a detailed overview of existing advancements

in high-throughput molecular biology techniques data integration, followed by the

demonstration of novel algorithms for combined analysis of data derived from multi-

platform and multi-domain experiments.

Initially, an original batch effect identification algorithm based on dynamic pro-

gramming is presented, as correcting for these effects constitutes a part of the intra-

experiment data integration pipeline. Its performance on identifying batch structure is

proven to be highly efficient, and moreover, batch effect preprocessing entails potential

new knowledge discovery in studied diseases and conditions.

Subsequently, two microarray data sets obtained using different platforms for

biomarker research in breast cancer patients are analyzed to highlight the potential of

measurement transformation to achieve computational and biological consistency. The

statistical and data mining integrative approaches with functional validation and pro-

file modeling provides a comprehensive solution for elucidating dose response mech-

anisms and potential biomarker signatures. Moreover, custom statistical integrative

methods applied to a transcriptomics and proteomics data set on ischemic heart disease

plutonium mine workers enabled discrimination of dose dependent protein expression

changes from the age dependent changes and validation of pathways identified previ-

ously in the proteomic data. Another approach to data integration, which enabled the

identification of factors playing a key role in differentiation of irradiated samples, was

conducted on multi-tissue exosome proteomics data.
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Chapter 1

Introduction

1.1 Motivation

Combining information from high-throughput cellular biology data sets has become

an essential task for scientific researchers. The never ceasing growth of data available

through various repositories implies the urge of raising the processing algorithms’ effi-

ciency, as large amounts of meaningful information are being omitted in this deluge of

experimental results. The need for transforming large amounts of data obtained from

the life sciences drives the development of statistical and data mining algorithms for

the fusion and validation of biomedical experiments.

Nowadays, there still remains a great amount of knowledge to discover regarding

the molecular mechanisms underlying disease. This information is vital, especially in

the case of applications for constantly developing personalized medicine. The cus-

tomization of therapies is a pressing issue when considering the numerous cases of

diseases of affluence.

Heart and circulatory system diseases, cancer, diabetes have vastly increased in

prevalence along with growing wealth in highly developed societies. However, these

very diseases are now also becoming the leading killers in the developing world. This

is why research in the field of diagnostics, prognostics and treatment is the key to ele-

vating life expectancy and comfort around the globe.

Many of the leading mortality processes are rooted in different omics factors. More-

over, a shift can be observed in the ongoing studies, where instead of looking into single

traits, combining information from different systems and their interactions is believed

to hold the explanation to many unanswered questions in contemporary medicine.

17



18 Chapter 1. Introduction

Currently, statistical design of experiments allows for planning of complex studies

while maintaining control over technical bias. The equal importance of performing tai-

lored data processing in order to enhance quality of the results has been widely demon-

strated. Furthermore, it has been previously shown that drawing attention towards

effective and apt statistical analysis techniques and literature research is worthwhile,

as it produces meaningful original biological conclusions.

Although the above discussed issues have been previously commonly acknowl-

edged in the scientific community, the constantly changing database in terms of quan-

tity and quality requires continuous efforts towards the optimization of data analysis

pipelines. Therefore, this work has been dedicated to the investigation and implemen-

tation of comprehensive procedures enabling the integration of multi-omics data sets

for discovery of disease biomarkers and their interactions. Different stages of data anal-

ysis have been covered from attentive preprocessing, which handles important sources

of bias in high-throughput biological experiments, to the establishment of novel algo-

rithms for combined analysis of data derived from multi-platform and multi-domain

experiments.

1.2 Aim of the work

The goal of this work was to investigate diverse approaches for high-throughput

molecular biology integrative data analysis to enable the discovery of disease of af-

fluence biomarkers. The research methodology comprises a thorough overview of ex-

isting approaches for data combination, merging, comparison, and joint analysis, as

well as the development of new methods for handling multi-omics studies. The ex-

pected outcomes of this work include the establishment of novel tools and procedures

tailored to the tasks of multi-platform and multi-omics data and result integration.

Based on the motivation and aim of this thesis, the following statements have been

formulated:

1. Adequate preprocessing of high-throughput molecular biology data, including

identification and correction of batch effects allows to avoid discarding valuable

potential discoveries.
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2. The introduction of customized approaches for integrative analysis of data sets

acquired in twin experiments within an omics allows for the improvement of

statistical inference and classification tasks.

3. Statistical integration of multi-omics and different cell system data constitutes a

means for single data set validation and leads to comprehensive mechanism char-

acterization through the contribution of novel meaningful biological conclusions.

1.3 Chapter contents

The Background chapter contains an introduction to the problem of biomarker discov-

ery and diseases of affluence. Furthermore, current high-throughput molecular biology

techniques are presented, and lastly, various aspects of heretofore applied biomedical

data integration have been described.

The Materials and Methods chapter presents the analysis methods introduced in

this work and provides a description of the data sets utilized for implementation and

testing. Firstly, the proposed Batch effect Identification (BatchI) using dynamic pro-

gramming algorithm is explained. Next, a multi-platform transcriptomics data inte-

gration pipeline using statistical integration and dose profile based preselection for

classification is discussed in detail. Futhermore, an inter-omics data integration ap-

proach is shown on a transcriptomics and proteomics data set. Finally, tools used for

different tissue data integration are presented.

The Results and Discussion chapter presents the most important findings derived

from the presented analyses. The BatchI algorithm is tested on multiple data sets with

known in advance and unknown batch structure. The inter-platform transcriptomics

analyses are discussed in terms of differential expression identification and emerged

dose response biomarkers for their classification utility. The multi-omics approach is

presented as an advantageous technique for single-omics experiment validation. The

inter-tissue analysis workflow is considered as a tool for significant factor identification

in sets of diverse cell systems data.
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The Conclusions chapter summarizes the most significant achievements accom-

plished in the course of the work presented in this dissertation.



Chapter 2

Background

2.1 Biomarker discovery

In medical terms, a biomarker is an objective characteristic indicating the occurrence

and/or severity of a disease. The value of such signals is inestimable, as in case of

nearly any disease diagnosis time plays a key role in the application of appropriate

therapy and is essential for increasing life expectancy and comfort. Therefore, immense

effort is being put into scientific discovery of efficient disease biomarkers. A variety of

biomarkers is already used in clinical tests, among others: blood, urine, lymphocyte,

tooth enamel tests. The easier and faster a sample collection method is for a certain

biomarker, the more attractive it is as a screening method.

Especially promising biomarker discovery techniques come from the field of molec-

ular biology. They have great potential due to the possibility of investigating multiple

aspects at a time, however, they possess also technical limitations. The current methods

may be grouped into five "omics" domains:

• Genomics - derived from studying the genome by means of e.g. gene expression

or sequence measurements

• Proteomics - relying on the identification of proteins in a sample and their levels

• Metabolomics - referring to global analysis of the set of metabolites

• Lipidomics - addressing the analysis of lipids through spectrometry and chro-

matography techniques

• Glycomics - studying the commonly occurring post-translational protein modifi-

cations.

21



22 Chapter 2. Background

The "omics" neologism addresses fields of study which have the objective of com-

prehensively characterizing biological molecules that translate into the structure, func-

tion, and dynamics of an organism. These methods more often than not, rely on high-

throughput techniques for sample processing and obtaining data.

In most medical conditions (e.g. cancer), biomarkers may be classified into usage

categories: predictive, prognostic and diagnostic. The first group is used with the aim

of predicting response to treatment, the second group participates in estimating the

risk associated with disease progression, and the third group serves as indicators of

illness (Goossens et al., 2015).

Biomarker discovery, despite its great potential, is a challenging task due to multi-

ple issues resulting from the different development stages. These problems may con-

cern clear definition of research questions and experimental design, assay reproducibil-

ity, sample costs and availability, legislation and infrastructure obstacles. All these fac-

tors contribute to a low rate of successfully implemented biomarkers in the clinical set-

ting. The first step of biomarker development, namely identification, is primarily exe-

cuted using one of the two approaches: statistical or knowledge based. It has been now

recognized that efficient tools for enabling the combined use of these two approaches

are the key to successful biomarker transferring to the clinic (McDermott et al., 2013).

2.2 Diseases of affluence and radiation

In the case of many contemporary diseases their occurrence is most common in the

higher developed regions of the world. Hence, a certain group has been given the

name: diseases of affluence (Howe and Loraine, 2013). The focus on this group is

strong due to its comprising of some of the most considerable health hazards in our

societies:

• obesity

• cardiovascular diseases

• some cancers (mainly colorectal)

• type 2 diabetes

• gout
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• depression

• diseases related with vitamin and mineral deficiency.

The causes of these diseases are being associated with modern lifestyle, including

dietary habits and sedentary daily routines. Alas, more importantly, the high preva-

lence of these diseases makes it a vital task to develop knowledge about the mecha-

nisms and, subsequently, produce solutions for curing the vast population of people

affected.

Of the above, cancer and cardiovascular disease are the leading causes of mortality.

When considering the two, radiation often plays a key role in both. In the former, ra-

diotherapy is currently a substantial part of the treatment process, used in a majority

of cases, whereas in the latter, exposure to radiation is a major incidence factor. Ioniz-

ing radiation is an omnipresent factor, which has a significant impact on many aspects

of human life. Small doses are absorbed on an everyday basis while using everyday

equipment, and higher doses occurring during accidents may have extremely detri-

mental effects (Abbott et al., 2015). Moreover, medical procedures such as radiation

therapy constitute the leading cause of man-made ionizing radiation (Ray et al., 2012).

Radiotherapy consists of cancer treatment and pain reduction by means of ionizing

radiation. Some of the most often types of cancer treated this way include: breast, lung,

cervix, prostate, head and neck. Despite well established medical procedures for the

use of radiotherapy, many patients suffer from adverse effects due to radiation toxic-

ity. These may reduce life quality drastically and include hair loss, diarrhea, nausea,

changes in the urinary and reproductive systems, metastases, lymphedema, arthritis.

This response to treatment is conditioned by radiosensitivity, which is an individual

factor indicating a person’s susceptibility to harmful effects of radiation exposure. It

is estimated that treating these adverse effects exceeds the costs of radiotherapy it-

self. Moreover, radiation doses applied in cases of lung and breast cancer increase the

chance of developing heart disease by ca. 50%. The personalization in terms of dose

application frequency and quantity, considering whether the patient is radiosensitive

or radioresistant, would greatly help therapy planning and prognostics. One of the

potential effective biomarkers of this trait are lymphocytes due to their high radiosen-

sitivity and facility of sample collection.
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Radiation-induced ischemic heart disease occurs when the blood vessels are

subjected to radiation and oxidative stress activates inflammatory response lead-

ing to the formation of foam cells blocking free blood flow and acting pathogeni-

cally (Taunk et al., 2015). There is growing evidence that the pathogenesis of IHD and

cancer shares common pathways and preventive strategies (Masoudkabir et al., 2017).

2.3 High-throughput molecular biology techniques

High-throughput screening is a branch of experimentation methods conducted on a

large scale by parallel investigation of thousands of features. In the biomedical applica-

tions it is particularly applicable to drug and biomarker discovery. These types of anal-

yses may be conducted on many levels of compounds in terms of the omics they repre-

sent. Bioinformatics has from the start accompanied high-throughput techniques and

was necessary to enable robust analysis. The experiments may be conducted on differ-

ent levels: DNA (genomics), RNA (transcriptomics), protein (proteomics), metabolites,

etc. The first molecular biology experiments described as high-throughput included

microarrays for genomics and transcriptomics measurements, and mass spectrometry

for proteomics (Baggerly et al., 2006). Soon however, in terms of genomic and tran-

scriptomic studies massive parallel sequencing became the top technology for investi-

gating gene variants and expression (Widłak, 2013).

The techniques currently in use as high-throughput molecular biology are:

• genomics - next-generation DNA sequencing and microarrays

• transcriptomics - RNA-sequencing and microarrays

• proteomics, lipidomics, metabolomics - mass spectrometry

The main principles of these techniques are focused around the central dogma of

molecular biology (Figure 2.1). This rule states that gene expression occurs through

transcription of information from DNA to RNA, and then translation of RNA to respec-

tive amino acids forming proteins. The aforementioned techniques assess the quality

and quantity of this process by experimental insight into molecules on one or more

stages of gene expression, and the accompanying mechanisms.
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transcription
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translation

Figure 2.1: Illustration of the central dogma of molecular biology. Solid lines represent the
general direction of gene expression. Dashed lines correspond to special transfers of biological

sequential information

Microarray technology allows for the measurement of expression levels in thou-

sands of genes at a time (Govindarajan et al., 2012). It is based on the application of

multiple spots of DNA fragments attached to a solid plate and used to assess the quan-

tity of RNA present in a sample. This method is based on the process of hybridization

- the property complementary nucleotides have to specifically pair with each other.

DNA fragments from one strand are present on the microarray chip, while the assessed

sample of mRNA or cDNA is shredded, the fragments amplified and applied to the

chip for hybridization. Once a DNA fragment hybridizes at a specific spot, a fluores-

cent labeling substance is released to be caught by sensors in the scanning process. As

the fragments present on a microarray are specific to particular genes, they are effec-

tive means of quantifying the corresponding gene expression (Figure 2.2). Moreover,

this high specificity enables using microarray technology for the purpose of single nu-

cleotide polymorphism (SNP) detection (Heller, 2002).

Next-generation sequencing (NGS) technology was developed for the purpose of

SNP detection and gene expression measurements not only for known sequences, but

also for high-throughput processing of millions of DNA fragments for gene discovery.

DNA sequencing is used for the determination of nucleotide order in a molecule. This

was first possible with the use of Sanger sequencing, which served as the basic tech-

nique for carrying out the Human Genome Project. The underlying principles formed

what is now known as massively parallel sequencing (also called next-generation se-

quencing or high-throughput sequencing: HTS). The biological mechanisms in this
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Figure 2.2: Microarray data processing workflows. The left diagram shows data processing
using two-channel cDNA microarrays, where the raw data are a ratio of the hybridization in-
tensity between treatment and control samples. The right diagram underlines the difference
in oligonucleotide microarrays, where treatment and control samples are measured indepen-

dently.

method consist of fragmenting the genomic strand and identifying the subsequent nu-

cleotides based on signals emitted while ligating to a template strand (Figure 2.3). Tra-

ditional Sanger sequencing required performing all the necessary steps one by one:

sequencing, separation and data acquisition. NGS, relying on array-based sequencing,

introduced a strong efficiency improvement, as it allows for the combination of all of

the previously sequential methods into millions of parallel processes (Mardis, 2008).

Nowadays, sequencing the human genome is available within a few hours, as opposed

to the Human Genome Project which lasted 13 years (Venter et al., 2001).

Mass spectrometry (MS) is a technique used in proteomics for high-throughput de-

termination of protein and cellular functions. It is an important tool specifically for pri-

mary protein sequence analyses, post-translational modifications and protein-protein

interactions (Aebersold and Mann, 2003). The mechanisms behind this method lie in

ionizing the molecules in the gas state and measuring their mass-to-charge ratio: [m/z]

(Figure 2.4). For this purpose, mass spectrometers, regardless of their technological
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Figure 2.3: Next generation sequencing analysis pipeline. ( https://commons.wikimedia.org)

differences, are all based on three components: an ion source, an analyzer for separat-

ing the ionized particles, and a detector (Han et al., 2008). Among the most common

applications of MS technology are protein identification and quantification. The latter

makes it useful for biomarker identification, as it enables the detection of different lev-

els of protein between samples of diverse characteristics (Rifai et al., 2006). Often this

procedure is coupled with liquid chromatography for initial separation of the analyzed

fractions.

