P. 3346 80

ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ

CHEMIA

P. 3346 80

POLITECHNIKA ŚLĄSKA

ZESZYTY NAUKOWE Nr 684

MICHAŁ PALICA

WNIKANIE MASY W FAZIE CIEKŁEJ W POLU SIŁ ODŚRODKOWYCH

1980

OPINIODAWCA Prof. dr inż. Mieczysław Serwiński

KOLEGIUM REDAKCYJNE

Jan Bandrowski (redaktor naczelny), Genowefa Bieńkiewicz (redaktor działu), Wojciech Mikołajków (sekretarz redakcji)

OPRACOWANIE REDAKCYJNE Anna Błażkiewicz

Wydano za zgodą Rektora Politechniki Śląskiej

PL ISSN 0372-9494

Dział Wydawnictw Politechniki Śląskiej Gliwice, ul. Kujawska 2

 Naki.
 180+85
 Ark.
 wyd. 4,6
 Ark.
 druk.
 4,875
 Papier drukowy kl.
 V 70x100.
 70 g

 Oddano do druku 19.11.1980
 Podpis. do druku 8.12
 1980
 Druk ukończ.
 w grud.
 1980

 Zamówienie 1427/80
 Cena zł 12, Cena zł 12, Cena zł 12, Cena zł 12,

Skład, fotokopie, druk i oprawę wykonano w Zakładzie Graficznym Politechniki Śląskiej w Gliwicach

SPIS TREŚCI

Str.

D A	UTORA	5
ZNA	CZENIA I WYMIARY WAŻNIEJSZYCH WIELKOŚCI	~
I.	WSTEP	9
	I.1. Przegląd literatury	9
	I.2. Założenia i zakres pracy	12
Π.	TESTALACIA DOŠETADOZALNA	
		14
	II.1. Schemat instalacji	14
	II.2. Niektóre szczegóły konstrukcyjne instalacji	15
	II.3. Przygotowanie instalacji do badań	20
II.	BADANIA WSTEPNE	21
		~ .
	TIL.I. Ceddowanie przyrządow	22
	TIL 2 Podorio writerio rost reading to have a busic	26
	CZY	26
IV.	METODYKA POMIARÓW I OBLICZEŃ	27
	IV.1. Pomiary temperatury	27
	IV.2. Pomiary ciśnienia	27
	IV.3. Pomiary objętościowego natężenia przepływu wody	27
	IV.4. Pomiary ilości obrotów cylindra	28
	IV.5. Pomiary stężenia CO ₂ w wodzie destylowanej	28
	IV.6. Pomiary wielkości pomocniczych	28
	IV.7. Metodyka obliczania współczynników wnikania masy na pod-	20
	TV.8. Metodyka obligzeń wielkości wodułowych	31
	IV.9. Zakres zwienności zwiennych niezależnych	34
		7
٧.	WYNIKI POMIARÓW I OBLICZEŃ	35
	MATTRE DUNTURU DADA	-
¥.T.*	ANALLIA WINLOW DADAN	30
	VI.1. Ustalenie postaci równania korelacyjnego	36
	VI.2. Analiza błędów równań korelacyjnych	38
	VI.3. Omówienie uzyskanych wyników	41
	VI.4. Dyskusja rezultatów badań	51

VII.	WNIOSKI			54
VTTT	LTTERATURA		s	56
CTDTC	707PXT 4	· · · · · · · · · · · · · · · · · · ·		~ 0
SIRES			******	50
TY.	ANEAS BU RUZUZIALU V	************************		01
	IX.1. Vyniki pomiarów i obliczeń	współczynnika wnikania	masy	61
	IX.2. Tablica obliczonych wielko	sci modulowych		70

20

Str.

OD AUTORA

Praca niniejsza wykonana została w Instytucie Inżynierii Chemiczneji Budowy Aparatury Politechniki Śląskiej w Gliwicach w latach 1974-1979.

Jej temat został zainiejowany w roku 1974 przez zmarłego rok później prof. dr inż. Tadeusza HOBLERA, Oddając w tym miejscu hołd pamięci Profesora pragnę podziękować również prof. dr hab. inż. Janowi BANDROWSKIEMU i prof. dr hab. inż. Józefowi ZABŁOCKIEMU za słowa zachęty do kontynuowania podjętego tematu.

Władzom Uczelni oraz wszystkim, którzy służyli mi radą i pomocą przy wykonywaniu tej pracy, składam serdeczne podziękowania.

74. E. M.

OZNACZENIA I WYMIARY WAŻNIEJSZYCH WIELKOŚCI

C	-	koncentracja	kmol/m ³ , mol/1
D	-	średnica	[m]
Dw	-	wewnętrzna średnica wirującego oylindra	[m]
F	1	powierzchnia wnikania masy	[m ²]
G	-	masowe natężenie przepływu	[kg/s], [kg/h]
GA	-	masa CO2, waikająca do wody	[kmol/s], [kmol/h]
Ge	-	masowe natężenie zraszania wodą	[kg/s], [kg/h]
H	-	stała Henry'ego	Pa
м	-	masa molowa	[kg/kmo1]
P	-	oznaczenie pasa rozrzutu	[%]
P	-	ciśnienie całkowite	[Pa]
Pb	-	ciśnienie barometryczne	Pa
ΔP	-	nadciśnienie	[Pa]
T	-	temperatura bezwzględna	[K]
v	-	objętość	[m ³], [om ³]
vo	-	objętościowe natężenie zraszania	[m /s], [dm /h]
8.	-	przyspieszenie odśrodkowe	m/s
e	-	przyspieszenie siły ciężkości	[m/s ²]
h	-	czynna wysokość strefy absorpoji	[m]
k'A	-	współozynnik przenikania masy	kmol/m ² \$
=	-	Basa	[kg]
-	-	stosunek M _A do M	
-	2	stosunek MA do Mio	
n	-	poprawka uwzględniająca odstępstwo rzeczywi- stej minimalnej liczby Re przy zraszaniu	
-		do wartości teoretycznej	[obw] [1]
n-	-	prędkość kątowa wirującego cylindra	$\left[\frac{\mathrm{d}\mathrm{d}\mathrm{r}}{\mathrm{min}}\right], \left[\frac{\mathrm{d}}{\mathrm{s}}\right]$
P	-	ciśnienie pochodzące od działania siły odśrodkowej	[Pa]
r	-	promień	[m]
	-	grubość spływającego filmu cieczy	[m]
8 o	-	średni błąd pojedynozego równania	
s,	-	zredukowana grubość spływającego filmu	C . 7
ŧ.,.	-	temperatura	[°c]
٣	-	liniowa prędkość obwodowa wirującego cylindra	[m/s]
¥	-	prędkość spływu filmu	[m/s]
x	-	udział molowy	[m/s]

- współozynnik wnikania masy

d - dynamiczny współozynnik dyfuzji

- gęstość

On ,

7)

6

Г

60

- współozynnik lepkości dynamicznej
- zastępozy wymiar liniowy
- napięcie powierzohniowe
- $\Delta \pi_{A}$ modul napędowy
 - jednostkowe natężenie zraszania
 - prędkość kątowa

Indeksy

- 8 -

- A dotyozy CO₂
- odnosi się do fazy ciekłej
- odnosi się do fazy gazowej
- oznacza inert
- c oznacza wartość końcową
- oznacza wartość średnią
- bbl oznacza wielkość obliczona
- P oznacza wartość początkową
- śr oznacza wartość średnią
- t oznacza wartość teoretyczną
- zm oznacza wartość obliczoną na podstawie danych zmierzonych
- a dotyczy zwierciadła
- 1,2 dotyczy początku i końca strefy absorpoji

Moduly podobieństwa i simpleksy

- Re_ zastępoza liczba Reynoldsa przy zraszaniu
- Rozk,t krytyozna liczba Reynoldsa ograniczająca zakres spływu pseudoburzliwego wg Portalskiego [16]
- Rezk krytyczna liczba Reynoldsa ograniczająca spływ pseudolaminarny,w którym tworzą się fale długie wg [17]
- Res zk - krytyczna liczba Reynoldsa, ograniczająca spływ pseudolaminarny, w którym występują fale krótkie wg [17]
- Remin rzeczywista minimalna liczba Reynoldsa przy zraszaniu w polu sił odśrodkowych
- Remin,t teoretyczna minimalna liczba Reynoldsa przy zraszaniu w polu sił odśredkowych
- Shz zastępoza liczba Sherwooda przy zraszaniu
- So liczba Schmidta

Ve.

- zastępcza liczba Webera przy zraszaniu
- (simpleks podobieństwa geometrycznego
 - simpleks przyspieszeń.

[kmol/m²h] [kg/mh], [kmol/mh] [kg/m³] [kg/mh], [Pa s] [m] [N/m]

[kg/mh], [kg/ms] [rad/s] I. WSTEP

Intensyfikacja procesów wymiany masy związana jest zwykle z poszukiwaniami nowych, skutecznych typów wypełnień lub nowych konstrukcji absorberów. Obszerny przegląd rozmaitych wymienników masy zamieszczono w [1]i [2]. W przypadku stosowania kosztownych absorbentów lub w układach, wymagająoyoh prawie całkowitego nasycenia cieczy absorbowanym gazem, stosuje się zazwyczaj takie rozwiązania, w których ilości używanego w procesie absorbenta byłyby jak najmniejsze. Rozważania Hoblera [3] pozwalają stwierdzić, że w układzie z wirującą powierzchnią można uzyskać znaczne zmniejszenie tzw. minimalnej liczby Reynoldsa przy zraszaniu. Liczba ta związana jest z ilością absorbenta konieczną do pełnego pokrycia cieczą zraszanej powierzohni. Stabilizacja spływającej cieczy do cienkiej warstwy i poślizg absorbenta na wewnętrznej powierzchni wirującej prowadzą do znaoznie lepszego wykorzystania zraszającej cieczy w stosunku do grawitacyjnego spływu filmowego. Jeśli więc główny opór dyfuzyjny skupiony jest w fazie ciekłej, zwiększenie szybkości procesu wiąże się ze znalezieniem takich warunków ruchowych, w których wartośći $\beta_{\rm AC}'$ byłyby możliwie duże. Warunkom tym odpowiada naloženie pola sił odśrodkowych na wymianę masy. Stosunkowo niską powierzohnie jednostkową można łatwo zwiększyć, stosując współśrodkowe cylindry umocowane na wspólnej osi, przez co uzyskuje się wartości równorzędne (lub większe) przeciętnym dla najozęściej stosowanych pierścieni Raschiga.

Zaproponowany w niniejszej pracy sposób prowadzenia wymiany masy może znaleźć zastosowanie w niewielkich instalacjach, stosowanych np. w przemyśle farmaceutycznym lub w pracach doświadczalnych, w których wymaga się uzyskania stanu, bliskiego równowagowemu, przy niewielkich ilościach zużywanego absorbenta.

I.1. Przegląd literatury

Nie opracowano dotąd ani teoretycznie, ani doświadczalnie zagadnienia wnikania masy w fazie ciekłej przy grawitacyjnym spływie filmowym w polu aił odśrodkowych. Autorzy najczęściej cytowanych monografii [1,2,4,5] ograniczają się do układów nieruchomych (pewne rozważania teoretyczne związane z hydrodynamiką i wymianą masy dla wirującej spirali Archimedesa, zasilanej cieczą od osi, przedstawiono w [6]), dla których wyznaczono obszar prawdopodobieństwa teoretycznego przebiegu procesu. Hobler \downarrow Kędzierski [7] podają, że istnieją trzy sposoby wyznaczania β_{AO}^{*} na drodze teoretycznej:

- całkując bezpośrednio równanie różniczkowe rozkładu stężeń,
- wykorzystując teorię penetracji,
- wykorzystając teorię dwu warstw granicznych (w przypadku zastosowania ozystego składnika gazowego - teorię warstwy granicznej).

Każdy z podanych sposobów wymaga odpowiednich założeń.

Pomijając falowanie powierzchni i przyjmując jednakową prędkość spływu calej warstwy cieczy, Van Krevelen i Hoftijzer [8] uzyskali rozwiązanie (obewiązujące dla Re < 100) drogą całkowania równania rozkładu stężeń. To samo również rozwiązał Pigford [9] przyjmując paraboliczny rozkład prędkości i uzyskując dwa zakresy liczby Sh_z, dla dużych i małych czasów spływu. W analitycznych pracach Malewskiego [10] oraz Ruckensteina i Brebente [11] uwzględniono dodatkowo wpływ falowania filmu cieczy.

Teorię penetracji wykorzystuje w swych rozważaniach Brötz [12] uzyskując trzy zakresy, obowiązujące dla różnych liczb $\operatorname{Re}_{\mathbb{Z}^{n_0}}$ Warto przy tym zwrócić uwagę na fakt, że wykładniki potęgowe przy Sc i $\left(\frac{z}{h}\right)$ były stałe i wynosiły 0,5, natomiast wykładnik przy $\operatorname{Re}_{\mathbb{Z}}$ zmieniał się od 0,333 do 0,833.

Wreszcie Brauer [13], przy założeniu prostoliniowego profilu prędkości w warstwie przyściennej, związał grubość warstwy przyściennej z naprężeniem stycznym na ściance, przyskując wpływ Raz w petędze 0,533 ; 0,667 i nie stwierdzając wpływu $\left(\frac{v_z}{h}\right)$. Hobler i Kędzierski [7] przytaczają następnie szereg prac doświadczalnych prowadzonych zarówno przy wyeliminowaniu falowania filmu spływającej cieczy, jak i z falowaniem powierzchni. W konkluzji swojego artykułu stwierdzają oni m.im. co następuje:

- Równania teoretyczne różnią się między sobą, a badania eksperymentalne nie potwierdzają na ogół równań teoretycznych i również wykazują duże rozbieżności.
- 2. Autorzy prac doświadczalnych przyjmują arbitralnie niektóre wykładniki równania kryterialnego^{(np.} przy So i $\binom{v_z}{h}$), opierając się na pracach teoretycznych, co prowadzi do znacznych rozbieżności wyników.
- 3. Brak jest prac ozysto eksperymentalnych, określających stałą i wykładniki, w zakresie praktycznie stosowanej zmienności parametrów ze szczególnym uwzględnieniem wykładnika przy module geometrycznym.

Temat podjęty przez Hoblera i Kędzierskiego [7] rozwijają autorzy pracy [15] porównując dostępne dane dla układu CO₂ - woda. Dane te odnoszą się do nieruchomych rur gładkich. Stwierdzają oni, że wszystkie ujęcia teoretyczne wymagają odpowiednich założeń profilu spływu i rozkładu koncentracji, a wyniki prac różnią się znacznie między sobą. Wynika stąd,że zaproponowane modele mechanizmu procesu są jeszcze niedoskonałe, zaś droga zaproponowana przez Hoblera i Kędzierskiego [7] wydaje się obecnie jedyna. Pewne światło na mechanizm procesu spływu filmowego po powierzchni gładkiej daje praca Portalskiego [16], który przewiduje następujące zakresy spływu:

- gladki spływ laminarny (Re < 20 ÷ 30),
- falowy splyw laminarny (Re_ = 20 + 300),
- spływ o charakterze przejściowym (Rez = 300 + 1150),
- spływ pseudoburzliwy (Re_z = 1150 ÷ Re_{zkt}, gdzie Re_{zkt} może przyjmować wartość 1600 ÷ 2100),
- spływ burzliwy (Re > 1600 + 2100).

Jeszcze dokładniej rozpatrują spływ grawitacyjny filmowy Olewskij i Ruczinskij [17]. Przewidują oni mianowicie:

- gładki spływ laminarny (Re ≤ 12),
- spływ pseudolaminarny, który można podzielić na dwa podzakresy:
 a) spływ, w którym występują fale długie (Re_g = 12 ÷ Re_{gk}),
- b) spływ, w którym występują fale krótkie (Rez = Rez + Rez).

Rozgraniczeniem obydwu podzakresów jest wartość

zaś ograniczeniem górnym spływu pseudolaminarnego jest

$$Re_{ab}^{*} = (200 \div 400).$$

- spływ przejściowy (Re = Re $_{zk}^{*}$ - 1200 - 200),

- splyw pseudoburzliwy (Re = 1200 - 200 ÷ 2400),

- spływ burzliwy rozwinięty (Re > 2400).

Ponieważ dla każdego z tych zakresów wystąpują inne równania grubości spływającego filmu, więc inny jest też opis procesu wnikania masy. Podobnie, rozbieżności dotyczące krytycznych liczb Re_z w poszczególnych zakresach Re, mogą mieć wpływ na postać i zakres ważności równań, z których oblicza się współczynniki wnikania masy. Analiza wartości zredukowanych grubości spływającego grawitacyjnie filmu, przedstawiona w [15], wskazuje,że rozbieżności s = () mogą sięgać 50%. Analityczny opis procesu jeszcze bardziej komplikuje naloženie na spływ grawitacyjny pola sił odśrodkowych. Zmienia się wówczas charakter spływu, warstwa staje się bardziej ustabilizowana i možna sądzić, że zmieni się zakres powstawania fal długich i krótkich. Siły odśrodkowe powodują "dociskanie" filmu do ściany [3], ułatwiają jej zwilżanie i ograniczają wielkość amplitudy fal.Celem więc uniknięcia niejednoznaczności kryteriów, rozgraniczających poszczególne mechanizmy spływu, jak również wątpliwości odnośnie do średniej grubości filmu, można skorzystać z ogólnego opisu procesu, zaproponowanego przez Razma 1 i Hoblera [2] uwzględniającego odpowiednią poprawkę, która wynika z rotaoji układu. Na podstawie rozważań teoretycznych Hoblera 3 można stwierdzić, że poprawka ta winna zawierać w sobie simpleks przyspieszenia odśrodkowego i siły ciętkości, tzn.:

$$= 12 =$$

$$Sh_{g} = C \operatorname{Re}_{g}^{A} \operatorname{Se}^{B} \left(\frac{\psi_{g}^{0}}{h}\right)^{D} \cdot f\left(\frac{a}{g}\right) \qquad (I-1)$$

zaś w granicznym przypadku, tzn. a = 0, zależność (I-1) winna przechodzić w postać obowiąznjącą spływ po powierzchni nieruchomej. Aby utrzymać jednorodną, ogólnie przyjętą postać w równaniu (I-1), obowiązywać więc winna zależność:

$$Sh_{z} = C Re_{z}^{A} Sc^{B} \left(\frac{v_{z}}{h}\right)^{D} \left[1 + \left(\frac{a}{g}\right)\right]^{E}$$
 (I-2)

ważna jedynie wówczas, gdy cała powierzchnia czynna pokryta jest absorbentem, a więc, gdy $Re_z > Re_z$ min^o

Problemowi tzw. minimum zraszania poświęcono liczne prace teoretyczne i eksperymentalne, wśród których Sokół [18,19] podaje ogólne rozwiązanie analityczne stwierdzając, że należy wyznaczyć doświadczalną zależność współczynnika "n" od parametrów przepływu dwufazowego gaz - ciecz, sposobu zraszania oraz przyspieszenia odśrodkowego (współczynnik ten jest stosunkiem rzeczywistej wartości $\text{Re}_{z \min}$ do wartości teoretycznej). Aby uniknąć wątpliwości związanych z pełnym pokryciem cieczą wirującego cylindra, wykonano go z polimetakrylanu metylu, umożliwiając wizualne obserwacje zraszanej powierzohni.

I.2. Zalożenia i zakres pracy

Part's

Najprostszy sposób prowadzenia badań wnikania masy w fazie ciekłej,zarówno ze względu na eksperyment, jak i obliczenia, polega na wyeliminowaniu oporu dyfuzyjnego fazy gazowej ($M_{kg} = \infty$).

Zdecydowano się zastosować dwutlenek węgla i wodę destylowaną, a więo klasyczny układ eksperymentalny w badaniach ruchu masy. Można bowiem przyjąć za Vielstichem [20], że dla układu CO_2 - woda destylowana rola reakcji chemicznej jest do pominięcia. Z danych tego autora wynika, że w temperaturze 18 [°C] stosunek ilości drobin kwasu węglowego do ilości drobin CO_2 w roztworze wodnym wynosi około 1 : 645, a więc wypadkowa szybkość procesu limitowana jest praktycznie procesem fizycznym.

W koncepcji i rozwiązaniu instalacji badawczej przyjęto następujące założenia:

- stalą średnicę rotującego cylindra,

- zmienną wysokość czynnej powierzchni zraszanej (przesuwny zraszacz).

- płynną regulację obrotów,

- termostatowaną temperaturę ukladu.

Prócz tego przyjęto taką metodykę pomiarów, która ograniczała desorpoję C0₂ z wody podozas wykonywania oznaczeń. W obliozeniach wstępnych instalacji dotyczących natężenia zraszania, przyspieszenia odśrodkowego i wysokości czynnej skorzystano z wyprowadzenia Hoblera [3] dotyczącego minimalnego zraszania wirującej powierzchni. Na podstawie tych obliczeń zaprojektowano i wykonano stanowisko doświadczalne [21,22] oraz przeprowadzono badania wstępne [23]. Wymienione prace [21 + 23] obejmowały koncepcję rozwiązania, obliczenia konstrukcyjne i wytrzymałościowe, dobór metod i przyrządów pomiarowych, montaż instalacji, zmiany konstrukcyjne, cechowanie przyrządów oraz pomiary wstępne. Na ich podstawie ustalono szczegółowy zakres zmienności poszczególnych badanych wielkości.

- 13 -

II. INSTALACJA DOŚWIADCZALNA

W projekcie wstępnym instalacji przyjęto średnicę wirującego absorbera $D_w = 0, 0, 2, 0, 0$ [m] i maksymalną prędkość obrotową n^m = 1600 [1/2]. Zgodnie z wyliczeniami Hoblera [3] można wówozas zmniejszyć Re_z min do kilkunastu (przeliczeń dokonano dla t = 15, 20 i 25 [°C] przy założonym skrajnym kącie zwilżania dla układu polimetakrylan - woda - powietrze = = 25 i 35°). Po przyjęciu do realizacji układu o średnicy wewnętrznej cylindra $D_w = 0,195$ [m] i wysokości czynnej h = 0,630 [m] rozwiązano układ napędowy z płynną regulacją obrotów w zakresie 0 ± 1600 [10] układ zasilania wodą w zakresie 0 ± 430 [dm] i układ zasilania CO₂ przy nadciśnieniu CO₂ w cylindrze rzędu 60 ± 100 [Pa] w warunkach ustabilizowanej temperatury.

II.1. Sohemat instalacji

Schemat instalacji badawozo-pomiarowej pokazano na rys. II.1. Głównym jej elementem jest wirujący cylinder (1), napędzany silnikiem prądu sta-

Rys. II.1. Schemat instalacji

lego (2), którego predkość obrotową można zmieniać pokretlem woltomierza prostownika tyrystorowego (3). Cylinder zasilany jest dwutlenkiem wegla ozerpanym z butli (4) poprzez zawór redukcyjny (22), podgrzewany w cząsie badań promiennikiem elektrycznym. Po uzyskaniu w termostacie wodnym (5) żądanej temperatury, zbliżonej do temperatury otoczenia, a ustalonej termometrem kontaktowym, CO, podawano poprzez rotametr (6) do cylindra. Zawór (23) przed rotametrem pozwalał ustalać taki przepływ CO,, który zapewniał żądane nadciśnienie w cylindrze, mierzone wodnym manometrem różnicowym (7). Wode destylowana czerpano ze zbiornika (9) pompa (10), za która znajdował sie zawór dlawiący (18). Dodatkowy zawór przed rotametrem wodnym (8) oznaczony jako (19), pozwalał z dużą dokładnością regulować przepływ wody. Przed cylindrem znajdował się kurek spustowy do poboru próbek wody (12).W tym celu otwierano zawór (20) i po pobraniu próbki zawór ten ponownie zamykano. Temperature wody przed cylindrem mierzono termometrem rtęciowym (15), po absorpoji termometrem (14). Odpływający roztwór dwutlenku węgla w wodzie kierowano do zbiornika (11) i do kanału ścieków (24), pobierając próbki przewodem (13). zamykanym zaworem (21).

- 15 -

II.2. Niektóre szczegóły konstrukcyjne instalacji

W celu wyeliminowania niepożądanych zjawisk, które mogłyby zaważyć na powtarzalności pomiarów i ich mniejszej dokładności, ustalono szczególnie starannie centryczność cylindra w stosunku do nieruchomej osi oraz pionowe zamocowanie osi. W ten sposób ograniczono drgania układu oraz praktycznie wyeliminowano tzw. bicie promieniowe.

W rozwiązaniu konstrukcyjnym instalacji przewidziano wykonanie głównych elementów z materiałów o ulepszonych własnościach, co pozwala zmniejszyć masę wirujących elementów oraz eliminuje wystąpienie zagrożeń mechanicznych.

Na rys. II.2 przedstawiono schemat zamocowania i napędu cylindra wraz z zasadniczymi gabarytami. Opis, głównych elementów zawiera legenda schematu.

Rozwiązanie konstrukcyjne wirującego cylindra wraz z oprzyrządowaniem przedstawiono na rys. II.3, który orientuje o sposobie użożyskowania,smarowania, doszczelnienia i zasilania wodą oraz CO₂. Przekrój ten pokazuje również zamocowanie termopary i końcówki do pomiaru nadciśnienia CO₂ w cylindrze. Rozwiązanie konstrukcyjne wirującego zraszacza (pokrywy górnej) pokazano na rys. II.⁴.

Uniemożliwia ono badanie wpływu wysokości czynnej strefy absorpoji na współczynniki wnikania masy, zapewnia natomiast idealne zraszanie. Absorbent podawany na wewnętrzną powierzchnię cylindra uzyskuje w czasie spływu przez otworki pokrywy, styczne do powierzchni, prędkość obrotową identyczną z wirującym cylindrem, przez co eliminuje się poślizg wody względem

- 14 -

17

Rys. II. 3. Rozwiązanie konstrukowjne wirującego cylindra

1- 2

- 18 -

Rys. II.4. Virujący zraszacz

powierzohni, Oozywiście, wskutek tarcia pomiędzy nieruchomym gazem a cieozą poślizg ten występuje (w pewnej odległości od górnej pokrywy),ale można sądzić, że jest on niewielki.

