ZESZYTY NAUKOWE POLITECHNIKI ŚLASKIEJ

Seria: Hutnictwo z. 11

Nr kol.518

Henryk WOŹNICA, Kazimierz DUCKI, Edward LASOK, Krystyna ZĘBALA

Instytut Inżynierii Materiałowej

ZMIANY STRUKTURALNE W STOPACH ŻELAZO-AZOT ZACHODZĄCE PODCZAS OBRÓBKI CIEPLNEJ

<u>Streszczenie</u>. W pracy badano zmiany strukturalne w stopach Fe-N otrzymanych drogą wysokotemperaturowego azotowania przy temperaturze 950°C. Po wolnym chłodzeniu azotowego austenitu otrzymuje się strukturę złożoną z ferrytu i azotków ĩ', zaś szybkie oziębianie prowadzi do uzyskania struktury martenzytu azotowego. Przemiany martenzytu azotowego w trakcie odpuszczania rozpoczynają się wydzielaniem azotków a' na splotach dyslokacji, a następnie zachodzi przebudowa azotków a'' w azotki ĩ' przy wyższej temperaturze odpuszczania.

1. Wstep

W metastabilnym układzie Fe-N (rys. 1) występuje szereg faz, które zostały szczegółowo opisane w licznych pracach i monografiach [1, 2, 3, 4]. Krótką charakterystykę tych faz podano w tablicy 1 [3].

Mniej znane są natomiast przemiany w stopach Fe-N zachodzące podczas obróbki cieplnej. W niniejszej pracy starano się scharakteryzować produkty rozpadu austenitu azotowego przy chłodzeniu oraz przemiany martenzytu azotowego w trakcie odpuszczania.

Przemiany austenitu przechłodzonego w stopach Fe-N wykazują duże podobieństwo do przemian austenitu w stopach Fe-C (rys. 2). W zależności od szybkości chłodzenia i temperatury przemiany można otrzymać [2, 3, 4, 8]:
mieszaninę ferrytu (α) i azotków Fe₄N (𝔅) o budowie płytkowej przy izotermicznym chłodzeniu pomiędzy temperaturą przemiany autektoidalnej i temperaturą początku przemiany martenzytycznej Ms - rys. 2.

Wytrzymanie izotermiczne poniżej temperatury 300°C prowadzi do powstania wydzieleń azotka Fe₁₆N₂ (\propto) w postaci płytek zorientowanych równolegle do płaszczyzny {100}_x.

Izotermiczne wytrzymanie stopów Fe-N w temperaturach powyżej 300° C prowadzi do wydzieleń azotków %' na płaszczyźnie $\{012\}_{\infty}$, posiadających kształt płytek o pasemkowej budowie, prawdopodobnie spowodowanej poślizgiem wzdłuż płaszczyzny $\{011\}_{\alpha}$:

 strukturę martenzytu azotowego (\$\$`) poprzez szybkie chłodzenie z zakresu występowania austenitu azotowego (\$`) do temperatur poniżej początku

84

Tablica 1

Charakterystyka faz metastabilnego układu Fe-N

Nazwa fazy i symbol	Struktura krystaliczna	Graniczne zawartości azotu [%]	Wymiary sieci [Å]	Zawartość azotu [%]
Ferryt azotowy X	Sieć regularna przestrzen- nie centrowana	0 ÷ 0,1% Fe ÷ ^{FeN} 0,01	a = 2,866 a = 2,869	0 0 ,1
Austenit azotowy Y	Sieć regularna płasko centrowana	0 ÷ 2,8% Fe ÷ ^{FeN} 0,12	a = 3,571 a = 3,615 a = 3,645 a = 3,654	0 1,5 2,4 2,8
Azotek Fe ₄ N V'	Sieć regularna płasko centrowana	5,29 ÷ 5,7% FeN ₀ ,23 ÷ FeN ₀ ,24 5,76 ÷ 6,20% FeN _{0.24} ÷ ^{FeN} 0.26	a = 3,791 a = 3,801 a = 3,787 a = 4.795	5,29 5,71 5,75 6,10
Azotek E	Sieć heksagonalna zwarta o uporządkowanej struktu- rze dla składów odpowia- dających Fe ₄ N i Fe ₂ N	5,70 ÷ 11,0% FeN _{0,24} ÷ ^{FeN} 0,49	a = 2,600; $c = 4,344a = 2,657$; $c = 4,380a = 2,770$; $c = 4,432$	5,70 7,30 11,0
Azotek Fe ₂ N	Sieć ortorombowa prze- strzennie centrowana i prymitywna	11,1 ÷ 11,3% ^{FeN} 0,50 ^{÷ FeN} 0,49	a = 2,762; b = 4,830 c = 4,416	11,30
Marten- zyt azo- towy ∝'	Sieć tetragonalna przestrzennie centrowana	jak faza 🖇	a = 2,851; c = 3,071	2,30
Azotek ^{Fe} 16 ^N 2 ≪"	Sieć tetragonalna prze- strzennie centrowana	3,1% ^{FeN} 0,13	a = 5,72; c = 6,29	3,10

