Seria: Hutnictwo z. 5

Nr kol. 416

Zbigniew Pawełek Marek Hetmańczyk Sylwester Wojdyła Instytut Inżynierii Materiałowej

OCENA WIELKOŚCI BLOKÓW I ZNIEKSZTAŁCEŃ SIECIOWYCH WYBRANYCH GATUNKÓW STALI NARZĘDZIOWYCH

> Streszozenie. W pracy przeprowadzono metodą aproksymacyjną pomiar wielkości bloków osnowy oraz naprężeń wemnętrznych II rodzaju wybranych gatunków stali narzędziowych, stopowych do pracy na zimno. Stwierdzono, że po hartowaniu wielkość bloków osnowy wynosiła od 28 nm. dla stali NZ2 do 38 nm. dla stali NC40. Względne zniekształcenia sieci krystalicznej wynosiły odpowiednio od 4,20% dla stali NZ2 do 3,50% dla stali NC40. Ze wzrostem temperatury odpuszozania stwierdzono wzrost wielkości bloków osnowy i spadek naprężeń wewnętrznych II rodzaju.

1. Wstep

Racjonalne wykorzystanie w procesach technologicznych mechanizmów umocnienia metalu wymąga szczególnej znajomości oddziaływania składu ohemicznego i zabiegów obróbki cieplnej na strukturę. Wiele cennych informacji o strukturze osnowy oraz morfologii wydzieleń dostarozają badania powierzchniowe na mikroskopie elektronowym techniką cienkich folii. W pełni doceniając ich znaczenie dla rozwoju metaloznawstwa, należy stwierdzić, że w wielu przypadkach wyjaśnienie zmian własności metali możliwe jest dopiero po uzupełnieniu badań mikroskopowych, wynikami badań rentgenograficznych, głównie oceną wielkości bloków osnowy oraz względnych zniekształceń sieciowych charakteryzujących naprężenia wewnętrzne II rodzaju.

Prowadząc badania nad strukturą i własnościami stali narzędziowych stopowych autorzy stwierdzili korelację pomiędzy zachodzącymi w ozasie odpuszczania zmianami udarności i wielkości bloków osnowy. Badania strukturalne na mikroskopie elektronowym techniką cienkich folii, w tym przypadku, nie pozwalały na jednoznaczną interpretację zjawiska. Ustalono, że zerodkowanie mikropęknięć w oznaczonych stalach następowało na granicy faz; węglik-osnowa, natomiast dalszy ich rozwój warunkowany był wielkością bloków osnowy.

Tablica 4

Material badań

W niniejszej pracy zastosowano metodą aproksymacji do pomiaru wielkości bloków osnowy oraz zniekształceń sieciowych wybranych gatunków stali narzędziowych stopowych do pracy na zimno. Skład chemiczny badanych stali oraz temperaturę austenityzowania podano w tablicy 1.Wszystkie próbki podozas hartowania chłodzono w oleju, a następnie część odpuszczano w temperaturach 200, 320 i 450 °C, w czasie 2 godz. Po obróbce cieplnej powierzchnię próbek szlifowano mechanicznie, a następnie polerowano elektrolitycznie celem usunięcia zniekształconej warstwy powierzchniowej. Stale NC10 i NWC po hartowaniu posiadały strukturę składającą się z martenzytu, węglików oraz austenitu szczątkowego, natomiast w strukturze stali NZ2 zaobserwowano efekty samoodpuszczania martenzytu. Po odpuszczaniu uzyskano strukturę martenzytu odpuszczonego z wydzieleniami węglików.