Natomiast konstrukcja przesuwnego zraszacza (rys. II.5), umożliwiająca badanie wpływu simpleksu $\left(\frac{\sqrt{2}}{h}\right)$ w znacznie szerszym zakresie, niż można uzyskać jedynie przez zmianę temperatury absorpoji, związana jest z wystąpieniem znacznego poślizgu cieczy względem cylindra, szczególnie bezpośrednio przy zraszaczu.

Rys. II.5. Zraszacz przesuwny

Konstrukcja ta umożliwia dowolne ustawienie wysokości strefy czynnej absorpoji.

Sposób zamontowania przesuwnego zraszacza pokazano linią kreskowaną również na rys. II.3 (poz. 10). W tym celu zmieniono głowicę (poz. 1), rozwiercono otwór zamocowania termopary w osi drążonej (poz. 11) i przez oś poprowadzono przewód nakładany na rurę zasilającą (poz. 5). Aby ograniczyć ilość CO₂ uchodzącego wskutek nadciśnienia otworkami w górnej pokrywie, otworki te zaczopowano.

II.3. Przygotowanie instalacji do badań

Aby ograniczyć do minimum zjawiska, które mogłyby negatywnie wpływać na dokładność pomiarów, przeprowadzono następujące czynności przygotowawcze:

- wirujący cylinder wraz z układem napędowym osadzono na płycie nośnej w ścianie śrubami kotwowymi; masywna konstrukcja płyty eliminuje drgania układu,
- cylinder starannie wymyto używając detergentów, spłukano wodą destylowaną i odtłuszczono alkoholem metylowym,
- dokładnie ustalono osiowość płaszczyzn kół pasowych silnika i cylindra oraz sprawdzono naciąg paska klinowego w celu wyeliminowania poślizgu paska,
- przemyto i odtłuszczono pompę oraz przewody doprowadzające wodę ze zbiornika do cylindra,
- wał silnika połączono elastycznym sprzęgłem z wałkiem prądniczki tachometrycznej,
- doszczelniono doprowadzenie CO₂ do drążonej osi oraz króćce termometryczne,
- wykonano oświetlenie cylindra oraz konieczne osłony.

Varunki techniczno-eksploatacyjne pracy układu badawczego omówiono szczegółowo w [23,24,25].

III. BADANIA WSTĘPNE

Celem badań wstępnych było:

- ustalenie szczegółowego zakresu zmienności parametrów pracy instalacji,
- osiągnięcie stabilnej pracy układu,
- uzyskanie powtarzalności wyników.

1

Badania wstępne wykazały,że dla niskich prędkości obrotowych ($n^{\Xi} < 200 \left[\frac{1}{\min}\right]$) występowały chwilowe nierównomierności wirowania, wynikające ze znacznego momentu tarcia, stąd przyjęto jako zakres pomiarowy $n^{\Xi} = 200 \div 1600 \left[\frac{1}{\min}\right]$, co przy średnicy D = 0,195 [m] odpowiada 4,25 $\leq \left(\frac{1}{5}\right) \leq 272$.

W pomiarach ilości wody podawanej do zraszania skorzystano z rotametru wodnego o zakresie V = 0 + 430 $\begin{bmatrix} \frac{d=3}{h} \end{bmatrix}$, którym mierzono przepływy rzeczywiste V = 14 + 430 $\begin{bmatrix} \frac{d=3}{h} \end{bmatrix}$.

Aby umożliwić określenie wpływu wysokości ozynnej strefy absorpoji na skorzystano z przesuwnego zraszacza (rys. II.5), którego położenie zmieniano w zakresie h = 0,1575 ÷ 0,630 [m]. Badania wstępne pozwoliły ustalić sposób zasilania cylindra wodą, zapewniający niewielką zmianę temperatury absorpoji. Na temperaturę wody zasilającej cylinder znaczny wpływ wywiera temperatura otoczenia. Wynika to z długich odcinków przewodów zasilających zraszacz, a termostatowanie nie pozwala na ścisłą regulację temperatury.

Ponieważ największa mierzona różnica temperatur wody przed cylindrem i bezpośrednio za nim nie przekraczała 1 [K], wobec tego jako temperaturę absorpoji przyjmowano temperaturę wody w króćcu (13) - rys. II.1 - mierzoną termometrem (14). Sposób pomiarów zapewniający niewielkie wahania temperatury w danej serii związany był z grzaniem się łożysk i koła pasowego, a więc i wirującej górnej pokrywy (szczególnie przy wysokich prędkościach obrotowych i niskich natężeniach przepływu wody) oraz z dławieniem w pompie. Aby te zmiany były jak najmniejsze, stosowano wyłączanie silnika napędowego po każdym z pomiarów oraz zmienne zasilanie wodą cylindra (na przemian duże i mąłe zraszania). Duża ilość wody chłodziła (prawie natychmiast) wirującą pokrywę i pompę, mała ilość wody oraz wysokie obroty powodowały wolny wzrost temperatury. W praktyce utrzymywano wahania temperatury w danej serii różniące się o + 1 [K] od wartości zadanej. Większość pomiarów wykonano dla zakresu temperatur 11 - 16 [°C], pozostałe, w temperaturach niskich (5 + 9 $\begin{bmatrix} {}^{\circ}C \end{bmatrix}$), średnich (24 + 27 $\begin{bmatrix} {}^{\circ}C \end{bmatrix}$) i wysokich (36 : 42 [°C]), miały na celu uzyskać możliwie duży zakres zmienności

- 20 -

liczby Sc. Wyższych temperatur nie można było stosować ze względu na niestabilną pracę pompy.

- 22 -

Próbki wody przed i po absorpoji poblerano bezpośrednio przed i za wirującym cylindrem mierząc równocześnie w króćcu (13) - (rys. II.1)-temperaturę wody po absorpoji i natychmiast przystępowano do oznaczeń CO, w wodzie zgodnie z zaleceniami normy [26]. W czasie pomiarów kontrolowano wskazania pływaka rotametru wodnego, regulując jego położenie zaworem (19) -(rys. II.1). Badania wstępne wykazały, że korekta wskazać pływaka jest konieozna, Podobnie sprawdzano przed i po pobraniu próbki nadciśnienie CO. oraz napięcie wotlomierza prostownika tyrystorowego, które okazały sie bardzo stabilne. Oznaczeń CO, w wodzie zasilającej dokonywano początkowo dwukrotnie dla każdej z serii (7 + 13 pom.) przed i po danej serii. Wykazano, że stężenie CO₂ w wodzie zasilającej nie jest funkcją czasu, stąd ograniczono pomiary tego stężenia do jednokrotnego oznaczania przed każdą serią. Badania wstępne wykazały dalej, że niezależnie od sposobu zmiany napięcia zasilania prostownika uzyskuje się takie same prędkości kątowe przy zadanym napięciu (nie występuje pętla histerezy). Podobne próby przeprowadzono dla rotametru wodnego, natomiast wskazania pływaka rotametru CO, miały jedynie informować, czy występuje przepływ CO, do cylindra.

Gaz inertny (powietrze) usuwano z układu następująco: Przed przystąpieniem do pomiarów przupuszczono przez układ przez około 5 [min] CO_2 z butli przy nadciśnieniu rzędu 200 [Pa], po czym redukowano to nadciśnienie do 60 \div 90 [Pa], pod którym pozostawiano przepływ CO_2 przez cały czas badań w serii. Nadmiar CO_2 uchodził otworami górnej i dolnej pokrywy układu. Powtarzalność wyników analiz CO_2 w wodzie, przy zadanych parametrach pracy, potwierdziła skuteczność takiego sposobu usuwania powietrza. Dla ograniczenia zużycia wody destylowanej stosowano natomiast wyłączanie zasilania wodą. Wymienione sposoby pozwoliły uzyskać całkowitą powtarzalność wyników pomiarów (w granicach błędów pomiarowych) dla zadanych parametrów pracy.

III.1. Cechowanie przyrządów

W instalacji badawozej zamontewano dwa przyrządy, wymagające cechowania:

- rotametr wody,

- woltomierz prostownika tyrystorowego.

Rotametr wodny posiada metrykę occhowania (t = $15 [^{\circ}C]$, P = $1,013 \cdot 10^{5}$ [Pa]). Pomiary wstępne w zakresie niskich natężeń przepływu wykazały jednak, że wartości odczytane z metryki przewyższają rzeczywiste natężenia przepływu. Dlatego też w zakresie do 30 działek przecechowano rzeczywiste wakazania rotametru wg danych zamieszczonych w tablicy III.1. Tablica pomiarów sprawdzających krzywej sechowania rotametra $(t = 15 \begin{bmatrix} 0 \\ C \end{bmatrix}$, woda destylowana)

Lp.	Objętość cylindra	Czas nape cylin	Iniania dra	Ilość działek	Objętościowe na- tężenie przepływu [4-3/b]
	[om ³]	[ສ]	[dz]	
	L	105 0	124 8	A	14,4
1	500	125,2	66 7	в	27.0
2	500	66,4	00,7		28.3
2	500	47,1	46,8	0	50,5
	×00	26.0	25.9	10	69,4
4	500	40.4	17 0	20	100,0
5	500	10,1	11,5	20	138.5
6	500	13,1	12,9	0	

W tablicy tej wprowadzono 2 dodatkowe punkty (A 1 B), które uzyskano metodą objętościową dla zaznaczonych wskazań pływaka poniżej dolnej wartości wskazań, wynikającej z metryki cechowania. Czas napełniania cylindra miarowego o obj. 0,5 [dm³] mierzono z dokładnością 0,1 [s]. Uzyskane punkty naniesiono na wykres cechowania (rys. III.1).

Układ tyrystorowy zapewnia możliwość płynnej regulacji prędkości kątowej za pomocą pokrętła woltomierza. Wskazania woltomierza są jednoznacznie związane z prędkością kątową oylindra (obrotami silnika). Cechowania dokonano za pomocą legalizowanego multitachometru elektronicznego [27] typu DMT-21 o przełożeniu 1 : 1 w zakresie liczby obrotów 0 : $1600\left[\frac{1}{\min}\right]$ z dokładnością = 0,1 [%]. Wyniki pomiarów cechowania zamieszczono w tablicy III.2 i przedstawiono na rys. III.2.

Tablica III.2

Tablica III.1

Tablica cechowania obrotów cylindra ze wskazań woltomierza prostownika tyrystorowego

Lp.	Napięcie woltomierza	Liczba	obrotów z net n ^m	mierzons rem [1/min]	multit	acho-	Ušredniona li- ozba obrotów n ^m [1/min]
	υ[v]		Kole	ine serie	-	1	· · · · · · · · · · · · · · · · · · ·
		1	2	3	4	5.	
1 2 3 4 5 6 7 8 9 10 11	20 40 60 80 100 120 140 160 180 200 220	70 217 366 517 668 810 962 1102 1250 1398 1519 1620	74 216 370 523 674 833 970 1117 1267 1420 1558 1625	73 220 370 518 681 830 976 1124 1270 1434 1556 1625	72 227 378 526 687 822 974 1114 1270 1422 1562 1609	70 225 370 525 687 836 973 1128 1271 1421 1421 1557 1620	72,0 221,0 370,8 521,8 679,4 826,0 971,0 1117,0 1265,6 1419,0 1550,6 1619,8

- 23 -

25 -

1

1

Rys. III,2. Charakterystyka cechowania obrotów wirującego cylindra w funkcji napięcia woltomierza prostownika tyrystorowego

Ze względu na niewielkie różnice liczby obrotów w poszczególnych seriach rys. III.2 sporządzono na podstawie wartości średnich dla 5 zmierzonych serii. Wykres ten wskazuje proporcjonalność między prędkością obrotową silnika (cylindra) a napięciem podawanym prostownikiem.Z tego względu przebiegu wykresu nie wyrównano metodą najmniejszych kwadratów, a korzystano bezpośrednic z danych wykresu, na podstawie których ustalono liczbę obrotów cylindra (prędkość kątową).

III.2. Zmiany konstrukcyjne w instalacji

Badania wstepne wykazały konieczność przeprowadzenia pewnych zmian konstrukovjnych, których celem była szybka stabilizacja warunków pomiarów. I tak, punktowy sposób zasilania wodą górnej pokrywy (rys. II.3) powodował występowanie nierównomiernej warstwy absorbenta w rowku pokrywy i znaozny rozbryzg cieczy na osłonę cylindra, szczególnie przy wysokich prędkościach obrotowych. W celu wyeliminowania tego rozbryzgu wykonano zraszącz w postaci pasowanego do rowka odcinka łuku z nawierconymi 7 otworami Ø4.5 [mm] oraz rozwiercono otwory górnej pokrywy do średnicy Ø 4,4 [mm]. Sposób ten okazał się całkowicie wystarczający do wyeliminowania rozbryzgu nawet przy największych natężeniach zraszania 📢 i najwyższych prędkościach obrotowych cylindra. Dla ograniczenia rozbryzgu cieczy w pobliżu odprowadzenia roztworu poabsorpcyjnego wykonano dzieloną osłonę pasowaną do rynny 15 (rys. II.3) i wystajaca ponad rynne ok. 50 [mm]. Osłone te zabezpieczono dzielonym kołnierzem, dokręconym do górnej części osłony, a w dolnej jej części wykonano odprowadzenie wody do zbiornika głównego. Wprawdzie oslona taka nie ma wpływu na proces absorpoji, jednak jej brak i występujący wówczas rozbryzg wody jest uciążliwy dla obsługi.

W celu umożliwienia zasilania przesuwnego zraszacza zmieniono również konstrukcję głowicy (10) i drążonej osi (14) - rys. II.2.

III.3. Badania wnikamia masy przy grawitacyjnym spływie cieczy

W badaniach wstępnych przeprowadzono również dwie serie pomiarów dla nieruchomego cylindra. Ponieważ natężenia zraszania dla stosowanych temperatur i układu metakrylan - woda nie zapewniają całkowitego zroszenia (wartości stosowanych $\operatorname{Re}_z \leq \operatorname{Re}_{z = in}$), wewnętrzną powierzchnię cylindra pokryto celofanem, a powierzchnię starannie wyrównano. Następnie zamontowano przesuwny zraszacz i sprawdzono pionowe ustawienie osi cylindra. Sposób taki ze względu na dobrą zwilżalność celofanu zapewnił bardzo skutecznie pełne pokrycie wodą zraszanej powierzchni, nawet dla niewielkich natężeń przepływu wody. W każdej z serii, odpowiadającej określonej wysokości h zamontowania zraszacza, zmieniano natężenie przepływu wody. Pomiary te obejmowały 17 punktów na żączną ilość 305 punktów pomiarowych.

IV. METODYKA POMIARÓW I OBLICZEŃ

Aby wyznaczyć współczynniki wnikania masy w fazie ciekłej w polu sił odśrodkowych na podstawie danych eksperymentalnych, konieczne okazały się pomiary następujących wielkości:

- temperatury wody na wylocie z wirującego cylindra.
- ciśnienia barometrycznego powietrza.
- nadciśnienia CO, w cylindrze,
- objętościowego natężenia przepływu wody,
- napięcia woltomierza prostownika tyrystorowego.
- objętości roztworu NaOH, zobojętniającego próbkę.

IV. 1. Pomiary temperatury

Temperaturę wody mierzono termometrami laboratoryjnymi rtęciowymi z atestem o zakresie 0 \ddagger 40 [°C] z dokładnością 0,1 [°C] oraz termoparą typu PT-100 z miernikiem typu LOGOMER-M-1 produkcji Krakowskiej Fabryki Aparatury Przemysłowej o zakresie 0 \ddagger 100 [°C] i dokładności 1 [°C]. Po przeprowadzeniu badań wstępnych pomiary temperatury wody na włocie do absorbera oraz temperatury CO, w cylindrze uznano za zbędne.

IV.2. Pomiary ciénienia

Ciśnienie barometryczne mierzono barometrem rtęciowym naczyniowym o dokładności 0,1 [mm Hg] (co odpowiada ok. 13,3 [Pa]) jednokrotnie dla każdej serii pomiarów. Niewielka zmiana tej wielkości umożliwia przyjmowanie P_b stałego w ciągu okresu pomiarów (tzn. przez ok. 6 [h] dziennie), przy czym mierzono je po pierwszej serii pomiarów.

Nadciśnienie CO₂ w dylindrze oznaczano U-rurką wypełnioną wodą destylowaną z dokładnością ± 1 [mm H₂0] dla każdego punktu (ok. 9,8 [Pa]).

IV.3. Pomiary objętościowego natężenia przepływu wody

Objętościowe natężenie przepływu wody mierzono rotametrem wodnym ROL-166 Nr 775956 o zakresie pomiarowym 0 + 430 ki, a wskazania pływaka przeliczano na natężenia przepływu z załączonej i

- 26 -

poprawionej (rys. III.1) metryki cechowania.Na rotametrze zaznaczono również 2 punkty (A i B) poniżej wskazania *0*, dla których przepływ wyznaczono metodą objętościową.

IV.4. Pomiary ilości obrotów cylindra

Prędkość obrotową cylindra określono na podstawie charakterystyki cechowania (rys. III.2) sporządzonej zgodnie z pkt. III.1 z.dokładnością - 1 [V], co odpowiada dokładności - 7

IV.5. Pomiary stężenia CO, w wodzie destylowanej

Stężenie CO₂ w wodzie destylowanej określano zgodnie z norma PN-74/C-04547 [26] adaptowaną do warunków pomiarowych, występujących podczas badań. Przewiduje ona miareczkowanie wolnego CO, roztworem wodorotlenku sodowego wobec fenoloftaleiny jako wskaźnika. Adaptacja dotyczyła uproszczenia metody w przypadku wody, nie zawierającej prócz H₂CO₃ innych wolnych kwasów oraz soli silnych kwasów i słabych zasad. Po ustaleniu się warunków termicznych i przepływowych procesu (ok. 2 + 3 [min]) poblerano na wlocie i wylocie z absorbera próbki wody do kolby z korkiem na szlif. zamykano ją i natychmiast przystępowano do oznaczeń. Czas pomiędzy poborem próbki a wykonaniem oznaczenia ograniczano do niezbędnego minimum (kilka - kilkanaście sekund). Miareczkowanie prowadzono w ten sposób, że po pierwszym dodaniu do próbki poroji roztworu NaOH w następnej poroji dodawano ilość NaOH o 0,1 om³ mniejszą, niż zużywano w poprzednim miareczkowaniu. Dla każdej próbki wykonywano dwa niezależne oznaczenia, a za wynik końcowy przyjmowano zgodnie z zaleceniami normy 26 średnią arytmetyczną obydwu równoległych oznaczeń. Jeśli oznaczenia różniły się pomiędzy sobą o więcej niż 2,2 [mg/dm³], obydwa oznaczenia powtarzano.

IV.6. Pomiary wielkości pomocniczych

Oprócz wymienionych w pkt. IV.1 - IV.5 wielkości mierzono ponadto:

- średnioę wirującego cylindra (w przekroju górnym i dolnym w układzie prostopadłym) z dokładnością 0,5 [mm],
- wysokość czynnej strefy absorpcji (dla czterech badanych wartości h, w tym dla 3 położeń przesuwnego zraszacza) z dokładnością 0,5 [mm],
- ozas napełniania cylindra miarowego (przy sporządzaniu rzeczywistej charakterystyki retametru wodnego) z dokładnością 0,1 [s].

IV.7. <u>Metodyka obliczania współczynników wnikania masy na podstawie da</u> nych eksperymentalnych

- 29

Ilość przenikającego z fazy gazowej do ciekłej dwutlenku węgla (A) oblioza się jako

PAB

kf =

$$G'_{A} = k'_{A} F \Delta \mathcal{H}_{A}$$
 [kmol/h] (IV-1)

Współozynnik przenikania k wynosi

$$\frac{1}{k'_{A}} = \frac{1}{\beta'_{Ag}} + \frac{n}{\beta'_{Ag}} \left[\frac{m^{2}h}{kmol} \right]$$
(IV-2)

Stosując ozysty składnik gazowy (ozynny)

$$= \infty \qquad (IV-3)$$

$$\beta_{Ac} \qquad (IV-4)$$

Ponieważ zaś moduł napędowy

$$\Delta \mathcal{I}_{n} = n \Delta \mathcal{I}_{n} \qquad (IV-5)$$

wobec tego

$$G_{A}^{*} = \beta_{Ao}^{*} F \Delta \pi_{Ao} \qquad \left[\text{kmol/h} \right] \qquad (IV-6)$$

a więc zależność przechodzi w formę, obowiązującą wnikanie masy w fazie ciekłej.

Moduł napędowy $\Delta \pi_{AC}$ jest tu rozumiany jako średni pomiędzy wlotem a wylotem cieczy ze skrubera.

Dla niskich stężeń, gdy obowiązuje prawo Henry'ego (zgodnie z wyjaśnieniami podanymi w pracy [28]), należy stosować zależność:

$$\Delta \mathcal{I}_{Acc} = \Delta \mathcal{I}_{Am} = \frac{\Delta \mathcal{I}_{A2} - \Delta \mathcal{I}_{A1}}{\ln \frac{\Delta \mathcal{I}_{A2}}{\Delta \mathcal{I}_{A1}}}$$
(IV-7)

W fazie ciekłej zachodzi proces dyfuzji A (dwutlenku węgla) od zwierciadła cieczy w głąb inertu (wody). W tym przypadku

$$\Delta \mathcal{I}_{A} = \frac{\Delta \mathbf{x}_{A}}{\mathbf{x}_{im}} \qquad (IV-8)$$

Konsekwenoją wynikającą z niskich stężeń CO₂ w wodzie jest możliwość przyjęcia

$$x_i \approx 1$$
 (IV-9)

$$\mathbf{x}_{iz} \approx 1$$
 (IV-10)

$$x_{im} = \frac{x_i + x_{iz}}{2} \approx 1 \qquad (IV-11)$$

$$\Delta \mathcal{T}_{A} = \mathbf{x}_{AZ} - \mathbf{x}_{A} \qquad (IV-12)$$

Traktując CO₂ (teohn.) jako gaz suchy i czysty równowagowe stężenie A na zwierciadle cieczy można określić z prawa Henry'ego jako^x)

$$\mathbf{x}_{\mathbf{A}\mathbf{Z}} = \frac{\mathbf{P}}{\mathbf{H}}$$
(IV-13)

Ciśnienie całkowite CO₂ w cylindrze jest sumą ciśnienia barometrycznego i nadciśnienia, mierzonego U-rurką

$$\mathbf{P} = \mathbf{P}_{\mathbf{b}} + \Delta \mathbf{P} \quad [\mathbf{Pa}] \tag{TV-14}$$

Średni moduł napędowy wynosi więc

$$\Delta \mathbf{x}_{AB} = \frac{(\mathbf{x}_{A22} - \mathbf{x}_{A2}) - (\mathbf{x}_{A21} - \mathbf{x}_{A1})}{\ln \frac{\mathbf{x}_{A22} - \mathbf{x}_{A2}}{\mathbf{x}_{A21} - \mathbf{x}_{A1}}}$$
(IV-7a)

W stalej temperaturze układu

 $\mathbf{x}_{AZ2} = \mathbf{x}_{AZ1} = \mathbf{x}_{AZ} \qquad (IV-15)$

a stąd

$$\Delta \mathbf{x}_{AB} = \frac{\mathbf{x}_{A2} - \mathbf{x}_{A1}}{\ln \frac{\mathbf{x}_{A2} - \mathbf{x}_{A1}}{\mathbf{x}_{A2} - \mathbf{x}_{A2}}}$$
(IV-7b)

Należy zauważyć, że do absorpoji stosowano wodę destylowaną pozbawioną soli mineralnych, zawierającą jednakże niewielką ilość CO_2 zaabsorbowanego z atmosfery, stąd $x_{\pm 1} > 0$. Powierzchnię czynną wirującego cylindra wyliczano jako

$$F = \pi D_{\mathbf{W}} \left[\mathbf{m}^2 \right] \qquad (IV-16)$$

Sposób ten zakłada niewielkie zwiększenie powierzchni czynnej (ściślej średnicy D) w stosunku do powierzchni rzeczywistej wskutek pokrycia jej spływającym filmem i wobec znacznej średnicy rury ($D_w = 0,195 [m]$) jest wystarczająco dokładny.

- 31 -

Wysokość czynną cylindra h zmieniano do 4 położeń

$$h = 0,6300; 0,4725; 0,3150; 0,1575 [m]$$

Dla dužych natężeń zraszania i wysokich prędkości kątowych występowało przesunięcie poziomu zraszania w stosunku do wylotu z otworków przesuwnego zraszacza o wartość Δ h, którą mierzono z dokładnością 5 [mm]i uwzględniono w obliczeniach zarówno w powierzchni \mathbb{P} (wzór (IV-16)), jak i w simpleksie (ϑ_z^{\prime} /h). Do określenia ilości zaabsorbowanej masy G_A^{\prime} stosowano równanie bilansowe

$$G'_{A} = \mathring{v}_{o} (C_{A2} - C_{A1}) [kmol/h]$$
(IV-17)

zaś C_{A2} i C_{A1} określano zgodnie z metodyką, opisaną w pkt. IV.5.