Figure 2.4: Liquid chromatography coupled with mass spectrometry experiment workflow.
( https://commons.wikimedia.org)

https://commons.wikimedia.org
https://commons.wikimedia.org
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2.4 Integration in omics data

Multi-omics data integration became a natural continuation of analysis techniques in

many fields of molecular biology. In order to obtain a comprehensive explanation of

studied phenomena in the omics domains, merging and processing of data from differ-

ent experiments have become indispensable in the analysis workflow. In general, the

notion refers to combining data residing in different sources and providing users with a

unified view of these data (Lenzerini, 2002). The multitude of experimental techniques

and variety of statistics, data mining and machine learning tools developed over the

years, provided a plethora of means and paths to interpret the term: integration.

2.4.1 Integration within an experiment

Analyzing data from a single experiment already requires a careful and accurate choice

of techniques for data preprocessing. Although, it is often not perceived as such, the

normalization and standardization of data is in fact a step towards integration of data

from samples collected and processed within an experiment. High-throughput tech-

niques are especially prone to technical bias due to the usual large scale of an ex-

periment, and therefore, it is particularly essential to select appropriate preprocessing

methods.

Normalization and standardization methods vary in different experiments. In mi-

croarrays there are several algorithms available for normalizing data from individual

hybridizations. However, most of them comprise the following steps: background ad-

justment, data normalization, and in the case of oligonuclotide arrays, where probe

copies are scattered throughout the chip, a summarization step (Quackenbush, 2002).

For sequencing data, specifically in RNA-seq where read counts serve as estimates of

gene expression levels, multiple measures and techniques have been proposed for nor-

malization when taking into account the position in the genome, gene length and the

overall count distribution (Li et al., 2015). When dealing with mass spectrometry data,

bias caused by instrumentation is not to be overlooked, and therefore, intra- as well as

intergroup normalization is necessary. The methods proven most effective and com-

mon are those based on variance stabilization (Välikangas et al., 2016).
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Although there exists a multitude of techniques for data normalization, depend-

ing on the type of experiment, one preprocessing step should be universally carried

out, regardless of the high-throughput technique, i.e. batch effect filtration. Batch

effects are technical sources of variation, separating samples into subgroups accord-

ing to their quality traits instead of the biological or scientific studied condition, seen

in a wide range of high-dimensional molecular biology experiments (Scherer, 2009).

The factors contributing to batch effect occurrence are e.g. differences in sample

processing protocols, different experimentalists, or changes in external conditions

prevailing during data acquisition. These systematic errors may be understood as

batches of samples processed together in an experiment. This means that the size

of a batch is defined by the capacity of a machine (Figure 2.5). Other common

sources of batch effects are uncontrollable changes of some/many of the experimen-

tal conditions over time (Leek et al., 2010). In high-throughput experiments batch

effect bias is unavoidable, occurs with different experimental platforms, survives

standard normalization and correction procedures and leads to significant errors in

data analyses, like the decrease of sensitivity or increased number of false discover-

ies (Chen et al., 2011; Luo et al., 2010). It has been demonstrated by numerous studies

that identification and correction of batch effects can substantially improve results of

data analyses (Sun et al., 2011; Auer and Doerge, 2010; Sims et al., 2008).
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Figure 2.5: Illustration of batch effect on the example of the MILE study. The principal compo-
nent analysis plot indicated batch effect existing due to samples being processed in different
institutions, despite efforts made to retain identical experimental protocols (Labaj et al., 2017).

It is therefore of primary importance that batch effect should be recognized and
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filtered from data sets. Research results than have been compromised by the lack of

batch effect management provoked the development of a variety of batch effect cor-

rection algorithms. The issue was first observed over the course of microarray exper-

iments, and therefore many of these techniques have been developed for microarray

data, however, since then adjustments have been made and new proposals contributed

for the purpose of multi-omics data processing. The first attempts relied on mean

centering or were ratio-based, yet the need for more sophisticated approaches arose

promptly. (Benito et al., 2004) developed a method called distance-weighted discrimi-

nation, based on support vector machines (SVM) classification algorithm for detecting

and removing batch biases. SVM algorithm is used for computing a separating hy-

perplane between data points corresponding to different batches. Then, the obtained

parameters are used to remove batch bias. (Bylesjö et al., 2007) use a multivariate re-

gression model with hidden elements, called orthogonal projections to latent struc-

tures (Trygg and Wold, 2002) for identification and correction of batch biases. The case

of gene expression data in microarray experiments enabled the creation of a family

of RUV (Remove Unwanted Variation) methods, specifically for the purpose of han-

dling these data, based on applying negative control genes for batch effect adjust-

ment (Gagnon-Bartsch and Speed, 2012). This knowledge driven approach, however,

limits the usability to a narrow group of experimental techniques where such negative

control features are possible to describe. A method named ComBat (Combating Batch

Effects When Combining Batches) for removing batch effects in DNA microarray data,

based on the empirical Bayes approach, was proposed by (Johnson et al., 2007). They

define and estimate additive and multiplicative batch bias parameters and then use

them to modify distributions of gene expression. The approach was proven reliable,

useful for data sets with multiple batches and robust to small sample sizes and may be

extended to other experimental techniques (RNA-seq, genomics, proteomics).

The above mentioned approaches, generally rely strongly on the information about

batch grouping structure. However, often it is not the case that these data are avail-

able considering the frequent lack of records concerning experimental conditions, its

incompleteness, or a degree of ignorance towards factors which may influence batch
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effect occurrence. Thus, a need for the identification of batch partitioning has been per-

ceived and diverse methods developed for the purpose of detecting existence of batch

effects and estimating the proportion of variation in the data resulting from batch ef-

fects. (Alter et al., 2000) apply PCA to genome-wide expression data and propose re-

moval of noisy components (eigengenes) corresponding to low singular values. Under

the assumption that one (some) of the noisy eigengenes corresponds to batch effect the

use of the method by Alter et al. leads to batch effect correction. (Reese et al., 2013)

present an extension of PCA to quantify the existence of batch effects, called guided

PCA (gPCA). They derived a test statistic, based on the traditional PCA and gPCA,

for detecting batch effects. The test statistic, δ, quantifies the proportion of variance

owing to batch effects. Surrogate variable analysis (SVA) (Leek and Storey, 2007) is an

algorithm for combined batch effect identification and correction by means of effect

estimation. (Yi et al., 2017) proposed another approach for hidden batch effect identi-

fication based on data-adaptive shrinkage, coupled with a regularization technique of

non-negative matrix factorization for batch effect correction.

Applying filtration of batch effects is a significant step towards enabling the inte-

gration of data within an experiment performed at different times, conditions or lab-

oratories. As mentioned, various methods have been established for data adjustment

to account for suspected batch effect present in the data. However, the identification

of unknown batch effects still remains as a subject for development. In this work an

approach based on dynamic programming is proposed for identifying batches in data

that may be sorted (on a timescale or otherwise).

2.4.2 Integration within an omics

High-throughput techniques in molecular biology are constantly being improved in

many aspects. This naturally entails the competition of multiple scientific and tech-

nological centers in the challenge for developing the most effective platforms. This

situation undoubtedly has main advantages in the advancement of modern science,

however, it also implies certain issues in the subsequent data analysis workflows. The

presence of various experimental platforms is tantamount with the existence of differ-

ent standards and if data from numerous experiments is to be merged, appropriate
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measures in the analysis phases need to be taken.

In nearly any omics field, one will not find a gold standard technique, but rather a

choice of well established experimental platforms. As such, when considering microar-

ray platforms aside from the most popular Affymetrix oligonucleotide chips, a range of

commercial arrays is in use (Agilent, Life Technologies, Qiagen, to name a few), as well

as custom cDNA microarrays, which were initially more frequently encountered. On

the other hand, with the genome sequencing industry on the rise currently, the com-

mercially available sequencers (such as Illumina, Roche 454) are not only constantly

being enhanced, but also innovative, previously unavailable solutions are being intro-

duced to the market (Oxford Nanopore, Pacific Biosciences). In all these cases, in prin-

ciple the same research may be conducted. Nonetheless, when it comes to performing a

joint analysis of two data sets derived from different platforms, supplementary actions

need to be taken in all stages of the analysis: from preprocessing, through downstream

inference, to functional validation.

The validation of results from a single high-throughput experiment may take var-

ious forms when the biological context of the available information is the same. The

most desirable way is through biological validation where an experimental technique

is available to confirm the disclosed findings. For instance, in the case of microarray

data analysis, where gene expression levels are assessed indirectly, qPCR providing a

direct expression level measure would be an appropriate validation technique. How-

ever, these methods, while producing the most reliable results, are usually costly and

time consuming. Thus, in silico validation procedures became an attractive alternative.

For that purpose, it is possible to carry out functional analyses (using bioinformat-

ics repositories, such as Gene Ontology or KEGG pathways), statistical validation by

means of multiple testing correction, or result verification on an independent data set.

This last method, depending on the available resources, may be performed through

literature research or by means of analyzing data obtained it the course of a similar

experiment. This potential lying in vast amounts of data from experiments makes it

crucial to extract information entirely efficiently in single studies, but also to make

the most of combining information from already available data and knowledge. The

need for transforming large amounts of data coming from the life sciences drives the
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development of data mining algorithms for the fusion and validation of biomedical

experiments. Combining information from available data sets is becoming an essential

tool for scientific researchers.

In previous studies, various methodologies have been considered for combining

biochip data sets across platforms. As simple approaches such as standardization

and mean-centering had their limitations, more complex concepts started to emerge.

(Parmigiani et al., 2002) introduced the Probability of Expression method, which

transforms expression data to signed probabilities. (Breitling et al., 2004) present the

Rank Product computation scheme, (Shabalin et al., 2008) developed cross-platform

normalization (XPN) based on iterative k-means clustering. These algorithms

have been evaluated in numerous studies on merging multiple microarray data

sets (Sîrbu et al., 2010; Liu et al., 2013), yet it seems that the question of integration of

platforms of different nature has not been attended to. Hence, this work contemplates

an approach that addresses the particularly intricate issue of combining data sets from

two types of microarrays: oligonucleotide and cDNA in an integrative transcriptomics

data analysis.

2.4.3 Inter-omics integration

The convoluted interaction network between the subjects of different omics studies is

largely an enigma still to be unraveled. Nevertheless, the current state of knowledge

in life sciences allows for the joining of certain pieces of the puzzle. In molecular bi-

ology, knowledge about the central dogma (Figure 2.1) enables searching for common

mechanisms on the level of genes, transcripts, proteins, and even further in areas such

as metabolomics.

This richness of possibilities drives the development of algorithms and proce-

dures for inter-omics data analyses. The complexity and multi-level character of the

data network require in each individual case customized, tailored approaches on the

border between statistical tools, machine learning techniques and big data analyses.

Adaptive techniques are key to unfolding the mechanisms underlying disease and

other biological conditions on a multilevel scale. When studying the response of



34 Chapter 2. Background

genes to a certain stress factor it is often not straightforward to infer that the cor-

responding protein products will function accordingly. The response may be com-

pletely opposite, or depend on a cascade of signals joining the studied features on

a genomic and/or proteomic level and become even more ambiguous to explain.

This ramification imposes a major shift from examining single traits to producing

more comprehensive and detailed descriptions of studied processes. For this pur-

pose, the combination of multi-omics level data proves to be the correct solution. Re-

cently, this has been recognized in a number of studies including high-throughput

data. As such, more and more attempts at combining knowledge from different

omics for cancer research are being made (Dimitrakopoulos et al., 2018), merging them

with clinical data (Zhu et al., 2017) and improving and expanding the data integra-

tion toolkit (Huang et al., 2017; Tini et al., 2017). In this study, the importance of inter-

omics data analyses is demonstrated with an example of an original statistical and data

mining workflow for processing transcriptomics and proteomics data sets.

2.4.4 Inter-tissue integration

Experiments in the different omics fields are all an attempt to build foundations un-

derlying knowledge concerning biological processes. However, shifting the scale to

examining mechanisms occurring in entire cell systems is a no less important task to

be addressed. Several experimental techniques have the capabilities to reveal tissue

architecture, generating a wealth of biological knowledge and a better understanding

of many diseases, especially with single-cell sequencing on the rise (Chen et al., 2018).

Identifying regulatory elements from different cell types is necessary for understand-

ing the mechanisms controlling cell type-specific and housekeeping gene expres-

sion (Xi et al., 2007; Xu et al., 2014). At the very beginning of microarray technology

development it has been shown that expression patterns of diverse cell types contribute

to the pathology (Heller et al., 1997). However, not only is the gene level suitable for

inference on the issue of multiple cell systems operation, but also proteomics tools and

methods contribute widely in the field. As such, efforts have been carried out in or-

der to yield an inventory of the building blocks of the most commonly used systems

in biological research. (Geiger et al., 2012) study eleven common cell lines to reveal
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high similarity in terms of expressed proteins, despite their distinct origins. Notably,

the NIH Roadmap Epigenomics Consortium generated the largest collection of human

epigenomes for primary cells and tissues (Kundaje et al., 2015).

The aforementioned studies do not fully respond to the challenging task of estab-

lishing a set of tools for integrative analysis of data acquired from different cell systems.

In this work, techniques for examining the similarity between various cell systems are

presented in application to a study on effects of irradiation on exosomes. Exosomes are

specialized vesicles derived from endocytic compartments that are released by many

cell types. Small RNA loading into exosomes and transfer to recipient cells plays a

role in intercellular communication (Zomer et al., 2010). The main functions of exo-

somes include membrane exchange between cells, alternative to lysosomal degrada-

tion, transfer of antigens from tumor to dendritic cells (Edgar, 2016). The deciphering

of mechanisms governing this communication under different biological conditions

will lead to discoveries in the process of promoting tumor progression.

2.5 Data mining and statistical integration methods

The advantages of incorporating bioinformatics databases into biomarker

discovery schemes have been previously shown in various stud-

ies (Meehan et al., 2013; Kong et al., 2014). Recently, much focus has been directed

towards the development of methods, algorithms and procedures for multi-omics

data integration, especially in order to broaden horizons in the field of preci-

sion medicine (Huang et al., 2017). The emerging results already introduced a

significant impact in the diagnostics and prognostics of cancer and other dis-

eases (Li et al., 2018; Bakker et al., 2018). Moreover, the incorporation of complex

deep learning techniques into biomedicine analyses is starting to play a key role

in cancer patient survival prediction (Chaudhary et al., 2018). Finally, newly de-

veloped workflows promise crucial advancements in biomedical research and

beyond (Kohl et al., 2014; Gajula, 2016).
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Apart from the dynamically progressing field of data mining and machine learning,

this work presents the utility of sophisticated statistical analysis tools for multi-omics

data integration. Upon recognizing that standard comparisons of multiple experimen-

tal results are often limited, due to testing with fixed thresholds, even when applying

classical correction methods for multiple testing such as false discovery rate (FDR), this

study is partly devoted to the applicability of statistical data integration methods. Al-

though in some cases, it may be possible after careful normalization and batch effect

correction to combine several data sets into one, in this work the possibility of statis-

tical testing p-value integration is explored. The approach enables merging data sets

regardless of the original omics field and experimental nature, provided that the stud-

ied features are analogous among the single sets. It is an intermediate method between

merging data at the initial stage and combined analysis of only the final results.