Gatunek stali	Skład ohemiozny w %								
	С	Mn	S1	P	S	Cr	W	tura au- stenit,	
NC 10	1,70	0,42	0,39	0,023	0,027	11,51	-	980 °C	
NWC	1,00	0,94	0,24	0,012	0,015	1,14	1,36	830 °C	
NZ2	0,49	0,31	0,98	0,020	0,020	1,05	1,92	900°C	

Aparatura i metodyka badań

Wszystkie pomiary związane z badaniem linii dyfrakoyjnych wykonywano na dyfraktometrze rentgenowskim JDX-75 firmy JEOL, posiadającym pionowy układ ogniskowania oraz podwójny układ szczelin Sollera. W pomiarach przyjęto stale jednakowy układ szczelin ograniczających wiązkę promieni rentgenowskich: szczelina wejściowa $\binom{1}{2}$ szczelina odbiorcza 0,4 mm oraz szczelina przeciwzakłócająca $(\frac{1}{2})$. Źródłem promieniowania rentgenowskiego była anoda kobaltowa wraz z filtrem żelaznym pracująca na napięciu 40 kV przy prędzie 20 mA.

Detektorem promieniowania był lioznik soyntylacyjny zasilany napięciem 1050 V.

Większość pomiarów wykonywano używając oiągłej rejestracji intensywnośoi na taśmie rejestratora, przy szybkości licznika $\left(\frac{1}{16}\right)$ /min. i stałej ozasu integratora równej i sec. (8 cm taśmy odpowiadało i (2@)). Tak uzyskane zapisy pików dyfrakcyjnych planimetrowano, dla wyznaczania ich szerokości całkowych.

Dla oelów metodycznych w niektórych przypadkach zastosowano dodatkowo pomiar intensywności za pomocą przelicznika oraz skokowego przesuwu detektora: wielkość skoku wynosiła 0,04° (20), czas zaliczania impulsów 80 sec. Z uzyskanych tą drogą danych obliczano intensywność całkowe (pole powierzchni) stosując dwie najbardziej powszechne metody całkowania numerycznego - trapezów, oraz metodę parabol Simpsona.

Pierwszą linię dyfrakoyjną (110) mierzono w zakresie kątowym (2 Θ) = 48,5⁰ - 55,5⁰, następną (220) w zakresie 119,5⁰ - 127,5⁰ oo zapewniało prawidłowe wyznaczenie poziomu tła.

Goniometr justowano metodą Tournariego, która pozwoliła na ustawianie pozycji zerowej z dokładnością $0,003^{\circ}$ (29). Pomiaru każdej próbki dokonywano trzykrotnie (przy rejestracji ciągłej), z każdorazowym wyjmowaniem próbki z uchwytu dyfraktometru i ponownym jej zakładaniem – podane wyniki wartości D i $\frac{Aa}{a}$ są średnimi z trzech pomiarów. Użyta w niniejszej pracy metoda aproksymacji wyznaczania wielkości bloków D i zniekształceń sieciowych $\frac{Aa}{a}$ omawiana jest szeroko w podręcznikach rentganografii stosowanej [1] oraz w pracach oryginalnych [2] – dlatego też w artykule przedstawiono tylko te momenty, które z uwagi na stosowanie nietypowego dla badań stali promieniowania (CoK α), musiały uleo modyfikacji.

Wyboru funkoji aproksymujących profile badanych linii dyfrakcyjnych dokonano spośród trzech najczęściej stosowanych rozkładów:

$$I(x) = He^{-\frac{1}{2}x^{2}}; \quad I(x) = \frac{H}{1+\frac{1}{2}x^{2}}; \quad I(x) = \frac{H}{(1+\frac{1}{2}x^{2})^{2}}$$
(1)

dla których zachodzą następujące relacje:

$$I(x) = He^{-\delta x^2}: \qquad \sqrt{\delta} = \frac{\sqrt{\pi}}{B_{oa2k}} = \frac{2\sqrt{\ln 2}}{B_{1/2}}$$

 $I(x) = H(1+\delta x^{2})^{-1}; \qquad \sqrt{\delta} = \frac{\delta}{B_{0a2k}} = \frac{2}{B_{1/2}}$

$$I(x) = H(1+\delta x^{2})^{-2}; \qquad \sqrt{\delta} = \frac{\sqrt{2}}{2B_{oa}^{2}k} = \frac{2\sqrt{2}-1}{B_{1/2}}$$

gdzie B_{oałk} = ^S. oznacza szerokość całkową linii, zaś B_{1/2} jest szerokością połówkową (szerokość linii mierzona w połowie wysokości H).