Aby wyrazić modul napędowy $\Delta \pi_A$ za pomocą wyznaczonej pomiarowo wartości C_A, korzystano z przeliczenia [29]:

$$\mathbf{x}_{\mathbf{A}} = \frac{\mathbf{C}_{\mathbf{A}} \mathbf{M}_{ic}}{\mathbf{o}_{\mathbf{a}} - \mathbf{C}_{\mathbf{A}} (\mathbf{M}_{\mathbf{A}} - \mathbf{M}_{ic})}$$
(IV-18)

w którym po wstawieniu danych uzyskano

$$A = \frac{18 C_{A}}{Q_{O} - 26 C_{A}}$$
(IV-19)

Ostatecznie, współczynniki wnikania masy wyznaczano jako

$$b_{A}^{*} = b_{A0}^{*} = \frac{G_{A}}{P_{A} \pi} \left[kmol/m^{2}h \right]$$
 (IV-20)

IV.8. Metodyka obliczeń wielkości modułowych

Zgodnie z teoretycznymi przesłankami, omówionymi w rozdz. I.1, zależność współczynnika wnikania masy ujmuje wzór kryterialny o postaci:

$$Sh_z = C Re_z^A So^B \left(\frac{\eta_z}{h}\right)^D f\left(\frac{a}{g}\right)$$
 (IV-21)

¹⁾W pracy [28] stwierdzono na podstawie analiz technicznego dwutlenku węgla zawartość czystego CO, w granicach 98 ± 100 [%] oraz praktyczną nieobecność H₂S i SO₂. Autorzy zaznaczają również, że wobec ekspansji gazu od ciśnicń rzędu 5.10⁶ [Pa] gaz nie zawiera pary wodnej.

Podstawiając η [Pas], δ_{A} [kmol], $M_{io} = 18$ [kmol] uzyskano wzór uproszozo-ny, dogodny do praktycznych przeliczeń

$$S_0 = 200 \frac{\eta}{\hat{\sigma}}$$
 (IV-27b)

Przyspieszenie odśrodkowe "a" określano zależnością [3]

$$a = \frac{v^2}{R} = \left(\frac{\pi D_{w}n^2}{60}\right)^2 \cdot \frac{2}{D_{w}} = \frac{\pi^2 D_{w}n^2}{1800} \left[\frac{m}{s^2}\right]$$
(IV-29)

gdzie n - liozba obrotów oylindra [....].

Dla funkcji $f(\frac{a}{2})$ zaproponowano w pracy formę:

$$f\left(\frac{a}{g}\right) = \left[1 + \left(\frac{a}{g}\right)\right]^{E} \qquad (IV-30)$$

Dla stosowanych w doświadczeniach wartości n² uzyskano wartości simpleksu $\left(\frac{a}{\rho}\right)$ zestawione w tablicy IV.1.

Tablica IV.1

Stosunek (-) dla różnych prędkości obrotowych cylindra E 4 3 500 600 700 800 900 67,99 86,05 26,56 38,24 52.05

Ostateoznie, ogólna postać zależności kryterialnej, pozwalająca okreálić współczynniki wnikania masy w polu sił odśrodkowych, przyjmuje DOstać:

$$\operatorname{Sh}_{\mathbf{z}} = \operatorname{C} \operatorname{Re}_{\mathbf{z}}^{\mathbf{A}} \operatorname{So}^{\mathbf{B}} \left(\frac{\vartheta_{\mathbf{z}}^{2}}{\mathbf{h}}\right)^{\mathbf{D}} \left[\left(\frac{\mathbf{a}}{\mathbf{g}}\right) + 1 \right]^{\mathbf{E}}$$
 (IV-31)

(IV-22)

(IV - 23)

(IV-24)

$$\delta o = \frac{m \eta}{\partial_A} = \frac{H_A}{H} - \frac{\eta}{\partial_A}$$
(IV-27)

a wobec niewielkich stężeń A w roztworze (rzędu $x_A = 10^{-4}$)

$$M \approx M_{10}$$
 (IV-28)

stad

gdzie:

$$S_{0} = \frac{M_{A}}{M_{10}} \frac{\gamma}{\vartheta_{A}} = \frac{\gamma}{M_{10}} \frac{\gamma}{\vartheta_{A}}$$
(IV-27a)

- simpleks przyspieszeń odśrodkowego i siły ciężkości.

- 32 -

Sh_ = $\frac{\beta_{AO}}{\vartheta_{AO}} = \frac{\beta_{AO}}{\vartheta_{AO}} = \frac{\beta_{AO}}{\vartheta_{AO}} = zastępoza liczba Sherwooda,$

So = $\frac{m \eta}{d}$ - liczba Sohmidta,

 $\left(\frac{\psi_{z}}{h}\right)$ - simpleks podobienstwa geometrycznego,

 $\operatorname{Re}_{z} = \frac{4\Gamma}{77}$ - liczba Reynoldsa przy zraszaniu

$$D_{AB} = D_{AB1} \frac{T}{T_1} \frac{T}{7}$$
(IV-25)

przeliczając je na dynamiczne współczynniki da z dokładnością 0,1 [°C]

$$S_{AB} = \sigma_{AB1} \cdot \frac{T}{T_1} \cdot \frac{\eta_1}{\eta}$$
 (IV-26)

przy czym w obliczeniach k 1,29]

$$\delta^*_{AB1} = (\delta^*_{AB})_{20} [\circ_C] = 3,5322 , 10^{-4} \begin{bmatrix} kmol \\ m & h \end{bmatrix}$$

Dla t = 20 $\begin{bmatrix} 0 \\ C \end{bmatrix}$ znalez

Na podstawie [29] sporządzono tablicę int 7, ρ_0 , H, i So co 0,1 [°C] w zakresie 4

$$r \acute{o} mież \gamma = 10,050 \begin{bmatrix} kg \\ mb \end{bmatrix} (wg [29]).$$

$$\vartheta_{AB}^{*})_{20}[\circ_{C}] = 3,5322 . 10^{-4}$$
 [kmo1]

$$\begin{bmatrix} m & 1 \\ m & 1 \end{bmatrix} = \begin{bmatrix} 200 & 300 & 400 \\ 0 & 10 & 10 \\ \hline m & h \end{bmatrix}$$

$$(\frac{a}{g}) = \begin{bmatrix} 4, 249 & 9, 561 & 17, 00 \\ 0 & 10 & 17, 00 \\ \hline m & 10 & 10 \\ \hline m & 10 \\ \hline m & 10 & 10 \\ \hline m & 10 \\ \hline m & 10 & 10 \\ \hline m & 10 \\ \hline$$

IV.9. Zakres zmienności zmiennych niezależnych

Na podstawie badań wstępnych (rozdz. III) ustalono ostatecznie następujący zakres zmienności zmiennych niezależnych, wpływających na wartodoi Bin:

$$\mathbf{n}^{\underline{m}} = 200 \pm 1600 \left[\frac{1}{\underline{m} \underline{n}}\right] (3,33 \div 26,67 \left[\frac{1}{\underline{n}}\right])$$

$$\nabla_{0} = 14 \div 430 \left[\frac{\mathrm{d}\underline{m}^{3}}{\underline{h}}\right] (3,89 \cdot 10^{-6} \div 119,4\cdot 10^{-6} \left[\frac{\underline{m}^{3}}{\underline{s}}\right]$$

$$\mathbf{h} = 0,1575 \div 0,6300 \left[\mathrm{m}\right]$$

$$\mathbf{t} = 5.0 \div 42 \left[^{0}\mathrm{c}\right]$$

Prócz tego wykonano dwie serie pomiarów (17 punktów) dla nieruchomego cylindra, tzn. n = 0 (dla dwu wartości h).

V. WYNIKI POMIARÓW I OBLICZEŃ

Wyniki pomiarów i obliczeń współczynników wnikania masy 👫 zestawiono w tablicy IX.1 (Aneks do rozdz, V). Obejmują one następujące wielkości mierzone:

- prędkość obrotową wirującego cylindra n[±] [1/min],
- temperature wody na wylocie z absorbera t [°C].
- objętościowe natężenie przepływu wody, wyznaczone na podstawie charakterystyki rotametru V [dm³/h],
- objętość roztworu NaOH zobojętniającą CO_2 w próbce w 2 seriach $(V_1 i V_2)$ oraz wartość uśrednioną V_{4r} [cm³],
- wysokość czynnej strefy absorpcji h [m],
- ciśnienie barometryczne Pb [mm Hg],
- nadciśnienie CO_2 mierzone manometrem różnicowym ΔP [mm H_0] stężenie zasady (NaOH) używanej do miareczkowania C_{zas}

Na podstawie tych danych obliczono dla każdego z punktów (zgodnie z podaną metodyką) następujące wielkości (pkt. IV.8):

- stężenie początkowe CO₂ w wodzie C_{Ap} [kmol/m³],
- udział molowy CO, w wodzie przed absorpcją
- stężenie końcowe CO2 w wodzie CAL kmol/m3,
- udział molowy CO2 w wodzie po absorpeji xAk,
- modul napędowy w przekroju wlotowym absorbera $\Delta X_{A1} = \Delta X_{A1}$
- modul napędowy w przekroju wylotowym absorbera $\Delta \pi_{A2} = \Delta x_{A2}$,
- średni moduł napędowy wnikania $\Delta \mathcal{T}_{Am}$,
- ilość zaabsorbowanego w wodzie dwutlenku węgla 🖬 kmol/h,
- współozynnik wnikania masy ha kmol/m²h.

Na podstawie tych danych zestawiono tablice obliczonych wielkości modulowych, obejmująca:

- liczbę Reynoldsa przy zraszaniu Re_,
- liozbę Sohmidta Sc.
- simpleks podobieństwa geometrycznego (v²/h),
- simpleks przyspieszeń (a/g).
- zastępozą liczbę Sherwooda, wyliczoną na podstawie wielkości zmierzonych (Sh_) ,,
- zastępozą liczbę Sherwooda, obliczoną na podstawie uzyskanej korelacji (Sh_z)_{obl} (patrz rozdz. VI).

Zestawienie tych danych zawiera tablica IX.2.

Tablise IX.1 i IX.2 zamieszczono jako aneks do rozdz. V (na końcu pracy).

VI. ANALIZA WYNIKÓW BADAŃ

VI.1. Ustalenie postaci równania korelacyjnego

Zgodnie z propozycjami Hoblera [1] i Ramma [2] oraz w związku z uwagami, zamieszczonymi w [7], do matematycznego opisu procesu wnikania masy w fazie ciekłej zastosowano klasyczne ujęcie na $Sh_z = f \left(Re_z, Sc, \frac{1z}{h}\right)$ poprawione funkcją simpleksu $\left(\frac{z}{p}\right)$ w postaci

$$\mathbf{Sh}_{\mathbf{z}} = \mathbf{C} \operatorname{Re}_{\mathbf{z}}^{\mathbf{A}} \operatorname{So}^{\mathbf{B}} \left(\frac{\Psi_{\mathbf{z}}^{0}}{\mathbf{h}}\right)^{\mathbf{D}} \mathbf{f}\left(\frac{\mathbf{a}}{\mathbf{g}}\right)$$
 (IV-21a)

gdzie: $f(\frac{a}{g})$ przybiera formę

$$f\left(\frac{a}{g}\right) = \left[1 + \left(\frac{a}{g}\right)\right]^{E}$$
 (IV-30a)

Ponieważ brak jest danych, odnośnie do prawidłowego przyjęcia postaci funkcji (IV-30) dla całego zakresu przebadanych wartości $(\frac{a}{g})$, sporządzono w układzie podwójnie logarytmicznym orientacyjny wykres $Sh_z = f(\frac{a}{r})$ dla Re_z , So, $(\frac{\psi_z}{h}) \gtrsim$ const, uzyskując przebieg tej funkcji jak na rys. VI.1, a więc zbliżony do prostoliniowego (rys. VI.1).

Zgodnie z teorią penetracji i całkowaniem równania różniczkowego rozkładu stężeń wartość wykładnika przy liczbie Schmidta winna wynosić 0,5 (Pigford [9], Brotz [12]). Wobec tego funkcja (IV-21a) przybiera postać:

$$\operatorname{Sh}_{z} = \operatorname{C} \operatorname{Re}_{z}^{A} \operatorname{So}^{0, 5} \left(\frac{\vartheta^{3}}{h}\right)^{D} \left[1 + \left(\frac{a}{B}\right)\right]^{E}$$
 (VI-1)

W celu więc wyznaczenia wartości wykładników A, D i E oraz stałej C przeprowadzono rachunek wyrównawczy metodą najmniejszych kwadratów w ujęciu krakowianowym ([30, 31]) i dla 305 punktów pomiarowych uzyskano zależność:

$$Sh_z = 3,33134 Re_z^{0,783105} S_0^{0,5} (\frac{\vartheta_z^{n}}{h})^{0,948252} \left[1 + (\frac{a}{g})\right]^{0,277210} (VI-2)$$

która przy poziomie ufności 0,95 daje pas rozrzutu P = 19,4%. W korelacji tej błąd względny, przekraczający P, ma 8 punktów, przy czym błąd maksymalny uzyskanej z funkcji (VI-2) wartości Sh_g w stosunku do wartości zmierzonej wynosi 29,6%. Uznano, że zgodność wyników pomiarów i obliczeń jest wystarozająca.

- 37 -

Ostatecznie, dla tržech miejso znaczących stałej i wykładników jako obowiązującą przyjęto następującą postać funkcji

$$Sh_z = 3,33 Re_z S_0^{0,783} S_0^{0,5} \left(\frac{\psi_z}{h}\right)^{0,948} \left[1 + \left(\frac{a}{g}\right)\right]^{0,277} \pm 19,4\%$$
 (VI-3)

Porównanie uzyskanych ze wzoru (VI-2) i zmierzonych wartości Sh. pokazano na rys. VI.2 i VI.3.

Na pierwszym z nich przedstawiono w układzie podwójnie logarytmicznym $(Sh_z)_{obl} = f [(Sh_z)_{zm}]$, natomiast na drugim w układzie półlogarytmicznym

$$\frac{(Sh_z)_{obl}}{(Sh_z)_{zm}} = f\left[(Sh_z)_{zm}\right]$$

Obydwa wykresy, mające jedynie charakter poglądowy, wskazują na dobrą zgodność pomiarów i wyników obliczeń korelacyjnych."

VI.2. Analiza błędów równania korelacyjnego

Statystyczną analizę błędów przeprowadzono zgodnie z metodą krakowianową na podstawie prac Macheja [30], [31]. Średni błąd pojedynozego równania w postaci zlogarytmowanej wynosił $s_0 = 0,08941$.

Dla prawdopodobieństwa 0,95 wyliczono rozrzut $\Delta_{0,95}$ korzystając z rozkładu t - Studenta

$$\Delta_{0.95} = s_0 \cdot t \qquad (VI-4)$$

Znaleziono dla 305 punktów t = 1,980. Rozrzut zależności (VI-2) wynosi więc

$$\Delta_{0.05} = 0,08941 \cdot 1,980 = 0,177$$

natomiast pas rozrzutu P = - 19,4 [%].

Wyznaczenie błędów średnich poszczególnych niewiadomych, błędów bezwzględnych oraz błędności uznano za zbędne. Są one bowiem istotne w przypadku prowadzenia badań w różnych warunkach lub przez różnych eksperymentatorów. W celach informacyjnych można jedynie podać wyliczone standardowym programem wyrównywania wyników pomiarów odchyłki średnie dla funkcji (VI-2)

A =	0,78311	-	0,01123
C =	3,33134	*	0,22579
D =	0,94825	*	0,01098
E =	0,27721	2	0,00752

- 39 -

					1
		- +	4421+	-	1 SE
		TTT	AT 07 4		3 - 8
					- 8
					- 9
					- 8
		┝┥┠			
		++			8
		-	-		- 12
		4	7.2		
					- 2
			3		
			6.2."		- 0
			32		- 50
		-			
					- ~
				++++	- 5
		~			
- 12				+++-	- 9
					- 8
					-
		•			-8
					8
			5		-8
			++	+++-	-3
				+++-	-
			+++		- 3
		+++	+++		- 12
					0
-	2 6		9 9		8
Pir Pi			- d	9 8	
35					

- 40 -

VI.3. Omówienie uzyskanych wyników

W wyniku opracowania rezultatów doświadozeń uzyskano obowiązujące równanie (VI-3). Rachunek wyrównawozy oraz analizę błędów przeprowadzono przy założeniu, że pomiary obarczone są jedynie błędami przypadkowymi.Za przyjęciem takiego założenia przemawia fakt, że wszystkie wielkości były mierzone w sposób ogólnie przyjęty za pomocą standardowych metod i przyrządów. Ściślejszego spreoyzowania wymaga natomiast zakres ważności obowiązującej korelacji (VI-3).

- 41 -

Doświadczenia prowadzono w zakresie

$$21,764 \leq \text{Re}_{z} \leq 1233,0$$

$$217,97 \leq \text{So} \leq 1352,0$$

$$66,57.10^{-6} \leq \left(\frac{\sqrt[3]{z}}{h}\right) \leq 393,9.10^{-6}$$

$$0 \leq \left(\frac{a}{g}\right) \leq 271,96$$

Dla każdej z ozterech wartości h absorbera (oraz dwu położeń przesuwnego zraszacza przy a = 0) przeprowadzono badania wpływu liczb Re_z , So i () w możliwie szerokim zakresie zmienności tych modułów.

Wpływ liozby Re

(Shg)ob1 / (Shg)zm = f (Shg)zm

Zależność

ຕໍ

Górnym ograniczeniem liczby Re_{z} były przepustowość rotametru (a dla wysokich temperatur również wydajność pompy) oraz przepustowość zraszacza (szczególnie dotyczyło to konstrukcji pokazanej na rys. II.4).

Dla niskich $\left(\frac{1}{p}\right)$ i dużych natężeń zraszania występował silny rozbryzg wody poza zraszacz. Dlatego też, np. dla serii n = $200 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, górną grani-cą Re okazała się wartość Re = 215,68, dla n = $300 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$ Re = 408,71, dla n = $500 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ Re = 550,80, zaś dla n = $800 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ Re = 626,08.Nie ma podstaw, by sądzić, że zwiększenie w tych seriach Re_ do wartości maksymalnie możliwych dla zastosowanego typu rotametru przy stosowanych temperaturach zmieniło wykładnik przy liczbie Re, w uzyskanej korelacji. W przebadanym zakresie, gdzie spływ absorbenta jest bardzo stabilny i równomierny, można przyjąć, że górnym ograniczeniem Rez jest najwyższa uzyskana wartość Re, = 1233. Ograniczeniem liczby Re, od dołu jest wartość, wynikająca z obliczeń Hoblera 3. Ponieważ wymaga ona eksperymentalnego ustalenia postaci poprawki n, opisującej odstępstwa wartości teoretycznej liczby Remin.t od wartości rzeczywistej Remin, można obecnie przyjąć w przebadanym zakresie zmienności pełne pokrycie zraszanej powierzchni. Przemawiają za tym również obserwacje wizualne wirującego cylindra oraz dobra zgodność wyników pomiarów i obliczeń, (Wykonanie oylindra z materiału przeźroczystego pozwoliło stwierdzić brak falowania i dużą stabilizację spływa). Gdyby cylinder nie był całkowicie zroszony, powierzchnia rzeczywista absorpoji bylaby mniejsza od stosowanej w obliczeniach i maniejskylaby się również ilość zaabsorbowanego CO2. W rezultacie współozynnik wnikania masy byłby niższy. Wystąpiłyby wówozas trudności w skore-

1.14

rablioa.

f 11mu

108

lowaniu wyników doświadczeń, bowiem pracująca ciecz mogłaby nasycić się bardziej CO, niż w przypadku pełnego pokrycia powierzchni wodą. Aby upewrić się, czy istnieje możliwość obserwowania niecałkowitego po-

krycia wodą cylindra, dla zraszacza pokazanego na rys. II.5 przeprowadzono doświadczenie, polegające na podawaniu bardzo małych ilości wody. Stwier dzono wówczas (szczególnie dla niskich obrotów cylindra) charakterystyczny rozkład strug wody na powierzchni wirującego cylindra, nie zanevniający oalkowitego zpaszania. Zwiekszenie predkości katowej i nateżenia przepływu wody powodowało dla stosowanych w badaniach nateżań przepływa całkowite pokrycie powierzchni absorbentem.

W związku z tym można więc przyjąć, że dolnym ograniczeniem Re_ jest wartość Remin.t wyliczona sposobem Hoblera [3]. W rzeczywistości pełne pokrycie cylindra wodą może wystąpić przy nieco innych wartościach Re, ze względu na poślizg cieczy i możliwość wystąpienia niewielkiego falowania spływającego absorbenta, jednak obserwacja tego zjawiska wymagałaby innych metod badań. Stosunkowo wysoki wykładnik przy Re, pokrywa się praktycznie z wartością wykładnika, uzyskaną przez autorów pracy [28] dla zakresu 700 < Re < 6800. Stwierdzają oni, że autorzy prac teoretycznych i doświadczalnych otrzymali dla tego zakresu zbliżone wartości wykładnika potęgowego przy Re. (0,67 ÷ 0,83). Natomiast wartość A, znaleziona w nimejszych badaniach, odbiega od uzyskanych przez nich dla zakresu 180 ≤ Re_m 🚄 700 (A = 0,221) oraz przez autorów pracy [15], którzy przyjmując B = = 0,5 oraz D = 0,5 znaleźli dla Re $_{\pi} \le$ 335 A = 0,39, dla 335 < Re $_{\pi} \le$ 1080 A = 0,24 oraz dla Re_ > 1080 A = 0,71.

Wynika stąd, że pole sił odśrodkowych wskutek poślizgu warstw cieczy wprowadza pewną burzliwość spływu,

Aby zagadnienie to, więżące się bezpośrednio z mechanizmem spływu filmu, jednoznacznie rozstrzygnąć, przeprowadzono pomiary czasu spływu barwionej wody destylowanej, pozwalające określić średnią predkość ściekającego absorbenta w zależności od ilości podawanej wody przy różnych prędkościach obrotowych wirującego cylindra. Gdyby predkości te okazały się znacząco wyższe od wyliczonych dla spływu laminarnego przy różnych Re_ 1 gdyby stwierdzono, nawet w sposób przybliżony, wpływ przyspieszenia odśrodkowego (prędkości kątowej) na prędkość spływu, stanowiloby to dowód. iż nalożenie pola sił odśrodkowych na pole sił grawitacyjnych powoduje burzliwość w filmie i tłumaczyłoby intensyfikację wnikania masy w fazie ciekłej.

Badania takie przeprowadzono w zakresie Re 🕿 25 ÷ 198 przy (=) = 4,25 208, zaś wyniki przedstawiono w tablicy VI.1 1 na rys. VI.4. Dane te pozwalają stwierdzić, że prędkość spływu rośnie z Re, (co wiąże się ze wzrostem simpleksu (-)). Dolma linia na rys. VI.4 przedstawia teoretyczną prędkość spływu przy przyjęciu parabolicznego rozkładu prędkości w filmie.wyliozoną dla temperatury $t = 22 \begin{bmatrix} \circ C \end{bmatrix}$ dla zewnętrznej warstwy filmu.

,30 18,69 0,2423 59,23 \$60*0 13,3 2,600 4,25 63,61 200 3 38 N 0,0813 15,46 14 7485,0 208,22 45,12 52,23 2,213 21,9 11100 12 23 -0,0819 0,2710 15,40 64 106,23 45,12 22,6 2,325 1000 53,07 = 27 4 4,79 2625 25 45,16 620.0 2,400 84 66* 29 10 800 15. 22 19,1 48, 0 4,96 0,0818 2532 17 2,488 45,12 36 38,24 600 27 22,55 5 0 52 ô 6,73 1867 53 0807 ,37 grub 375 411. ·00 27 400 15, ee..... 00 15 5 17 52 ŝ 0 0 splywu i i 6,43 1953 ,0817 36 53,45 225 45,12 0 25 200 27 in -23 + ò 0 n 3,49 0,1867 26 36 predkości ości obroto 1400 10 23,39 36 0 375 50 41 10 5 208, 23, 28, ő à. 0,1938 38 36 0,0528 23 27,46 04 3,250 3. 0001 22,55 12 10 4 106, 23, obliozeń do 0,1750 72 12,60 0,0512 23,41 25,44 3,600 66" 49 e. 19,3 800 + pomiarów 1 dla różny 4,45 12,77 0,0511 0,1465 24,95 23,42 4,300 38,24 41 18,5 600 3 0,1500 ま 22 0,0562 28,62 4,200 23,39 17,00 ÷ 12. 24,3 nikt 100 4 02 0,1046 ,48 23 0519 5,775 SI 26,58 23,41 21,1 4,25 5 12 111 200 0 -T 1 obr Jodn. Page 4 湖읍 00 110 5 610 1042 s+ 10+5 "TEGOE" 7. x) F (=) (~) t 45 Rb. Lp. <u>e</u>]u 40 H

- 43 -

pomiarón 8 podstawie 100 okreś1ono

- 42 -

				-							
28	100	1400	208,22	23.0	1,150	167,10	198,40	0,1969	0,5478	23,77	8,49
27	100	1008	106,23	20,2	1,175	167,22	185,76	0 1906	0,5362	24,17	8,68
26	100	800	67,99	21,0	1,250	167,19	189 37	0,1927	0,5040	21,06	9,23
25	100	600	38,24	21,8	1, 338	167,15	192,96	0,1944	0,4710	23,94	9,88
24	100	400	17,0	21,4	1,463	167,17	191 16	0,1936	0,4308	24,01	10,80
23	100	200	4,23	21,0	1,675	167,19	189,37	0,1927	0,376	24,06	12,37
22	69	1000	106 23	19,9	1,350	115,39	127,26	0,1485	0,4667	21,40	6,88
21	69	800	64,99	19,0	1,363	115,40	124,50	0 1482	0,4622	21,62	6,95
20	69	600	38,24	24,3	1,413	115,26	141,03	0,1556	0,4459	20,82	7,20
19	69	l4 00	17,00	22,5	1,525	115,31	135,31	0, 1498	0,4131	21,07	77.7
18	38	1400	208,22	24,1	1,700	63,48	77,32	0,1044	0,3706	60 2	4, 77
17	38	1000	106,23	21,6	1,750	63,52	72,98	0,1018	0,3600	17,36	4,91
16	38	800	64,99	25 1	1 763	63,46	79,08	0,1053	0 3573	16,96	4, 95
15	38	600	38, 24	21,8	1,925	63,53	73,33	0,1021	0 3273	17.34	5,40
14	38	400	17,00	21,6	2,325	63,51	72.98	0,1015	0,2710	17,36	6,52

- 44 -

- 45 -

Wykonanie takich pomiarów wymaga jednak wyjaśnienia i oceny popełnionych błędów. Czas spływu mierzono z dokładnością 0,1 [s], przy czym niskie wartości uzyskiwanych pomiarowo czasów wiążą się z małą dokładnością wyliczanych prędkości v_m , nawet w przypadku wielokrotnego powtarzania pomiarów. Innym źródłem dość znacznego rozrzutu punktów na wykresie są różnice temperatur dla poszczególnych pomiarów w stosunku do porównawczej temparatury krzywej teoretycznej równej 22 [°C]. Wreszcie dodanie do wody destylowanej barwnika, w ilości ok. $1 \div 2$ [om³] (wobec małych ilości cieczy, podawanej do zraszania), powoduje nieprecyzyjne określenie natężenia przepływu wody destylowanej na powierzchni cylindra. Stąd też badań tych nie opracowano matematycznie, traktując je jedynie jako informacyjne. Pozwoliły one natomiast stwierdzić wizualnie pełne pokrycie wirującego cylindra absorbentem nawet dla najniższych prędkości kątowych i najmniejszych ilości podawanej w doświadczeniach wody. Nie obserwowano przy tym spiralnych strug batwionej cieczy, co świadozy o idealnym zraszaniu w przypadku zastosowania jako zraszacza wirującej pokrywy górnej.Ponieważ prędkość spływu w polu sił odśrodkowych kilkakrotnie przekracza taką prędkość, liczoną dla spływu laminarnego, można sądzić, iż grubość spływającego filmu jest znacznie niższa aniżeli dla założonego parabolicznego rozkładu prędkości. A więc w tym przypadku na intensyfikację procesu nakładają się dwa efekty - znaczne ścienienie filmu i wystąpienie w nim burzliwości, sprzyjające uzyskaniu wysokich wartości współczynników wnikania masy w fazie ciekłej. Można przy tym stosować znacznie niższe od stosowanych zwykle wartości Γ jednostkowe natężenia zraszania, zapewniające pełne pokrycie powierzchni.