P-value combination is a statistical concept that was first introduced

by (Fisher, 2006). It is based on the assumption that the p-values come from

tests on independent experiments and the resulting combined p-value is derived from

a distribution of log-transformed average p-values. From then on, the method was

developed, extended and modified multiple times, in relation to diverse data sets and

requirements. The principle between all of the proposed methods is similar and may

be illustrated with the graph in Figure 2.6.
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Figure 2.6: General p-value combination procedure.

The individual p-values are transformed into statistics based on a given distribu-

tion, then they are merged and the resulting p-value is calculated based on the com-

bined new overall statistic. The main approaches used for p-value combination are
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Lancaster’s modification of Fisher’s p-value method (Lancaster, 1961), Stouffer’s de-

sign for symmetrical distributions (Stouffer et al., 1949), and diverse weighted Z-score

methods (Liptak, 1958). The choice of method for data set integration depends on the

character, balance and distribution within the particular data sets.





Chapter 3

Materials and Methods

3.1 Batch effect identification using dynamic programming

Batch effect correction tools enable filtration of confounding factors from data sets and

in this way enhance analysis results by driving the main focus towards biological vari-

ability. However, if for instance laboratories, where different samples are processed, are

considered sources of batch effects, correcting for these effects becomes part of the data

integration pipeline within an experiment. In many experiments, information about

batch structure is not provided though and state-of-the-art procedures often depend

upon this information. Therefore, in the course of this work a novel batch effect iden-

tification algorithm (Papiez et al., 2018b) has been proposed and tested on a number of

experimental data sets. These include series of DNA microarray, mass spectrometry

(MS) and RNA-seq measurements.

The dynamic programming identification procedure requires the representation of

each sample with a quality index (QI). In the microarray experiments it is defined by

the average intensities among all features. For the MS data the Total Ion Current (TIC)

for each sample is applied and for the RNA-seq data the median number of counts. The

quality index may be also any chosen statistic representing the data levels in a single

sample. It is worth underlining, that since the objective in batch effect handling is to

account for sources of technical variation, it is advisable to calculate the summarizing

quality index on data at as early a stage of processing as possible.

In this sense, the issue of batch identification may be defined as dividing a sorted

series of samples into a number of batches, such that a sum of absolute deviations of

39
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the quality indexes within a batch is minimized. This task is accomplished by parti-

tioning the range of quality indexes of samples into bins (batches) using the dynamic

programming algorithm (Bellman, 1961; Jackson et al., 2005).

Indexes of samples in the experiment are denoted i = 1, 2, . . . , N . The division into

subgroups involves defining K batches, B1, B2, . . . BK , where the k − th batch is the

range of indexes Bk = B(i, i + 1, . . . , j) = i, i+ 1, . . . , j. The quality index is denoted

by QIi. Absolute deviation of the QI within batch Bk is:

AbsDev(Bk) =
∑
l∈Bk

|QIl −QIBk | (3.1)

The minimization index for the dynamic programming algorithm is the sum of ab-

solute deviations

I(K) =
K∑
k=1

AbsDev(Bk) (3.2)

Optimal partitioning Bopt
1 , Bopt

2 , . . . Bopt
K leads to a minimal value of the sum of ab-

solute deviation indexes corresponding to all batches:

Iopt1...N (K) = min1...Npartitions[
K∑
k=1

AbsDev(Bk)] (3.3)

The upper index of the above minimization operator, 1 . . . N , represents the range

of time indexes of samples, while the lower one indicates that minimization is over all

possible partitions. In order to formulate dynamic programming recursion an optimal

partial cumulative index for the range of samples 1, 2, . . . , j is calculated:

OCI1...j(k) = min1...jpartitions[
K∑
χ=1

AbsDev(Bχ)] (3.4)
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Dynamic programming recursive procedure, called Bellman equation, can be writ-

ten in the following form:

OCI1...j(k + 1) = mini=1...j−1[OCI1...i−1(k) +AbsDev(B(i, i+ 1, . . . , j))] (3.5)

Iteration of the above Bellman equation provides the retrieval of the optimal par-

tition Bopt
1 , Bopt

2 , . . . Bopt
K and the optimal (minimal) value of the sum of absolute de-

viations index Iopt1...N (K). The algorithm will not allow the condition that one batch

contains fewer than three samples, as a smaller number would be insufficient to cal-

culate dispersion metrics. The analysis relies on computing variance related statistics

in consecutive analysis stages. The implementation is also designed in such a way,

that the parameter is modifiable to set the minimum threshold to a number larger than

three.

3.1.1 Batch number selection

The proposed method includes a parameter that requires setting, namely the number

of batches into which the data should be divided. This may be executed by dividing

data into a number of batches from 1 to K and in each of these partitioned sets calcu-

lating the δ gPCA statistic as described in (Reese et al., 2013), which is defined as the

proportion of total variance due to batch and may be calculated as a ratio of variance

of the first principal component in guided PCA (taking into account batch effects) to

variance of the first principal component in unguided PCA.

δ =
var(XVg1)

var(XVu1)
(3.6)

In order to estimate the δ statistic sampling distribution, M permuted data sets are

generated by randomly shuffling the partitioning of samples to batches. Then, for each

assignment calculation of δPERM permuted gPCA statistic is performed. The position

of the actual test statistic δ among the generated δPERM test statistics gives an adequate

p-value, which may be described by defining if δ is significantly greater than would be
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obtained by chance. This approach also accounts for a situation where batch effect

partitioning is not necessary. If the statistic cannot be deemed significant, it means

that batch effect is negligible, and identification and correction are irrelevant. In any

other case, batch assignment corresponding to the lowest p-value is fixed as the optimal

number of batches.

During the testing phase, when setting the value of M to 1000 (default value set

in (Reese et al., 2013)), in none of the experiments was a value δPERM greater than δ

reached. This renders choosing the optimal number of batches in a data set not pos-

sible. As the computation time is proportionate to the number of permutations M,

increasing the number by an order of magnitude raises this time dramatically. What

is more, the δ statistic distribution differs in every data set and may adopt multimodal

shapes. In order to mitigate this issue, the use of a kernel density estimator is proposed,

which provides plausible approximations of the δ statistic distribution. When consid-

ering a permuted gPCA statistic δPERM , the underlying probability density function f

used to generate this sample can be approximated using the kernel density estimator

given by:

f̂(δ) =
1

K

k∑
i=1

kernel(δ, δi) (3.7)

where kernel is a kernel function. For the purpose of this application kernel is

chosen as a standard Gaussian function:

kernel(δ, δi) =
1√
2π
e

−(δ−δi)
2

2h2 (3.8)

where h is the bandwidth that controls the degree of smoothness of f̂(δ). If h is

chosen too small, the resulting estimate is usually overfitted with regard to the avail-

able samples. On the contrary, if h is too large, the resulting density becomes over-

smoothed, with a simultaneous reduction of its variance across different samples. To

select the bandwidth parameter a rule-of-thumb method available in the R stats pack-

age (Silverman, 1986) is used. The final p-value is obtained by calculating the area
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under the estimated distribution in the right tail from the observed δ statistic value.

The batch effect identification algorithm has been implemented in the BatchI R

package and is available for download and use (Papiez et al., 2018b).

3.1.2 Data

The dynamic programming based method for batch identification was evaluated

on a number of microarray and RNA-seq data sets obtained through the ArrayEx-

press (Kolesnikov et al., 2014) repository and an MS data set acquired in collaboration

the Center of Oncology - Maria Sklodowska-Curie Memorial Institute in Gliwice.

The first step was to test the algorithm on data with known a priori batch

structure. For this purpose, two sets of microarray data were investigated,

E-GEOD-19419 (Walter et al., 2010) which consisted of gene expression profiles from

peripheral blood of patients affected by neurological movement disorder DYT1 dys-

tonia, containing 60 samples: 15 controls, 23 symptomatic and 22 carriers. The other

one was E-GEOD-36398 (Rahimov et al., 2012) comprising gene expression profiles of

tissues from two different muscles in patients with facioscapulohumeral muscular dys-

trophy and their unaffected first degree relatives, containing 50 samples: 24 controls

and 26 FSHD. These experiments were carried out on HuGene 1.0 ST microarrays with

32321 measured probes. In both of the data sets samples were assigned to batches due

to the differences in time of sample preparation and experiment performance. They

include, respectively, three (E-GEOD-19419) and five batches (E-GEOD-36398).

The E-GEOD-65683 RNA-seq measurement data set was acquired from an experi-

ment where sperm from male partners of couples undergoing fertility treatment was

assessed. The study consisted of 72 samples split into 3 groups: 7 in group I, 56 in group

II, and 9 in group III. The metadata included dates of the sequencing run performances,

which served as information to divide the data into three batches.

The MS data was collected in a study investigating pulmonary cancer among smok-

ers. In this case, an unfortunate design of experiment lead to the samples being pro-

cessed in three distinct batches according to date (Pietrowska et al., 2012). The data

consists of 377 samples: 282 controls and 95 cancer cases and a total of 700 protein

features was detected.
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Secondly, studies without the information about batch assignment were used to

validate the method. Experiments E-GEOD-2034, E-GEOD-4183 and E-GEOD-10927,

have been chosen for the analysis on the basis of being described as demonstrat-

ing a high proportion of variance due to batch effects in (Parker et al., 2014). The

study E-GEOD-2034 (Wang et al., 2005) attempts at predicting the occurrence of dis-

tant metastases in patients suffering from lymph-node-negative primary breast cancer.

The gene expression profiles were obtained from frozen tumor samples. The exper-

iment labeled E-GEOD-4183 (Galamb et al., 2008) comprises gene expression profiles

measured in colon biopsy samples using high-density oligonucleotide microarrays for

the purpose of predicting local pathophysiological alterations and functional classifica-

tion of adenoma, colorectal carcinomas and inflammatory bowel diseases. The last data

set E-GEOD-10927 (Giordano et al., 2009) was acquired in a clinical study on molecular

classification and prognostication of adrenocortical tumors by gene expression profil-

ing.

For the gene expression microarray data sets the RMA normalization algo-

rithm (Irizarry et al., 2003) was used for preprocessing. The RNA-seq data was

aligned and processed for read counts using STAR (Dobin et al., 2013). The MS data

samples were analyzed on a MALDI-ToF mass spectrometer in the mass range be-

tween 1,000 and 14,000 Da. Data preprocessing consisted of outlier spectra detec-

tion, global linear alignment, baseline correction, normalization and spectra align-

ment (Pietrowska et al., 2012). The identification of peptide ions in the spectra and the

computation their relative abundances was achieved using a Gaussian mixture model

based algorithm (Polanski et al., 2015).

3.1.3 GO Information Content functional analysis

Due to the unlabeled data sets E-GEOD-2034, E-GEOD-4183 and E-GEOD-10927 not

having a reference partitioning into batches, the performance of BatchI algorithm was

assessed by summarizing the relevance of biological findings revealed after the data

was adjusted for batch effects. For this purpose, the Gene Ontology database was cho-

sen. Gene Ontology is a comprehensive resource containing computable knowledge

regarding the functions of genes and gene products. GO terms are structured in the
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form of a directed acyclic graph to provide information about the relationships be-

tween biological functions. The term names supply biological knowledge about the

studied processes themselves, however, the position of an enriched GO term can be

summarized with the Information Content measure.

Information Content (IC) is calculated as:

IC(ti) = −ln(p(ti)) (3.9)

where p(ti) is the relative frequency of a term’s occurrence, and may be expressed

as a ratio of the probability of a term occurring in the corpus and the corpus being the

set of annotations for all genes under consideration (Mistry and Pavlidis, 2008). This

translates to the general rule where a term, which has a higher Information Content

measure, is also more meaningful in the biological sense. The reason for this being

that the further a GO term lies from the root node, the more specific the information is.

Moreover, the fewer genes constitute a given ontology term, the more significant the

overrepresentation becomes, because it is less likely to find genes linked to "smaller"

terms by chance.

Hence, for comparative purposes, enriched gene ontologies were summarized for

two scenarios: data analyzed with and without batch effect identification and correc-

tion. The overrepresented terms in each experiment were represented by the total sum

of IC and standardized by dividing each GO term measure by its appropriate gene

number size.

3.2 Multi-platform transcriptomics data integration

The ability to integrate and render data to be analyzed with reduced bias within an

experiment is a pressing issue, however, it is only merging data across experiments

that unlocks the full potential of integration methods. In this work two transcriptomics

microrray data sets obtained using different platforms are analyzed in various aspects

to present the proposed methods for merging data in order to enhance the information

available from single analysis workflows.
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3.2.1 Data Sets

The expression sets used in this study were obtained in the course of two independent

microarray experiments on the subject of radiosensitivity. The experiments were de-

signed with the objective of identifying genes differentiating radioresistant (RR) and

radiosensitive (RS) women in a group of breast cancer patients undergoing radiother-

apy. The clinical description of the samples and radiosensitivity status assignment is

described in (Yarnold et al., 2005).

One experiment provided blood samples from 60 patients, of which 30 were classi-

fied as radiosensitive and 30 as radioresistant. This experiment was performed on the

HuGene 1.0 ST Affymetrix oligonucleotide chips, measuring 19,718 genes, providing

raw intensity CEL files. As for the second experiment, samples were gathered from

59 patients: 31 radiosensitive and 28 radioresistant (Finnon et al., 2012). It was car-

ried out using a custom Breakthrough 20K cDNA microarray chip, measuring 19,959

genes, producing a set of GPR files produced by the GenePix 5.1 scanning software.

The procedure was performed in a dye-swap manner, such that each sample was la-

beled with the cy3 and cy5 dye and hybridized to the chip against a reference sample

from a pooled set of 30 breast cancer cell lines.

In both cases blood samples were collected from the donors for RNA extraction

after 24h from lymphocytes for the amplification and labeling in the microarray exper-

iment. The samples were divided into two lots labeled as one of the two conditions:

controls and irradiated. In the oligonucleotide array experiment, one sample per pa-

tient was left as control, the other was irradiated with a therapeutic level dose of 2 Gy

of X-rays. In the cDNA microarray experiment, the irradiated samples were subjected

to a high dose of 4 Gy (Figure 3.1).

3.2.2 Preprocessing

The Affymetrix oligonucleotide single channel data was normalized using the Robust

Multichip Average (RMA) method (Bolstad et al., 2003), which includes background

intensity correction, quantile normalization and summarization using the median pol-

ish algorithm. Probes were reannotated with a custom chip description file 1 from the

1hugene10st_Hs_ENTREZG version 1.36.0 May 10, 2013
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60 patients

0 Gy 2 Gy

Lymphocytes

RNA

Oligonucleotide array

30 radiosensitive
RS

30 radioresistant
RR

59 patients

0 Gy 4 Gy

Lymphocytes

RNA

cDNA array

31 radiosensitive
RS

28 radioresistant
RR

Figure 3.1: Diagram presenting a comparison of experimental designs. The twin experiments
were carried out using the same labeling of RR and RS patients with similar numbers of sam-
ples. They differ nonetheless, with sample treatment doses and microarray experimental plat-

forms. These issues had to be resolved during combined data processing.