Ze związków (2) otrzymano następujące relacje między szerokościami połówkowymi a całkowymi:

$$\frac{B_{1/2}}{B_{0a2k}} = \begin{cases} \frac{2\sqrt{\ln 2}}{\sqrt{x}} = 0,7821 & dla & I(x) = He^{-\sqrt{x}^2} \\ \frac{2}{x} = 0,6366 & dla & I(x) = H(1 + \sqrt[4]{x^2})^{-1} \\ \frac{4\sqrt{\sqrt{2-1}}}{x} = 0,8194 & dla & I(x) = H(1 + \sqrt[4]{x^2})^{-2} \end{cases}$$
(3)

(2)

Z. Pawełek, M. Hetmańczyk, S. Wojdyła

Relacje (3) wykorzystano jako test dla określenia kształtu funkoji aproksymującej linii (110) i (220) wzorca, próbek hartowanych oraz próbek hartowanych i odpuszczanych. W oparciu o zmierzone wartości $B_{1/2}$ i B_{oalk} linii (110) oraz linii (220) d uzyskanej z danych eksperymentalnych metodą Rachingera, zestawiono wartości $B_{1/2}/B_{oalk}$ tak z pomiarów o ciągłej rejestracji jak i dla porównania z pomiarów skokowych.

Dane zestawione w tablicy II dla trzech gatunków badanych stali, zarówno w stanie hartowanym jak i wysoko odpuszczanym wskazują,że wartości eksperymentalne $B_{1/2}/B_{oalk}$ oscylują wokół wartości teoretycznej 0,8194 charakterystycznej dla funkcji aproksymacyjnej I(x) = H(1+ δx^2)⁻² (wzór 3). Drugą z kolei funkcją aproksymującą byłaby funkcja I(x) = He $^{-\delta x^2}$. Wniosek ten pokrywa się z wynikami badań Bojarskiego i Bołda [2], dla stali bainitycznych, gdzie autorzy dla dokonania wyboru funkcji aproksymującej korzystali z innego testu opartego na pomiarze powierzchni pod krzywą doświadczalną i teoretyczną. Test przedstawiony w niniejszej pracy jest mniej pracochłonny i zdaniem autorów wystarczająco dokładny dla celów metody aproksymacji [Tablica II].

Uwalnianie mierzonych linii dyfrakoyjnych od wpływu składowej K c_2 przeprowadzano w większości wypadków metodą analityczną w oparciu o wykresy zamieszczone np. w pracy [1] dla funkcji aproksymującej I(x) = H(1+ δx^2)⁻² która wg danych tablicy II najlepiej opisuje zarówno linię (110) jak i (220). Fizyczne szerokości linii (3, wolne od czynników instrumentalnych uzyskano stosując wykresy opublikowane w pracy [2] dla funkcji aproksymujących:

$$g(x) = h(x) = H(1+\delta x^2)^{-2}$$

Wzorzec, używany dla uzyskania szerokości fizycznych (3 obu linii dyfrakoyjnych, wykazywał wyraźnie rozdzielenie dubletu (220). Wykonano go ze stali NWC, o składzie chemicznym podanych w tablicy I.

Dla uzyskania ziarna o średnioy powyżej 1000 nm oraz zredukowania naprężeń wewnętrznych II rodzaju wzorzeo wyżarzano w temperaturze 900°C w ozasie 2 h, a następnie chłodzono z piecem stosując izotermiczne wytrzymanie w ozasie 1/2 h przy temperaturach: 820°C, 750°C, 650°C, 550°C 1 450°C.