Za taką interpretacją rezultatów badań przemawia również uzyskanie praktycznie identycznego wykładnika A w badaniach własnych i badaniach Hoblera i Kędzierskiego [28] dla spływu burzliwego.

Innym wnioskiem w tych badań jest przesunięcie w dół dolnej granicy Rez dla rozwiniętego spływu burzliwego, która wg Portalskiego [16] wynosi 1600 ÷ 2100, a wg autorów pracy [17] 2400.

Można sądzić, że burzliwość spływającego filmu związana jest z różnioą ciśnień pomiędzy warstwami oleczy bezpośrednio przy śolance i w pobliżu zwierciadła cieczy (wynikającą z rotacji układu oraz z chropowatością zraszanej powierzchni, porównywalną z grubością filmu). Biorąc pod uwagę elementarną masę cieczy o grubości dr i wysokości dh znajdującej się na obwodzie wirującego cylindra

$$dm = \pi D \rho \quad dhdr \qquad (VI-5)$$

Vskutek ruchu obrotowego pojawia się siła odśrodkowa dS równa

$$dS = r \omega^2 dm \qquad (\nabla T_{-6})$$

która działa na powierzchnię elementarną A Ddh wywołując ciśnienie dp

$$dp = \frac{dS}{\pi D dh} = \frac{r \omega^2 \pi D \rho dh dr}{\pi D dh} = \rho \omega^2 r dr \qquad (VI-7)$$

Ciśnienie (przy $Q = \text{const} i \omega = \text{const}$) zależy jedynie od promienia r,stąd powyższe równanie można scałkować w granicach od zwierciadła do promienia r, tzn. r = r, p = p, oraz r = r p = p.

Ciśnienie p pochodzące od ruchu obrotowego spełnia dodatkowo warunek $r = r_w p_w = 0$, a więc po scałkowaniu

$$p = \frac{\varphi \omega^2}{2} (r^2 - r_w^2)$$
 (vi-8)

przy czym $r_{g} \ge r \ge r_{g}$, zaś na ściance $r = r_{g}$ i $p = p_{g}$.

Wobec tego w każdej warstwie cieczy występuje inne ciśnienie i inna siła wypadkowa P rozciągająca film. W każdym punkcie, z wyjątkiem punktów górnej i dolnej krawędzi cylindra, siła ta działając we wszystkich kierunkach równoważy się. Ponieważ nie jest ona zrównoważona na dolnej krawędzi, nakłada się na siłę ciężkości, powodując zwiększenie prędkości spływu. Natomiast na górnej krawędzi, gdzie następuje zasilanic, siła ta powoduje częściowe zakrycie cieczą górnej pokrywy. Równanie ciągłości wymaga wobec tego zmniejszenia grubości filmu. Hobler [3] proponuje określenie średniej wartości tej siły rachunkiem przybliżonym. Wartość ciśnienia na ściance cylindra wynosi

$$\mathbf{p}_{z} = \frac{\varphi \omega^{2}}{2} (\mathbf{r}_{z} + \mathbf{r}_{w}) (\mathbf{r}_{z} - \mathbf{r}_{w}) = \varphi \omega^{2} \mathbf{r}_{m} s \qquad (VI=9)$$

gdzie: $r_m = \frac{r_z + r_w}{2}$, zaś s jest grubością warstwy.

Rožklad ciśnień z promieniem jest krzywoliniowy. Nie popełnia się jednak większego błędu, jeśli przy małej grubości filmu s (jak wykazują dane z tablicy VI.2 rzędu setnych [mm]) krzywoliniowy rozkład ciśnienia zastąpić rozkładem prostoliniowym i wyznaczyć średnie ciśnienie pochodzące od działania siły odśrodkowej jako:

$$p_{\rm m} = \frac{p_{\rm Z} + p_{\rm W}}{2} = \frac{p_{\rm Z}}{2}$$
 (VI-10)

Stad średnia siła wypadkowa wynosi

$$P_{m} = P_{m} s D = \frac{\varphi_{\omega}^{2} r_{m} s^{2}}{2} D \qquad (VI-11)$$

a przy przyjęciu $r_m \approx r_z = \frac{D}{2}$

$$P_{\rm m} = \frac{\rho \omega^2 D^2 s^2}{4} \qquad (VI-12)$$

lub oznaczając $\mathbf{r}_{m}\omega^{2} = \mathbf{a}$

 $P_{m} = \frac{D}{2} \rho a s^{2} \qquad (VI-13)$

gdzie a jest przyspieszeniem odśrodkowym obliczanym zgodnie ze wzorem (IV-29). Średnią grubość spływającego filmu obliczono z danych pomiarowych prędkości spływu i zamieszczono w tablicy VI-2, przy czym do przeliczeń zastosowano zależność

$$s = \frac{\nabla_{o}}{3D(\nabla_{m})_{2m}} \qquad (\nabla I - 14)$$

W tablicy tej podano również teoretyczną grubość warstwy dla parabolicznego rozkładu prędkości przy założeniu laminarności spływu. Porównanie obydwu tych wartości świadczy o znacznym zmniejszeniu wartości [s] w przypadku rotacji układu. W ten sposób można wyjaśnić obniżenie granicy burzliwości w filmie spływającej cieczy, która występuje znacznie szybciej niż dla spływu grawitacyjnego. W związku z tym również zastosowanie do obliczeń grubości spływającej warstwy klasycznego wzoru na grubość filmu w postaci:

- 48 -

$$s = 0,9085 Re_z^{1/3}$$
 (VI-15)

w przypadku rotacji układu nie jest ścisłe i można spodziewać się wystąpienia przerwania filmu dla innych, niż podaje Hobler [3] wartości minimalnych liczb Re_z przy zraszaniu. Jak jednak zaznacza on w dyskusji swoich rozważań, zagadnienie to wymaga badań doświadczalnych.

Na podstawie danych z tablicy VI.1 można stwierdzić, że grubość filmu winna zawierać we wzorze obliczeniowym simpleks $(\frac{1}{2})$ i warunek graniczny: $(\frac{1}{2}) = 0$ - obowiązuje wzór (VI-15), stąd np.:

$$s = 0,9085 q_{z}^{n} Re_{z}^{1/3} \left[1 + \left(\frac{a}{g}\right)\right]^{2}$$
 (VI-16)

przy czym wykładnik potęgowy E_1 winien być ujemny. Precyzyjne określenie funkcji (VI-16) wymagałoby jednak systematycznych badań i nie wchodziło w zakres niniejszej pracy.

Wpływ liczby So

Wpływ liczby So przebadano dla każdej z wysokości h (cztery położenia zraszacza) w niskich, średnich i wysokich temperaturach.Zakres zmienności So związany jest z zakresem stosowanych temperatur i praktycznie rzecz biorąc, można by go zwiększyć jedynie stosując inne układy absorpcyjne (absorbentem mogłyby być np. wodne roztwory gliceryny), co wymagałoby zmian konstrukcyjnych instalacji.

Zakres zmienności liczby Sc jest w niniejszej pracy znacznie szerszy niż np. w eksperymentalnej pracy Hoblera i Kędzierskiego [28].

Wyjaśnienia wymaga natomiast przyjęcie wykładnika przy liczbie Sc równego 0,5. W przypadku korelowania wyników doświadczeń wg równania

$$\operatorname{Sh}_{z} = \operatorname{C} \operatorname{Re}_{z}^{A} \operatorname{So}^{B} \left(\frac{\vartheta_{z}}{b}\right)^{B} \left[1 + \left(\frac{a}{g}\right)\right]^{T}$$

a więo, gdy B jest zmienną niezależną w rachunku wyrównawczym, uzyskano praktycznie identyczne wykładniki A, D i E (różnice wystąpiły na trzecim miejscu znaczącym), wartość B przekraczającą nieznacznie 0,5 i wynikającą stąd zmianę stałej C przy P = 16,4%. Analiza sposobu pomiarów wskazuje, że określanie temperatury jedynie w punkcie 14 (rys. II.1), a więc bezpośrednio po absorpcji, powoduje zwiększenie błędu tego pomiaru, zwłaszcza dla najwyższych (30;42 [°C]) i najniższych (5:9 [°C]) temperatur w stosunku do głównej grupy pomiarów, prowadzonych w temperaturach zbliżonych do otoczenia. Punkty te najsilniej wpływają na wykładnik przy liczbie Sc. Jak stwierdzono, w głównej grupie pomiarów, obejmującej ok. 80% punktów, różnica temperatur przed i po absorpcji nie przekraczała 1 [K]. W pozostałej natomiast wyrywkowe pomiary wykazały nieco większą różnicę temperatur (maksymalnie 2,9 [K]).

- 49 -

Dla temperatur przekraczających temperaturę otoczenia, zmierzona na wylocie z cylindra temperatura była niższa od temperatury na wlocie. W konsekwenoji dokonano przeliczeń dla temperatury niższej niż średnia temperatura absorpoji, uzyskując wyższe niż w rzeczywistości wartości liczby Sc. Dla niskich temperatur zaś wymiana ciepła z otoczenia wiązała się z użyciem do przeliczeń wartości liczb Sc niższych niż w przypadku przyjęcia średniej temperatury pomiędzy wlotem a wylotem z cylindra. Jak podają w pracy [28] Hobler i Kędzierski, w zakresie temperatur 13429 [°C] zmiana temperatury o 1[K] wiąże się ze zmianą liczby Sc o -4 + +5[%], liczby Re_z o +2 - -2.5%, modułu (4°_{z} /h) o $-1 \div +2$ % i liczby Sh_z o -1.2 - +1.2%.Z danych tych wynika, że błąd cznaczenia temperatury najsilniej wpływa na wartość So. Wobec tego skrajne punkty Sc, obarczone największym błędem, działają w kierunku podwyższenia wartości wykładnika B powyżej uzyskanej w zależności (VI-3) wartości B = 0,5.

Należy również zaznaczyć, że prowadzenie badań w okresie zimowym przy stosunkowo niskiej temperaturze hali utrudniało utrzymanie temperatur różniących się od otoczenia, pomimo termostatowania temperatury wody i dwutlenku węgla. Wynikało to z konstrukoji instalacji, związanej z zastosowaniem długich odcinków przewodów. Pomiar temperatury wody bezpośrednio za cylindrem zastosowano po stwierdzeniu, że dla wysokich temperatur (30 \div 42 [°c]) przeniesienie próbki do analizy od cylindra do stołu pomiarowego powoduje obniżenie temperatury o 1,5 [K].

Z drugiej strony w literaturze nie napotkano na wartość, przekraczająoą przy spływie grawitacyjnym B = 0,5. Jedynie badania Hikity i współpracowników [32], cytowane m.in. przez Ramma [2] oraz autorów pracy[28], przewidują wykładnik B = 0,62 w zakresie niskich liozb Re_z. Ponieważ badania te uwzględniają równocześnie wpływ na Sh_z napięcia powierzehniowego (G/G wody 25°C) w potędze -0,15, można sądzić, że korelowanie danych jdoświadomalnych autorów pracy [32], nie uwzględniających wpływu tego simpleksu, spowoduje niewielkie (wobec nieznacznej zmienności napięcia powierzchniowego z temperaturą) zmiejszenie wykładnika B przy nieco większym błędzie uzyskanej korelacji. Teoria penetracji przewiduje B = 0,5, D = 0,5 (Brótz [12]), całkowanie równania różniczkowego rozkładu stężeń przy pominięciu falowanie i jednakowej prędkości spływu filmu (van Krevelen i Brótijzer [8]) cras przy przyjęcia parabolicznego rozkładu prędkości (Pigford [9]) również wykładnik B = 0,5, natomiast teoria warstwy granicznej (Brauer [13]) w ogóle nie przewiduje zależności Sh_z od liczby So i simpleksu $(\mathfrak{V}_{z}^{\prime}/h)$, tzn. B = 0, D = 0 (przy laminarnym spływie warstwy po pionowej powierzohni).

- 30 -

Można więc sądzić, że $0 \le B \le 0.5$, przy czym opierając się na badaniach eksperymentalnych, wykazujących zależność Sh_z = f(Sc), należy spodziewać się wpływu So w potędze niezerowej. Autorzy pracy [28] uzyskali w zakresie 180 $\le \text{Re}_z \le 700$ wartość B = 0,402, zaś w zakresie 700 < Re ≤ 6800 B = 0,276. Dla spływu burzliwego brak jest wyprowadzeń teoretycznych odnośnie do wykładników B i D.

Biorao pod uwagę

- niewielką różnicę wartości pasa rozrzutu przy korelowaniu wyników doświadczeń dla B, będącego zmienną niezależną w rachunku wyrównawczym i założonej wartości B = 0,5,
- zbliżone wartości B w obydwu sposobach korelowania,
- przesłanki teoretyczne (wyprowadzenie Pigforda [9] i Brotza [12]).
- a przede wszystkim analizując błędy fizyczne doświadczeń, można przyjąć wartość B = 0,5.

Wydaje się również, że odrzucenie punktów pomiarowych, najsilniej wpływających na odchylenie B od wartości 0,5, jest niecelowe.

Wpływ simpleksu
$$(\vartheta^2/h)$$

Zakres zmienności simpleksu (Ψ_{Z}^{\prime}/h) jest ograniczony względami konstrukcyjnymi i wobec niewielkiej zmienności Ψ_{Z}^{\prime} z temperaturą jedyną możliwą drogą jego zwiększenia jest obniżenie poziomu zamontowania ruchomego zraszacza poniżej stosowanej w badaniach dolnej wartości $\frac{1}{4}$ h = 0,1575 [m]. Sposób taki wydaje się być wątpliwy ze względu na dostatecznie pewne określenie wartości h. Przy dużych natężeniach zraszania obserwowano bowiem "podnoszenie się" poziomu cieczy w absorberze powyżej wylotu z otworków zraszacza. Błąd względny tej wielkości może wówczas znacznie wpływać na dokładność pomiarów. W korelacji (VI-2) uzyskano wykładnik D przekraczający teoretyczne przewidywania. Nie istnieją jednak podstawy, by sądzić, że simpleks (Ψ_{Z}^{\prime}/h) obarczony był jakimś błędem systematycznym.

W pracy [7] podkreślono, że przewidywania teoretyczne odnośnie do wykładnika potęgowego przy ($\sqrt[9]{}$ /h) mogą prowadzić do dużych błędów i jedyną drogą określenia wpływu tego modułu są badania eksperymentalne. Być może wysoki wykładnik przy ($\sqrt[9]{}$ /h) związany jest z niewielkim stosunkiem wysokości cylindra do jego średnicy. Badania prowadzone przez autorów prac [15] i [28] dotyczyły rur o średnicy 0,014 \div 0,0491 [m] i wysokości 0,6 \div 2[m], natomiast w niniejszej pracy średnica była stała D_w = 0,190 [m], a wysokość zmieniono w granicach 0,1575 \div 0,630 [m]. Problem ten wymaga więc eksperymentalnego rozstrzygnięcia, najpierw dla nieruchomego, a następnie wirującego cylindra. Niemniej również w tym przypadku przebadany zakres zmienności $(\sqrt[\eta]{z}/h)$ przekraczał zakres zmieniany w pracy [15] $(\frac{\sqrt[\eta]{z}}{h}) = (3,315 + 3,834).10^{-5}$ i w pracy [28] $(\frac{\sqrt[\eta]{z}}{h}) = (2,061 + 10,333).10^{-5}$.

Wpływ simpleksu (a/g)

Wpływ przyspieszenia odśrodkowego (simpleksu ($\frac{1}{g}$)) określono dla $0 \leq (\frac{a}{g}) \leq 271,96$. Górna granica odpowiada maksymalnym obrotom silnika (przy przełożeniu 1 : 1), dolna dotyczy układu nieruchomego. Zakres zmienności simpleksu ($\frac{1}{g}$) jest więc bardzo szeroki i obejmuje możliwości praktycznie stosowanych prędkości obrotowych (stosowanie wyższych prędkości obrotowych wiąże się przy dużych średnicach z koniecznością stosowania materiałów o podwyższonej wytrzymałości).

Ostatecznie więc można stwierdzić, że uzyskane równanie korelacyjne (VI-3) obowiązuje w całym zakresie

$$218 \leq So \leq 1352$$
$$10^{-6} \cdot 57 \leq (h_{z}^{\gamma}/h) \leq 394 \cdot 10^{-6}$$
$$0 \leq (a/g) \leq 272$$
$$Re_{z} = i_{z} \leq Re_{z} \leq 1233$$

Dolnym ograniczeniem Rez jest wartość wyliczona sposobem podanym przez Roblera [3].

VI.4. Dyskusja rezultatów badań

Rezultaty badań wskazują na znaczny wpływ liczby Rez i simpleksów (Vⁿ/h) oraz (a/g) na wartość Sh_z oraz potwierdzają przewidywania literaturowe odnośnie do wpływu liczby Sc. Aby uzyskać porównanie wyznaczonych wzorem (VI-2) wartości Sh_z z danymi literaturowymi, funkcję (VI-3) naniesiono na wykres zamieszczony w [15] (rys. VI.5), sporżądzony dla h = = 1,5 [m](t = 11 [°C]) przy zachowaniu tych samych, co w pracy [15], ozna~ czeń, Dla niskich liczb Rez wyniki badań własnych znajdują się poniżej rezultatów badań innych autorów, dla średnich - mieszczą się w granicach przewidywanych teoretycznie i potwierdzonych doświadczalnie przez innych badaczy, zaś dla wysokich - przekraczają (szczególnie przy wyższych (-)) wartości przewidywane. Silny wpływ simpleksu $(\frac{v_z}{1})$ uwidacznia się znacznie bardziej w przypadku porównywania wartości Sh_z wg danych [15] i uzyskanych w badaniach własnych dla małych wartości h. Dane na rys. VI.5 zestawiono bowiem dla h = 1,5 [m], a więc .wartości ekstrapolowanej poza zakres $(\vartheta^{\prime\prime}/h)$ przebadany w pracy. Podobne zestawienie wykonane dla niższych wartości h (a więc wyższych (4)//h)) powoduje przesunięcie pęku linii (a/g)=

= const w górę, tym większe, im niższa jest wysokość czynnej strefy absorpoji.

- 53 -

Nałożenie pola sił odśrodkowych na grawitacyjny spływ filmowy wskutek burzliwości spływu intensyfikuje znacznie wymianę masy w fazie ciekłej. O wpływie takich sił na wymianę ciepła i masy wspominają przykładowo również autorzy pracy [33] (powołując się na [34]) oraz autor monografii [35], rozpatrując cienkowarstewkowe wymienniki ciepła. Uwagi tych autorów mają jedynie charakter jakościowy, potwierdzają jednak wpływ pola sił odśrodkowych na wymianę ciepła i masy, podobnie zresztą, jak praca Korienia [36], dotycząca rektyfikacji w kolumnie wirującej. Warto również zauważyć,że wyniki pracy w pełni potwierdzają uwagi zamieszczone w [7] i [28], szczególnie gdy chodzi o arbitralne przyjmowanie wykładnika potęgowego przy simpleksie ($\sqrt[6]{h}$). Przeprowadzenie bowiem badań uwzględniających jedynie wpływ liczby Re_z i ($\frac{a}{g}$) na liczbę Sh_z ograniczyłoby w znacznym zakresie pracę.

Postać korelacji (VI-3) nasuwa sugestie odnośnie do budowy i eksploataoji aparatów wirujących ze zroszoną wewnętrzną powierzchnią rury. Korzystnie jest mianowicie budować absorbery o małych wysokościach, zasilane taką ilością absorbenta, aby przekroczyć $\text{Re}_z = 700 \div 1000$, eksploatowane w w niskich temperaturach przy możliwie wysokich prędkościach obrotowych. Współczynniki wymiany masy będą wówczas bardzo wysokie i wnikanie w fazie ciekłej będzie zachodzić intensywnie.

Przy wartościach simpleksu (a/g) = 10 można się wtedy spodziewać ok. 70 %, a przy (a/g) = 300 ok. 300% wzrostu β_{10}^{\prime} w stosunku dowartości tych współczynników w przypadku grawitacyjnego spływu filmowego.

VII. WNIOSKI

W niniejszej pracy przebadano w szerokim zakresie zmienności Re₁, $\left(\frac{\pi}{h}\right)$ oraz $\left(\frac{\pi}{h}\right)$, wpływ tego modułu i simpleksów na Sh_z oraz potwierdzono przewidywany teorią penetracji wpływ So przy wnikaniu technicznego CO₂ do wody destylowanej. Wykazano, że oprócz oytowanych w pracach teoretycznych i doświadozalnych wpływów, wnikanie masy w fazie ciekłej intensyfikuje nałożenie na grawitacyjny spływ filmowy pola sił odśrodkowych.

V wyniku skorslowania danych doświadczalnych uzyskano opartą na 305 punktach eksperymentalnych funkcję:

$$Sh_{z} = 3,33 Re_{z}$$
 $S_{0}^{0,783} (\frac{\vartheta_{z}^{0}}{h})^{0,948} \left[1 + (\frac{a}{g})\right]^{0,277} + 19,4\%$

obowiązującą w zakresie

$$218 \leq S_0 \leq 1352$$
$$10^{-6}.57 \leq (\vartheta_g''/h) \leq 394.10^{-6}$$
$$0 \leq (a/g) \leq 272$$
$$Re_{z \min} \leq Re_z \leq 1233$$

gdzie Re_{z min} odpowiada minimum zraszania wyliczone sposobem podanym przez Hoblera [3]. Najniższą wastością Re_z była Re_z = 21,764.

Obliczenia odnoszono do powierzohni wewnętrznej suchej rury, jednak wobec dużej średnicy rury ($D_{m} = 0,190 [m]$) i mażej grubości spływającego filmu błąd takiego przybliżenia jest do pominięcia.

Vykazano, że pole sił odśrodkowych pozwala stosować znacznie mniejsze ilości zraszającej cieczy niż w przypadku spływu grawitacyjnego.Konsekwencją tego jest możliwość ograniczenia ilości absorbenta, co może mieć znaczenie w przypadku dużych jego kosztów lub konieczności uzyskania stanu zbliżonego do nasycenia.

Stwierdzono ponadto doświadczalnie, że pole sił odśrodkowych sprzyja wystąpieniu burzliwości dla znacznie niższych Re_z niż w przypadku grawitacyjnego spływu filmowego, powoduje zwiększenie prędkości spływu izmniejszenie grubości filmu.

Istnieją realne przesłanki skonstruowania wirującego absorbera wykonanego w postaci współśrodkowych cylindrów o niezależnym zraszaniu i o jed- 55 -

nostkowej powierzchni rozwiniętej przekraczającej ten wskaźnik dla przeciętnie stosowanych wypełnień. Postać uzyskanej korelacji sugeruje, aby absorber taki miał niewielką wysokość, dość dużą średnicę, był eksploatowany w możliwie niskich temperaturach i przy wysokich prędkościach obrotowych.