Brainarray database (Dai et al., 2005).

The cDNA microarrays were preprocessed with the Bioconductor Limma pack-

age (Smyth, 2005). The values were background adjusted using the normexp algorithm.

In order to retain compatibility between data coming from two platforms, the within

array normalization step was omitted, as there is no equivalent in the oligonucleotide

preprocessing pipeline, and between array normalization was executed with the quan-

tile method. This resulted in an expression set of two replicates of patients’ samples,

one for each color channel (cy3 and cy5).

For the sake of comparison of data from two different microarray platforms, an ap-

proach was adopted where the main concern was to obtain data within the same space,

in mathematical as well as biological terms (Papiez et al., 2014). Therefore, intensity

data for separate color channels for the patients’ samples was extracted and included

for further investigation, excluding the information on breast cancer cell lines. This

was motivated by the necessity of retaining consistency in terms of the biological rep-

resentation of the signal, as there is no such reference available in the oligonucleotide

chip experiment. Another reason was the lack of feasibility of juxtaposing expression

values in oligonucleotide microarray data with ratios of expression from cDNA arrays.

Nevertheless, standard normalization resulting in ratios of the intensities was also per-

formed in the separate experiment normalization scheme for comparative purposes.

The scheme in Figure 3.2 presents the typical course of a comparative analysis of
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expression values from two experiments. The diagram in Figure 3.3 illustrates the work

flow for an initially proposed integrative approach strategy.

Oligonucleotide 
intensities

Reannotation 
+

RMA normalization

Limma 
normalization 

Common set of UniGene transcripts

Differentially 
expressed genes

Differentially 
expressed genes

cDNA intensities

Enriched GO and KEGG Enriched GO and KEGG

Figure 3.2: Workflow for a standard microarray comparative analysis.

3.2.3 Different microarray platform batch effect correction

The goal of this work was primarily to carry out a combined analysis of the data. There-

fore, the first step of data set integration was to extract a set of genes common for both

platforms. This was accomplished on the basis of UniGene identifiers. Then on the

common gene sets, batch effect correction through empirical Bayes methods was ap-

plied using ComBat (Johnson et al., 2007) software provided in the R SVA package for

three batches (one for each of the two channels in cDNA data and one for oligonu-

cleotide data) with no covariates. This lead to the transfer of expression values to a

unified scale (Figure 3.4). Since the red and green channel data have been filtered for

batch effects, their expression was merged as for technical replicates.
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Oligonucleotide 
intensities

Reannotation 
+

RMA normalization

Limma 
normalization 

Common set of UniGene transcripts

Differentially expressed genes

cDNA intensities

Enriched GO and KEGG

cy3 channel cy5 channel

Batch effect filtration

cDNA channel merging

Separate experiments One data set

Figure 3.3: Diagram illustrating the proposed microarray initial data combination procedure.
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0
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Oligonucleotide    cDNA red cDNA green

After batch effect removal

Figure 3.4: Exemplary sample distributions before and after batch effect correction.

3.2.4 Integrative approaches for radiosensitivity biomarker research

Statistical Analysis

As both in the cDNA and oligonucleotide experiments the absorbed doses may be clas-

sified as high according to (UNSCEAR, 2000), in the radiosensitivity biomarker analy-

sis these samples were considered irradiated, regardless of dose. The genes in groups of

irradiated and control samples were tested independently for differential gene expres-

sion with a statistical inference approach with the application of two-sample t-tests,

modified Welch’s tests or U-Mann-Whitney test, according to population normality

and variance homogeneity assumption fulfillment. These tests were performed for

both approaches: simple separate normalization of data from two experiments and the

alternative unification of data using batch effect correction.

Moreover, after applying batch effect filtration the data sets could be considered

numerically compatible, therefore, the samples for this method have been merged into

one set and tested for differential expression.

The genes identified as differentially expressed were examined for ontol-

ogy and signaling pathway enrichment in the GO (Ashburner et al., 2000) and

KEGG (Kanehisa and Goto, 2000) databases.
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Data combination approaches

In further investigation, as the data integration concept proved to be the correct course

of action, three diverse techniques for data combination were adopted and compared

for their performance (Papiez et al., 2015), denoted henceforth as:

• Restrictive

The data sets were preprocessed and analyzed downstream independently,

which resulted in lists of genes that were labeled as differentially expressed i.e.

their p-value from statistical testing falls below the threshold of 0.05. Validation

of the results from two single studies in this case assumes the form of the inter-

section of differentially expressed genes being considered the final gene list.

• Arraymining

Data were analyzed independently, likewise to the restrictive ap-

proach. However, non-statistical data mining algorithms available on

the Arraymining webservice (Glaab et al., 2009) were used. The gene

signature was then chosen based on genes ranked as the most signifi-

cantly differentiating in both experiments in the Ensemble of four meth-

ods: Empirical Bayes moderated t-test (Lönnstedt and Speed, 2002), Par-

tial Least Squares cross-validation (Hall, 1999), Random Forest Mean De-

crease in Accuracy (Breiman, 2001) and Significance Analysis of Microar-

rays (Tusher et al., 2001). The Ensemble forms a final gene list taking into

account the sum of ranks for the individual algorithms.

• Integrative

The method chosen here is based on weighted Z-scores p-value combina-

tion (Zaykin, 2011). The p-values from the two studies for each gene are joined

after transformation with the inverse cumulative standard normal distribution

function (Eq. 3.10). The integration of values derived from two-sided tests im-

poses the need to transform the p-values according to the recorded effect direc-

tion, as originally this method was designed for right-tailed testing (Eq. 3.12).
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Z =

∑k
i=1wiZi√∑k
i=1w

2
i

(3.10)

p = 1− Φ(Z) (3.11)

pone_sided =


ptwo_sided/2, if effect direction > 0

1− ptwo_sided/2, otherwise
(3.12)

The obtained Z-scores are combined with the weights set to the inverse standard

error and transformed back to the form of a resulting p-value (Eq. 3.11). This

procedure is presented in Figure 3.5. The eventual features with statistically sig-

nificant combined p-values establish the final gene list.

Figure 3.5: Illustration of the weighted Z-score p-value combination method. The values on
the axes represent p-values potentially obtained in two experiments for matching transcripts.
The weight in this case is the inverse standard error. The color depicts the combined p-value
level. The white line illustrates the 0.05 threshold for the resulting combined p-value. The
features with combined p-value below the white line are considered statistically significant.
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Separability validation

The performance of three data combination approaches was assessed with the separa-

bility of the data sets based on the obtained gene lists. Separability in this case was

assessed with a logistic regression model (Antoniadis et al., 2003). The applied model

selection technique for regularization was carried out by means of the likelihood ra-

tio test. Logistic regression models were chosen as an appropriate tool for signatures

obtained in the course of statistical inference.

As the Ensemble of methods available in the Arraymining service is not statistically-

based, but rather a data mining approach, a classic Support Vector Machine was ap-

plied for comparison to the logistic regression classifier. Model selection for the SVM

was performed through minimizing the error rates. In order to provide a sufficient cov-

erage of samples per variable, a maximum of 20 gene features was examined in each

case. Initially, the regularization issue was controlled by means of the binomial test,

yet this method, being very strict, produced a cutoff at one feature in all of the three

studied cases. As this issue provokes a large loss of information, the minimal error

approach remained the method of choice for feature selection.

The separability results were measured with Receiver Operating Characteristics,

and specifically by means of the Area under the Curve metric. The ROC curves smooth-

ing is performed with the binormal algorithm. Moreover, positive and negative predic-

tive value (PPV & NPV) measures are calculated and compared. The class separability

thresholds are tuned based on the ROC curves Youden’s index (Youden, 1950).

3.2.5 Dose profile based preselection for classification

Another research aspect that has been examined in these data sets was the selection

of appropriate inter-platform integration techniques to examine the gene expression

response to different doses. The irradiated samples in both experiments received high

doses, nevertheless, the question arose whether combining information from the two

experiments while retaining the information about different dose levels (2 and 4 Gy)

will have a significant impact on the results obtained. Thus, the joint data from two

experiments was subjected to further classification analysis of dose profiles.
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Differentiation analysis

The common gene set for the oligonucleotide and cDNA platforms was extracted for

further processing. The first stage of statistical inference performed was a standard

procedure, where differentiation tests between the dose groups were conducted: t-test,

modified t-test and U-Mann-Whitney test, according to the normality and variance

homogeneity assumptions.

Moreover, as an additional criterion for selection, only genes which did not pro-

duce significant differences between controls in the two experiments were selected to

be used in the next stages. These genes were assessed additionally for differentiation

between 2 Gy and 4 Gy with distinction between radiosensitive and radioresistant sam-

ples. The genes with differential expression between doses specific for radiosensitive

and radioresistant patients were then investigated towards their functional character-

istics verified using overrepresentation analysis of biological process Gene Ontology

terms (Ashburner et al., 2000). Overrepresentation was measured by means of Fisher’s

exact test implemented in the topGO R package (Alexa and Rahnenfuhrer, 2010) with

Benjamini-Hochberg correction for multiple testing.

Trend testing

Accounting for diverse doses in the two experiments, the genes were addi-

tionally inspected for the existence of trends using the Jonckheere- Terpstra

test (Terpstra, 1952; Jonckheere, 1954). In this case, the hypotheses present as follows:

H0 : Θ1 = Θ2 = . . . = Θk (3.13)

HA : Θ1 ≤ Θ2 ≤ . . . ≤ Θk (3.14)

where Θi is the i− th sample median.

This renders the test an equivalent of the Kruskall-Wallis test, yet for samples that

may be sorted. The genes recognized as significant at the level of 5% with strictly in-

creasing and decreasing trends were further analyzed for Gene Ontology term enrich-

ment. The genes denoted strictly increasing/decreasing fulfilled the condition, that
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they did not attain significance in the monotonic trend.

Moreover, for the purpose of this study extensive research was necessary into the

nature of the trends. Therefore, proceeding in this direction, the analyzed genes not

presenting significant differences between controls in the two experiments, were clas-

sified into one of the six types of response profiles (Figure 3.6):

• irradiation related up-regulated

• irradiation related down-regulated

• dosimetry applicable up-regulated

• dosimetry applicable down-regulated

• high dose activation up-regulated

• high dose activation down-regulated

0Gy     2Gy       4Gy  

0Gy     2Gy       4Gy  

0Gy           2Gy     4Gy  

0Gy           2Gy     4Gy  0Gy        2Gy     4Gy  

0Gy        2Gy     4Gy  

RESPONSE PROFILES

Irradiation related Dosimetry applicable High dose activation

Figure 3.6: An illustration of dose response profiles applied for gene grouping to enable accu-
rate expression value interpolation.

The labels refer to the potential utility of features falling into the group, i.e. the irra-

diation related genes are the ones activated by irradiating the samples on lower levels;

the dosimetry applicable have a response profile changing with dose in the same di-

rection and could be of potential use in dosimetry tasks; high dose activation profiles
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present a response only at the 4 Gy dose level, but none at 2 Gy. The above men-

tioned response profiles were designated based on the expression differentiation be-

tween doses, e.g. in the irradiation related up-regulated group a significant difference

is observed between 0 Gy and 2 Gy, but there are no expression levels significantly

differentiating between 2 Gy and 4 Gy.

Multiple random validation

Considering the identification of potential biomarkers of radiation response, the sam-

ples were classified by means of a multiple random validation procedure. Notwith-

standing, due to the inconsistency between doses used in two experiments, simple

separation between controls and irradiation samples was not attainable. Hence, infor-

mation obtained by means of the trend testing stage was used and the ensuing proce-

dure was performed on genes determined as belonging to the irradiation related and

dosimetry applicable categories.

In the case of genes which were assigned to the dosimetry applicable group, ex-

pression values in the 2 Gy dose point were replaced with a linear interpolation value

between the control and 4 Gy values in the corresponding samples. In the irradiation

related group, as there were no significant differences between values in 2 Gy and 4 Gy

dose points, the values remained the same. In this fashion, the desirable data set with

two classes: controls and 2 Gy samples, was approximated. Results gathered through

the course of validating this novel method were juxtaposed against multiple random

validation performed on unadjusted expression values.

The multiple random validation scheme was executed in 500 repetitions. For each

repetition the data were randomly assigned into training and test sets with a ratio of

7:3 and case/control proportions were retained at the level of the true ratio in the entire

set. Logistic regression was chosen as a classification technique with forward stepwise

feature selection using the Bayes Factor (Berger and Pericchi, 1996) as a criterion for

increasing the number of model features. Genes forming the final model were recorded

in each iteration, and later ranked according to the frequency of their occurrence in a

single signature. The resulting list provided a reference for subsequent comparative

analyses.
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3.2.6 Monte Carlo Feature Selection validation

In order to validate the results of multiple random validation, the entire data set was

subjected to distributed Monte Carlo based feature selection (MCFS), in order to iden-

tify genes showing the most significant interaction networks in terms of radiation re-

sponse. This was achieved using the Broadside tool (Krol, 2015), which is a distributed

feature selection and interaction mining algorithm and application designed for ma-

chine learning problems. The principle behind it is that interactions are captured by

permuting pairs of variables, intercepting the effect these permutations have on the

model performance measure, and solving linear equation systems to enable the per-

formance of a decomposition of feature total effects into main effects and interaction

effects. Respectively, Broadside is not bound to a specific type of model, which in-

duces robustness, as it eliminates the risk of misinterpreting unpruned decision tree

structures as valuable features and interactions. The most frequent genes in the mul-

tiple random validation logistic models were compared to the results of the Broadside

MCFS networks.

3.3 Inter-omics data integration

The statistical p-value integration methods offered promising results in the attempt to

perform combined analysis on different microarray platform datasets within the same

transcriptomics space. This lead to the undertaking of a transfer of these procedures

for the purpose of investigating two datasets from different fields: proteomics and

transcriptomics on subgroups of workers from a nuclear production facility. The aim

of this study was to further deepen the knowledge of molecular mechanisms related to

radiation-induced human heart pathology.

3.3.1 Data sets

Proteomics samples

Left ventricle cardiac samples were extracted post mortem from 29 male individuals as

described in detail in (Azimzadeh et al., 2017). These were exposed to different external

doses of ionizing radiation during their lifetime. Non-exposed individuals of the same
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area were used as the control population. Both controls and exposed workers died of

ischemic heart disease. The samples were categorized into four groups conforming to

the total dose of ionizing radiation to which the individuals were exposed. The groups

present themselves as follows:

• unexposed controls (3 samples),

• < 100 mGy low dose exposed (6 samples),

• 100− 500 mGy medium dose exposed (10 samples)

• > 500 mGy high dose exposed (10 samples).

The low number of individuals in each group was caused by difficulties in obtain-

ing human data from the workers who died of the very specific ischemic heart disease

condition and time of tissue collection (maxiumum 4h post mortem) was paramount

in this case. Nevertheless, small sample sizes present a certain problem in the power of

statistical procedures and require careful and accurate choice of analysis workflows.

The samples were processed in an LC-MS/MS experiment as reported previ-

ously (Azimzadeh et al., 2017). The clinical data available for the samples contained to-

tal external dose, age, smoking habits, alcohol consumption, and BMI. However, while

the dose and age factors differed between the workers, all of the workers were recorded

to be smokers and drinkers.