Rozdziału fizyoznej szerokości linii (3 na poszerzenie spowodowane wielkością bloków (m) oraz zniekształceniami (n) dokonuje się wg Łysaka [1] na podstawie wzoru:

$$\beta = \frac{1}{\int N(\mathbf{x}) M(\mathbf{x}) d\mathbf{x}}$$
(4)

162

Tablica II

Próbka	Linia	Pomiar oiagky			Pomiar skokowy				
		10 ³ B _{1/2}	10 ³ Boałk.	Bt/2/Boalk,	10 ³ B _{1/2}	10 ³ B _{calk} .	B1/2 ^{/B} oażk.	Uwagi	
NWC hartow.	(110)	11.784	14.197	0,83	-	-	~		
	(220)	32,172	39.720	0,81	-	-			
NWC	(110)	6.920	8.386	0,82	7.014	8.450	0.83	Linie (220)	
0dp. 450	(220)	18.788	23.485	0.80	19.049	23.430	0.81	uzyskiwano met. Rachingera	
NZ2 hartow.	(110)	13.080	15+451	0.84	-	-	-	Probi hartowane z uwagi na znaczne ilości austenitu szozątkowego i ko- nieozność graficznego rozdzielania linii	
	(220)	36.244	44.200	0.82	-	-	-		
NZ2 Odp. 450°	(110)	6.976	8.649	0.81	7.112	8.652	0.82		
	(220)	18,177	21.900	0.83	19.498	24.071	0.81	(110) martenzytu nie	
NC10 hartow.	(110)	10.330	12,915	0.80	-	-	-	skokowym bycy poddane badaniom	
	(220)	28,208	34.400	0,82	-	-	-		
NC10 Odp. 450 ⁰	(110)	8.000	10.026	0,80	8.068	10,190	0.82		
	(220)	23.600	28,100	0,84	22.719	27.306	0.83		
WZORZEC	(110)	3.646	4.430	0.82	37.000	4.453	0.83		
	(220)	5.732	7.050	0,81	5.236	6.422	0.81		

Wartości stosunków B_{1/2}/B_{całk} dla badanych stali w stanie hartowanym i wysoko odpuszczanym

Z. Pawełek, M. Hetmańczyk, S. Wojdyła

gdzie funkcje M(x) i N(x) opisują odpowiednio rozkłady wielkości bloków i zniekształceń sieciowych.

W niniejszej pracy obliczenia wg wzoru (4) przeprowadzono w dwu wariantach. W pierwszej wersji przyjęto jako funkcje aproksymujące M i N:

$$M(\mathbf{x}) = (1 + \mu \mathbf{x}^2)^{-1} \quad N(\mathbf{x}) = (1 + \nu \mathbf{x}^2)^{-2}$$
(5)

co wg wzoru (4) prowadzi do zależności:

$$\beta = \frac{(\underline{m}+2\underline{n})^2}{\underline{m}+4\underline{n}}$$
(6)

W drugim wariancie założono:

$$\mathbb{M}(\mathbf{x}) = (1 + \mu \mathbf{x}^2)^{-2} \qquad \mathbb{N}(\mathbf{x}) = (1 + \sqrt{\mathbf{x}^2})^{-2}$$
(7)

i w regultacie:

$$\beta = \frac{(\mathbf{n} + \mathbf{m})^3}{(\mathbf{n} + \mathbf{m})^2 + \mathbf{n}\mathbf{m}}$$
(8)

Praktyoznie dla oznaczania wielkości m i n korzysta się z pary linii, będących odbiciani różnych rzędów od tej samej rodziny płaszczyzn sieciowych, w naszym przypadku linii (110) i (220) - przy czym linia (110) jest bardziej połatna na rozdrobnienie bloków, zaś linia (220) na zniekształcenia sieciowe.

Wprowadzając dla obu wariantów obliczeń oznaczenia:

$$\frac{\mathbf{n}_2}{\mathbf{n}_1} = \frac{\cos \theta_1}{\cos \theta_2} = \mathbf{r} \quad \mathbf{s} \quad \frac{\mathbf{n}_2}{\mathbf{n}_1} = \frac{\mathbf{t}g}{\mathbf{t}g} \quad \frac{\theta_2}{\theta_1} = \mathbf{s} \quad \mathbf{s}$$

$$\frac{\mathbf{1}}{\mathbf{n}_1} = \frac{\theta_2}{\theta_1} \quad \mathbf{x} = \frac{\mathbf{n}_1}{\theta_1} \quad \mathbf{y} = \frac{\mathbf{n}_1}{\theta_1}$$
(9)

otrzymano zależności (10)

$$\frac{\mathbf{n}_2}{\beta_2} = \operatorname{sx} \frac{\beta_1}{\beta_2} = \operatorname{sxz} ; \quad \frac{\mathbf{n}_2}{\beta_2} = \operatorname{ry} \frac{\beta_1}{\beta_2} = \operatorname{ryz}$$
(10)