- VIII. LIFERATURA
- [1] Hobier T.: Dyfuzyjny ruch masy i absorbery. WNT, wyd. II, Warszawa 1976.
- [2] Ramm W.M.: Absorboija gazow. Izd. Chimija, wyd. II. Moskwa 1976.
- [3] Hobler T.: Chemia Stos. V, 3B, 265 (1968).
- [4] Sherwood T.K., Pigford R.L., Wilke Ch.: Mass Transfer, McGraw-Hill Book Comp., New York 1975.
- [5] Brauer H.: Stoffaustausch einschliesslich chemischer Reaktionen, Verlag Sauerländer, Aarau, Frankfurt am Main 1971.
- [6] Moczalowa N.S., Cholpanow L.P., Szkadow W.Ja.: Inż.-Fiz. Żurn., XXV, 4, 648 (1973).
- [7] Hobler T., Kędzierski S.: Chemia Stos. IV, 1B, 3 (1967).
- [8] Van Krevelen D.W., Hoftizjer P.J.: Rec.Trav.Chim., 68, 221 (1949) (wg [7]).
- [9] Pigford R.L.: Praoa dokt., University of Illinois 1944 (wg [7]).
- [10] Malewski W.: Chem. Ingnr-Techn., 37, 815 (1965) (wg [7]).
- [11] Ruckenstein E., Berbente C.: Chem.Eng.Soi., 20, 795 (1965).
- [12] Brötz W.: Podstawy inżynierii reakcji chemicznych. tłum. z j.niem., WNT. Warszawa 1964.
- [13] Brauer H.: Strömung -u. Wärmenbergang bei Rieselfilmen, V.D.I., Forschungsheft 457, B22 (1956) (wg [7]).
- [14] Brauer H.: Kaltetechnik, 2, 274 (1957) (wg [7]).
- [15] Kozioł K., Broniarz L., Nowicka T.: Int. Chem., VIII, 2, 305 (1978).
- [16] Portalski S.: Chem.Eng.Sci., 18. 787 (1963).
- [17] Olewskij W.M., Ruczinskij W.R.: Ricktyfikacija tiermiczeski niestojkich produktow, Izd.Chimija, Moskwa 1972.
- 18 Sokół W.: Inż. Chem., VII, 2, 437 (1977).
- [19] Sok62 W.: Inz. Chem., VII, 2, 747 (1977).
- 20 Vielstich W.: Chem. Ingnr. Techn., 28, 543 (1956).
- [21] Nasiek J.: Praca dypl.mag. pod kier. M. Palicy, Inst.Inz.Chem. i Bud. Ap. Pol.Sl., Gliwice 1976 (praca nie publikowana).
- [22] Studenoki J.: Praca dypl.mag. pod kier. M. Palicy, Inst.Int.Chem. i Bud.Ap. Pol. Sl. Gliwice, 1977 (praca nie publikowana).
- [23] Bartoszek P., Tyślik B.: Praca dypl.mag. pod kier. M. Palicy, Inst. Inż.Chem. i Bud. Ap. Pol.Sl., Gliwice 1979 (praca nie publikowana);
- [24] Tyrystorowe zespoly napedowe typu TUN, PZWANN, APATOR, OT/ZE-8/1973, opis techniczny.
- [25] Tyrystorowe zespoły napędowe typu MIN, PZWANN, APATOR, OT/ZE-17/1973, opis techniczwy.
- 26 Oznaczanie wolnego dwutlenku węgla w wodzie, PN-74/C-04547 1975.
- [27] Świadectwo legalizacji multitachometru typu DMT-21, Mera PIAP, nr świadectwa 72/77 dla tachometru mr 1030.
- 28 Hobler T., Kędzierski S.; Chemia Stos, V, 1B, 3 (1968).

- [29] Praca zbiorowa pod red. J. Bandrowskiego: Materiały pomocnicze do ćwiczeń i projektów z inżynierii chemicznej. Skrypt Ucz. Pol.Śl.,wyd. IV, Gliwice 1978.
- [30] Machej K.: Chemia Stos., 7, 23 (1963).
- [31] Machej K.: Wybrane metody matematyczne opracowywania wyników doświadczalnych w inżynierii chemicznej, PAN, ZICH i KA, Gliwice 1965.
- [32] Hikita H. 1 inni: Kagaku kogaku Chem. Engng. (Japan), 23, 459 (1959). wg Ref. Zurn. Chim. 16, 300 (1960).
- [33] Kozioł K., Broniarz L.: Inż. Chem., VIII, 3, 539 (1978).
- [34] Woroncow E.T., Tananajko Ju.M.: Tieploobmien w zidkostnych plenkach. Izd. Technika, Kijew 1972.
- [35] Kubasiewicz A.: Wyparki. Konstrukcja i obliczanie, WNT, Warszawa 1977.
- [36] Koren' R.V.: Chimija i tiechnologija topliw i masiel, 6, 6 (1979).

WNIKANIE MASÝ V FAZIE CIEKLEJ V POLU SIL ODŚRODKOWYCH

Streszczenie

Na wnikanie masy w fazie ciekłej nałożono pole sił odśrodkowych i przebadano w szerokim zakresie zmienności wpływ liczb Re_z , So, $(\frac{z}{h})$ i $(\frac{a}{g})$ na liczbę Sh_z dla układu dwutlenek węgla – woda destylowana. W wyniku skorelowania 305 punktów eksperymentalnych uzyskano równanie

$$Sh_z = 3,33 Re_z$$
 So $(\frac{\sqrt[3]{2}}{h})^{0,948} (1 + \frac{a}{g})^{0,277} \pm 19,4\%$

Zakres jego ważności ograniczony jest wartościami

$$218 \le S_0 \le 1352, 5, 7.10^{-5} \le (\frac{\Psi_a}{h}) \le 39, 4.10^{-5}, 0 \le (\frac{a}{g}) \le 272,$$

 $Re_{z \min} \leq Re_{z} \leq 1233$, gdzie $Re_{z \min}$ jest wartością odpowiadającą minimalnemu zraszaniu, zapewniającemu pełne pokrycie wodą wirującego cylindra. Najniższą wartością Re_{x} , uzyskaną w czasie badań była wartość Re_{x} = 21,76.

Rezultaty pracy wskazują, że w przypadku wystąpienia sił odśrodkowych obok spływu grawitacyjnego uzyskuje się znaczną intensyfikację procesu wnikania masy w fazie ciekłej spowodowaną burzliwością w spływającym filmie, pojawiającą się dla znacznie niższych niż dotąd obserwowano liczb Re_z. МАССОПЕРЕДАЧА В ЖИДКОЙ ФАЗЕ В ПОЛЕ ЦЕНТРОБЕЖНЫХ СИЛ

Резрме

На массопередачу в жидкой фазе наложено поле центробежных сил, и исследовано в широких пределах вариантности влияние чисел Re_z, Sc. $(\frac{v_z}{h})$ и $(\frac{s}{g})$ на число Sh_z для системы двуокись углерода – дистиллированая вода. В результате установления коррелятивной связи для 305 экспериментальных точек получено уравнение

$$Sh_z = 33.3 \text{ Re}_z^{0.783} \text{ sc}^{0.5} (\frac{\sqrt[9]{z}}{h})^{0.948} (1 + \frac{a}{g})^{0.277} + 19.4\%$$

Пределы его действительности ограничены значениями

218
$$\leq$$
 Sc \leq 1352, 5,7.10⁻⁵ \leq $(\frac{\sqrt[n]{z}}{h}) \leq$ 39,4.10⁻⁵, $0 \leq (\frac{a}{g}) \leq$ 272,

Rez ain ≪ Rez ≤ 1233, где Rez min является значением, отвечающим минимальному орошению, обеспечивающему полное покрытие водой вращающегося цилиндра. Самым низким значением Rez, полученным во время исследований было значение Rez = 21,76.

Результаты работы доказывают, что в случае появления центробежных сил рядом с самотеком получена значительна интенсификация процесса массопередачи в жидкой фазе, вызванная турбулентностью в стекающем фильме, появляющейся для значительно низших от наблюдаемых до сих пор чисел Re. MASS TRANSFER IN LIQUID PHASE IN THE FIELD OF CENTRIFUGAL FORCES

Summary

A field of centrifugal forces has been imposed on the mass transfer in the liquid phase and the effect of numbers \mathbf{R}_{0} , So, $(\vartheta_{Z}^{0}/\mathbf{h})$ and (a/g) on the number \mathbf{Sh}_{Z} has been analysed within the wide range of variability for the system of carbon dioxide distilled water. As a result of correlation of 305 experimental points the following equation was obtained:

$$Sh_z = 3,33 Re_z$$
 So $(\frac{9}{z}/h)^{0,948} (1 + \frac{R}{6})^{0,277} = 19,49$

Its range of validity is limited by the values

$$218 \leq 50 \leq 1352$$
, $5,7.10^{-5} \leq (\sqrt[9]{h}) \leq 39, 4.10^{-5}$, $0 \leq (a/g) \leq 272$

 $Re_{z \min} \leq Re_{z} \leq 1233$ where $Re_{z \min}$ is the value corresponding to the minimum wetting rate that ensures the complete submerssion of the rotating cylinder in the water. The lowest value Re_{z} obtained in the research was $Re_{z} = 21,76$.

The results of the work indicate that in the case of centrifugal forces occurence apart from the gravity flow, a significant intensification of mass transfer in the liquid phase is obtained. The intensification is caused by the turbulence in the film flow that occurs for the much lower numbers Re_{z} than for those observed so far.

	NAG	r h	21	35,1442	50,9293	77,2460	34,8368	61,0685	79, 3419	16=2.14	6. 6123	85, 3379	106,1128	147,1270	90,2672	127,5380	137.7669	162 3 48	102.5913	123,1772	64.777	42.7.24	65, 694	105,6037	132,2372	56,6024	111,1366	133, 6326	173,9-80	2 6 2 47
1	6'A C 01	[k o1 k	20	2.0.85	3,0091	4, 8904	2,1645	3,4729	1,6195	2 3045	3, 6681	5,0086	6, 2911	8 2 95	4 4 94	6 3 29	7,0086	8 7 85	4,9884	6,5011	8,82.68	10.9385	3,0585	5,1039	6.7.87	2,9735	5, 3034	7.3-29	10,1930	12,8291
1.0	∆%Am		19	6 2 09	6,2017	6,7340	5,9283	6 0 91	6, 1931	5,6913	6.0716	6,2.93	6, 3063	5,9442	5, 2, 72	5, 3072	5, 8904	6 0 54	5,1721	5, 6140	5, 6, 80	5.6.71	4, 9518	5,1409	5,4044	5 5 79	5,0759	5,8289	5,8,08	5,7610
	AF.		8	4 5 29	4,8616	5 5 69	4,1895	4,0354	1,7082	3,808	4, 3, 85	4, 6409	4, 8.47	4,4009	3, 2751	3, 3780	4 2176	4,4995	3,0:08	3.6.22	3,7000	3, 6673	2,6056	2,9519	3,3791	3, 3291	2, 81 39	3, 61 30	3,5950	3, 40 35
× 9	A H	2	21	8 3 05	7.9616	8,023	8,0923	8 DI 34	7.9616	8 1 89	8,10.84	8,1684	8,0923	7 8 99	7 8 99	7 8 99	40 6 2	7 9 04	8,1613	8 21 5	3.314	8,2022	8,2115	8 2 5	8,1118	8,6916	8.314	8 8 59	8,9.3	8,841
A vara	89 C M		16	8 4 08	8,1319	8,2,26	8,2.26	8,1.37	8,1319	8,2.92	8, 3, 87	8 3 87	8,2,26	8,0,02	8,0,02	8,0,02	8,0 07	8,0.07	8.2.74	8, 3, 76	8 4 97	8 3 83	8 3 76	8.3.76	8.2.79	8 8 77	8 4 97	8 9 20	9.0.93	9,0002
oikania	H R	,	5	3 9179	3, 2, 03	2 7 57	4,0631	3 7 83	3 4 37	4 4 08	3.9.02	3.6978	3 4 79	3.6.93	4.7.51	4 6 22	3, 8, 31	3, 5812	5.2.66	4 7 5	4 7 97	4, 7310	5,6.20	5 3 57	4, 8, 88	5.4.86	5.6.58	5, 3290	5,4.43	5 5 67
mika w	с k	lcmo 1	16	2.173	1 814	1.512	2 2 9	2.079	1 899	2.405	2,202	2,051	1.918	2,013	2.6.7	2,580	2.1.6	2,136	2 9 6	2 615	2.6.4	2,64	3, 134	2,9,2	2,700	3 0 9	3.125	2.9.5	3.0.0	3.0.9
a pó lo zy	x Ap		13	0 703	0 703	0, 703	0 70.	0 703	0 703	0, 1703	0,1703	0. 703	0 703	0 703	0, 703	0, 703	0 703	0, 703	0 36	0.136	0 36	0, 36	0 36	0 36	0 36	0.13	0 36	0, 36	0 36	0 36
lezeń *	CAP4	<u>14 01</u>	51	9,45	9,45	6 43	9,45	9.45	9 45	9.45	9.4	9,45	9,45	6 45	6 45	6 ⁴	6 4	6 45	7.5.2	7 5 2	7.552	7 5 2	7 5 2	7 5 2	7 5 2	7 5 2	7 5 2	7 5 2	7 5 2	7 5 2
1 obl	102	<u>ш</u>]	13	9 45	9,45	9,45	9,15	9 45	9 45	9 45	9 45	9 45	6 45	9.15	9 45	9 45	9.45	9,45	4 6	3 44	6 44	6 44	9 44	9.44	9	9.44	9 44	9.44	9.44	6 4
wiarów	4		10	2	80	9	80	80	2	2	2	ø	9	2	00	2	9	2	8	80	2	9	2	80	60	2	9	00	~	2
iki po	P.	Hum	6	770.4	770 4	770.4	4 0.4	770 4	770.4	770 4	770.4	770	770.4	770.4	770.4	770 4	770.4	770 4	762.0	762.0	762.0	742.0	7.52,0	702.0	762.0	7 2 0	762,0	762,0	762,0	762.0
Wyn	*		8	0.15.5	0 5 5	0 575	0. 575	0, 5 5	0.1575	0. 575	0. 575	0.15.5	0.15.5	0, 1575	0 5 5	0.1575	0 5 5	0, 16.5	0. 1575	0. 1575	0 5 5	0 6 5	0. 5 5	0.1575	0.575	0.55	0.15.5	0,1575	0,1675	0,1725
	A LE	[em2]	*	5 7 0	4,800	000	5.9.5	5,500	5.0.5	6.5.5	5.8.5	5,425	5,100	5 3 5	6 9 5	6 8 5	5 6 5	5 6 0	7 7 0	6 9 5	6 9 5	6.9.0	8,300	2 6 2	7.1.0	8,0.5	8,275	7.8.5	8,025	8,100
	45	[c]	9	5, 75	4, 80	14,000	5,95	5,50	5,05	6,60	5, 85	5,55	5,05	5, 35	6,95	6, 80	5,60	5,70	7.75	6, 90	6 95	6,95	8,30	7,90	7,20	8,00	8,30	7,80	8,05	8,15
	1 A	[••]	10	5 75	4,80	00	6,00	5 50	5,00	6.55	5 80	5,30	5,15	5 30	2 00	6, 85	5 65	5 60	7 75	6,95	2 00	6 95	8,30	7.95	7,10	8.15	8,25	7,85	8,00	8, 05
	** '		*	2 100	6 175	2 3-5	2 100	4 175	6 2 6	0 100	8 175	8 236	2 3 5	0010	0 175	0 236	8 3 5	8 4.10	6 165	4 2.6	0 3 5	2 430	4 100	4 175	8 2 6	6 1 50	0 175	2 2 6	8 3 5	0 11 30
	4	<u> </u>	6	14.	13	15	15.	15	15.	15	14	41	15	110	91	9	15.	12	14.	14	14.	3 h.	14.	114	113	10	41 0	12	11	0
	11 21	-	eq	400	1400	400	600	660	600	800	800	800	800	800	1000	1000	1000	1000	1200	1200	1200	1200	1400	1400	1400	1600	1600	1600	1600	1600
	5		*	-	21	2	-22	=	0	2	80	6	10	-	12	5	-	5	10	-	00	6	20	N	51	23	24	25	26	27

TY. ANDES DO BOSTOZIALO

-	
1.1	F 1
	r - F
	- 44
- H	E DE L
1	
tab	
tab	
tab.	

10	40.5.04	66.7972	1 8 8 70	148.6040	61.76:0	112,1580	137.2171	179, 3130	125.6040	201,5362	14.5341	20,7478	33,0215	4650*41	29,0704	30,8047	58.1596	21,0814	37,7929	33 6766	59 3 43	67,0082	27,5555	43,1240	36 8 4	65 8 69	84 4 48	31,5668	46,8457	70, 6361	86.9.6	106,7670	32,4 8	59,8056	38,9800
20	3.0155	5, 105	9,413	11,850	2,209	4,520	5,7321	7,183	3,818	B,091	9.9776	3, 5763	4, 45.9	2,2316	3, 55, 88	4,8911	7,8501	2,4406	4 0.58	5, 7585	6,8.83	B, 1339	2,8952	4, 4, 99	6.0.9	7,5080	9,8867	3,0942	4,7674	6,9254	9, 105	11,4691	3,0 61	5, 3799	3, 4532
19	7.9093	8,1293	8,4265	8,448.1	3, 8045	4,2067	4,4413	4,2605	3,2333	3, 1832	7,2376	6,6163	7,1707	6.960	6,5131	6,7036	7, 1706	6.1.72	5, 6075	5,6059	6 1754	6 4 82	5, 5880	5, 5127	5.611	6,0133	6,0008	5,213	5,4125	5,2144	5,5710	5,537%	4, 9, 75	6427.4	14,7106
8	5.50.19	5.7693	6, 1913	6.22.9	2 15 16	2, 8810	3,1082	2,9280	2,0686	2,0707	5,6007	4 9 2	5 72 8	5, 1107	4 85 0	5, 1282	5 6 3	4,2168	3, 8710	3,9.25	4 5 95	4 8 26	3, 37 83	3, 5, 68	3,7817	4,315	4, 2, 16	2,9115	3, 3121	3,1501	3,5261	3.4767	2,9,6	2,5360	2,2635
21	11,039	11,059	11,112	11,227	6,1128	6,0773	6, 1099	5,9164	4,7597	4, 63.59	9,1660	8,6285	8,8396	9,1660	8,5173	8, 5726	8, 94.94	8,6173	8 0 96	7,9440	8 1 9	8, 3031	8,5990	8.1.27	8.0.85	8.2357	8,3174	8,4919	8.235	8.0.8	8 215	8.2050	8 4 9	8,0803	8,4919
16	1 . 95	11,195	11,278	11,363	6 3 88	6 213	6 2 59	6 0024	3.9067	4 77 9	9,4046	B 8571	9,0982	9 4046	8 7 59	8,812	9,1880	8 8 69	8 2 8	8 1 26	8.3077	8 5 17	B 3n13	8,2350	8,1,08	8.3.77	8 4 9	8.3.4	8,3377	8,1305	8,3377	8,3377	8,5417	8,1826	8 5 4
15	5 63 1	5.4.2	5,0867	5,1371	4,1272	3, 3252	3, 1375	3.1544	2,8381	2,7033	3, 80.39	3 9 5	3,3764	4, 2035	3, 9045	3, 6830	3.5.97	4 6191	14 14 78	4,2801	3 8 82	3 6 91	5, 32 50	4 7082	4 3 91	li, 0 6	4 2 81	5.6.27	5,0149	4 9 07	4,8616	4,9310	5.5.5	5 6 6	6, 3, 0,
11	1 3, 1 5	1 3 011	2,83	1 2, 8, 1	1 2,255	1 1,811	1 1.737	1 1 7 6	1 1,567	1 1,492	6 2,110	6 2,176	6 1, 873	6 2,355	6 2,156	6 2 0 3	6 1 9 8	6 2 573	6 2 4 0	6 2,374	6 2,129	6 2,004	3 2 9 2	3 2 611	3 2 4 2	3 2 2 3	3 2 3 6	3 3, 151	3 2,781	3 2 762	3 2 6 6	3 2.7 4	3 3, 103	3 3,131	3 3 5 0
13	0,13	0 36	0,13	0,136	0,136	0,136	0,136	0,136	0,136	0,136	0.230	0,235	0,238	0, 236	0, 235	0,238	0, 3	0,23	0,238	0, 238	0,236	0,238	0,102	0,102	0,102	0,102	0,102	0,102	0,102	0,102	0, 102	0,102	0,102	0 10	0, 10
12	7 5 2	14 7 5 2	7 5 2	1 7 5 2	7 5 2	7 5 2	7 5 2	14 7 5 2	1 7 5 2	7 5 2	13,24	13,24	13,24	13,24	13, 24	13,24	13,24	13,24	13,24	13,24	13,24	13,24	6 5 6 6	6 5 6 6	6 5 6 6	16 5 6 6	6 5 6 6	16 3 6 6	16 5 6 6	6 5 6 6	6 5 606	6 5 6 6	16 3, 676	6 5 6 6	6 5 6 6
11	6	9 6	4 6	6	9 4	9.4	1 6	9 4	9.4	9.4	9.4	9.4	1 6	1 6	9.4	9.4	6	9.4	9.4	4 6	9.4	9 4	9.4	9.4	9 6	9.6	9 4	6 4	9 4	9.4	9,4	9.4	9 4	9.4	9 4
01	2	~	~	9	80	20	2	9	2	2	~	~	9	~	80	@	~	~	~	9	~	r-	80	@	22	~	-	2	60	9	00	•	~	5	~
6	762.0	762,0	7.2,0	7.2.0	762.0	7.2 0	7 2 0	7.2.0	7.2.0	7.2.0	770.3	770.3	770,3	770.3	770 3	770.3	770.3	770 3	770 3	770 3	7.0.3	770 3	770 3	770.3	7/0 3	770.3	770.3	770.3	770 3	7.9.3	7.0.3	770.3	7.0.3	7.0.3	1770.3
80	0, 157	0, 157:	0, 157:	0 157	0 157	0,1575	0,1575	0,157:	0 157	0,1575	0,315	0,3150	0,315	0,315	0,3150	0,315	0 315	0,315	0,315	0 315	0,315	0,315	0,3150	0,315	0,315	0,315	0 3 0	0 3 5	0,315	0,315	0,315	0 3 5	0,315	0,315	0 3 20
4	0 8 2 5	5 8,000	7,500	7 575	6,030	4,875	4,600	4 6 5	4,150	3,950	0 5 5 0	5,750	4,90	6,2.0	5 725	5,400	5,175	6,800	6 475	6,275	5 5 6 5	5,30	7,800	6 900	6,375	5 900	6 2 5	8,315	7,3.0	7, 300	7,125	7,200	8 200	8,275	0 9 2 0
10	8	8,00	7.5	7 5	6.0	4 9	4 6	4.6	4. 30	3.	5.50	5.7	5.0	6.3	5.7	5.4	5,2	6 8	6 4	6	5.0	5 4	7.8	6 9	6.3	5 9	6 2	8 3	7 3	7 2	7 = 10	2 10	80	8 3	6
-	8.5	7.95	7.50	7.60	6,05	4.65	4.60	4.60	4,20	3 95	5.00	5.75	4 10	6,20	5.70	5 40	5 3	6.00	6 50	6 25	5.60	5,30	7.80	6. 5	6 40	5.,90	6 20	8.0	7.40	2 18	7.15	7 5	8 5	8.25	6 0
17	6 100	6 175	4 345	2 4 30	2 100	6 255	4 345	1 430	0 256	2 4 30	0 100	8 175	0 250	0 100	2 175	0 256	3 4 30	8 1 00	0 175	4 256	6 345	0 4 30	100	2 175	6 236	8 345	2 4 30	8 100	8 175	6 256	6 34	06 1 30	0 100	1 173	8 1100
3	5	5	5	3	24 .	14.	24,	25 .	34.	35,	11,	12,	12	11.	13.	13.	201	13.	10	15	* **	14.	5	11	12	14.	14 +	13	14	15.	14 .	14 +	14.	12	113
a	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	400	400	1400	600	600	600	600	800	800	800	800	800	1000	1000	1000	1000	1000	1200	1200	1200	1200	1200	14:00	1100	1600
-	28	29	30	31	32	33	3	35	36	37	38	39	94	41	-	64	14	45	46	12	48	64	20	in	25	53	3	23	26	23	38	29	69	19	10