85

przemiany martenzytycznej, która zależy od stopnia nasycenia austenitu azotem - rys. 3.

Rys. 3. Zależność temperatury Ms od zawartości C i N dla stopów Fe-C i Fe-N [8]

Zmiany strukturalne podczas odpuszczania martenzytu azotowego rozpoczynają się wydzieleniem na płaszczyźnie {100} metastabilnej fazy 🔿 " o długości 100:600 Å w zależności od czasu i temperatury. W temperaturze około 300°C w strukturze pojawiają się azotki %' o budowie iglastej: grubość tych igieł wynosi około 0,0005 mm. Azotki te powstają w wyniku przemiany azotka Fe₁₆N₂ w azotek Fe₄N. Po odpuszczaniu w temperaturze 300-500°C w stopach Fe-N obniża się stopień zdefektowania ferrytu. a cząstki Fe,N koagulują. Struk-

tura stopu jest mieszaniną ferrytyczno-azotkową odpowiadającą strukturze sorbitycznej stali węglowej [3, 5, 7, 9]. Tak więc, w stopach Fe-N podczas procesów obróbki cieplnej należy oczekiwać podobnych zmian struktury i własności jak w stopach Fe-C.

2. Przebieg badań

Badania przeprowadzono na próbkach wykonanych z taśm o grubości 0,4 mm z żelaza Armco o następującym składzie chemicznym: 0,022% C, 0,082% Mn, 0,031% Si, 0,027% P, 0,0062% N. Azotowanie przeprowadzono w atmosferze zdysocjowanego amoniaku przy temperaturze 950°C w czasie 5 i 15 godzin z następnym chłodzeniem na powietrzu i w wodzie. Część próbek chłodzonych w wodzie odpuszczono w temperaturze 450°C w czasie 15 minut. Zawartość azotu w próbkach określano metodą Balzersa na exalografie typu EA-1. Ze wzrostem czasu azotowania od 5 do 15 godzin koncentracja azotu w próbkach zmieniała się od ok. 0,23% do ok. 0,87%.

Zmiany strukturalne żelaza Armco nasyconego azotem zachodzące podczas obróbki cieplnej prześledzono na mikroskopie świetlnym i mikroskopie elektronowym techniką cienkich folii.

3. Wyniki badań

G

W stanie wyjściowym próbki posiadały strukturę ferrytyczną. Po azotowaniu w temperaturze 950°C z następnym chłodzeniem na powietrzu, w osnowie

86

Rys. 4. Struktura ferrytyczna z licznymi wydzieleniami azotków żelaza. Próbka po azotowaniu przy temperaturze 950°C/5h, chłodzona na powietrzu. Pow. 400x.

Rys. 5. Struktura ferrytyczna z licznymi wydzieleniami azotków żelaza w osnowie i po granicach ziarn ferrytu. Próbka po azotowaniu przy temperturze 950°C/15 h - powietrze. Pow. 400x

ferrytycznej ujawniono iglaste wydzielenia azotków żelaza występujące zarówno w ziarnach roztworu stałego oraz w obszarze przy granicach ziarn (rys. 4). Przedłużenie czasu azotowania z 5 do 15 godzin spowodowało wyraźne pogrubienie i wydłużenie wydzieleń azotków oraz wzrost wielkości ziarna austenitu, co w konsekwencji prowadzi do utworzenia gruboziarnistej struktury ferrytyczno-azotkowej (rys. 5).

Azotki rozmieszczone w osnowie ferrytycznej mają z reguły większe rozmiary od wydzieleń znajdujących się przy granicy. Szczególnie daje się to zauważyć po azotowaniu w czasie 15 godzin.