164

W pierwszym wariancie obliczeń (wzór 6) dla obu linii dyfrakoyjnych otrzymano:

$$\beta_1 = \frac{\left(\frac{m_1 + 2m_1}{m_1 + 4m_1}\right)^2}{\frac{m_1 + 4m_1}{m_1 + 4m_1}} \quad \beta_2 = \frac{\left(\frac{m_2 + 2m_2}{m_2 + 4m_2}\right)^2}{\frac{m_2 + 4m_2}{m_2 + 4m_2}}$$
(11)

co prowadzi do równań:

$$y(x) = \frac{1}{2} (1 - 4 x + \sqrt{8x + 1})$$
 (12)

$$\frac{1}{E} = \frac{\beta_2}{\beta_1} = ry + \frac{4s^2 x^2}{ry + 4xs}$$
(13)

W drugim wariancie obliczeń (wzór 8) dla obu linii dyfrakcyjnej uzyskano:

$$\beta_{+} = \frac{(\mathbf{m}_{1} + \mathbf{n}_{1})^{3}}{(\mathbf{m}_{1} + \mathbf{n}_{1})^{2} + \mathbf{m}_{1}\mathbf{n}_{1}} \qquad \beta_{2} = \frac{(\mathbf{m}_{2} + \mathbf{n}_{2})^{3}}{(\mathbf{m}_{2} + \mathbf{n}_{2})^{2} + \mathbf{m}_{2}\mathbf{n}_{2}} \qquad (14)$$

z których otrzymuje się:

$$y(x) = \frac{-3x + 1 + \sqrt{-3x^2 + 6x + 1}}{2}$$
(15)

$$\frac{1}{z} = \frac{\beta_2}{\beta_1} = \frac{s^3 x^3 + 3s^2 r x^2 y + 3s r^2 x y^2 + r^3 y^3}{s^2 x^2 + 3s r x y + r^2 y^2}$$
(16)

W przypadku badanych stali oraz promieniowania CoK_{C_1} wartości r i s odpowiednio wynoszą: 1,9104 i 3,6496. W obu wariantach obliczenia prowadzono stosując krok $\Delta x = 0,05$; dla tych wartości x wyliczano funkoje y(x) oraz $\frac{1}{z} = \frac{\beta_2}{\beta_1}$. Z tak uzyskanych danych konstruowano wykresy: $y = \frac{m_1}{\beta_1}$ w funkoji $\frac{1}{z} = \frac{\beta_2}{\beta_1}$, a następnie $\frac{n_2}{\beta_2} = \operatorname{sxz}$ w zależności od zmiennej $\frac{1}{z} = \frac{\beta_2}{\beta_1}$. Wykresy te oddzielnie dla obu wariantów przedstawiono na rysunku 1 i 2; były one podstawą dla wyznaczenia udziału wielkości bloków (m_1) w szerokości linii (110) oraz udziału zniekształceń sieciowych (n_2) w szerokości linii (220) [rys. 1, rys. 2]. W dalszych obliozeniach korzystano jedynie z drugiego wariantu wykresów (wzory 15 i 16, rysunek 2), gdyż jak uprzednio stwierdzono, zarówno linie (110) jak i (220) były najlepiej aproksymowane przez funkcje typu $I(x) = H(1+\delta x^2)^{-2}$.

Rys. 1. Wykres do wyznaczania wielkości m, i n₂ w I wariancie obliczeń

Uzyskane wartości m₁ i n₂ służyły dla wyliczania wielkości bloków D oraz zniekształceń sieciowych $\frac{\Delta a}{a}$ [1]:

$$D = \frac{1.06 \lambda}{m_1 \cos \theta_1}; \quad \frac{\Delta a}{a} = \frac{m_2}{4 t_g \theta_2}$$
(17)

gdzie λ oznacza długość fali stosowanego promieniowania, zaś θ_1 i θ_2 kąty braggowskie dla linii (110) i (220).