- 62 -

21	50.4827	76,6172	06,0179	24,5205	34,5852	47,1358	52,0800	94,2650	77,2280	35,7319	54,005B	9154,20	15,3259	58,6272	15,6079	22,0715	19.2315	26,0491	7420.3547	1002,80	15,2777	15,6083	12,2441	36,3408	15.6646	19.4884	17,2857	5490" 46	48°5° 64	52,8086	50,6343	7887.20	1012.44	58,8214	Lan6*65
ve	5.8612	7 2659	10.3784	3,4253	5, 3025	3, 3430	4, 7938	6.6229	8,4567 1	1,8162	2,8983	4, 1433	5, 3243 1	6,2121 1	3,0629	4.5037	3,6422	5,1590	6,6593	8,1366	2,7881	4,4367	5,8861	7.3114	6 0697	3, 1782	1 2697	6,0064	8 7811	11, 3100	3, 1592	5 0334	7.1686	9 7264	2 1614
10	4.387	5.0437	5,0462	7 4294	8,1541	3, 7720	4,1069	4,1801	4, 1945	2,7033	2,4083	2,3086	2 4554	2,0828	6,9580	7,2349	6,7150	7,0221	8,2977	7.5522	6,4706	6,1429	6,4725	1 0944	7.0422	5,7823	5, 9381	6, 2482	6, 3078	6 3919	5 4284	5.444	5. 6811	5, 8629	6,0333
18	2,0396	2,9101	2,8107	4, 7653	5, 7264	2,3055	2,6333	2 6833	2,6662	1 3838	1,2104	1,1430	1, 3153	1,1585	5.4993	5.7647	5,0128	5,3615	5 6959	5 9448	4,2838	4,1382	4 . 6196	5, 3547	5, 3112	3, 3824	3,8919	4,3700	4,2890	4,3112	3,0666	3, 25 39	3, 5229	3, 6817	3, 8360
17	8,0803	8,0285	8,2354	10,9387	11,1867	5,7583	6,0184	6,1509	6,2183	4,6744	4, 2157	4,0814	4,1171	4,0814	8,6344	8,9360	8,7649	8,9945	9,1753	9.4262	9,2988	8,7093	8,7649	9,1753	9,1138	9,1136	8,6001	8,6001	8,8782	9,0537	8.7714	8,4480	8,5799	8.7714	8,9445
16	8,1826	8,1308	8.3377	11,142	060 11	5,9622	6,2233	6,3548	6,4232	4,8792	4, 205	4,2862	4. 3219	4 2862	8,7567	9.0.83	8 8 172	8960 6	9 2 76	9 5 85	9,4011	8.8116	8,8672	9.776	9.161	9.161	8,7024	8,7024	8,9805	9,1560	8,8660	8,5426	8,6745	0,0660	1420*6
15	6,1430	5.2207	5,3270	6,3767	5,6636	3,6569	3,5890	3, 6715	3,7560	3,4954	3,2101	3,1434	3,0066	2, 8277	3,2374	3.2736	3, 8544	3, 7353	3,5820	3, 5, 35	5,1173	46734	4,2476	3,9229	3, 9049	5,8337	4, 8 05	4,3324	4,6915	4,8448	5. 79.4	5,2887	5, 1516	5, 181.3	5,2011
44	3,406	2,895	3,065	3. 382	3,1429	3, 0332	1 9855	2 0 126	2.0796	1 9291	1 7691	1.7314	1,6562	1,5676	1,807	1,016	2,138	2 072	1 987	1 949	2, 838	2,592	2,356	2, 176	2,166	3, 235	2,668	201 2 1	2 602	2 687	3,216	2 933	2 857	2.876	12,885
14	0 1033	0, 1033	0, 1023	0,20:3	0, 20:13	0,2039	0 20.9	0,20:9	0,2039	0 2048	0 2048	0, 204	0,2048	0,2048	0, 1023	0, 1023	0, 1083	0, 1023	0,1023	0, 102.3	0, 102.3	0, 10/13	0, 10:13	0, 10/13	0, 10:13	0, 102.3	0, 1023	0, 1023	0, 102.3	0,1023	0, 1023	0, 1023	0,1023	0,1023	0, 1023
10	5.676	5.676	5 676	11,292	1, 292	1 292	11,292	11,292	11,292	11,292	11,292	11 292	11.292	1 292	5,676	5.676	5.6.6	5.6.6	5.6.6	5.676	5.676	5.676	5.6.6	5 6 6	5.676	5.676	5,676	5,676	5.676	5,676	5,676	5.676	5.676	5,676	5,676
	9,46	9 46	9,46	6.41	9.41	9.44	1 6	9.41	9.41	9.41	9.41	9	6.41	6.41	9,46	9,46	9,46	9,46	9,46	9,46	94.6	9,46	9,46	9,46	9,46	9,46	9446	9446	94.6	9446	9,46	9,46	9.46	9.46	5.46
-	~	9	~	~	~	~	~	80	9	2	5	60	~	~	~	~	~	80	9	~	2	80	9	9	9	~	2	~	80	~	~	90	9	9	2
0	770.3	770.3	770.3	770.3	775 3	775 3	775 3	775 3	775 3	775 3	775 . 3	775.3	775.3	775.3	775 .2	775 2	775 2	775 .2	775 2	775 .2	775 .2	775 2	775 .2	775 .2	775 2	775 ,2	775,2	773,2	775 .2	773.2	775 1	775 1	775 1	1.544	1122
	0.3150	0,3150	0, 3150	0,3150	0,3150	0, 3150	0,1150	0,3150	0,3150	0,3150	0,3150	0, 3150	0,3150	0,31.0	0 4723	0 4725	0 4725	0 47 5	0 47 5	0.4725	0.4725	0.4725	0.4725	0 4725	0.4725	0,4725	0.4725	0 47 5	0,47:5	0,4775	0,4725	0,4725	0,4725	0.725	0,4825
*	9,000	7,650	8,100	9,400	8,350	5.375	5.275	5,400	5.325	5,125	4,700	14 , 600	4,400	4,125	4, 775	4,800	5,650	5,375	5,250	5,150	7,500	6,850	6.225	5,750	5 725	8,550	7,050	6 350	6 875	7,100	8,500	7.750	7.550	7.600	7 625
*	9.05	7.70	8, 10	047*6	8,40	5.35	5,30	5,40	5.55	5.15	4 .70	4 60	4.45	4.15	4 75	4 80	5 . 65	5+35	5,30	5 . 15	7,50	6,85	6,25	5.75	5 . 75	8,55	7,10	6, 31	6,81	7.10	8,30	7,80	7.35	7.60	7,60
	5 8 9	5 7.60	8 10	0 7 *0	8 30	5 40	5 25	0 1 6 9	5 50	5 10	5 4 70	5 60	5	4,10	5 4.00	5 4,80	5.45	5 5,40	5 5,20	5,15	0 7.50	5 6,85	6,20	5 5 75	0 5 70	0 8 55	5 7,00	6 6, 35	5 6.90	01*2 0	0 8,50	5 7.70	6 7,55	5 7,60	0 7,65
-	2 2	6 25	8 34	2 100	6 17:	8 175	2 25	4 345	0 31	0 100	6 175	0 251	8 34	0 430	4 17.	4 250	0 17	2 25	6 34	8 43	2 100	2 17	0 25	6 34	8 43	8 10	6 17.	6 25	6 34	0 43	0 0	2 17	7 25	0 74	143
*	15.	10	4	\$	n .	26,	25,	24.	24,	35.	39.	41.	40.	11	13,	12.	10.	12.	=	10.	-	13.	13	11	-	11	13	13,	10	12	13	11	13	5	12
	1600	1600	1600	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1400	400	600	600	600	600	800	800	800	800	800	1000	1000	1000	1000	1000	1200	1200	1200	1200	1200
	63	3	65	66	67	68	69	R	21	The sec	23	2	R	2	3	R	56	80	8	173 00	8	84	83	86	3	88	89	90	61	92	93	94	56	96	64

-	_	-		_	_	-	_	-	_		-		_	-		_			_	-		_	_	_	_													
tabl. II.	21	23 Kess	and ac	16/0 00	*****	1 1350	42,0778	16,5328	25 6165	48,0286	18, 6366	31,1385	41.956	75,4537	64,8847	47°3449	61.4110	1.3450	1.9632	2.8538	3.0446	6. RRMG	7. 865	1.66643	a offer	2 76en	1 6 5	7.6867	10.6783	13.6440	17.64=1	2.2198	3. 3080	k. 75	88 9	0 49	11.5350	
po	101	3. 1582	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 2	600 6	2110	5 539	5 00 5	5 978	10, 1200	2.2423	3, 936	Lie6* 77	8,3778	7,0495	3, 255	CC66.4	0 3 03	46640	0.7066	1,2,68	1.7.75	2.0=09	0.3653	0.6002	0.8776	1.3603	1.7355	2.5137	3,3679	4.3968	0 4 45	0.6.81	91 94	CX 4. 8	2.0000	2.6.10	
	10	5.0342	4.9240	0101 ×	1 286 W	Loost 1	1 + 0041	7,0800	7, 3328	2 9877	4,2660	3, 9780	4,2149	3,9366	3,8522	2,8649	2,8829	6 1348	6 7578	6 5843	6 6251	6 7146	7.1061	5 8329	5 99.B4	6.1938	6,0969	6,0763	6,2630	6, 5673	6,6306	4,9685	5.4537	42024	5. 4090	1.8607	6,1124	
	18	2.5967	2 7926	2 0611	1 0 171		Co	t, 0.9	4 9 1	2, 9350	2.55	2 443	2 6973	2 4378	a 2991	1,7203	1 7667	4 3522	5,2275	5,0100	5,1185	5.1699	5.0079	3.7369	1010.4	4.333	4.4933	4 6304	4,7639	4, 9845	5,2025	2.7679	3.5115	3759	8679	6. t700	1.5425	
	17	8,6.07	44 6 2	8 0 68	8 0354	2 00 4	0 061	00+ 01		10.4007	6. 6054	6, 0504	6,2166	5,9313	5,9110	4,4305	1 3911	3,3481	3.561	3,4018	3, 4018	3.4018	CC02.8	3.561	1.5073	1102.8	8,0478	72957	1,0478	1, 45 hz	, 2985	1. 1075	00066	. 8336	6055	0556*	0006	
	10	8,7553	8 0290	8 1814	8 1 300	edro B	201 00 01	003 01	0000 000	200 002	6 7420	6, 1870	6 35 12	6 08 19	6,1206	4 5677	4 5293	8 4157 0	8 6287 8	8 4694 8	8 4694 8	8 1694 8	5749 8	6217 8	8.5749	8.5749 8	41154	7,8633 7	11154 1	1,5218 6	3 , 564 6	3.2088 8	3 079 8	7.9549	. 6606 7	3.0563 7	1079 8	
	51	6, 1586	5.2364	5.2203	6 1929	F 7257	1 100 9	2 C C C C C C C C C C C C C C C C C C C	Concer of	1000	91114	3 74 36	3 65 9	3, 6501	3, 8215	2 84 4	2,7626	4.0635	3,4012	3,4195	3 3509	3 19 5	2 7070	4.77.8	4.5338	4,2316	3, 6221	2329	3315	5373	1 16 9 4	5.4609	4.5964 8	4.5789	3 79. 7	3 8855 8	1499.	
11	-	3, 1115	2,904	2.895	3.434	3 170		2.003	0 800	275	810 8	2 072	2°054	2,024	2,119	1,570	1,530	2,254	1,897	1,897	1.859	1.775	1.302	2.647	2,516	2.317	2,009	1,793	1,859	1,962	1,755	3.017	2 9 1	2.5.9	2 3 3	2.1.5	1 . 977	
		0, 1023	0,1023	0.1023	0, 1023	0.023	292 0	0 367	192 U		202 0	0 363	0 363	0 363	0, 363	0, 1363	0,1363	0,0676	0,0676	0,0676	0,0676	0,0676	0 0676	0,0676	0.0676	0.0676	0,0676	0.0676	0,0676	0,0676	0,0676	0,1010	0.101.0	0.101.0	0,1010	0,1010	0,1010	
11	-	5 676	5,676	5.676	5 676	5.676	7 868	2	7 468	07	00001	7.508	7.508	7,568	7 568	7 568	7.568	3, 755	3 755	3, 755	3, 755	3, 755	3,735	3,735	3,735	3.735	3.735	3.755	3,755	3,755	3, 755	5,600	5 600	5,600	5 600	5,600	5,600	
11		9 4 6	9 46	9 46	9 46	9 46	9 46	9 46	0.46	0 46	24.40	0 ***	0 ** 0	9,40	0 10	9 # 6	9.46	60.6	60.6	6. 6	9,39	9,39	6. 6	9,39	9,39	9,39	9.39	9.39	66. 6	6 39	66.6	9.37	9.37	9 37	76.6	9,37	6 37	
10		~	9	~	2	-	9	~			5 5	- 1	- 1	-	i a	-	80	2	~	00	00	80	9	2	2	60	9	9	~	~	9	9	2	9	9	2	2	
0		775	775.1	775.1	775.1	775.1	775.1	775.1	775.1	7 4	2 K		C		Tiel.	1.517	1.542	1.652	1 6 4	1 6 2	7.59.1	7.9.1	759.1	759.1	759.1	759.1	759.1	759.	759.1	759.1	739.1	758	758	758.	758,4	A.867	758.4	
		0 4725	0 4723	0 4725	0,4723	0.472	0.472	0 472	0 472	0 472	0 479	0 1.40	0 1000	0 4/40	0 1.40	0 472	0,472	0 6300	0,6300	0,6300	0.6300	0,6300	0,6300	0, 6300	0,6300	0,6300	0,6300	0,6300	0,6300	0 6 100	0 6 00	0 6 00	0,6.00	0,6300	0,6:100	0, 6, 00	0,6100	
6		5*042	7.675	7, 530	9,075	8,400	8,925	8,200	6,850	6.124	R 78	0	00000	0000 2	0	1 222	5=0 ° +	0000 * 9	5,0.5	5,00	0.6.4	4,725	14,000	7,050	6,725	6,250	5,350	\$224	026 *	5,825	4,675	8,050	6,800	6,775	5,600	5,750	5+275	
9		00 * 6-	7 70	7 65	9,05	8 40	8.95	8 25	6.90	6.15	×. 4×	2012	US a	200	200	1 2 20	CO 1 1	0,0	2,03	8	2.2	4.73	6°00	7,10	6 75	6 30	5 40	4 75	2 000	5 23	1 05	0, 10	6, 85	6, 80	5,60	5.75	5,25	
5	200	50 6	7.65	7 65	9,10	8 40	8 90	8,15	6.80	6.10	5.50	2 40		N NO			3	00	00 . 5	5 10	00	# 20	14 00	2 000	6 70	6,20	2 30	4 80	4 90	02 5	4+70	8 00	6 75	6+75	5 60	5 75	5 30	
1		100	175	236	100	175	100	175	430	100	175	286	14 30	244	2 AND	-1c	047	14	52	38	60	001	138	14	27	8	60	00	38	2	0	#	22	8	69	100	126	
13		2	6:2	15.6	15.0	16.0	7.6	7 8	7.6	2.2	25.4	1.10	0.95	8		1	-		N I	5	2.0	D*C1	13.4	3 2	3 4	13.4	5 2	0	2 0	0 0	4 5	2	2	15, 8	17,0	15.4	15,2	
-	1 4 M M	00+1	1400	1400	1600	1600	1000	1000	1000	1000	1000	1000	1000	0001	1000		200		2002	00	00-	200	00	000	000	000	300	300	200	300	8	004	00#	400	\$100	1100	400	
-	19.0	-	66	100	101	102	103	101	103	106	107	FOR	100	110	1 1 1			511		0	-	2		6	1 20	52	22	23	144	541	071	27	200	129	2	12	ar.	

-		-					~				-		5	10	~	-	6	-		-	~	~	0	•	~	20	10			20	eò.	0	0		
21	12,7735	18,4068	19,4132	21,5852	2,068	3 0357	4, 6878	7, 3257	1237	2,1382	2 7989	18,8161	10,063	23,8766	12,7906	2,105	3, 177	5, 313	178612	10, 171	12, 599.	17,027	30,190	21,505	25.490	32.714	2,639	4,369	2,707	9 216	12. 70	4 66	6 90	19, 989	22.710
20	3,0503	4,0291	4,6143	5,1674	0,4032	0,6424	0,9509	1 6031	2,1443	2,7370	3,5373	4,1416	4, 7778	5.5240	6,2871	0,4119	0,7107	1,0360	5824	2,2654	2,7895	3, 7510	4,029	3,0545	5,8662	7,0359	0.4500	0,8020	1,1037	1 7768	2 5184	3.0738	3.7335	4664	5.1005
19	6,3535	6, 2673	6, 32 39	6, 3692	5,1868	5, 6302	5, 3969	5 8222	5.6354	5, 9992	5 9569	5 8561	6.5357	6, 1554	6.4859	5, 2059	5 4369	5, 1586	5, 2729	5,9258	5,8905	6,0642	5, 8608	6, 2531	6, 1228	5.7168	4.5011	4, 6691	5, 1452	5,0953	5.4163	5.7730	5.6810	5.9445	4.0752
18	4,9115.	4, 7292	4 8376	4 973	3,0160	3,7413	3, 4515	3,9766	3, 9215	4, 3870	4, 3193	4, 290	4,8018	4, 61.39	4,9812	2,9958	3,4045	3,0851	3.4728	4,1162	4.2550	4, 1409	3, 8112	4,6412	4,5283	4 0241	2,1887	2,4926	2,9632	3,0225	3.4587	3,9698	4001	1,2404	A Tello
17	8 0535	8, 1075	8,0535	8,0535	8,2105	8,0670	7,9630	8, 1640	7 7879	7 9638	7 9638	7 7634	8,1660	7,9638	8,2668	8, 3021	8, 15 3	8,0016	7,6080	8,2009	7, 89.5	8,0016	7.20173	8, 2009	8,0537	7.7510	3, 05 37	7.8494	8,2009	7, 9502	8,0016	8,0537	8,0537	8,0537	~ 040a
16	1548	8, 2088	8,1548	B.1548	8 3125	8,1698	8 0658	8,1660	7 8899	8.0658	8 0658	2 8654	8,2680	8,0658	3688	8,3699	5 8,2191	3 8,0154	0 7.6738	5 8 21 87	3 7.9673	5 8,0094	5 7.2687	5 8,2687	2 8, 1215	7 7 88	0 8,1215	6 7,9172	8,2687	5 8,0180	7 8,0694	9 8,1215	3 8,1215	3 8,1215	00.00
15	3.2438	3, 4796	3, 3172	3, 1817	5,2965	4 4263	4.6142	4 2914	3,9684	3, 6780	3,746	3.575	3.4662	3. 4219	3, 38'	5 37	4.8140	4.984	4.2030	4.152	3.712	3, 928	3. 457:	3. 627:	3 593	3 744	5,065	5 24	202 5	4.995	4 610	4 083	3.914	3 813	
44	0 1.799	0 1,930	0 1.705	00 1.630	71.6.2 03	2.436	2,559	2,350	2,201	2 040	2 078	20 1 983	20 2 059	20 1,898	20 1 879	78 2 980	78 2 670	78 2.764	78 2, 331	71 2,303	78 2.059	78 993	78 2 0 9	78 2,012	76 1 993	710 2 077	78 3, 252	78 3,008	78 2 942	78 2 60	78 2 557	78 2 263	78 2 171	78 2.115	
13	0 0 0	0 0 0	0,10	0,10	0,102	0,10	0,102	0,103	0,102	0 - 10	0 103	6 0 0	6 0 03	6 0 03	6 0,10	0 0,067	0 0,06	0 0,06	0 0 06	0 0,06	0 0 00	0 0 00	0 0 00	90 0 0	0 0,06	0 0 00	0 0 00	0 0 00	0 0 00	0 0 00	0 0 00	0 0 00	0 0 00	0 0 00	
12	7 5,600	7 5,600	7 5,600	7 5,600	1 5,60	1 5,66	4 5,60	4 5,66	4 5,66	4 5,66	4 5,66	4 5,66	4 5,66	4 5,66	4 5,66	0 3.76	0 3,76	0 3,76	0 3,76	0 3,76	0 3,76	0 3,76	0 3.76	0 3,76	0 3.76	0 3.76	0 3.76	0 3.76	0 3.76	0 3.76	0 3.76	10 3.76	10 3,76	10 3.76	
11	9	9.3	9.3	9.3	6	6	9.4	9.4	9 4	9 4	9.4	9 4	4 6	9.4	4.6	9 4	9.4	9.4	9.4	9 4	4 6	9.4	9.4	9 4	4 6	9.4	9.4	4.6	9.4	9.4	9.4	9.4	9 4	9.6	
10	0	2	80	~	~	~	2	9	9	~	9	9	~	80	80	2	4	2	9	~	2	80	8	8	3 7	3	9	8	2	2 6	3	80	2	8 7	
6	7.8	7.8.4	7 8 4	7.8.4	759.3	759.3	759.3	759.3	759.3	759 3	759.3	759.2	759.3	759	759.2	754.8	754 8	754 6	75 . 8	75 8	754.8	754.8	75 8	754	75	75.	75	754	7.44	754	754	754	754	754	
8	0,6300	0.6300	0,6300	0.6300	0.6300	0.6300	0.6300	0,6300	0.5300	0.6300	0.6300	0.6300	0.6300	0.6300	0.6300	0.6300	0.6300	0.6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0 6300	0.6300	0.6300	0.6300	0.6300	0.6300	0.6300	0.6300	
4	4 850	5.150	4, 900	4, 700	7.775	6.500	6 775	6.300	5 825	5 400	5 500	5 250	5,100	5.025	4 ,975	7 .925	7,100	7.350	6,200	6,125	\$,475	\$,800	5,100	\$,350	300	5 525	8,650	8,000	7 825	6.925	6 800	6.025	5 775	5 625	
9	06	5.20	4 90	4 75	7 80	6.50	6.75	6.30	5 8	5 40	5.50	25	5.15	5.05	5.00	7 95	7.15	7.0	6,20	6,15	5.50	\$.75	5.05	5 30	5 30	5 55	8,70	8,00	7,85	6.90	6 80	6 03	5 80	5 6	1
5	4.80	5.10	4.90	4.65	7.75	6 0	6.80	6. 30	5.00	5.0	5.50	5.25	5.05	5.00	i4 . 9 .	7 90	7.05	7,30	6,20	6,10	5 5	5,85	5.15	5 0	5 30	5 50	8 60	8 00	7 80	6.95	6 80	6 00	5.75	60	
-	175	3 215	256	300	1 34	0 27	20	5	1 100	4 138	175	2 2 1 5	0 256	1 300	2 345	11 0	6 27	0	8 69	1 100	6 1 3	2 175	6 213	4 256	0 300	10	0	8	4 3	6 6	2 10	0 3	0 1	0 21	
5	15.0	14 B	15.0	15.0	4.4	15.0	15.	14.0	16.	15.	15.	9	14.	15.	4	14.	14.	15.	16,	14 .	15.	15.	15.	14 .	15.	N	15.	15.	14.	12.	-	1	10	*	-
*	100	\$100	400	400	200	200	200	200	200	200	500	200	500	200	500	600	600	600	600	600	600	600	600	600	600	600	200	700	200	700	700	700	700	200	2
-	133	134	135	136	137	138	139	140	141	142	14.9	164	145	100	147	148	643	150	151	152	153	154	155	156	157	15.8	159	160	161	162	163	164	165	366	

.

1

8.

1

- -

TT TODS	21	25,1109	72,2344	2,6962	5.0317	6. 78	9.252	2.4369	1% 2060	20 1382	22 573R	27 500	32 2729	17.4723	6878	2.3467	4.7435	6.9600	10, 1977	14 1713	17,2812	20 331	23 3255	26 1260	30 0694	35 4 49	41.7162	2,7:26	5,0306	7,2436	9.9350	13.6376	18,2296	21,2565	25,3917	28,8425	
	20	5,6362	7.1360	0.466	0.8759	1,1338	1.8863	2.5740	3.1516	4.1541	15.56	5.87.1	6.8513	7.8800	9,0080	0.449	0.872	1.1309	1,0770	2,7953	3, 5319	4,198	4,9758	5 75 32	6,6580	7,7878	8,9681	0,472V	0 892	1,1250	1 9727	5°6940	3, 5107	4, 3645	\$, 2761	6,0774	
	19	4,1836	1068	5826	4169	4,6563	5 4242	5.4625	5 5143	4882	5 8378	5 6811	5 6482	5 5969	5 7493	5.0973	4.8921	4 7053	4, 8029	5, 2180	5.4376	5,4672	5, 6755	5,8588	5,8911	5,8473	5.7196	1,0164	1817.4	4994	5,0150	5 2557	5,1238	5,4628	5,3163	5,6061	
	10	6465" 1	4.2209	2,2244	2,3062	2 29	3 3 77	3.4668	3.5748	3.62.3	lt 0032	3.8278	3.8.73	3, 7863	3 8998	2, 73.8	2 54 2	2,3164	2,7601	3,1249	3,4326	3.5863	3,8424	4,0644	4,1150	4 0464	3.8784	2 2238	2 349	2,2015	2,9599	3, 1958	3, 1681	3, 5145	3,6030	3,7355	
	17	8, 1022	7,9502	8,2069	8,1569	7,8536	8,2574	8, 1075	8,0535	7.9010	6,1569	05 35	7 95 50	7 90 0	8 1075	8 290	8.3696	8 2160	7 6669	8, 1660	8,0678	7, 91 28	8,0155	8,1167	8, 1167	8, 1167	8,0678	8, 3085	8 085	8,0162	7, 8, 36	8,0333	7.7548	8,0162	6,0327	8,0162	
	16	2 1,1700	11 8,0180	8 8 082	0 8 582	2,9549	8,3587	8 088	8,1548	8,0053	8,2,82	1548	8 0563	8,0053	8,2088	8,6310	8 4716	8 3180	12,7689	11 8,2680	2 8 698	5 8,0148	1 8,1175	3 8,2187	7 8 187	3 8,2187	8 1698	8 4098	8 4098	8,1175	7 9549	8 1548	7.8561	8,1175	8,1740	8,1175	
		3,575	6 3.793	1 6,08	56 5	5,482	5.031	1, 742	580	1, 382	4,25	4,327	4,215	215	4, 305	5 89	7 5,927	5 5 94	7 5,00	5 14	5.717	4.428	1 4,275	4,154	1, 103	4 4.172	4,291	5, 186	6,060	5.916	4, 995	4 959	688	598	526	382	
		78 1.93	78 2,10	13 3, 37	13 3.30	13 3,04	13 2.79	13 2,63	13 2.54	13 2,43	13 2,36	13 2,35	13 2.34	13 2, 34	13 2 39	20 3, 268	20 3, 287	20 3, 296	20 2.777	20 2,852	20 2 616	20 2 450	20 2, 37	20 2, 304	20 2 276	20 2 314	20 2, 380	13 3.43	3 3,36	13 3.28	13 2.77	13 2.75	13 2 60	3 2,55	3 2,51	3 2,43	
		0 0.06	0 0 00	0 0 0	0 0 0	0 0 0	0 10	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	2 0 10	7 0, 10	7 0, 10	7 0, 10	0 0	0 10	0 10	0,10	0 10	0,10	0 10	0,103	0 10	0 10	0 01	0 0	0 01	0 0	0,10	0, 101	0,101	
-		3 76	3,76	7 5 60	7 5 60	7 5 60	5 500	7 3,60(5.60	5 601	5 60	5 600	5 600	5 600	5 600	5 66	5 66	5 66	5 66	5 667	5,667	5 667	5 667	1 667	5,667	5.667	5.667	5 60	5 60	5 60	5 60	5 60	5 60	5 . 60	5 60	5,60	
-		0 17	0 th	9 37	6 3	6 33	6 9	9 37	9.37	9 37	9 37	9.37	9.37	9, 37	6 37	9 44	9.44	9,44	9,44	9 4	9 44	9,44	6 4	6 4	9 44	9 44	9 44	9 37	9 37	6 37	6 37	6 37	9,37	9 37	9.37	1 9, 37	
-		80	en .	1			-	*	+		-	-	2	-		2	9	9	~	2	80	-	~	0	-	90	60	2	~	2	9	9	~	~	2	80	
4	1	754.	75	7 58	7 58	758	758	7 38	758	7.8,1	7.8.1	7.8	7.8.6	7.8.1	7.8.1	2.9	2 - 6	7.9 °	2 6 2	2 6 4	2 6 2	2 6 2	2.6.2	2.6.2	2 6 2	7.9.3	2.6.2	7 8 4	7 8 4	7 8 4	7 8 4	7 8 4	7 B 4	7 8 4	7 8 4	7 8 4	
-	A LAND	0,6300	0 6300	0,6300	0,6300	0 6300	0 6300	0 6300	0 6300	0 6300	0 6 100	0 6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0 6300	0.6300	0.6300	0 6300	0 6300	0 6300	0 6300	0 6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	2
		C/3 1 C	5,600	6,000	8, 100	8, 100	7 130	7,025	6.775	6 75	6,300	6,275	6,250	6,250	6 375	8 650	8,700	8 725	7,350	7,550	6,925	6,500	6,275	6,100	6,025	6,125	6, 300	9,150	8,925	8,750	2,400	7,325	6,950	6,800	6,700	6,475	
×	-	5.35	2 60	6,00	8,85	8,10	7.50	2.05	6.75	6.30	6,35	6,30	6,20	6,30	6,35	8,65	8,70	8,75	7,35	7.55	6,90	6.50	6,30	6,10	6,05	6,15	6,30	9,20	8 99	8,75	2 40	7,30	7,00	6,80	6,70	6 45	
		5, 30	2 2 60	6 6 4	7 8 7	8 8.10	0 1 40	0 2 00	8 6 80	5 6 45	5 6 25	6 6 25	0 6,30	5 6,20	6 6 40	4 8 65	7 8 70	8 8,70	9 7,35	0 7.55	8 6,95	5 6.50	5 6 21	6,10	0 6, 00	6,10	6,30	9,10	8.90	52.8	2 40	2135	8 6,90	5 6,80	5 6,70	61 6 . 5 0	
F	+	18 30	C + .	27			5	8	0	6 17	6 21	0 25	4 30	6 34	8 38	ev.	20	1	0	6 10	0	6 17		20 1	8 10	80	0 38	-	0	N	0	0	2	2 17	1 2	2125	
H	-	1 1	-	-	2	in .	t	5	5	12	4	5	10	10	-	\$3,	5	2	. 0	5	2	5	n .	4		*	5	12	\$	3	20	5	9	2	20	5	
	2002	202	700	800	800	800	800	800	800	800	800	800	800	800	800	800	006	606	606	606	000	006	006	006	006	006	006	000	000	000	0001	0001	000	000	000	1000	
L	-	2	9	21	12	12	12	5	25	5	17	13	17	1.64	10	9	10	10	10	20	0	10	58	16	6	192	40.	161	661	196	197	196	199	200	201	107	