Występowanie azotków w obszarze, jak również wzdłuż granic ziarn ferrytu pozwala przypuszczać, że w procesie azotowania wysokotemperaturowego dyfuzja atomów azotu przebiega głównie wzdłuż granic ziarn, a następnie zachodzi wnikanie w objętość ziarna [10].

Obserwacje na cienkich foliach próbek chłodzonych na powietrzu ujawniły występowanie w osnowie ferrytycznej azotków oś"i %'. Drobne wydzielenia azotków oś"rozmieszczone są głównie na splotach dyslokacji w ferrycie (rys. 6, 7) i charakteryzują się szeregowym ułożeniem.

Azotki \mathfrak{T}' posiadają znacznie większe rozmiary, wydłużony iglasty kształt (rys. 7, 8) i pasemkową budowę (rys. 9). Szeregowe ułożenie drobnych wydzieleń azotków $\mathfrak{T}''(rys, 6, 7)$, jak również charakterystyczna płytkowa budowa strukturalna azotka $\mathfrak{T}''(rys. 9)$ pozwalają przypuszczać, że azotek \mathfrak{T}' powstaje w wyniku koalescencji i przebudowy struktury krystalicznej azotków \mathfrak{T}'' .

W próbkach chłodzonych po azotowaniu w wodzie ujawniono strukturę martenzytu iglastego, przy czym po austenityzowaniu w czasie 5 godzin uzyskano martenzyt drobnoiglasty (rys. 10), natomiast przedłużenie czasu azoto-

dys. 6. Wydzielenia azotków & ułożone szeregowo oraz pojedyńczo na splotach dyslokacji. Próbka azotowana przy temperaturze 950°C/15h - powietrze. Pow. 20 000x

Rys. 8. Duże wydzielenie azotka ∜ oraz drobne azotków ≪"na splotach dyslokacji. Próbka azotowana przy temperaturze 950°C/15 h - powietrze. Pow. 27 000x

Rys. 7. Drobne wydzielenia azotków ∞[#]ułożone szeregowo oraz duże azotka %' w osnowie ferrytycznej.Próbka po azotowaniu przy temperaturze 950°C/ 15h - powietrze. Pow. 27 000x

Rys. 9. Struktura azotka 3' - szczegół rysunku 8; widoczna budowa pasemkowa. Pow. 130 000x

Rys. 10. Struktura drobnoiglastego martenzytu azotowego.Azotowanie 950°C/5h - woda. Pow. 400x

Rys. 11. Struktura gruboiglastego martenzytu azotowego. Azotowanie 950 C /15h - woda. Pow. 400x

Rys. 12. Struktura martenzytu azotowego. Widoczne obszary o zróżnicowanej gestości dyslokacji. Azotowanie 950°C/5h - woda. Pow. 33000x

Rys. 13. Struktura martenzytu azotowego. Blokowanie i inicjowanie przebiegu płytek przez granicę bliźniaczą. Azotowanie 950°C/5h - woda. 33000x

Rys. 14. Struktura martenzytu azotowego o dużej gęstości dyslokacji. Azotowanie 950°C/15h - woda. Pow. 50000x

kys. 15. Struktura martenzytu azotowego odpuszczonego przy temperaturze 450°C/15, Widoczny zachowany jeszcze itlasty układ martenzytu azotowego. Azotowanie 950°C/15h - woda. Pow. 400x

Rys. 16. Równoległe układy wydzieleń azotków 3" w obszarach martenzytu o niewielkim stopniu zdefektowania. Azotowanie 950°C/15h - woda oraz odpuszczanie 450°C/15'. Pow. 65000x

Rys. 17. Struktura martenzytu azotowego o zróżnicowanej gęstości dyslokacji. Azotowanie 950°C/15h - woda oraz odpuszczanie 450°C/15', Pow. 33000x

.....

Rys. 18. Pole ciemne struktury przedstawionej na rys. 17. Widoczne wydzielenia azotków CC" rozmieszczone w obszarach o dużym stopniu zdefektowania.Pow. 33000x

wania do 15 godzin spowodowało powstanie struktury martenzytu gruboiglastego (rys. 11).

Obserwacje na cienkich foliach wykonanych z próbek azotowanych w czasie 5 godzin ujawniły występowanie typowej struktury martenzytycznej (rys. 12,13, 14).

Odpuszczanie w temperaturze 450°C w czasie 15 minut próbek hartowanych po azotowaniu w temperaturze 950°C w czasie 15 godzin nie doprowadziło do całkowitego zaniku igieł martenzytu (rys. 15).