Wyniki obliozeń zestawiono w formie histogramów (rysunki 3, 4 1 5), podając dla porównania dane uzyskane zarówno z przeprowadzanych pomiarów oiągłych jak i skokowych (opracowywanych metodą parabol Simpsona).

W tablicy III zestawiono wyniki pomiarów oiągłych oraz skokowych (z użyciem metody trapezów oraz metody parabol) szerokości całkowych B obu linii dyfrakcyjnych dla odpuszczonych próbek stali NZ2 i NWC [Tablica III]

Rys. 2. Wykres do wyznaczania wielkości m, i n, w II wariancie obliczeń

Obserwowane różnice w stosowanych metodach określania szerokości całkowych odbijają się wyraźnie na wyznaczanych stąd wielkościach D i $\frac{\Delta a}{a}$ - jako najdokładniejsze wartości D i $\frac{\Delta a}{a}$ należy przyjąć wyniki uzyskane drogą pomiaru skokowego, opracowane metodą parabol Simpsona. Ten sposób opracowywania wyników, ohociaż wolny od subiektywnych błędów popełnianych przy planimetrowaniu mechanicznym, jest bardzo pracochłonny, a przez to nieopłacalny przy dużej ilości badanych próbek.

Tablica III

Probles	Tinte	Pomiar s	kokowy	Pomiar			
TIODE		met. trapezów	met. parabol	oiągły	Uwagi		
NZ2	(110)	13.043	12.966	13.222			
oups 200	(220)	43.640	42.619	41.000			
NZ2	(110)	11.465	11.419	11.548			
Jupa Jzo	(220)	38.206	37.371	36.350			
NZ2	(110)	8.689	8.652	8.649			
04p. 490	(220)	27.526	26.955	25.098			
NWC-	(110)	11.843	11.793	11.702			
0ap. 200	(220)	40.589	39.461	38.877			
NWC Odp. 320 ⁰	(110)	9.460	9.424	9.543			
	(220)	31.330	30.572	31.861			
NWC Odp. 450 [°]	(110)	8.491	8.452	8.386			
	(220)	27.023	26.359	26.388			
WZORZEC	(110)	4.472 4.453		4.430	Linię (220) uzyskano metoda		
	(220)	6	•422	7.050	Rachingera		

Wartości 10³xB_{oałk} (W radianach) dla różnych metod pomiaru

Zależność wielkości bloków D i zniekszteżceń sieciowych 🚣 od temperatury odpuszczania

Gatunek stali	Rodzaj pomiaru	Obróbka cieplna								
		Hartowanie		Odpuszozenie 200 ⁰ C		Odpuszczanie 320°C		Odpuszozanie 450°C		
		D [11.8]	<u> </u>	D [nm]	<u>A</u> [%]	D [nm]	<u>∆a</u> [‰]	D [nm]	<u></u> [%.]	
HWC	pomiar ciągły	31	3,72	101,6	4,27	117	3,40	113,1	2,44	
	pomiar skokowy	-	-	105,4	4,43	121	3,16	101,6	2,40	
NZ2	pomiar ciągły	28,5	4,20	44	4,07	58,7	3,57	78	1,85	
	pomiar skokowy	-	-	69	4,70	78,1	4,00	90 , 8	2,44	
NC10	pomiar oiagly	37,7	3.50	25,4	2,97	36,4	2,73	64	2,82	
	pomiar skokowy	-	-	-	-	-	-	47,5	2,47	

NWC

Rys. 3. Zależność wielkości bloków D i zniekształceń sieciowych 🔏 od temperatury odpuszczania dla stali NWC

Rys. 4. Zależność wielkości bloków D i zniekształceń sieciowych $\frac{\Delta a}{a}$ od temperatury odpuszczania dla stali NZ2

NC10

Rys. 5. Zależność wielkości bloków D i zniekształceń sieciowych ^{∆a} od temperatury odpuszczania dla stali NC40

Wyniki badań i wnioski

Przebieg zmian wielkości bloków oraz zniekształceń sieciowych w zależności od temperatur odpuszczania badanych stali przedstawiono w tablicy IV oraz na rysunkach 3, 4, 5. Analiza uzyskanych wyników pozwala na sformułowanie następujących wniosków:

 Badane stale narzędziowe po hartowaniu posiadały zbliżoną wielkość bloków osnowy – wahającą się od 38 nm w przypadku stali NC10 do około 28 nm w stali NZ2.