- 66 -

tabl.IX.	21	3 7564	3, 4546	9,3138	3,0045	1 5713	6.2144	11,1448	11,9359	18,5698	23,0873	17,0603	31.2673	35,4858	1461.44	51,6837	52,0810	7,8298	10,3867	11,1957	19,3655	24,2521	29,0651	31,7572	38,9330	44 6872	49,6720	32.7478	3,0113	5.7692	4608.7	11 6945	13, 8087	22,1477	25,5155	30,0212
. bo	20	6 9720 8 5353	9,2014	10, 2503	0 4738	0 7700	1,1240	2,0396	2,7570	3, 7384	4.6253	5 4997	6,5229	6,8730	8,8872	9,9086	10,6290	1,2480	1.9491	2,7039	3, 7182	4 6795	5 6631	6 4102	7,7520	8 7516	10.0128	1973	0.8715	0,9067	1,2726	2 1004	2 9040	3 9937	4, 9420	5 8450
	19	5 4951	5, 6337	5,5302	4, 1956	4 4815	4 8121	4, 8691	4,9112	3361	5 3302	5 4073	5.5504	5, 1531	5, 3575	5, 1007	5,4298	2408	4, 9926	5,0677	5, 1083	5, 1336	5, 1839	5 3 04	5 2 75	5.2105	5, 3631	5.6478	4.1658	4,1814.	6800.4	4, 7785	4, 8873	4,7976	5. 531	5, 808
	18	3 6639	3 7552	3, 65 67	1,8589	2,2019	2,6278	2,6793	2, 8364	3,2806	3, 2963	3, 4236	3 5651	3, 1792	3, 3651	3, 1303	3,5013	1.9421	2,8719	3,0149	3 0588	3,0948	3, 1668	3, 137	3, J049	3, 2231	3, 3601	3. 6213	1.8418	1 8598	1866.1	2 5481	2.7279	2 6461	3.0196	3 1105
	17	7 8536	8,0535	7.9550	7 9625	7 9625	7 9625	8.0140	7 8119	8, 1635	8,0661	8,0400	8,1635	7,8119	8,0140	7,8630	7 9625	7 8835	1 9644	7 6904	7.9163	7 9163	5 9:63	7 9402	4196 2	7, 88.35	6,0376	8,3178	3 7,9163	2,9163	8,0376	8,0376	1 9644	7, 88.35	5 8, 1121	5 8, 0130
	16	7 549	6 8 548	6 8,0563	9 8,0308	9 8 0308	0 8,0308	0 8,0823	8 7 8802	2 8,2318	1 8, 134	7 8, 1053	7 8,2318	8 7 8802	2 B 0823	0 7 8313	5 8,0308	8,0021	8,1015	8,0279	8,0536	8,0536	8,0535	8,077	8,1015	8,0021	8,175	8,4555	8.0538	8.0536	8,175	8 75	8 019	8,002	8,249(8 50
	15	4 291	4 399	4, 399	6, 171	5,828	5 03	5, 03	5,043	5,951	4 838	4 684	4, 666	4 563	4 717	4, 701	4,529	6,060	5,230	5,013	4,995	4,959	14,887	4,652	4.797	4.779	4,815	40.8.4	6,213	6, 194	6.177	6.627	6,371	5,356	5,230	15,010
	14	2,38	2,44	2,44	3,422	3,232	2,996	2,996	2.797	2,749	2,683	2,598	2,588	2,331	2,616	2,607	2.512	3,36	2,90	2.78	2,77	2,75	12.2	2.58	2,65	2.65	2 , 67	2,68	3,444	3,434	3,425	3,120	2 98	5 2 97	\$ 2,90	\$ 2 79
	13	0,1013	0,1013	0,1013	0,0683	0,0683	0,0683	0,0683	0,0683	0,0683	0,0683	0,0683	0,0683	0,0683	0,0683	0,0683	0,0683	0,1373	0 375	0, 375	0 375	0,1375	0,1375	0,1375	0, 1375	0,1375	0 375	0,137	0,1375	0,1372	0,137	D. 137	0, 137	0, 137	0,137	0 37
	12	5,60	5.60	5,60	3,80	3,80	3,80	3,80	3,80	3,80	3,80	3,80	3,80	3, 80	3, 80	3, 10	3,80	7.632	7.632	7,632	7 632	7,632	7,632	7,632	7,632	7.632	7.632	7 632	7.632	7.632	7 632	7 632	7 632	7 632	7 632	7,632
	11	9.37	9.77	56.9	9.48	9,48	9.48	9,48	84.6	9,48	9,48	9,48	9.48	9,48	9,48	9,48	9,48	9 54	9.54	9.54	9.54	9.54	9.54	9.54	9.54	9.54	9.54	45*6	9.54	9.54	9,54	9.34	9,34	9.54	9.34	9,54
	10	~	-	œ	~	~	~	80	2	2	9	~	~	9	9	2	00	2	~	90	~	~	9	~	~	9	~	2	2	9	~	80	00	~	80	8
	6	758	58	738.4	736.0	736,0	736.0	756,0	756,0	756,0	756,0	756,0	756,0	756.0	736.0	756.0	756.0	748.5	748.5	74.8.5	748,5	74.5	74.5	748.5	748.5	748.5	748.5	748.5	0 748.5	748.5	0 748.5	0 748.5	0 748.5	0 748 5	0 748.5	0 748 5
		0,6300	00.000	0,6300	0,6000	0,6300	0.6300	0.6300	0 6300	0.6300	0.6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0 0 00	0,6.00	0,6300	0,6300	0.6.00	0.6.00	0.6300	0.6.00	0.6.00	0.630	0,630	0.630	0.630	0.630	0.630	0.630	0,630	0,630
	~	6,350	6.500	6,450	9,025	8 525	7,900	7,900	7 375	7,250	7,075	6,850	6,825	6,675	6,900	6,875	6,625	8,800	7,600	7 325	7,250	7,200	7,100	6,750	6,975	6,950	7,000	7,025	9.025	0000*6	8,775	8,175	7, 500	7.775	7,600	7,325
	8	6,30	6.50	6.50	6.05	8.55	7 9	7.95	7.33	7.25	7,10	6,80	6,85	6,70	6,90	6,85	6.65	8.85	7 60	7 35	7 25	7.15	7 05	6,75	00 2 9	6.95	2,000	5 7,00	00'6 9	00'6 2	0 8,95	5 8,20	0 7 80	0 7.75	0 7 60	0 7,35
	*	6,40	6.50	6,40	00 "6	8,50	7,85	7,85	7.40	7.25	7.05	6,90	6,80	6.65	6,90	6 90	6,60	8,75	7.60	7,30	7,25	7 25	7 5	6.73	6.95	6.93	7,00	7.05	0 6	9.00	1 9.00	8 1	7.80	3 7 80	7.6	17,3
	-1	300	386	4 30	14	27	3	69	100	138	175	215	5 256	000	2 345	2 386	1 430	2 38	8 69	1 100	0 138	0 175	0 215	9 256	8 300	2 315	5 3 16	14 30	0 14	0 27	5 36	5 50	8 100	2 13	1 17	6 21
	5	2	2.2	15.	15.0	15.	15.	15	16,	14 .	15.	15.	14.	16.0	5	16.	15.	15	14.	15.	15.	5	5	14.	14 .	15.	140	13,	12	5	14	14	14.	12	14	14
	*	1000	1000	1000	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1200	1200	1200	11200	1200	1200	1200	1200	1200	1200	1200	1300	1300	1 1000	1300	5 1300	6 1300	11900	0061 8
	-	203	20%	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	22	224	22	220	22	221	225	23	23	23	50	2	â	23	23	23

- 67 -

_	-	-		_	_	_					_			_								_	_												_	
21	37.64.64	41,0454	3,1708	5,7399	8 4343	2.5085	17,0180	21 6634	26 1921	28 9372	35,9298	41,1757	51,0013	3,7976	5,6578	1630	14,8657	19.5960	22,3602	25,4500	30,5483	34,7226	41,2423	48,99.9	12,9959	3,5365	6,4491	7,8716	12,4706	17.4154	24,1988	28, 5670	35,4=61	38.779	47, 5942	
20	7 0501	8,157	0,5016	0,9296	1,3007	2,1204	2,9930	4 1027	5,0630	5,8760	7,1757	8, 3490	9,9809	0,5310	0,9323	1,2741	2,1194	2,51130	4,2269	5,0,03	6.0265	7,0733	8,4090	9 80:2	11,3780	0.5160	0,9617	1,2817	1 1770	3,0980	4, 2490	5 2325	6,3963	7 3 72	8 8 10	
19	4,9326	5, 2874	4,2089	4, 3089	4,1030	4,5101	4,6792	5,0387	5,1429	5,4025	5, 3135	5, 3947	5, 1982	3, 7202	3, 2344	3, 1587	3,9184	0020	3,0295	5, 2369	5,2487	5 4198	5 4147	5, 32.31	5,2197	3,8820	3 9675	4 3321	4 5000	4, 7328	4, 6716	4, 82 32	4,7501	5,1206	4, 8946	
18	1668	3 2096	1 77 39	1 9251	1,7625	2,2928	2.4883	2,8231	2 9681	3, 3079	3,1809	3,2692	3,0189	1 2931	1 8576	1 8383	1,7302	1.9391	2.763	3,0729	3,1301	3, 3014	3,2813	3,1402	2,9962	1,4623	1,5855	1,9788	2,2252	2,4754	2,4315	2,6180	2,4750	2,9598	2,7136	
4.5	7,8835	8 1121	8,2358	8,1350	1, 9364	7.0347	7, 8852	8, 850	8 850	8,23,8	8, 2, 18	8,2871	8,2358	8,1350	8,0855	7, 8852	7.4521	7,3180	8,2871	8,2358	8 1850	8,2811	1666	1666 *	1655 8	8 1147	8,0140	8,0661	7, 9625	8,0661	7,9881	8 0140	8,1117	8,1392	18,0140	
16	8,0021	8,2456	8, 3319	8,2311	8.0335	7 93 8	7 98 3	8,2881	8,2,81	8,3389	8, 1 89	8, 3902	8 3390	8 2381	8,1886	7 9883	7,552	7.4211	8, 1902	8, 389	8 882	8,3902	8 4 22	8 4 2	8 4 22	8,1830	8,0823	8 1344	8 0 3 0 8	8 1344	8,0564	8,0823	8,1830	8,2075	8,0823	
15	5. 103	5,040	5.565	6,313	6.277	5 645	5 500	5.463	5 320	5 031	5 158	5, 121	5, 320	6 945	6, 331	6, 150	5,825	5,482	5.627	5,266	5.158	5.085	5.158	5,302	5 446	6.7.0	4 496	6,1550	5,805	5 6590	5 6249	5 4643	5 372	5,2477	5,3687	
14	2,83	2,795	3.64	3,50	3,48	3, 13	3,05	3,03	2,95	2,79	2,85	2,34	2,95	3,85	3,51	3,41	3,43	3,04	3.12	2,92	2,86	18° - 28	2,36	2 94	3.02	3.726	3 602	3 413	3, 195	3, 138	3, 119	3,030	3.015	2,910	2.917	
13	0,1375	D, 175	0,1031	0,1031	0,1031	0,1031	0, 1031	0, 1031	0,1031	0,1031	0,1031	0,1031	0,1031	0,1031	0,1031	0,1031	0,1031	0,1031	0,1031	0,1031	0,1031	0, 1031	0,1031	0, 10.31	0, 1031	0,0683	0 0 83	0,0683	0,0.83	0,0683	0,0683	0,0683	0,0683	0,0683	0,0683	
12	7,632	7 632	5,706	5 706	5 706	5 706	5,706	5,706	5,706	5,706	3,706	5,706	5,706	5,706	5,706	5,706	5,706	5,706	5,706	5,706	5,706	5,706	5,706	5,706	5 ,706	3,800	3,800	3,800	3,800	3, 800	3, 800	3,800	3,800	3,800	3,800	
11	9 54	9 54	9.51	9.51	9 51	9.51	9,51	9.51	9 31	9,51	9,51	9,51	9,51	9.51	9.51	9,51	9,51	9.51	9,51	9,51	9.51	9,51	9,51	9,51	9.51	9 48	9 48	9 48	9,48	6	9,48	84 6	9,48	9 48	9,48	
10	14	~	~	~	9	~	~	ø	~	5	-	~	2	~	9	6	9	2	2	0	0	2	10	9	~	03	~	-	~	~	~	03	~	9	~	
6	748,5	748.5	751,0	752 0	752.0	752,0	752,0	752,0	752.0	7.2.0	7.2.0	752.0	752.0	752.0	752.0	753,0	7.2.0	752,0	752,0	752.0	732.0	752.0	732.0	751,0	751.0	756.0	756,0	2 6 0	2.6.0	7.6.0	756,0	756,0	756,0	756,0	756,0	
8	0,6300	0 6300	0,6300	0,6300	0,6300	0 \$ 6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0,6300	0 6300	0,6300	0,6300	
4	7,425	7,325	9 525	9 200	9,150	8 225	B 02 5	7 975	7,750	7, 325	7 525	7 475	7 750	0 125	9, 225	8,975	B, 050	8,000	8,100	7,675	7 525	7 425	7 525	7,725	7,950	9,825	9,500	000 6	8 425	8 275	8 225	8,000	7 950	*675	850	
	7.40	7+35	6 9,50	61.6	9,10	8,25	8,05	8,00	7.75	7,35	7.55	7.50	7.75	10.15	9 25	6 00	8,10	8,05	8,05	7.70	7.55	7.40	7.50	7.75	7.90	9 85	9 50	00 6	8 45	8,30	8,25	18,00	7.95	7,65	7,05	
5	2,45	7+30	9,53	9,23	9,20	8,20	8,00	7 93	7.73	7 30	7 50	7 43	7.75	10 10	9,20	8,95	8,00	7 93	8,15	7.65	7,50	2 45	7 55	7 70	8,00	9,80	9.50	6 00	8,40	8,25	8,20	8,00	7,93	212	7,03	
-	\$36	300	14	27	38	69	100	138	175	215	256	300	345	14	67	38	69	100	138	175	215	256	300	345	386	14	27	38	69	100	138	175	215	256	300	
5	15.2	4,2	14.0	14.4	5 2	5.6	5 4	5. 5	4 2	14 O	14.0	13,8	14,0	14.4	11.6	15.4	17 2	17.8	13.6	14.0	14.2	13,6	13.6	13.6	13,6	4 8	5 5	15.0	12 4	15.0	15.2	15,2	14 8	14.4	13.2	
-	1300	1300	1400	1100	14 00	1000	1403	101	1400	14:00	1400	1400	1400	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	
1	\$29	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	
-	-	-	-		-	Concession of the local division of the loca	-	-	-	-	-			-	-	-	-	-	-	-	-	-			-	-	-	-	-	_	-	-	-	-	-	

			-			_			_			-				-	-			_														_	
	J. ·		Н										-													-					2	_			
	Stor -				68	705	195	950	131	660	0	6	358	8	64	5	~	149	3 81	10	52	2	RO	2.83	06	547	69	20	333	834	33	R	220	0	20
	1.5		[q 4	R	3.9	8.4	3.4	8.7	8 4	0 5	2.7	1.6	3.7	3.7	6.3	6	6	0.8	8	3.6	2.0	0.0	n .		10	2.1	8.2	8.8	3.5	1	6.3		13	-	1.0
			-		-	-	5		-	~	~	C4	4	~	*	ŝ	CR.	6	2								30	-	~	~		CQ.	0	54	<u></u>
	2-1-		ŏ											-						5	0								-		~		-		
	24		_		600	950	366	223	150	90	8	350	96	220	512	3	2330	735	812	168	105	186	150	2	74	000	666	1631	308	660	695	354	600	000	020
				2	1.5	1.7	3.5	0,8	2.1	3,3	4.5	1.9	4 3	2.0	4 3	5.7	2.1	5.5	6.5	0 4	0 9	1.6		N O	2 62	2.7	0.8	1.3	1.4	1.5	1.7	2.4	2.8	3.0	3.3
	2.			+	-			-	-	-	-	-				-			2	-		-				-					-		-		-
	N"			0	669	513	539	921	545	346	8	013	6	3	33	225	c23	8	22	200	316	23	0	NA N	20	8 9	042	212	722	1725	106	465	CR	128	906
	1			-	2.9	2 3	00	5	3.0	2.9	3.1	2.4	5	2 3	5	2 9	1 9	6.5	6.4	3	5	5 1	5 4			5	5.0	5.4	5.4	5.3	5.5	5.3	5 3	5.5	5.3
	10					0.	-			6	10		10	0	-	-	9	80	ni.	9	0	10	10 Y	0 0	0	80	6	5	4	9	6	1	82	6	10
	P			20	644	2 9	769	100	530	5.0	8.8	0.0	364	615	200	3.8	6 0	179	13	3.8	5.2	270	6	102	274	8 8	633	291	890	26]	986	801	88	909	926
1	12.		-	-	-	-	-	1.	2	-	-	-	÷	0	÷	-	0	5	5	4	đ.	\$.	3 1	ñ ¥	1 10	-	4	4	4	4	4	4	4	4	4
					12	1242	÷	63	67	33	33	51	3	3	66	2	64	23	07	82	52	19	8		2	72	N	142	22	6.6	173	66.	28	9	123
				-	. 60	5	3	N	33	0	0	5	3	24	3	-	5	0	6	3	. 19		2	2 0	1 6	6 9	5.2	3, 21	0	0 .0	2	2 5	5 3	5 3	5.3
	L IC .			-	4	-21	1 24	10	n	5	5	~	17	2	2	20	-11	6 8	2 2	10	4	0	6 0		. 6	-	0	0	3	1	=	2	9	4	-
-	1.1			10	604	5 4	311	2 9	3.6	0: 3	0 3	594	313	202	319	462	5=4	2 2	000	6-5	472	64	5 1	0.0	619	260	10	4 02	294	5	10.13	47	5	200	210
	Sect.				ц.	4	4	n	10	30	5	.5	4	+	3	10	4	80		0	0	10	0 1	0 0	0	9	14	9	0	0	0	0	0	5	0
				-	270	546	120	18	12	2	640	1444	80	3	6 .	8	5	626	- 6-	9	0	025	0.0	040	6.1	453	621	037	025	655	N	S.	628	00	836
	NA			-	2 8	3, 2	2 2	4 2	3,8	3	3.1	3.5	3.0	3.7	3.0	14 0	3.9	3.0	2.9	5	1 .9	1.7	1.0		- en	1.4	-	1.6	1.1	1.4	1.4	1.5	1 . 6	1.6	-
	7. 1 6				0	10	-	9	10	80	80	20	4	2	01	9	e	0	10	90	4	5	0 1	2 B	100	0.8	63	86	6	00	80	2	5	9	94
	Ber's			14	.56	.79	107	23	Ę	6	23	6.	9	0	9	3	-	2	9	c4	0.	6	20 1	A d	2	, 80	. 97	8	2	8	, 8	. 6.	.6.0	.8	8
-	¥4		1	_	-	*	-	N	N	-	-	-	-	01	*	01	CN .	é	5	- 6	6	6	6 0		0 6	9 0	8	80	80	8	8	80	8	8	8
	in .			-	0	0	0	0	0	0	0	•	0	0	0	0	0	20	120	276	276	276	270	27	- 2	27	197	197	19	.6	6	6	6	6	-6
	11			-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	°	•	0	0	0 0	5 0	0	0	ó	0	0	0	0	0	0	0	0
	2.				_	~	_	_	0	~	~		0	0	0	0	0	-	10	3.8	3.8	358	3.8	3 8	3 8	338	970	970	9-0	970	0.6	0.6	970	0.46	970
				-	0.0	0.0	0.0	0	0	0	0	0.0	0	0	0	0	0	6	6	10	5	2	in i	n 1	n in	15.	10,	10.	10	10.	0	0	0	0	0
	Sela			-	-	-		-	-	_	-	-	~	~	~	0	0	10	10	~	~	~	~ 1			~	2	2	2	~	~	~	2	2	~
	100			51	.40	.40	. 40	.40	.40	.40	9.40		1 .	4 6	14 6	9.41	17 6	4 6	4 6	6 0	6 0	6 0	6.0	6 0	6 0	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0 9	0.9	0.9
	diant 2		1		6	5		5	5		0,						-			-	-	+				-	-	-	-	-	-	-	-	-	-
	1			-	2	80	2-	00	90	~	90	~	9	-00	~	80	2	~	9	13	8	~	80 0	0	1 10	6	00	8	2	~	4	5	9	~	80
				2	80	8	60	00	8	80	8	80	80	80	80	80	00	4	4	0	0	0	0	0 0	0 0	0	0	0	•	0	0	0	0	0	0
	1			6	54	54	54	54	124	2	124	124	124	124	124	124	754	270	270	240	240	240	240	740	240	240	240	240	240	240	740	240	740	240	240
	-				0	-0	2	-	0	8	0	8	0	0	8	0	8	2	2	10	10	10	0		0.10	5	in	20	5	10	2	2	10	3	3
	a start			80	630	630	630	630	630	630	630	630	630	630	630	630	630	153	15	50	20	50	20	202	202	50	32	32	32	32	32	. 32	. 32	, 32	.32
					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ő	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0
	22.2				20	75	52	8	25	00	22	00	522	50	00	000	22	22	300	350	125	20	025	750	002	325	225	025	775	850	825	100	100	025	000
	4			~	4.1	4 7	3,7	6.0	5.6	5	4 6	3n	4	5.5	1	6,0	5	4	4	5	2	2	2	-	-	-	~	2	-	-	-	2	N	2	n.
	1 - fe - 1		4	H	0		0	0	10	0	0	0	10	20	0	0	30	0	0	2	0	0	0	0,0	2 2	30	52	00	22	85	80	10	10	05	00
	· .			0	4 2	4, 8	3.7	6,0	5 6	5	4 7	5 2	4	50	1	6,0	3	4	4.5	2	2	ñ	N			-	2	21	-	1.	-	N	2	2	N
	Trate 1				0	0	ŝ	0	0	0	10	0	0	10	0	0	0	30	0	22	ñ	0	2	0.1		10	50	05	80	85	85	10	0	00	00
	1 P.17	Ξ, ,		3	-1	4 7	3.7	6.0	5.6	2	4 6	20	4.4	5	*1	6.0	5	24 + 2	-	2	2	2	~	-		-	~	2	-	-	-	N	N	N	Ň
	3			-7	8	00	56	38	00	75	56	00	56	00	56	56	00	145	30	38	00	513	300	2 20	100	130	100	175	115	2 3	256	300	345	38	130
	-			-	-	- 0	-7	60	- 0	6	9	n	80	-	2	19	01	ch Cl	6 4	N	0	0	9	0 1	0 0	50	4	7	0	3	101	0	9	40	00
	Sec.			-	36	37.	39	30	30.	32.	32	36	38	27.	10	39.	37.	2	5	5	22	22	N	~ ~	1 1	23	N Ct	23	23	23	2	23	N	2	~
	No.	+		-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0
	-				60	80	80	100	100	100	100	120	120	140	140	140	160	60	6								_		_	_					
	2 4 5 4			-	1	22	76	27	78	79	80	-	52	83	84	85	86	87	80	89	06	16	35	66	10%	96	297	298	299	300	301	302	303	304	305
	1			L	N	01	CN .	N	20	57	N	173	01	CV .	CN .	CN	10	61	N	57	24	N	(1)	ed 6	4 et				-	-	-	-	Proto and P		
	2. · · · ·			-																															
	12194																																		
	2 .																																		
	N'a	1																																	
	1. C. 1. C. 1.																																		