W obszarach martenzytu o niewielkim stopniu zdefektowania ujawniono iglaste wydzielenia azotków 3[°] (rys. 16). Obserwacje przeprowadzone w polu

ciemnym ujawniły obok dużych wydzieleń igłowych azotka %' wydzielenia &" o kształcie nieregularnym skoncentrowane w obszarach o dużej gęstości dys lokacji (rys. 17, 18).

4. Wnioski

- Wygrzewanie żelaza Armco w atmosferze zdysocjowanego amoniaku w temperaturze 950°C umożliwia nasycenie żelaza azotem na drodze dyfuzji. W zależności od czasu wygrzewania stężenie azotu wynosiło od 0,239% - po 5 godzinach, do 0,874% - po 15 godzinach.
- .2. Chłodzenie na powietrzu próbek azotowanych w temperaturze 950°C prowadzi do wydzielenia azotków % o charakterystycznej iglastej budowie. Badania substruktury pozwalają przypuszczać, że powstały one w wyniku koalescencji i przebudowy struktury krystalicznej drobnych azotków %" wydzielonych na splotach dyslokacji.
- 3. Szybkie chłodzenie stopów Fe-N z zakresu występowania austenitu azotowego umożliwia uzyskanie struktury martenzytu azotowego o budowie iglastej zbliżonej do martenzytu stali niskowęglowej.
- 4. Podczas odpuszczania martenzytu azotowego następuje wydzielanie z przesyconego roztworu azotków α" i δ'. W strukturze martenzytu odpuszczonego w obszarach o dużej gęstości dyslokacji występują azotki α", natomiast w sąsiedztwie azotków δ' osnowa jest mniej zdefektowana.

LITERATURA

- [1] Awierin W.W. i inni: Azot w mietałłach, Moskwa, 1976, s. 31-34.
- [2] Malkiewicz T.: Metaloznawstwo stopów żelaza PWN Warszawa-Kraków, 1976, s. 63÷69.
- [3] Mortimer B.: Praca doktorska, Uniwersytet w Newcastle, 1971 (nie publikowana).
- [4] Kubalek E.: Harterei Techn.Miettalungen t. 23, nr 3, 1968, s. 177-197.
- [5] Bieżous M.W.: Moskalenko Ju.N., Piermiakow W.G.: Mietałł. i termicz. obrab.miet., nr 3, 1974, s. 28:30.
- [6] Bell T., Farnell B.C: The mech. of phase transf. in crystal solids, nr 33, 1969, s. 282÷287.
- Biełous M.W., Moskalenko Ju.N.: Fizyka mietałłow i mietałłowiedienije, t. 28, nr 5, 1969, s. 894÷902.
- [8] Bell T.: J. Iron Steel Inst. t. 206, 1968, s. 1017-1021.
- [9] Hrivnak I.: J. Iron Steel Inst. nr 11, 1966, s. 1108-1113.
- [10] Przybyłowicz K .: Metaloznawstwo teoretyczne, Kraków 1973, s. 245:252

СТРУКТУРНЫЕ ИЗМЕНЕНИЯ В СПДАВАХ ЖЕЛЕЗО - АЗОТ ВО ВРЕМЯ ТЕПЛОВОЙ ОБРАБОТКИ

Резюме

В работе исследовано структурные изменения в сплавах Железо – Азот полученных путем высокотемпературного азотирования при температуре 950 °С. После медленного охлаждения азотистого аустенита получаем структуру состоящую из феррита и нитридов \mathcal{S}' . Быстрое охлаждение ведет к получению структуры азотистого мартенсита. Превращения азотистого мартенсита во время отпуска начинаются выделением нитридов \mathcal{A}'' на сплетания дислокаций, а затем начинается перестройка натридов \mathcal{A}'' в нитриды \mathcal{S}' при высшей отпускной температуре.

THE STRUCTURAL CHANGES IN IRON-NITROGEN ALLOYS DURING HEAT TREATMENT

Summary

' In this work the strukcural changes in Fe-N alloys obtained during high-temperature nitriding at 950°C have been examined. During slow cooling of the nitrogen austenite the structure containing the ferrite and nitrides \mathfrak{T}' has been obtained. After rapid cooling it is possible to obtain the nitrogen martensite structure. The transformations of nitrogen martensite during the tempering start with precipitations of nitrides \mathfrak{T}' on the twist dislocations followed by transforming into nitrides \mathfrak{T}' at the higher tempering temperature.