2. Stwierdzono duże zróżnicowanie przebiegu zmian wielkości bloków w zakresie temperatur odpuszczania:

- w stali NC10 po odpuszczaniu w temp. 200°C i 320°C wielkość bloków praktycznie nie zmienia się w stosucku do wartości uzyskanych po hartowaniu Po odpuszczaniu w temp. 450°C rośnie do około 64 nm;
- szybki wzrost wielkości bloków do około 110 nm nastąpił w trakcie odpuszczania stali NWC w temp. 200°C. Odpuszczanie w pozostałych temperaturach nie wprowadzało istotnych zmian wielkości bloków;
- w stali NZ2 wielkość bloków osnowy rośnie z temp. odpuszczania od około 44 nm po wygrzaniu w temp. 200°C, do około 78 nm, po wytrzymaniu w temp. 450°C.

3. Odpuszczanie stali NC4O spowodowało wielki spadek zniekształceń sieciowych: od około 3,5%, po hartowaniu do około 2,7%, po odpuszczaniu w temp. 320°C. Dalszy wzrost temp, odpuszczania do 450°C nie wpłynął w sposób istotny na zmianę zniekształceń sieciowych.

4. W stalach NWC i NZ2 po odpuszozaniu w temp. 200⁰C wielkość zniekształocń sieciowych wynosi około 4% i praktycznie nie różni się od wartości uzyskanych po hartowaniu. Ze wzrostem temp. odpuszozania do około 450[°]C względne zniekształcenie sieci w stali NWC maleje do około 2,4%, a w stali NZ2 do około 1,8%.

5. Stwierdzone korelacje między wielkością bloków osnowy, zniekształoeniami sieciowymi i własnościami mechanioznymi (udarnością) przedstawiono w pracy [3] dla wszystkich badanych typów stali.

LITERATURA

- Praca zbiorowa pod redakcją Bagariackiego: Rentgenografia z fiziczeskom metałłowiedienii, Moskwa 1961 r.
- 2] Bojarski Z., Bold T.: Prace IH, 1970 r., 22.
- [3] Hetmańczyk M.: Praca doktorska. Wydział Metalurgiczny Politechniki Śląskiej, 1973 r.

173

ОЦЕНКА РАЗМЕРА БЛОКОЗ И ВНУТРЕННИХ НАПРЯЖЕНИЙ ОТОБРАННЫХ СОРТОВ ИНСТРУМЕНТАЛЬНЫХ СТАЛЕЙ

Резрме

В настоящей работе проведено методом аппроксимации определение размера блоков основы, а также внутренних напряжений II рода отобранных сортов инструментальных, легированных сталей для работы в холодных условиях. Подтверждено, что после закалки размер блоков основы составлял от 28 нм. (сталь NZ2) до 38 нм. (сталь NC10). Относительные деформации <u>Аа</u> кристаллической решётки составляли от 4,20 (NZ2) до 3,50 (NC10). С повышением температуры отпуска подтверждено рост величины блоков основы и падение внутренних напряжений II рода.

THE ESTIMATION OF DOMAIN SIZE AND DEFORMATION OF CRYSTALLINE STRUCTURE IN SOME TYPES OF ALLOWED TOOL STEELS

Summary

The measurments of domain size and microstresses of the second kind by the aproximation method are described-these parameters were measured on some alloyed tool steels for cold work. It was found, that after hardening the mean domain size was changed from 28 nm. (steel NZ2) to 38 nm. (steel NC40), and at the same time the deformation of orystalline structure $\frac{\Delta a}{a}$ were given 4,20% (NZ2) and 3,50% (NC10) respectively. The increase of tempering temperature caused rise of the domain size and fall of the microstresses of the second kind.