- 69 -

.....

and a state of the state of

*

.

. .

- 68 -

Tablica IX.2

*. *

		Tablica (bliczonych	wielkości	modułowych		wat A
Lp.	Rez	So	$\left(\frac{\sqrt{z}}{h}\right)$. 10 ⁶	$\left(\frac{a}{g}\right)$	(Sh _z) _{zm}	(Shz)obl.	1.0
1	2	3	4	5	6	7	
1	159,65	779,73	330,1	17,00	6,1156	5.5040	07.4
2	289,78	720,97	322,03	17,00	8,2934	8,2455	1
3	563,95	737,17	324,3	17,00	12,8195	14,1380	*
4	163,46	737,17	324,3	38,24	6,4755	6,6532	
5	288,28	729,06	323,2	38,24	10,0390	10,2847	
6	423,91	720,97	322,0	38,24	12,9201	13,7840	
7	163,05	745,43	325,5	67,99	7,4951	7.8352	1.00
8	283,83	753,83	326,7	67,99	10,9291	12,2046	1.4
9	415,20	753,83	326,7	67,99	14,4433	16,4396	1.1.1
10	563,95	737,17	324,3	67,99	17,6407	20,5183	19.1
11	719,50	705,17	319,7	67,99	22,7888	23,9589	100
12	292,82	705,17	319,7	106,23	14,4253	13,3910	12
13	428,35	705,17	319,7	106,23	19,7531	18,0377	
14	574,24	713,05	320,9	106,23	22,2239	22,8993	
15	715,72	713,05	311,0	106;23	26,1935	26,4132	12
16	282,33	762,38	327,8	152,98	17,5176	15,3184	3 -
17	410,85	771,00	329,0	152,98	21,2324	20,7370	3
18	547,94	788,56	331,2	152,98	28,9471	26,4429	-
19	686,50	779,73	310,4	152,98	33,7155	29,5002	
20	160,49	771,00	329,0	208,22	11,3248	10,8134	
21	280,85	771,00	329,0	208,22	18,2032	16,7602	
22	415,20	753,85	326,7	208,22	22,3678	22,3595	19
23	152,94	854,76	339,2	271,96	10,6275	12,1496	
24	277,94	788,56	331,2	271,96	19,5238	18,2133	1
25	387,28	874,97	341,5	271,96	25,5750	25,6097	1
26	516,15	895,98	323,3	271,96	33,9373	30,8103	
27	646,99	885,28	312,9	271,96	41,7914	35,4373	1.1
28	124,79	1312,7	390,5	106,23	11,0160	11,3254	
29	218,38	1312,7	390,5	106,23	18,1463	17,5539	1000
30	427,89	1334,5	392,3	106,23	32,6516	30,1026	12
31	530,07	1352,0	393,9	106,23	41,2833	35,9699	- 4.0
32	203,95	460,02	279,4	106,23	6,86944	7,1707	de in
33	526,80	451,14	278,3	106,23	12,4749	14,8743	3
34	706,73	455,56	279,2	106,23	15,1767	18,8418	. 5
35	900,81	433,91	275,1	106,23	19,0341	21,9620	
36	624,78	292,15	243,7	106,23	9,55347	12,0621	1
37	1105,39	277, 38	239,8	106,23	14,7904	18,0950	200 20

17,00

2,9475

3,0301

.....

38

146,27

940,30 174,2

Γ	1	2	3	4	5	6	7
Γ	39	269,12	844,83	169,0	17,00	5,3463	4,5705
	40	385,19	885,28	171,3	17,00	6,3808	6,2754
	41	146,27	940,30	174,2	38,24	3,4601	3,8209
ŀ	42	272,05	825,47	167,9	38,24	5,3024	5,6202
ł	43	395,86	835,02	168,5	38,24	7,1483	7,6082
l	44	659,42	849,82	169,3	38,24	10,8679	11,4973
	45	155,46	825,47	167,9	67,99	3,8465	4,2400
l	46	285,34	745,43	162,8	67,99	6,3328	6,2958
1	47	421,71	729,06	161,6	67,99	8,8239	8,4224
L	48	556,60	762,38	163,9	67,99	10,1297	10,8131
ł	49	682,94	788,56	165,6	67,99	11,7857	13,0347
l	50	156,29	816,07	167,3	106,23	4,9803	4,7677
ł	51	286,06	737,17	162,2	106,23	7,1565	7,0642
	52	423,91	720,97	161,0	106,23	9,2566	9,4852
	53	559,54	753,85	163,3	106,23	11,1396	12,1586
I	54	686,50	779,73	162,5	106,23	14,7032	14,4457
ł	55	157,97	797,66	166,2	152,98	5,5982	5,2220
	56	283,83	753,85	163,3	152,98	7,9239	7,8997
	57	423,91	720,97	161,0	152,98	11,5024	10,4355
	58	556,60	762,38	163,9	152,98	14,8428	13,5085
1	59	693,73	762,38	158,9	152,98	18,2307	15,5866
	60	158,82	788,56	165,6	208,22	5,6950	5,6570
	61	288,28	741,31	162,4	208,22	9,9718	8,5879
1	62	157,97	797,66	166,2	271,96	6,91431	6,1201
	63	288,28	729,06	161,6	271,96	9,94274	9,1254
	64	423,91	720,97	161,0	271,96	12,4764	12,2303
ł	65	559,54	753,85	158,3	271,96	17,9328	15,2955
	66	127,12	1266,8	192,8	106,23	6,4431	5,7805
	67	218,38	1312,7	195,3	106,23	9,3955	9,0997
	68	378,34	405,61	134,8	106,23	4,72795	5,4677
	69	533,63	438,16	138,0	106,23	6,64351	7,6139
	70	706,73	455,56	139,6	106,23	9,23937	9,7805
l	71	873,06	464,53	140,4	106,23	12,0468	11,7174
	72	256,07	279,78	120,3	106,23	2,62072	3,0058
	73	489,06	230,71	112,8	106,23	3,96985	4,2621
	74	734,04	217,97	111,0	106,23	5,61747	5,6075
	75	985,55	219,74	111,2	106,23	6,85689	7,1035
	76	1233,00	217,97	111,0	106,23	9,36703	8,4171
	77	273,50	816,07	111,6	17,00	2,82092	3,0693
	78	389, 39	864,79	113,5	17,00	4,18377	4,1129
	79	270,61	835,02	112,3	38,24	3,54270	3,8442
	80	387,28	874,97	113,8	1 38,24	4,98535	5,2764

- 71 -

od. tabl. IX.2

- 72 -

ad tabl TV 2

cd. tabl. IX.2

2,51817

T

-						cd. tabl. IX.	2	1	1	2	3
1	2	3	4	5	6	7]		123	168,18	697,41
81	513,24	906,85	115,0	38,24	6,3738	6,7639			124	226,17	737,17
82	625,45	951,5	116,5	38,24	7,8216	8,1888		1	125	274,95	806,83
83	146,69	929,04	115,7	67,99	3,06867	3,0195	1. 51	1.1.1.1	126	408,71	779,73
84	272,05	825,47	111,9	67,99	4,67252	4,4728		1	127	22,706	753,85
85	395,86	835,02	112,3	67,99	5,93979	6,0550			128	44,251	737,17
86	513,24	906,85	115,0	67,99	7,1985	7,9092		+	129	63,250	713,05
87	643,32	895,98	114,6	67,99	8,9092	9,3520			130	118,46	667,39
88	149,61	895,98	114,6	106,23	3,80219	3,3723	-	1	131	164,73	729,06
89	274,95	806,83	111,2	106,23	4,88487	5,0089		10	132	226,17	737,17
90	402,22	806,83	111,2	106,23	6,10200	6,7469			133	285,34	745,43
91	527,64	854,76	113,1	106,23	9,2675	8,7283		1	134	348,70	753,85
92	644,99	885,23	113,0	106,23	12,1367	10,4118			135	417,41	745,43
93	154,63	835,02	112,3	152,98	3,80120	3,6230		12	136	489,15	745,43
94	279,39	779,73	110,0	152,98	5,70446	5,4558		1.3	137	22,468	771,00
95	403,30	802,22	111,0	152,98	7,9718	7.4405	s. "	1	138	44,023	745,43
96	533,49	835,02	112,3	152,98	10,8357	9.5554		1	139	62,597	729,06
97	654,05	-864,79	111,1	152,98	13,2667	11,2907			140	111,32	762,38
98	156,29	816,07	111,6	208,22	4,27482	3.0988	1. 1. 1	14.5	141	167,75	701,30
99	294,32	697,41	106,2	208,22	5,67954	5,6594	27 ×	1.1	142	227.33	729,06
100	423,91	720,97	107,3	208,22	8,2227	7.7324	4	Ft	143	288,28	729,06
101	166,45	713,05	107,0	271,96	4,50634	3,9705		-	144	361,59	697,41
102	3292,82	705,17	106,6	271,96	6,7243	6,1235			145	413,01	762,38
103	132,63	1157,7	125,0	106,23	4,01758	3,7877			146	494,19	729,06
104	233,52	1143,0	124,1	106,23	6,15611	5,8214	* +a		147	550,80	779,73
105	570,31	1157,7	123,4	106,23	11,6713	11,7260		10° 1	148	22,235	788,56
106	196,84	508,61	96,00	106,23	2,25464	2,6629	11 2 7		149	43,560	762,38
107	366,61	433,91	91,70	106,23	3.30500	3,8326			150	62.279	737,17
108	524,41	455,56	93,06	106,23	4,63819	5.2708	1 4 2	1	151	117,84	674,79
109 -	914,89	421,45	90,90	106,23	7,81657	7,6662	*	1.14	152	160,49	784,10
110	730,70	425,56	91,17	106,23	6,77670	6.4782	F	1	153	228,52	720,97
111	694,37	246,46	76,93	106,23	3,11237	4.0324	me in		154	286,81	737,17
112	942,80	242,039	76,51	106,23	3.97892	5.0549			155	356,02	720,97
113	22,235	788,56	82,81	4,249	0,23628	0,22638	1	1. 1	156	410,85	771,00
114	41,973	825,47	83,95	4,249	0,35858	0,38591		4. *	157	489.15	745,43
115	60,027	797,66	83,10	4,249	0,50611	0,49720	8 40 10	+	158	580,23	697,41
116	109,00	797,66	83,10	4.249	0.89463	0,79326		ine.	159	22,827	745,43
117	157,97	797,66	83,10	4,249	1,22093	1.06074	· · · ·	Cr.	160	44,940	713,05
118	215,68	816,07	83,67	4.249	1,36684	1.37811			161	60,985	771,00
119	21,764	825,47	83,95	9.561	0.30402	0,28008	35 .	+	162	113.66	720,97
120	42,198	816,07	83,67	9.561	0,53646	0.46624	× ->		163	163.89	737,17
121	59,390	816,07	83,67	9.561	0,68134	0,60931			164	225,01	745,43
122	113,09	737,17	81,08	9,561	0,98478	0,93079	· · · · ·		1	1 2 3	1- 32 · .

1	2	3	4	5	0		
23	168,18	697,41	79,65	9,561	1,21678	1,21465	
24	226,17	737,17	81,08	9,561	1,77208	1,60167	
125	274,95	806,83	83,38	9,561	2,44264	2,00504	
26	408,71	779,73	82,52	9,561	3,07002	2,66229	
127	22,706	753,85	81,67	17,00	0,37548	0,31249	
128	44,251	737,17	81,08	17,00	0,54897	0,51752	
129	63,250	713,05	80,22	17,00	0,76355	0,66650	
130	118,46	667,39	78,51	17,00	1,04910	1,03267	
131	164,73	729,06	80,79	17,00	1,56644	1,43577	
132	226,17	737,17	81,08	17,00	1,91492	1,85681	
133	285,34	745,43	81,38	17,00	2,14040	2,24773	
134	348,70	753,85	81,67	17,00	3,11349	2,65368	E
135	417,41	745,43	81,38	17,00	3,25298	3,02771	
136	489,15	745,43	81,38	17,00	3,61693	3,42810	
137	22,468	771,00	82,24	26,56	0,35647	0,35505	
138	44,023	745,43	81,38	26,56	0,50868	0,58533	
139	62,597	729,06	80,79	26,56	0,66063	0,75735	ł
140	111,32	762,38	81,95	26,56	1,25087	1,23215	
141	167,75	701,30	79,79	26,56	1,61014	1,58851	
142	227,33	729,06	80,79	26,56	1,99540	2,07929	
143	288,28	729,06	80,79	26,56	2,59718	2,50437	
144	361,59	697,41	79,65	26,56	2,97852	2,88581	
145	413,01	762,38	81,95	26,56	3,42586	3,43995	
146	494,19	729,06	80,79	26,56	3,92507	3,81951	ł
147	550,80	779,73	82,52	26,56	4,48791	4,38740	
148	22,235	788,56	82,81	38,24	0,36981	0,39539	
149	43,560	762,38	81,95	38,24	0,59386	0,65177	1
150	62,279	737,17	81,08	38,24	0,88670	0,83942	
151	117,84	674,79	78,79	38,24	1,22852	1,28784	
152	160,49	784,10	82,67	38,24	1,77836	1,85062	
153	228,52	720,97	80,51	38,24	2,05170	2,28232	
154	286,81	737,17	81,08	38,24	2,82578	2,77572	
155	356,02	720,97	80,58	38,24	3,28775	3,23237	
156	410,85	771,00	82,24	38,24	3,70703	3,81244	I.
157	489,15	745,43	81,38	38,24	4,27136	4,25478	
158	580,23	697,41	79,65	38,24	5,18334	4,60938	
159	22,827	745,43	81,38	52,05	0,44564	0,41964	
160	44,940	713,05	80,22	52,05	0,73710	0,68817	
161	60,985	771,00	82,24	52,05	0,98376	0,93054	
162	113,66	720,97	80,51	52,05	1,50571	1,43598	
163	163.89	737,17	81,08	52,05	2,05296	1,94093	

81,38

52,05

2,37373

- 73 -

- 75 -

.

od. tabl. IX.2

od.	tabl.	TX-2
	and state over the s	and the second s

.

1	2	3	4	5	6	7
165	285,34	745,43	81,38	52,05	2,83023	3.03299
166	350,56	745,43	81,38	52,05	3.34960	3,56353
167	421,71	729,06	80,79	52,05	3.73342	4.04489
168	486,56	753,85	81,67	52,05	4,24748	4.64813
169	568,32	729,06	80,79	52,05	5,29901	5.10953
170	22,468	771,00	82,24	67,99	0,46475	0.45789
171	43,560	762,38	81,95	67,99	0,85917	0.76213
172	63,250	713,05	80,22	67,99	1,04508	0,96338
173	110,16	779,73	82,52	67,99	1,61001	1,60439
174	162,19	753,85	81,67	67,99	2,12060	2,11485
175	225,01	745,43	81,38	67,99	2,54800	2,70841
176	289,78	720,97	80,51	67,99	3,27932	3,21426
177	346,86	762,38	81,95	67,99	3,85450	3,86953
178	417,41	745,43	81,38	67,99	4,60807	4,39410
179	494,19	729,06	80,79	67,99	5,30533	4,92581
180	571,29	720,97	80,51	67,99	6,10202	5,46929
181	626,08	753,85	81,67	67,99	7,05144	6,09049
182	21,764	825,47	83,95	86,05	0,42818	0,50261
183	42,651	797,66	83,10	86,05	0,84123	0,82871
184	60,985	771,00	82,24	86,05	1,19971	1,06747
185	117,24	682,21	79,08	86,05	1,61501	1,61413
186	161,33	762,38	81,95	86,05	2,41976	2,26630
187	225,01	745,43	81,38	86,05	2,89573	2,88874
188	289,78	720,97	80,51	86,05	3, 32734	3,42826
189	352,37	737,17	81,08	86,05	3, 87091	4,06737
190	415,20	753,85	81,67	86,05	4,41918	4,70936
191	486,56	753,85	81,67	86,05	5,08620	5,33214
192	559,54	753,85	81,67	86,05	5,99377	5,94883
193	629,37	745,43	81,38	86,05	6,99020	6,46435
194	22,243	788,56	82,81	106,23	0,47829	0,52260
195	42,883	788,56	82,81	106,23	0,88375	0,87383
196	62,279	737,17	81,08	106,23	1,20209	1,10919
197	114,85	713,05	80,22	106,23	1,60266	1,74393
198	163,05	745,43	81,38	106,23	2,28519	2,37830
199	232,09	697,41	79,65	106,23	2,88568	2,97192
200	286,81	737,17	81,08	106,23	3,52756	2,66777
201	351,44	741,31	81,22	106,23	4,23374	4,31959
202	419,56	737,17	81,08	106,23	4,77972	4,94050
203	499,34	713,05	80,22	106,23	5,44541	5,51264
204	562,52	745,43	81,38	106,23	6,88688	6,27241
205	629,37	745,43	81,38	106,23	7,28149	6,84897
206	708,34	729,06	80,79	106,23	8,10668	7,37918

- 74 -

	1	2	3	4	5	6	7
5	207	23,062	745,43	81,38	128,54	0,50345	0,54179
	208	44,477	729,06	80,79	128,54	0,75147	0,88999
	209	62,597	729,06	80,79	128,54	1,02158	1,16309
	210	113.09	737,17	81,08	128,54	1,84950	1,86487
	211	167,33	705,17	79,94	128,54	2,38686	2,44583
	212	222,64	762,38	81,95	128,54	3,17081	3,25627
	213	285,34	745,43	81,38	128,54	3,86864	3,88463
	214	351,44	741,31	81,22	128,54	4,51196	4,55196
	215	413,01	762,38	81,95	128,54	5,33892	5,28289
	216	501,98	705,17	79,94	128,54	5,67088	5,78170
	217	565,43	737,17	81,08	128,54	7,32414	6,57665
	218	649,19	697,41	79,65	128,54	8,18135	7,00838
	219	708,34	729,06	80,79	128,54	8,56158	7,77613
	220	62,279	737,17	81,08	152,98	1,29934	1,22622
	221	111,91	753,85	81,67	152,98	1,75690	1,97576
	222	163,46	741,31	81,22	152,98	2,36695	2,62222
	223	225,01	745,43	81,38	152,98	3,24499	3,38354
	224	285,34	745,43	81,38	152,98	4,06382	4,07528
	225	350,56	745,43	81,38	152,98	4,87031	4,78814
	226	418,46	749,66	81,52	152,98	5,34648	5,52482
	227	486,56	753,85	81,67	152,98	6,58547	6,24547
	228	565,43	737,17	81,08	152,98	7,41593	6,89941
	229	626,04	766,71	82,10	152,98	8,52170	7,71123
	230	672,04	816,07	83,67	152,98	9,53345	8,56223
	231	22,827	745,43	81,38	179,53	0,50459	0,58924
	232	44,023	745,43	81,38	179,53	0,96672	0,98554
	233	61,140	766,71	82,10	179,53	1,33875	1,30353
	234	111,02	766,71	82,10	179,53	2,00630	2,07972
	235	162,19	753,85	81,67	179,53	2,67402	2,76113
	236	226,17	737,17	81,08	179,53	3,67545	3,51829
	237	279,39	771,00	82,24	179,53	4,39817	4,30323
	238	346,86	762,38	81,95	179,53	5,12615	5,05203
	239	419,56	737,17	81,08	179,53	6,24749	5,70801
	240	478,95	779,73	82,52	179,53	7,14245	0,02130
	241	22,235	788,56	82,81	208,22	0,55702	0,02001
	242	43,332	771,00	82,24	208,22	0,98940	1,04101
	243	62,279	737,17	81,08	208,22	1,39969	1,33490
	244	114,26	720,97	80,51	208,22	2,03089	2,10920
	245	164,73	729,06	80,79	208,22	2,79750	2 62007
	246	220,32	779,73	82,52	208,22	3,70972	1, 50097
	247	279,39	779,73	82,52	208,22	4,55770	5 33083
	248	341,47	788,56	02,01	200,22	5,0032	1,0000

- 77 -

od tobl TV 0

- 76 -

od. tabl. IX.2

					~	Nº COUL TASE
1	2	3	4	5	6	7
249	406,59	788,56	82,81	208,22	6,31194	6,15003
250	473,90	797,66	83,10	208,22	7,30224	6,96500
251	547,94	788,56	82,81	208,22	8,97420	7,76324
252	22,469	771,00	82,24	239,02	0,65460	0,64696
253	43,560	762,38	81,95	239,02	1,00023	1,07678
254	62,597	729,06	80,79	239,02	1,34191	1,37995
255	119,05	660,23	78,22	239,02	2,24464	2,10689
256	175,13	639,30	77,37	239,02	2,87666	2,77600
257	217,99	797,66	83,10	239,02	3,96543	3,93870
258	277,94	788,56	82,81	239,02	4,47091	4,72118
259	343,25	779,73	82,52	239,02	5,31582	5,52000
260	404,39	806,83	83,38	239,02	6,21627	5,52000
261	471,35	806,83	83, 38	239,02	7,38347	7,26921
262	542,05	806,83	83,38	239,02	8,77103	8,10995
263	606,47	806,83	83,38	239,02	10,3828	8,85545
264	22,706	753,85	81,67	271,96	0,59819	0,66402
265	44,251	737,17	81,08	271,96	1,07024	1,09968
266	61,959	745,43	81,38	271,96	1,31901	1,44438
267	113,66	729,06	80,79	271,96	2,11579	2,28140
268	163,05	745,43	81,38	271,96	2,91822	3,08145
269	226,75	737,17	81,08	271,96	4,01584	3,95344
270	286,81	737,17	81,08	271,96	4,79053	4,75214
271	348,70	753,85	81,67	271,96	6,05994	5,63879
272	414,08	758,14	81,81	271,96	6,48824	6,47990
273	491,68	737,17	81,08	271,96	7,94813	7,24777
274	263,05	263,65	58,98	38,24	0,97332	1,14720
275	266,13	257,00	58,51	67,99	1,25934	1,32644
276	712,76	232,62	56,57	67,99	2,08780	2,64368
277	89,429	336,80	63,49	106,23	0,75248	0,78931
278	231,46	349,29	64,14	106,23	1,62295	1,70912
279	427,20	310,76	62,05	106,23	2,41906	2,52451
280	624,94	310,76	62,05	106,23	3,02449	3,40056
281	263,56	262,52	58,90	152,98	1,50311	1,67261
282	704,83	238,43	57,06	152,98	2,79685	3,34172
283	218,93	394,28	66,76	208,22	2,32751	2,17326
284	582,61	362,38	64,95	208,22	4,22189	4,36866
285	712,76	232,62	56,57	.208,22	3,24450	3,59562
286	267,16	254,84	58,35	272,96	1,97186	1,93474
287	563,95	737,17	324,3	38,24	15,1156	17,3446
288	715,72	720,97	322,0	38,24	17,7216	20,7734
289	72,295	534,87	91,11	0	0,32903	0,32454
290	193,87	513,45	90,08	0	0,69073	0,68108

		ous caute 14.6					
	1 1	2	3	4	5	6	- 7
-	291	416,83	513,45	90,08	0	1,25967	1,24034
	292	576,16	524,02	90,59	0	1,62478	1,62324
1	293	662,58	524,02	90,59	0	1,52917	1,81098
	294	739,58	526,69	90,71	0	1,88228	1,98078
	295	818,04	534,87	91,11	0	1,83869	2,16972
	296	857,03	484,53	88,57	0	1,99298	2,08612
	297	195,65	503,82	139,20	0	0,99624	1,02666
i	298	342,39	503,82	139,20	0	1,54212	1,59130
	299	426,57	489,65	138,03	0	1,59070	1,84860
1	300	430,48	479,45	137,23	0	1,67010	1,83224
	301	489,59	508,01	139,57	0	1,97360	2,11967
-	302	581,63	-513,45	139,97	0	2,03136	2,44539
!	303	662,58	524,02	140,77	0	1,98094	2,75066
	304	744,83	518,70	140,37	0	2,26164	2,99120
	305	829,73	518,70	140,37	0	2,57533	3,25505

WYDAWNICTWA NAUKOWE I DYDAKTYCŹNE POLITECHNIKI ŚLĄSKIEJ MOŻ-NA NABYC W NASTĘPUJĄCYCH PLACOWKACH:

Gliwice — Księgarnia nr 096, ul. Konstytucji 14 b
Gliwice - Spółdzielnia Studencka, ul. Wrocławska 4 a
Katowice - Księgarnia nr 015, ul. Żwirki i Wigury 33
Katowice — Księgarnia nr 005, ul. 3 Maja 12
Bytom - Księgarnia nr 048, Pl Kościuszki 10
Chorzów — Księgarnia nr 063, ul. Wolności 22
Dąbrowa Górnicza — Księgarnia nr 081, ul. ZBoWiD-u 2
Racibórz — Księgarnia nr 148, ul. Odrzańska 1
Rybnik — Księgarnia nr 162, Rynek 1
Sosnowiec — Księgarnia nr 181, ul. Zwycięstwa 7
Zabrze — Księgarnia nr 230, ul. Wolności 268
Warszawa — Ośrodek Rozpowszechniania Wydawnictw Naukowych PAN Pałac Kultury i Nauki

Wszystkie wydawnictwa naukowe i dydaktyczne zamawiać można poprzez Składnice Księgarską w Warszawie, ul. Mązowiecka 9