RNA-seq samples

RNA samples were collected initially from 8 male subjects, a subset of the group pre-

viously analyzed in the proteomics approach (Azimzadeh et al., 2017). They were di-

vided into two groups: unexposed controls (3 samples) and > 500 mGy high dose (5

samples). The mirVana PARIS Kit (Ambion, ThermoFisher, USA) was used to isolate

both native protein and total RNA. Total RNA was isolated from the lysate according

to the Ambion, ThermoFisher manufacturer’s protocol. RNA integrity was assessed

on the Agilent 2100 Bioanalyzer. The sequencing validation analysis supplied good

quality data for 4 samples derived from the group of workers used in the proteomics

experiment: 2 controls and 2 high-dose samples. The sequencing was executed on the

Illumina NextSeq 500 desktop sequencer.
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3.3.2 Confounding factor filtration

The first challenge posed by the data was the fact that there existed a strong correlation

between age and dose factors in the studied individuals. As the total dose to which

workers were exposed during their lifetime was the main point of interest in terms of

the study of ischemic heart disease in this aspect, measures were introduced for the

filtering of features that presented variability primarily due to the age factor. The dose-

age correlation in the proteomics data was measured using Spearman’s rank correlation

coefficient. Furthermore, to avoid bias caused by the confounding age factor, a regres-

sion analysis with backward stepwise model building was performed. Each protein

feature was modeled gradually excluding the factors of dose and age transformed us-

ing Box-Cox algorithm (Box and Cox, 1964) and model selection was conducted on the

basis of Akaike Information Criterion (Akaike, 1974). Separability of the proteomics

samples with the selected features was investigated using hierarchical clustering with

Spearman’s rank correlation as a similarity measure.

3.3.3 Statistical analysis of omics data sets

After the protein features explained mainly by the dose factor were extracted, primary

analysis of the proteomics and transcriptomics data sets was carried out. Firstly, in

the case of MS data, outlier detection was performed using Dixon’s criterion within

the dose groups. Then, within group normality was tested using Shapiro-Wilk pro-

cedure (Shapiro and Wilk, 1965) and based on the assumption notwithstanding, the

Kruskal-Wallis test (Kruskal and Wallis, 1952) with Storey’s FDR multiple testing cor-

rection (Storey, 2002) was used to assess differentiation among the dose groups. As a

post-hoc method, Dunnett’s test (Dunnett, 1955) was selected for determining deregu-

lated proteins among the dose groups in relation to the control samples. Significance

in the above tests was assumed at the level of 0.05 in all of the above mentioned proce-

dures.

Transcriptomic RNA-seq data preprocessing was performed using state-of-the-art

methods. Alignment and mapping were accomplished with STAR software version

2.5.1 (Dobin et al., 2013) against the GRCh38/hg38 human reference genome. Sorting
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and indexing was executed using SAMtools, version 1.3.1 (Li et al., 2009). The correla-

tion between biological replicates within control and high-dose groups was assessed.

Further differential expression analysis was performed with the use of R DESeq2 pack-

age (Love et al., 2014) with gene expression modeled based on the negative binomial

distribution.

3.3.4 Functional analysis

Enrichment analysis of deregulated genes and proteins was carried out including

Gene Ontology Biological Process terms and KEGG signaling pathways. Overre-

spresentation was assessed using Fisher’s exact test. Moreover, gene and protein

interaction and signaling networks were analyzed through the STRING search tool

(http://string-db.org).

3.3.5 Statistical integration

Finally, after separate processing completion, an integrative multiomics analysis of

data from the workers samples was conducted in the form of Fisher’s combined

p-value transformation(Fisher, 1992) on the common in both data sets gene and pro-

tein features (Figure 3.7). The combination is achieved by summing k log-transformed

individual p-values. The inverse sum multiplied by 2 becomes the combined statistic,

which follows the χ2 distribution with 2k degrees of freedom (Eq. 3.15).

X = −2

k∑
i=1

log(pi) (3.15)

X ∼ χ2
2k (3.16)

This method is adequate for sequencing data, as the read counts cannot be ap-

proximated with a Gaussian distribution. Regarding the proteomics data, high-dose

group samples and controls were only taken into account for combined analysis to as-

certain compatibility with the transcriptomics data. Bearing in mind the non-specific

http://string-db.org
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nature of gene-protein coupling (multiple genes may correspond to a single protein),

in such cases genes with the minimum p-value were considered. The combined

p-values were afterwards corrected for multiple testing using the Benjamini-Hochberg

method (Benjamini and Hochberg, 1995).

Figure 3.7: Illustration of the Fisher’s p-value combination method. The values on the axes
represent p-values potentially obtained in two experiments for matching features - in the case
of this study proteins and transcripts. The color depicts the combined p-value level. The
white line illustrates the 0.05 threshold for the resulting combined p-value. The features with

combined p-value below the white line are considered statistically significant.

3.4 Different tissue and dose proteomics data integration

3.4.1 Data

Three biological replicate samples were collected from each of the four cell systems:

• Human skin fibroblasts

• Human coronary artery endothelial cells

• Human mammary epithelial cells (MCF10A)

• Human leukocyte cells

The cell exosomes were then divided into four dose groups, according to the radia-

tion they were subjected to: 0 Gy controls, 1 Gy, 2 Gy, 6 Gy. Furthermore, the samples

were processed using LC-MS/MS for protein identification.



62 Chapter 3. Materials and Methods

3.4.2 Integrative tissue analysis

The exosome data were analyzed initially for protein identification. Afterwards, the

common set of proteins from all tissues was examined in terms of clustering and sim-

ilarity. Unsupervised hierarchical clustering was performed, followed by the determi-

nation of similarity indexes between individual samples (Frank et al., 2007):

SI =

∑
i xiyi√∑
i x

2
i y

2
i

(3.17)

where xi and yi are abundance levels of proteins from two measured samples.

After examining the similarity between samples, deregulated protein analysis was

performed. Differentiation of proteins between doses with regard to the control sam-

ples was determined by means of Dunnett’s test at a 5% significance level within indi-

vidual tissue groups. Moreover, the differentiating proteins were compared between

the tissues.
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Results and Discussion

4.1 Batch effect identification

Firstly, in this section batch structure identification results accomplished using the dy-

namic programming algorithm are presented. Moreover, correction based on com-

bining the novel algorithm of batch effect identification with an algorithm for batch

bias removal is discussed. The choice of batch effect correction algorithm was carried

out based on comparative studies (Chen et al., 2011; Luo et al., 2010), which conclude

that the ComBat algorithm (Johnson et al., 2007) is a reliable, state-of-the-art method

for batch effect removal, presenting in most cases the best quality of results compared

to other approaches. Therefore, the ComBat method is used as a tool for correction,

combined with the BatchI method for batch effect identification.

The experimental data with known a priori batch structure: E-GEOD-19419 and

E-GEOD-36398, RNA-seq data and MS data, were first analyzed in terms of estimat-

ing the accuracy of the known, true structure of batches obtained when applying the

dynamic programming BatchI algorithm (Papiez et al., 2018b). Furthermore, in these

data, the quality of batch effect filtration was assessed in terms of intragroup correla-

tion. In this sense, it is assumed that when batch effect is correctly identified and cor-

rected for, the technical sources of bias are filtered from the data, which is expected to

increase the correlation between samples within a studied biological condition group.

Finally, microarray expression sets E-GEOD-2034, E-GEOD-4183 and

E-GEOD-10927, with unknown batch status labeling were processed. In each of

the analyzed sets, the date of the experiment was known and used as the sorting factor.

In order to evaluate the obtained results after batch effect identification and correction,

63
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the intragroup correlation index was used and the increase of Information Content of

gene ontology terms enriched with differentially expressed genes was measured.

4.1.1 Known structure of batches

Batch division re-identification

The division into batches using BatchI dynamical programming was compared with

the original batch grouping with the use of weighted average pairwise Dice-Sorensen

Index (Dice, 1945) for the purpose of measuring the efficacy of batch effect identifica-

tion. The Dice Index reflects the similarity of two data sets, with a value of 0 when

there are no common elements, to a value of 1, when the sets are identical. Compar-

isons of true and identified batch structures are illustrated in Figure 4.1. True batches

are presented by means of different symbols and colors, while the estimated structure

is depicted by vertical lines dividing samples into batches.

Figure 4.1: Division of the data sets into batches with the a priori defined groups and deter-
mined with the dynamical programming approach: a) Set E-GEOD-19419, b) Set E-GEOD-
36398, c) RNA-seq data, d) Proteomics data. Colors show the original batch structure, the

vertical lines present divisions found using the dynamic programming algorithm.
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• Microarray data

In the E-GEOD-19419 experiment the reproduction of batches is identical to the

original division. In E-GEOD-36398 the batch assignment reconstruction is also

highly accurate with a weighted average Dice Index of 94.05%. The fault is only

in three samples belonging from third batch being assigned into the fourth.

• RNA-seq data

In the RNA sequencing data the original batches are reconstructed with the value

of a weighted average Dice Index of 93.02%. Two samples from batch no.2 were

assigned to batch no.1 and three samples from batch no.3 to batch no.2.

• Mass spectrometry data

In the case of MS data, batches are mapped with a weighted average Dice Index

value of 99.78%. One of the samples from batch no.1 and five from batch no.3

were classified as batch no.2.

Batch effect correction

The data sets examined for the purpose of algorithm performance assessment when

batch effect was previously identified and on record were evaluated in two aspects.

First, intragroup correlation was measured for samples, which belong to one bio-

logical condition investigated in the study. 95% confidence intervals for mean Spear-

man’s correlation coefficients were computed and are depicted in Figure 4.2. For the

two gene expression microarray experiments a significant increase in intragroup corre-

lation after batch effect removal is evident. The RNA-seq experiment, having a strong

design imbalance when considering the number of samples in the particular biological

conditions, was expected to not present weaker batch effect identification performance.

Nevertheless, even in the less numerous groups mean correlation within groups does

not decline significantly. In the mass spectrometry data, which in contrast to the previ-

ous experiments was obtained through MALDI-ToF measurements, which are a quan-

titative technique, there is a clear increase in within group correlation, though larger

differences may be observed compared to the original batch structure correction.

Moreover, the δ gPCA statistic was utilized as another qualitative measure of
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Figure 4.2: 95% confidence intervals for mean intragroup correlation coefficients in known
batch structure data sets: a) Set E-GEOD-19419 (60 samples), b) Set E-GEOD-36398 (50 sam-

ples), c) RNA-seq data (72 samples), d) Proteomics data (373 samples).

change between data with mitigated batch effects versus no correction. The signifi-

cance of this statistic with relation to no batch correction was evaluated using p-values

estimated in the course of permutation tests (Table 4.1). In the gene expression mi-

croarray data, the change of δ gPCA statistic is significant in both experiments when

applying batch effect correction based on the batch structure identified using the dy-

namic programming algorithm. In the RNA-seq data set the change after correction

becomes significant when considering the structure information derived by means of

the BatchI algorithm. In the MS data, with it being a large data set in terms of sample

numbers, which contributes to the overall weak variation observed, there is no substan-

tial difference after batch effect correction neither in the case of original batch labeling,

nor the one derived using dynamic programming.

4.1.2 Detecting and correcting batch effect of unknown structure

The three experiments selected for the assessment of batch effect identification without

prior knowledge of batch structure were analyzed in the same manner as the studies

with a priori known batches of samples in terms of partitioning quality. This consists of
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Table 4.1: Percent of variation induced by batch effect with regard to total variation, the corre-
sponding gPCA δ statistics and the p-values for testing the significance against no batch effect

correction for two microarray, an RNA-seq and a proteomics data sets.

E-GEOD-19419 Original batch corrected DP batch corrected

Total variation [%] 69.23 69.23

δ 0.9271 0.9271

p-value 4.69E-08 4.78E-08

E-GEOD-36398 Original batch corrected DP batch corrected

Total variation [%] 48.15 50.14

δ 0.9991 0.9989

p-value 2.24E-07 2.90E-07

RNA-seq Original batch corrected DP batch corrected

Total variation [%] 65.12 67.23

δ 0.2765 0.6175

p-value 4.87E-01 9.38E-02

Proteomics Original batch corrected DP batch corrected

Total variation [%] 23.82 24.56

δ 0.6645 0.6671

p-value 7.32E-01 7.15E-01

examining mean correlation within case/control subgroups. The results presented in

Figure 4.3 indicate the fact that data integrity within analyzed biological groups is im-

proved by including batch effect identification and subsequent correction steps. Like-

wise as in Figure 4.2, the errorbar plots are constructed on the basis of mean correlations

and 95% confidence intervals. In all the three data sets E-GEOD-2034, E-GEOD-4183

and E-GEOD-10927, the use of batch effect correction executed with the dynamic pro-

gramming algorithm and ComBat algorithm leads to the increase of the intragroup

mean correlation for every one of the total of nine biological groups analyzed. In three

of the nine groups of samples, a highly statistically significant increase is observed.

Moreover, the proportion of variance explained by batch effects is decreased, which is

reflected within the values of the δ gPCA statistic (Table 4.2). In the breast cancer exper-

iment (E-GEOD-2034), six batches have been identified as the optimal number by the

dynamic programming algorithm. For the colon cancer experiment (E-GEOD-4183):

two batches, and for adrenocortical carcinoma (E-GEOD-10927): three batches.
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Figure 4.3: 95% confidence intervals for mean intragroup correlation coefficients in unknown
batch structure data sets: a) Set E-GEOD-4183 (53 samples), b) Set E-GEOD-2034 (286 samples),

c) Set E-GEOD-10927 (65 samples).

Table 4.2: Values of the gPCA δ statistic for different numbers of batches in the unlabeled data sets.
The optimal number of batches is chosen with the minimum p-value principle (numbers in bold).

Breast cancer

2 batches 3 batches 4 batches 5 batches 6 batches 7 batches 8 batches

Tot. Var [%] 88.63 86.69 85.31 85.83 84.10 81.09 81.90

δ 0.45 0.43 0.44 0.53 0.56 0.56 0.51

p-value 6.89E-02 9.95E-02 1.05E-01 7.18E-02 6.59E-02 8.33E-02 1.48E-01

Colon cancer

2 batches 3 batches 4 batches 5 batches 6 batches 7 batches 8 batches

Tot. Var [%] 80.24 64.51 61.63 55.13 54.42 50.76 37.30

δ 0.49 0.39 0.56 0.58 0.64 0.68 0.60

p-value 2.42E-01 6.27E-01 3.63E-01 4.37E-01 3.97E-01 3.71E-01 7.02E-01

Adrenocortical carcinoma

2 batches 3 batches 4 batches 5 batches 6 batches 7 batches 8 batches

Tot. Var [%] 82.48 79.04 74.09 69.26 66.41 54.73 37.13

δ 0.45 0.56 0.57 0.56 0.54 0.51 0.62

p-value 1.46E-01 7.61E-02 1.60E-01 2.47E-01 2.28E-01 4.09E-01 3.40E-01

Runtime analysis

The E-GEOD-2034 data set, being one of the more numerous (286 samples in total),

was selected additionally for the purpose of measuring algorithm runtimes. Firstly, the

dynamic programming algorithm was run to scan for the optimal number of batches

between 2 and 10 on the entire data set, and next on subsets comprising consecutively

80%, 60%, 40% and 20% of the samples. This approach was re-iterated 5 times in order
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to measure dispersion of the accomplished runtimes. Testing was performed in parallel

mode on Intel R©CoreTMi5-3320M CPU @ 2.60GHz × 4 processors. Results, presented

in Figure 4.4, show that the method requires linearly increasing times with increased

sample size, with an overall runtime reasonably small, even on a personal computer.
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Figure 4.4: Runtime error bars showing the linear dependency between data set size and
runtime. The original data set consisted of 286 gene expression microarray samples.

Functional gene ontology analysis

The data sets with unknown a priori batch structure were then examined in terms of

functional analysis using GO terms in order to determine the relevance of biological

conclusions, which may arise from the experiments. The differentially expressed genes

identified in the original data sets with and after batch effect correction were used for

GO term enrichment analysis by means of the hypergeometric test. The resulting lists

of terms were afterwards compared and terms unique to each analysis workflow were

thoroughly investigated.

In the E-GEOD-10927 experiment, which is a study on adrenocortical carcinoma

and adenoma the enriched terms were matched with literature knowledge on these

processes. The findings elucidated the irrelevance of GO terms unique to the lack of

batch effect correction approach to the studied medical case. However, a majority of

the GO terms gained by means of including batch effect filtration in the preprocessing
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has previously proven links to processes related with adrenocortical carcinoma and

adenoma (Full list in (Papiez et al., 2018b)).

The remaining two studies concerned more well-defined and studied biomedical

problems, i.e. breast and colon cancer, and therefore, the resulting GO term lists were

large. In this case instead of literature studies the biological value of the findings is

presented by means of the Information Content (IC) measure (Resnik, 1995). The as-

sumption behind using this method is that, when batch effect correction is performed,

a more detailed representation of the studied process is obtained, which is equivalent

to an increase of IC value (Figure 4.5).

Additionally, when examining the dynamic programming combined with ComBat

correction data sets, functional analysis results have been compared with GO terms ac-

quired with data corrected using an alternative SVA approach (Leek and Storey, 2007).

This method consists of identifying existing batch effect variability in the data and si-

multaneous filtration of the effects based on the estimated model.

Preserving the different branch and node sizes in the Gene Ontology graph, the to-

tal IC measure was standardized per GO term. The results prove that when it comes

to common well described diseases, such as breast cancer (incidence rate 200 − 900

cases per million (Ferlay et al., 2015)) or colon cancer (incidence rate 50 − 400 per

million (Haggar et al., 2009)), preprocessing data with the dynamic programming ap-

proach does not lead to a significant improvement in the quality of the information

(reflected by standardized total IC). However, this confirms that though preprocessing

methods, including batch effect identification and correction, are essential for careful

data analyses, they alone are not sufficient to provide an augmentation of the biologi-

cal knowledge available in bioinformatics data bases for well described diseases. Still,

when examining the less prevalent case of adrenocortical carcinoma (0.5−2.0 cases per

million (Kerkhofs et al., 2013)) data processed using the BatchI dynamic programming

algorithm provides a supreme outcome, which elevates the chance of discovering po-

tential new mechanisms of disease. Furthermore, in each of the presented cases the

BatchI identification approach combined with ComBat correction gives higher stan-

dardized total IC values than the alternative SVA method and the outcome is no worse

when confronted with the uncorrected data (Figure 4.5).
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Figure 4.5: Comparison of Information Content for three studies. On the left Total Informa-
tion Content of ontologies is presented for genes unique for data without batch processing
and including batch effect identification with dynamic programming and correction. On the
right standardized Information Content per GO term of ontologies for genes unique for data

without batch processing and including batch effect identification and correction.

4.2 Inter-platform transcriptomics data integration

The data from two microarray experiments conducted on different platforms were

combined with the aim of preserving coherence in the biological sense. In this way

raw intensity signals for the cDNA data were extracted for each of the two color chan-

nels: red and green dyes. Afterwards, batch effect correction was applied and for every

feature in the individual samples the intensity was averaged over the two dye-swap

replicates. Next, the intersection of transcripts common for both biochips based on

UniGene identifiers was subsequently analyzed. The numbers of genes retained for

further research is presented in Figure 4.6.

4.2.1 Identification of Differentially Expressed Genes

Statistical testing was carried out initially for genes from samples, which were nor-

malized separately in the two experiments, and samples processed with batch effect

correction. These tests were performed with regard to the radiosensitivity status of the

studied patients in order to identify differentially expressed genes (RR vs. RS). Then

the separate analysis was compared to the results obtained by means of processing data

from the two experiments combined as if it were one sample. The numbers of differen-

tially expressed genes for control samples is presented in Table 4.3, and for irradiated
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Figure 4.6: Venn diagram illustrating the proportion of genes common for both microarray
platforms.

in Table 4.4.

(A) (B) (A∩B)

separate batch effect intersection

normalization adjustment

oligonucleotide 577 577 577

cDNA 922 1093 380

Common 44 53 12

One data set – 3146 –

Table 4.3: Number of differentially expressed genes at the significance level of 5% for control
samples.

The results show that when studying the data from the two microarray experi-

ments, usually the procedure comprising batch effect correction yields a larger number

of DEG. Moreover, the situation where the expression sets are merged into one pro-

vides notably considerable numbers of genes classified as differentially expressed, yet

this is due to a lack of specificity and a raised probability of retrieving false discoveries

when increasing sample sizes. This shows that straightforward merging of datasets is

not an adequate tool for integrative data analysis.

However, as the number of DEG is not a sole measure of interest in biological stud-

ies, but rather the relevance of the results towards elucidating studied processes, the

DEG common for the two studies, which were obtained as a result of separate data
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(A) (B) (A∩B)

separate batch effect intersection

normalization adjustment

oligonucleotide 633 633 633

cDNA 669 1159 289

Common 38 51 12

One data set – 3526 –

Table 4.4: Number of differentially expressed genes at the significance level of 5% for irradiated
samples.

analysis, and merging the data into one set, were tested for statistically significantly

enriched ontologies and pathways in the GO and KEGG databases, using the hyper-

geometric test. Ontologies and pathways were identified as significantly enriched at

the significance level of 5%. Essentially, the differentially expressed genes obtained in

the course of the batch effect correction approach were linked to a wider range of on-

tologies and pathways. Specific interest is drawn towards radiation induced related

processes that have not been determined in the case of data normalized separately. For

example, a strong group of processes and functions were linked with the MAPK sig-

naling pathway which has been described as playing a key role in the molecular back-

ground of radiosensitivity (Chung et al., 2009). Moreover, annotations to the radiation-

related p53 regulation (Mirzayans et al., 2013) and mTor (Steelman et al., 2011) path-

ways manifested themselves. Other annotations to ontologies including cellular re-

sponse to stress, apoptosis and regulation of cell death may further point to a key role

of the identified DEG and radiosensitivity.

4.2.2 Data integration approaches

In order to further investigate the approaches for data integration, results for three

methods were compared in terms of differential gene expression and their utility to-

wards separability between the radiosensitive and radioresistant patient groups. In

this section the analyzed data is calculated as the signal log ratio between irradiated

and control samples.
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• Restrictive approach

The two experiments produce lists of genes containing 471 and 927 DEG at the

significance level of 0.05, for the oligonucleotide and cDNA experiments respec-

tively. The intersection of these two sets consisted of 30 genes (Figure 4.7).

897 441

30

cDNA
oligonucleotide

Figure 4.7: Venn diagram for differentially expressed genes in two experiments.

• Arraymining

The procedures implemented in the Gene Selection section of the Arraymining

platform provide a list of a predefined number of top-ranked genes. Thus, an

intersection of a 1000 top genes in the two experiments was analyzed and the

gene set sizes presented in Figure 4.8.

952 952

48

cDNA oligonucleotide

Figure 4.8: Venn diagram for Arraymining top ranked genes in two experiments.
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• Integrative approach

The p-value integration approach gene list was obtained by combining p-values

using the weighted Z-score method. Weights were designated as the inverse stan-

dard error for the gene expression distribution. The approach resulted in a list of

108 differentially expressed genes significant at 0.05 level.

The sizes of common and unique lists, acquired in the course of comparing the three

approaches, are illustrated in Figure 4.9. In total, 12 genes were common for all three

data integration approaches.

Figure 4.9: Venn diagram for gene lists obtained in three data integration approaches
(Micallef and Rodgers, 2014).

This shows that integrating expression data at the p-value level is an adequate

method for enhancing results in the form of a differentiating gene signature. Setting

a fixed p-value threshold on the individual data sets often leads to a binary decision

whereas taking into account the p-values tied to a test statistic enables a more precise

incorporation of the differentiating strength of a particular gene feature and avoid the

potential rejection of genes of interest, which would take place when setting an arbi-

trarily significance level.

4.2.3 Separability analysis

Logistic regression model

The DEG lists were used to construct a logistic regression model for measuring sep-

arability of the two groups of samples: radioresistant and radiosensitive patients. In
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each of the three data integration approaches model selection was carried out using

the likelihood ratio test. The resulting models comprised 6, 6 and 16 features respec-

tively for the restrictive, Arraymining, and integrative approaches. When applying the

signature to discriminate between RR and RS patients, solely the integrative approach

signature produces a model with perfect separability. The model efficiency comparison

is presented with the use of Receiver Operating Characteristics (ROC) in Figure 4.10.

Additionally, the decrease of error rates depending on the number of features is illus-

trated in Figure 4.11.
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Figure 4.10: Receiver Operating Characteristic curves for logistic regression model separabil-
ity.
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Figure 4.11: Separability error rates subject to the number of features in the logistic regression
model. The vertical line demonstrates the borderline, beyond which further feature addition
does not provide a significant increase in model performance based on the likelihood ratio

test.
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Support Vector Machine

To challenge the assumption that a logistic regression model will perform better on

features selected by means of statistical tools, another classification tool from the data

mining field was chosen for comparison purposes: Support Vector Machine classifiers.

It was tested on all three gene signatures. Model selection in this case was based on the

minimum error rate for a given number of features. The three signatures provided in

models built of 8, 19 and 19 features, respectively for the restrictive, Arraymining, and

integrative approaches. The Receiver Operating Characteristics (Figure 4.12) suggest

once more the superiority in terms of performance obtained by means of the p-value in-

tegration signature. Moreover, the model provides the lowest error rates (Figure 4.13).
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Figure 4.12: Receiver Operating Characteristic curves for SVM model separability.
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Figure 4.13: Separability error rates subject to the number of features in the support vector
machine model. The vertical line demonstrates the borderline separating the optimal number

of features minimizing the error rate.

The model performance focused on radiosensitivity group separability was also

measured by comparing Positive and Negative Predictive Values. These statistics are

summarized in Table 4.5.
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Logistic regression Support vector machine

PPV [%] NPV [%] PPV [%] NPV [%]

Restrictive 86.67 74.32 88.33 91.52

Arraymining 70.13 90.47 92.98 91.94

Integrative 100.00 100.00 98.18 93.75

Table 4.5: Positive and negative predictive value for logistic regression model and support
vector machine separability.

The augmentation of gene signatures is not only a quantitative increase, but more

importantly enhances the quality in terms of classification potential. The separability

of the integrative approach model proved to be the single case of signature providing

perfect distinguishing of the data groups coupled with the statistically based logistic

regression model with feature selection performed by means of the likelihood ratio test.

By contrast, the best model for the support vector machine is also obtained with the

integrative approach signature, yet does not result in perfect separability. Moreover,

when considering the error rate decrease, the integrative approach yields the lowest

error rate values. Finally, the PPV & NPV prevail for both the logistic regression and

the Support Vector Machine models.

Finally, the obtained signatures were validated in functional analysis by ex-

tracting the enriched KEGG signaling pathways. It revealed pathway terms for the

integrative approach gene set that were not determined through the restrictive or

Arraymining approaches. These include pathways connected with radiation exposure

and susceptibility or cancer, such as JAK-STAT (Ding et al., 2013), T cell recep-

tor (Witek et al., 2014), cytokine-cytokine receptor interaction (Herok et al., 2010),

Fc epsilon RI (Fox et al., 1976) and natural killer cell mediated cytotoxic-

ity (Son et al., 2014).

4.2.4 Dose response trend analysis

Beforehand, the focus of this study was to test for the ability to discriminate between

radiosensitive and radioresistant patients. For this purpose, the two dose groups from
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the different experiments (2 Gy and 4 Gy) were analyzed together and assigned a high-

dose label. However, the second research question that was to be addressed in this data

set, is the radiation dose response patterns. In this case the analysis approach changes

and the two different doses are considered separately, and the combination focuses on

features where there is no significant difference between control samples in the two

microarray experiments.

Differentiation analysis

Upon extracting genes, which are common for the two microarray platforms:

Affymetrix oligonucleotide and custom cDNA, a unified procedure was carried out

on a total of 9852 genes. Initially, the common genes were assessed concerning the

control samples in order to provide the same base level for datasets from both plat-

forms. Among the control samples in the two studies 7429 genes were not identified

as significantly differentiating between the preprocessed data sets. Henceforth, this

gene set was examined in order to identify features that display different patterns of

response, separately for radiosensitive and radioresistant patients. The intersection of

DEG significantly differentiating expression levels in the 2 Gy and 4 Gy dose groups is

presented in Fig. 4.14. A total of 1214 genes was identified uniquely to the RS group

and 730 genes to the RR group.

1214 730140

RS
RR

Figure 4.14: Venn diagram presenting a comparison of the numbers of genes differentially
expressed between 2 and 4 Gy doses in RR vs. RS samples.
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Next, Gene Ontology enrichment was analyzed by means of Fisher’s exact test with

regard to all of the differentially expressed genes between 2 Gy and 4 Gy. Benjamini-

Hochberg multiple testing correction was applied and one significantly enriched GO

term remained, i.e.: cellular amino acid metabolic process. For the radiosensitive

group no significantly overrepresented terms were determined, yet in the radioresis-

tant patients, 31 terms were statistically significantly overrepresented. The GO bi-

ological process terms enriched in the RR group included, among others radiation-

induced mechanisms such as: stress response, oxidative phosphorylation, and immune

response regulation.

This primary analysis of DEG subject to different doses of radiation sug-

gested potential changes in the RR and RS breast cancer patients expression

profiles. The DEG unique for the radioresistant group are involved in a va-

riety of biological processes. Examples have been demonstrated, as previ-

ously reported, to play major roles in radiation response and tumor develop-

ment (Weichselbaum et al., 1994; Park et al., 2014; Reinhardt et al., 1997). By contrast,

the radiosensitive group gene are not overrepresented in biological processes known

to be of biological importance. The findings are coherent with reports of key processes

being silenced in radiosensitive patients and suggest an area of further experimental

investigation.

Trend testing

The numbers of genes with increasing, decreasing and monotonic trends according to

the results of Jonckheere-Terpstra test are presented in Table 4.6. Furthermore, genes

were grouped as strictly increasing and decreasing if they did not show significance in

the monotonic trend. Afterwards, the strictly increasing and decreasing dose response

genes were analyzed for GO term enrichment. The strictly increasing genes were repre-

sented in 99 significantly enriched terms, and the down-trending in 38 GO terms. Some

of the terms associated with decreasing genes feature processes related to hemopoiesis

and homeostasis, GPI anchor metabolism and biosynthesis. By contrast, terms over-

represented by increasing trend genes were linked among others to cellular response

to ionizing radiation and Wnt signaling. The latter has been reported to be linked to
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breast cancer mechanisms in a study comprising a large dataset analyzed in a non-

standard manner investigating beyond differential expression (Schmid et al., 2012).

The decreasing trend genes processes include hemopoiesis and homeostasis, which

have been previously shown to play a role in stem cell injury from ionizing radia-

tion (Shao et al., 2014). Moreover, GPI anchors being important apoptosis regulators

when deregulated by ionizing radiation have a potentially significant impact on cellu-

lar resistance (Brodsky et al., 1997).

Table 4.6: Numbers of genes showing significant dose trend. The strictly increasing and de-
creasing genes are those which do not appear in the monotonic trend group.

Increasing Monotonic Decreasing

No of genes 717 377 53

Strictly increasing Strictly decreasing

No of genes 363 30

For the classification task, selection of interpolation method between doses was

proposed based on the gene profiles (Figure 3.6). The numbers of genes classified into

six types of response profiles are summarized in Table 4.7.

Table 4.7: Numbers of genes grouped in to particular dose response profiles.

Number of genes in response profiles

Irradiation related Dosimetry applicable High dose activation

Up-No change 610 Up-Up 117 No change-Up 48

Down-No change 1067 Down-Down 969 No change-Down 319

Multiple random validation

In order to summarize the results of the multiple random validation procedure, av-

erage statistics were computed over the total of 500 MRV iterations. The summary

statistics consisted of positive predictive value (PPV), negative predictive value (NPV)

and overall classifier accuracy. The classification was performed for comparative pur-

poses first on original data, and afterwards on data adjusted using linear interpolation

for the dosimetry applicable type of gene profile. 1,677 genes fell into the irradiation
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related group and 1,088 into the dosimetry applicable. The original data and adjusted

data results are shown in Table 4.8.

Table 4.8: Multiple random validation metric results for analysis conducted on original expres-
sion data values values adjusted using linear interpolation of the appropriate gene profiles.

Original expression data

Mean [%] Lower CI [%] Upper CI [%]

PPV 86.71 86.13 87.29

NPV 89.32 88.76 89.89

Accuracy 87.73 87.44 88.02

Interpolation adjusted data

PPV 93.11 92.78 93.45

NPV 94.38 94.08 94.67

Accuracy 93.56 93.39 93.72

Using a tailored approach for data classification provided a significant improve-

ment. In the simple logistic regression model used in a multiple random validation

procedure on unadjusted data, results in the context of separating control and dose-

treated samples may be considered of good quality. In an alternative approach, once

taking into account the gene expression profile nature of the doses applied to samples

in both experiments, data in the 4 Gy timepoint were linearly interpolated to 2 Gy.

However, instead of interpolating all the data non-selectively, the genes were handled

according to their respective dose response profile. The adjusted data gave significantly

superior results in comparison to the simple MRV scheme. The summarizing statis-

tics excelled on adjusted data classification compared to the simple approach (positive

and negative predictive value, and accuracy). This indicates that, when possible, not

only increasing sample size enhances classification potential, but also using custom so-

lutions based on knowledge of the underlying models to adjust data may be highly

beneficial.

In the adjusted data, features selected for the logistic regression models in each

iteration were recorded. The most frequently occurring genes were GADD45A, ZMAT3

and NAMPT. A complete list of the genes together with their occurrence frequencies is

comprised in (Papiez et al., 2019).
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In order to validate these findings the entire original data set was processed in-

dependently using Monte Carlo feature selection. A graphical representation of the

determined interaction network was constructed and a relevant part of this network is

depicted in Figure 4.15. It is clearly visible that genes involved in the highest numbers

of interactions, and thus producing the largest networks, are GADD45A, ZMAT3 and

CCNG1.

Figure 4.15: Central fragment of a gene interaction network created as an illustration of Monte
Carlo feature selection results on the entire data set. The genes in bold show the highest num-

ber and largest strength of interaction with other genes.

The most often occurring gene features in the logistic regression model iterations

were analyzed towards the corresponding biological function.

• GADD45A is a member of a group of genes whose transcript levels are increased

following stressful growth arrest conditions and treatment with DNA-damaging

agents. The DNA damage-induced transcription of this gene is mediated by both

p53-dependent and -independent mechanisms. (Zhan, 2005). It has been previ-

ously proven to be a biomarker of radiation response (Kabacik et al., 2015).

• ZMAT3 mRNA and the protein are up-regulated by wildtype p53 and

overexpression of this gene inhibits tumor cell growth, suggesting that

this gene may have a role in the p53-dependent growth regulatory path-

way (Bersani et al., 2014).

• NAMPT is thought to be involved in many important biological processes, in-

cluding metabolism, stress response and aging. It has been shown to play a key
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role in radiotherapy treatment(Elf et al., 2017).

Additionally, the independent feature selection method was applied and it con-

firmed the findings obtained by means of the MRV procedure. The MCFS method, as

a rule based algorithm, focuses on genes with regard to their number and strength of

interactions. The three genes, which are linked to the most interactions, also present

the strongest ones (represented by width of interaction lines). These key features in

case of the two merged experiments were mainly: GADD45A, ZMAT3 and CCNG1.

Cyclin G1 (CCNG1) is a gene associated with G2/M phase arrest in response to DNA

damage. p53 mediates its role as an inhibitor of cellular proliferation with this in-

termediate gene and it has previously been found to be linked with radiation re-

sponse (Kabacik et al., 2015, 2011; Manning et al., 2013; Cruz-Garcia et al., 2018).

The independent identification of key features important for modeling radiation re-

sponse further justifies the use of a custom data processing procedure for integrative

data analysis that leads to enhanced classification. Not only have the two most sig-

nificant features (GADD45A and ZMAT3) been supported with the results from a dif-

ferent feature selection algorithm, but also through literature research. Furthermore,

this underlines the importance of investigating the less prominent genes not as single

biomarkers of radiation response, but rather their impact when functioning in a net-

work.

4.3 Multi-omics data integration

Transcriptomics and proteomics data for Mayak workers were analyzed in a combined

scheme. However, this required initial customized preprocessing of the mass spec-

trometry data set in order to select the proteins related to dose.

4.3.1 Proteomics regression

The LC-MS/MS-based proteomics data processing identified a total of 1,281 proteins

from the cardiac left ventricle samples. Dixon’s outlier detection criterion was applied

and no significantly outlying samples were detected in terms of protein abundance

values, as the outlier distribution was uniformly spread out across the entire data set.
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Strong positive correlation was determined between the factors of age and total ex-

ternal dose (Figure 4.16). On the contrary, no association was discovered between age

or dose and body mass index (BMI). Thus, for the purpose of identifying proteins, for

which abundance variation was only dose-dependent (dose is the major explanatory

variable), multiple stepwise linear regression analyses were performed for each indi-

vidual protein. On the other hand, proteins with only age-dependent variation were

filtered, or those for which none or both of the factors (external dose and worker age)

explained the existing variation. Moreover, BMI was also investigated as a factor in the

regression analysis. Other clinical data, such as smoking habits and alcohol consump-

tion could not serve as explanatory variables due to the fact that all the individuals

were smokers and drinkers.
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Figure 4.16: Scatter plot illustrating the data relationship between dose and age factors
in the samples. Spearman’s correlation coefficient with a value of 0.725 is significant

(p-value < 10e− 06).

Altogether 582 proteins (out of 1,281) were identified as only dose-dependent (from

now on the "dose-only" category), 225 as only age-dependent ("age-only"), and for 212

cases the variation was explained with a model built on the two factors. In the case of

only 17 proteins, the BMI served as the dominant explanatory variable. The complete

list of proteins along with the factors that constitute their respective models is available

in (Papiez et al., 2018a).

Within the dose-only group of proteins, the most significant (p-value < 10−7)

were: histidine ammonia lyase (HAL), zyg-11 family member A, cell cycle regulator
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(ZYG11A), RAD9-HUS1-RAD1 interacting nuclear orphan 1 (RHNO1), A-kinase an-

choring protein 9 (LRG_331), moesin (MSN), acyl-CoA synthetase long chain family

member 1 (ACSL1), isocitrate dehydrogenase 3 [NAD(+)] alpha (IDH3A), phospho-

glycerate mutase 1 (PGAM1), chloride intracellular channel 1 (CLIC1), malic enzyme 1

(ME1), glycogen phosphorylase (PYGM), aladin WD repeat nucleoporin (AAAS), and

ribosomal protein S27a (RPS27A). Multiple proteins from the above mentioned partic-

ipate in processes related to energy metabolism.

The impact of the age factor was mostly weaker. Only 3 proteins, radixin (RDX),

coatomer protein complex subunit beta 2 (COPB2), and protein arginine methyltrans-

ferase 5 (PRMT5) fell below significance at the level of p-value < 10−5 in age-only

models.

The dose-only and age-only dependent proteins were investigated for overrepre-

sentation using the Gene Ontology terms repository and Kyoto Encyclopedia of Genes

and Genomes pathway analyses. The most significant pathways according to GO

terms were "oxidation-reduction process" and "respiratory electron transport chain" for

dose-only and age-only deregulated proteins, respectively. The most significant KEGG

pathways were "metabolic pathways" and "oxidative phosphorylation" for dose-only

and age-only deregulated proteins, respectively. The heart-relevant enriched age-only,

dose-only, and dose-age dependent KEGG pathways are presented in Table 4.9. The

complete lists of age- and dose-dependent overrepresented GO and KEGG terms are

available in (Papiez et al., 2018a).

Despite the strong correlation, which appeared between dose and age factors in

the proteomics data, a significant majority of the differentiating proteins fell into the

dose-only dependent category. The comparative analysis of the pathways activated

by age-only and dose-only proteins presented general heart pathologies such as Hy-

pertrophic cardiomyopathy and Dilated cardiomyopathy or linked to processes such

as energy metabolism (Metabolic pathways, Propanoate metabolism, Oxidative phos-

phorylation). However, when considering dose-only related pathways the results up-

hold previously recorded metabolic networks (Azimzadeh et al., 2017), namely PPAR

signaling, Glycolysis, Fatty acid metabolism and TCA cycle.
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Table 4.9: KEGG pathways enriched by proteins that were identified as dose-only dependent and/or age-only
dependent in the backward stepwise regression model selection procedure. Pathways common for dose-only

and age-only dependent proteins are indicated in the bottom left.

Age-dependent Dose-dependent

Fatty acid elongation PI3K-Akt signaling pathway Ribosome

Tryptophan metabolism
Pathogenic Escherichia

coli infection
Carbon metabolism

Protein processing

in endoplasmic reticulum

Glyoxylate and dicarboxylate

metabolism

Biosynthesis

of amino acids

Arrhythmogenic right

ventricular cardiomyopathy

Proteasome Pyruvate metabolism

Dose-age-dependent Tight junction Butanoate metabolism

Metabolic pathways Glycolysis/Gluconeogenesis
Adrenergic signaling

in cardiomyocytes

Cardiac muscle contraction Peroxisome AMPK signaling pathway

Propanoate metabolism
Leukocyte transendothelial

migration

Vasopressin-regulated

water reabsorption

Valine, leucine and isoleucine degradation Fatty acid metabolism Beta-Alanine metabolism

Hypertrophic cardiomyopathy ECM-receptor interaction
Antigen processing

and presentation

Dilated cardiomyopathy PPAR signaling pathway Phagosome

Oxidative phosphorylation Fatty acid degradation TCA cycle

Porphyrin and

chlorophyll metabolism

2-Oxocarboxylic

acid metabolism

Focal adhesion

∪−shape and ∩−shape protein filtration analysis

Despite of the regression analysis revealing proteins whose expression profile changed

with dose, it does not take into consideration cases when changes show no linear re-

lation of the dose. This situation may be designated as a ∪−shape or a ∩−shape. The

former exists when the protein levels are high in the control group, then decline with

dose, and then increase again along with the doses. The latter occurs where in the

control group the protein level is low, increases with dose, and at the highest doses
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decreases. An example is presented in Figure 4.17.

Figure 4.17: Example boxplots for two proteins identified in the regression analysis as dose-
only dependent. The left plot represents a situation where the protein level gradually grows,
whereas the right the protein level forms a ∩−shape with an increase in the low-dose groups

and a decrease in the higher doses.

In order to enable analysis of such situations and acquire a comprehensive de-

scription of the deregulation with filtered out ∪−shape or a ∩−shape proteins,

tests for protein abundance differentiation were performed on the proteomics sam-

ples (Azimzadeh et al., 2017). Subgroups of low- (< 100 mGy), medium- (100 − 500

mGy) and high-dose (> 500 mGy) exposed samples were all analyzed with regard to

the non-exposed control group. Therefore, The Kruskal-Wallis test for differentiation

between the dose groups was carried out, as Lilliefors test results proved the normal-

ity assumption not fulfilled in the subgroups. It also confirmed the regression analysis

results (582 dose-only dependent proteins), as 582 proteins were found to be signifi-

cantly deregulated between at least one of the four dose groups (control, < 100 mGy,

100−500 mGy, and> 500 mGy). Post-hoc Dunnett tests enabled the discovery of sets of

deregulated proteins specific for every external dose group (Table 4.10). Even though

for many proteins their expression increased with the dose, an overwhelming majority

of all deregulated proteins were identified as down-regulated.

The numbers of total and intersecting differentiating proteins in the dose groups

are illustrated on Venn diagrams in Figure 4.18.

When examining the group of up-regulated proteins, twelve were significantly

changed when compared to unexposed samples in both high and medium external

dose groups. Only one uncharacterized previously protein (C1orf112) was common for
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Table 4.10: Numbers of dose-only dependent deregulated proteins in different dose groups in
comparison to the non-exposed controls resulting from post-hoc Dunnett tests.

With reference to controls < 100 mGy 100− 500 mGy > 500 mGy

Up-regulated proteins 1 15 12

Down-regulated proteins 2 33 307

∪−shape and ∩−shape proteins 260

Figure 4.18: Venn diagrams presenting the numbers and overlap of significantly a) up-
regulated and b) down-regulated proteins in different dose groups among dose-only depen-

dent proteins with respect to the control according to Dunnett’s test at α = 0.05.

up-regulated proteins in low and medium external dose individuals but its abundance

among samples of the high-dose group did not differ significantly from the unexposed

samples. None of the proteins were significantly up-regulated in all dose groups.

In the down-regulated proteins, the cytochrome C oxidase assembly factor (COX20)

protein demonstrated significant deregulation in all dose groups (low, medium and

high) in relation to the control samples. This is of importance, as it may potentially

represent a switch-type biomarker of radiation exposure (Figure 4.20). This protein

plays a key role in the assembly of cytochrome C oxidase, an essential component of

the respiratory pathway.

Moreover, the 32 common differentially regulated proteins between the medium

and high doses are: ALAD, ARHGAP11A, ATP5L, BFSP1, C14orf2, CA2, CCDC141,

CRAT, DLD, EIF2B5, FECH, FNDC3A, HSD17B4, ITGA6, LAP3, LGALS3BP, LRG_391,

LRRC37B, MCCC1, MEMO1, MLYCD, MYOM3, NDUFB11, OLA1, OTUB1, PCBD2,

RAB5A, RXRA, SLC25A3, SUCLA2, UCHL3, WIPI1). Twelve of these proteins are
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located in the mitochondria and/or have metabolic functions. Most of the down-

regulated proteins (273) appear only in the high dose group, which suggests that their

expression is not linearly dose-dependent, but rather by a high dose threshold.

4.3.2 Analysis of differentially regulated transcripts

In the course of RNA-seq analysis 25,221 transcripts were identified for the 4-sample

data set comprising two control and two high-dose samples. The DEseq adaptive

threshold method for filtering low count data led to eliminating transcripts with 4 or

less counts mapped from onward analysis. The negative binomial test used to de-

termine differentially expressed transcripts with Benjamini-Hochberg multiple testing

correction provided comparable numbers of 979 significantly up-regulated transcripts

and 895 significantly down-regulated transcripts.

4.3.3 Proteomics and transcriptomics integration

For the purpose of combining the proteomics data with the RNA-seq data, only the

high-dose samples group could be taken into further investigation to the integration

procedure. Firstly, after applying hierarchical clustering in the transcriptomics data,

the high-dose samples could be clearly separated from the controls. Similarly, the dose-

only proteins successfully separated high-dose and control samples (Figure 4.19). By

contrast, the supervised clustering analysis with age-related protein features did not

produce a heatmap where the individuals would be grouped by age in a consistent

manner but still rather by the respective doses. The full lists of differentially expressed

genes and deregulated proteins along with the corresponding p-values are compiled

in (Papiez et al., 2018a).

When considering only the common differentiating protein and transcript pairs at

the level of 5% in both data sets, (this approach is henceforth defined as the restric-

tive), only 2 protein-transcript pairs (ANK3, P4HTM) overlapped as statistically signif-

icantly up-regulated and 30 as down-regulated (ACADM, ANXA1, ANXA5, CALM2,

CAP1, CD93, DCN, DLD, DPT, DSTN, EIF4A2, ERAP1, GLRX, GRPEL1, HNRNPK,

HSPA8, ITGA6, LAP3, LGALS1, LUM, NIPSNAP3A, NIPSNAP3B, PDIA3, RAB5A,

RBBP7, RPS4X, RPS6, SDPR, SUCLG1, UBE2N).
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Figure 4.19: Supervised heat map showing the separation of high-dose samples from controls
based on a) 319 dose-dependent significantly deregulated proteins; and b) 1,874 significantly
deregulated transcripts. The numbers provided next to the class label show total external dose
of the individual. The color bars indicate sample groups: cyan - controls, blue - high-dose

samples.

Among the down-regulated gene/protein pairs, several were members of the fol-

lowing molecular function GO terms: RNA binding, Oxidoreductase activity, and

Poly(A) RNA binding. It was a condition for the transcript/protein pairs to be co-

herent in terms of the direction of the deregulation in order to include them into the

analysis, as for instance shown in Figure 4.20.
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Figure 4.20: The down-regulated COX20 shown as an exemplary coherent deregulated
transcript-protein pair. The boxplots in a) show the statistical summary of protein expres-
sion values in each dose group, whereas the bars in plot b) present the gene expression for
each available individual transcript sample on the logarithmic scale. The plot illustrates the
downward trend in the direction of protein expression, and though there is a large range of
values in the high-dose group distribution, a clearly significant difference is be observed com-
pared to the control group. Likewise, in the RNA-seq data downregulation is noticeable in this

case.

As previously discussed, when applying the restrictive approach only shared sig-

nificantly deregulated transcripts and proteins from the two data sets are taken into

account. Nevertheless, the binary decision of identifying a transcript/protein as dereg-

ulated solely considering whether it falls below a fixed significance threshold is often

the cause of excluding valid results and applying an adaptive approach would be in

most cases more favorable.

Thus, the integrative approach was implemented to limit the chance of discarding

important information, by considering the actual strength of differentiation expressed

through p-values. Therefore, Fisher’s statistical integration was employed on the com-

plete sets of p-values from the negative binomial test for transcripts and Dunnett’s

test for high-dose proteins. With a combined p-value threshold of 0.05, additional 363

transcript-protein pairs were identified as significantly deregulated in the integrative

approach (from a total of 395: 32 in the restrictive approach and additional 363 in the

integrative). After Benjamini-Hochberg multiple testing correction, 69 transcripts pre-

vailed as significant for the p-value integration. The significant transcript-protein pairs

along with the corresponding p-values are listed in (Papiez et al., 2018a).

The deregulated features identified using the restrictive approach in proteomics
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(319 dose-only dependent proteins deregulated between control and high dose) and

transcriptomics (1,874 differentiating transcripts) were examined for enrichment and

common GO terms. Furthermore, relevant KEGG signaling pathways were investi-

gated. analogous overrepresentation analysis was also carried out in the case of tran-

scripts validated by proteins in the integrative approach (69 coherent transcript-protein

pairs). The overrepresented KEGG pathways with respect to the applied approach are

presented in Table 4.11. Only one KEGG pathway, Propanoate metabolism, was com-

monly enriched in the two approaches. A detailed list of overrepresented pathways

with the corresponding proteins is available in (Papiez et al., 2018a).

Table 4.11: KEGG signaling pathways overrepresented by gene-protein pairs found to be significantly deregu-
lated in high-dose samples in comparison to controls. The pathways in the left column were obtained from the
intersection of enriched pathways from significant genes and proteins in the two data sets. The pathways in the

right column were enriched by gene-protein features significant by the combined Fisher’s p-value method.

Restrictive approach Integrative approach

Proteasome Glycolysis / Gluconeogenesis Beta-Alanine metabolism

Ribosome Oxidative phosphorylation Metabolic pathways

Proteoglycans in cancer Citrate cycle (TCA cycle) Tryptophan metabolism

Pathogenic Escherichia coli infection Bacterial invasion of epithelial cells Arginine and proline metabolism

Propanoate metabolism Lysine degradation

Phagosome PPAR signaling pathway

Vasopressin-regulated

water reabsorption

Proximal tubule bicarbonate

reclamation

Ascorbate and aldarate metabolism Terpenoid backbone biosynthesis

Valine, leucine and isoleucine

degradation

Glyoxylate and dicarboxylate

metabolism

Histidine metabolism Fatty acid degradation

Pyruvate metabolism Carbon metabolism

In total overrepresented terms constituted 241 GO Biological Process ontologies dis-

covered with the restrictive approach and 54 identified in the integrative approach. 24

of the enriched terms were common between the two methods.The full list of overrep-

resented ontologies is available in (Papiez et al., 2018a).

In conclusion, the integrative approach was determined as superior over the restric-

tive comparison in validating the proteomics data results using the transcriptomics
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data analysis. The significance of Fisher’s combined p-value gene-protein pairs pro-

vided links to overrepresented KEGG pathways, which were chiefly radiation-linked

processes, e.g. PPAR signaling, TCA cycle and Glycolysis/Gluconeogenesis. By con-

trast the common of KEGG terms overrepresented in the separately analyzed pro-

teomics and transcriptomics data sets were few and not specific, including notions such

as Proteasome, or Ribosome. These do represent two main cellular machineries highly

dependent on energy supply for cellular functions and include proteins important in

oxidoreductase activity (Proteasome) and RNA binding proteins (Ribosome), yet the

more distinguishing processes would not be discovered without the use of the integra-

tive data analysis workflow.

4.4 Inter-tissue data integration

The total number of proteins identified in the tissues was 831 in the fibroblast cells, 791

in coronary artery, 332 in mammary cells, and 1097 in leukocytes. The overlap between

the proteins is presented in Figure 4.21.
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Figure 4.21: Numbers of proteins common between the four cell systems.

The samples were analyzed in terms of similarity among tissues using the 161 pro-

teins identified across all of the cell systems. Hierarchical clustering was carried out
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based on the 161 proteins and the resulting heatmap in Figure 4.22 clearly illustrates

that tissue is the dominant factor differentiating samples.

Figure 4.22: Heatmap illustrating clustering between exosome samples. Sample names are
built in the pattern: tissue_dose_replicate. The dominant factor differentiating the samples is

unequivocally the cell system.

Following the clustering analysis, similarity metrics were calculated within the tis-

sue groups between individual samples (Figure 4.23). The results indicate that there

are two outliers in the Fibroblast tissue that show relatively high similarity to mam-

mary samples (Fibr_0Gy_C and Fibr_6Gy_C). Furthermore, within the mammary and

leukocyte tissue groups samples show high similarity regardless of the dose group. In

coronary artery samples the similarity score is relatively high within the dose groups.
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The lowest similarity may be observed among some of the fibroblast samples, espe-

cially within the 6 Gy dose group.
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Figure 4.23: Similarity graphs for individual tissue groups. The size of the circle reflects values
of the similarity metric, as well as the color bar.

Dunnett’s test was performed in order to find proteins differentiating between con-

secutive doses and controls in entire separate data sets. Within nearly all of the tis-

sue groups the largest numbers of overlapping significantly deregulated proteins are

present between the 2 Gy and 6 Gy dose groups. Only in the case of leukocyte samples

there are more common proteins between the 1 Gy and 6 Gy dose (Figure 4.24). Hi-

erarchical clustering based on deregulated proteins shows clear separation of the dose

groups in the fibroblast, coronary artery and leukocyte tissues. In case of the mam-

mary tissue, the samples are mixed among the dose groups. In fibroblasts, the controls
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are the most isolated group of samples. In coronary artery endothelial cells, the 6 Gy

dose samples are grouped closer together with the 1 Gy dose samples than 2 Gy dose

(Figure 4.25). This combined analysis may serve as a basis for the design of experi-

ments that will provide a deeper insight into the different cell types common patterns

of radiation response. Moreover, the question of a common cargo of exosomes from

different cell types is a point of interest for further investigation.
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Figure 4.24: Deregulated protein Venn diagrams for individual tissue groups based on Dun-
nett’s of dose group against controls.
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(a) Fibroblast (b) Coronary artery

(c) Mammary (d) Leukocyte

Figure 4.25: Heatmaps of samples in tissue groups based on deregulated proteins.



Chapter 5

Conclusions

The objective of this thesis in unraveling the potential of statistical and data mining

integration techniques for the purpose of biomarker disease research has been achieved

in a number of various aspects.

5.1 Integration within an experiment

Firstly, it has been demonstrated that the identification and correction of batch effects

is an indispensable stage in high-throughput molecular biology data preprocessing. In

this work an efficient and unique method of batch effect identification has been pro-

posed. It enables the partitioning of data into corresponding batches before processing

with the use of correction tools, which require prior knowledge of batch structure. The

identification is carried out by means of a dynamic programming approach and batch

number selection is conducted with the δ gPCA statistic.

The algorithm’s performance on recovering previously known batch divisions was

proved to be highly efficient when considering the four assessed experiments (microar-

ray, RNA-seq, mass spectrometry) with the use of average Dice Index as a similarity

measure. Furthermore, when analyzing sets where batch structure was not given a pri-

ori, intra-group correlation showed that in a majority of cases data integrity increases

within groups formed by the studied biological processes (case/control) after correc-

tion of the identified batch effects. This was further highlighted by provoking a signif-

icant change in the proportion of total variance present in the data explained by batch

effects.

99
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Additionally, literature and Gene Ontology term referencing implies that adequate

and tailored batch effect preprocessing entails potential new discoveries of knowledge

relevant to the studied disease or condition. This was further emphasized with an ob-

served increase in functional Information Content. By contrast, the failure to take into

consideration batch effects, when their share in the total variation is large, may lead to

insignificant conclusions and impede the development of a studied disease, by omis-

sion of important conclusions, which may be drawn from the performed experiments.

5.2 Integration within an omics

Combining research of high-throughput transcriptomic data constitutes a relevant so-

lution to the problem of dimensionality reduction, yet they impose a challenge in terms

of transformation of the measurements to achieve computational and biological consis-

tency. This issue becomes more complex when the compared data set platform design

varies. Therefore, a procedure for integrated study of data from oligonucleotide and

cDNA microarrays was established, to facilitate the merging of expression sets and

making them comparable both in the numerical form and within the analyzed biologi-

cal condition. The limitations of this method include loss of information about features

unique for either of the platforms. However, due to the raise of statistical power after

merging of the two data sets, enhanced results were obtained in the form of an increase

of information about differentially expressed genes and the additional features have

been shown to be annotated to processes related to the studied question of radiosensi-

tivity.

The proposed strategy for gene signature selection involving statistical integration

of p-values provided supreme results when considering radioresistant and radiosensi-

tive patient separability. This was demonstrated using two classifier models, namely

logistic regression and support vector machine. The integrative approach provided

both a decline in error rates and upturns in positive and negative predictive values.

Additionally, the obtained optimal gene signature presents links to radiosensitivity and

cancer-related processes occurring in relevant signaling pathways. These findings im-

ply the use of gene signatures obtained through integrative methods in more complex
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classification problems such as multiple random validation.

Therefore, a customized approach for high-throughput transcriptomic data analy-

sis was tested, based on statistical integration tools and current knowledge of biological

mechanisms. Gene profiles were applied as a filtering factor to adjust data using lin-

ear interpolation to allow for efficient classification in a multiple random validation

setting. The implementation of integrative techniques combined with custom data in-

terpolation between doses led to successful determination of potential biomarkers of

radiation response, which have been confirmed with an independent computational

approach (MCFS) and literature study.

To summarize, in silico machine learning analysis combined with integrative statis-

tical techniques with functional validation and profile modeling formed a comprehen-

sive solution for the discovery of dose response mechanisms and revealing features,

which are the most applicable to form a signature. The idea of using tailored proce-

dures involving data integration narrows down the search area for experts, potentially

saving time and effort and allowing for improvement in planing the design of future

biological experiments held with the purpose of studying diseases treatment mecha-

nisms.

5.3 Inter-omics and inter-tissue integration

In the transcriptomics and proteomics data analysis for elucidating mechanisms of

radiation-induced ischemic heart disease a substantial contribution was achieved with

the use of custom statistical methods to distinguish dose-only dependent protein ex-

pression changes from the age-only dependent changes. On top of that, the use of

an integrative statistical analysis approach, adapted to the nature of the studied data

served as an alternative validation procedure for the discovered proteomic processes

by the gene expression study. Pathways such as glycolysis, oxidative phosphorylation,

citric acid cycle and, importantly, PPAR signaling were confirmed using the p-value

integration technique. Verification of the gained knowledge was not possible when

applying a conventional restrictive result comparison procedure. This outcome em-

phasizes the importance of careful planning and the benefits of non-standard data set



102 Chapter 5. Conclusions

merging pipelines for maximizing the chance of obtaining valid conclusions.

The example of multi-tissue analysis of exosome proteomics data exposes the im-

portance of undertaking complex tasks for the purpose of explaining biological pro-

cesses in a comprehensive manner. The similarity study between four different cell

systems demonstrated factors that play a key role in the differentiation of irradiated

samples. Moreover, the qualitative differences among tissues form a starting point for

designing additional experiments for exosome proteomic pattern investigation.

The algorithms and methods proposed in this work constitute an entirely origi-

nal contribution in the field of statistical and data mining analyses of high-throughput

molecular biology data sets. The dynamic-programming batch identification method

is a novel tool, available to the scientific community through the BatchI R package im-

plementation. Likewise, the integration procedures at the level of experimental plat-

forms, omics and tissues have not been compiled and applied in such applications pre-

viously, and moreover with the auspicious results provided, they may serve as a base

for improvements in the continuous efforts towards the development of biomedical

data analysis techniques of the future.
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