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NONLINEAR THEO RY OF ANALYSIS VARIABLE-RELUCTANCE M OTOR DRIVES

Summary. The paper examines the excitation of a variable-reluctance motor drive operating at 
constant speed. The excitation refers to a prescribed relationship between the phase currents and 
rotor position that results in the desired drive behavior. An analytical method for the determination of 
currents and torque of a motor Including saturation effect is presented. The model includes all 
significant electromagnetic and dynamic characteristic of variable-reluctance motor. A piecewise 
analytical formula for an instantaneous torque is also included, permitting the rapid calculation of 
mathematically smooth torque waveforms. Because the magnetization curves do not need to be 
precalculated, stored or curve-fitted, the algorithms are extremely fast.
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1. INTRODUCTION

The design of variable-reluctance motor drives requires computer-based modeling because the 
torque is a function of the phase current, the rotor position and is affected by intense saturation of 
the corners o f partially overlapping stator and rotor poles. The instantaneous torque and current 
vary with rotor position so that the average torque can be determined only by integration over a 
period of rotation.

The model described in this paper takes these factors into account. It is a lower-order model in 
the mathematical sense, with a degree of empiricism in its form. The model is capable of 
reproducing smoothly all the nonlinear characteristics necessary for correct estimating the current 
waveforms and torque, especially when the motor is driven from a voltage source with variable 
switch on angle. For simplification of the analytical solution of a nonlinear differential equation the 
stator resistance is neglected.

Figure 1 shows the cross-section of typical three-phase doubly salient variable-reluctance 
motors with six stator poles and four rotor poles. The figure shows two boundary positions. This 
motor consists of iron laminations and copper phase windings on the stator, and iron laminations on 
the rotor. Each phase is wound, with opposite magnetic polarity, on a symmetrically stator pole.

Aligned position for the phase 1. Unaligned position for the phase 1.
Fig. 1. Three-phase doubly salient variable-reluctance motor
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The excitation of a phase, that is, the presence of a current in that phase, magnetizes both the 
stator and the rotor. This produces a torque, causing the rotor to align its poles with those excited 
on the stator and thereby minimizing the reluctance of the magnetic circuits. The polarity of the 
torque does not depend on the direction of the exciting current since the rotor is always attracted to 
the stator. Consequently, the variable-reluctance motor requires only unipolar currents in its phases. 
Sequential excitation of the phases causes the rotor to rotate and synchronously align its poles with 
those excited on the stator.

2. ELECTRIC MODEL OF VARIABLE-RELUCTANCE MOTOR

The analysis of the machine will be started from the electric model shown in the figure 2. As the 
mutual inductance among the phases is small and can be neglected, it is sufficient to consider only 
the one motor phase [1], [5], This one comprises the coil winding ohmic resistance and the induced 
voltage caused by change of the inductance and current.
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Fig. 2. Electric model of one phase

Flux linkage of the coil 4' depends on the rotor position 0m as well as the current i, because the 

magnetic circuit is saturable. The period of magnetic flux is — , where Nr is the number of rotor
N r

poles.
W e define the electric angle o f rotor position:

6 = N rem . (1)
Where: 6m is the mechanic angle of rotor position.

Subsequently the electric angular rotor velocity:
<o = N rcom . (2)

Where: ojm is the mechanic angular rotor velocity.
The differential equation is valid for the electric circuit:

u = Ri + L (0 , i)^ -  + i ^ M .  (3)
at M

.d L ^ i)
dt

Let’s suppose the change of electric variables much quicker than the change of mechanical 
variables. In this quasi-steady state we can suppose the angular velocity of rotor to be constant. 
Assuming this, the time in the voltage differential equation can be substituted by the angle of rotor 
position.

di di_.
dt d 0 ' dt d0

Substitution into (3) yields:

u = Ri + l(0 ,  i)to— + im *). (4 )

The expression i-

dt

presents the instantaneous back electromotive force of the phase.

d0 d0
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The usual co-energy formula for the instantaneous torque with one phase excited is:

8W '(9 ,i)
Y =  - ae (5)

3.MODELLING OF INDUCTANCE WAVEFORM

The Inductance waveform of a variable-reluctance motor depends on its design. This waveform 
was presented in many papers. Its modelling will be started from the idealized waveform in 
unsaturated area, as shown in the figure 3.

Fig. 3. Idealized waveform of inductance in non-saturable area

This waveform can be expressed by Fourier series:
l (g) = L 0 + L, cos(0)+ L 2 cos(20)+... + L „  cos(n.0).

Where:

L „ = L m + Lm Lrç

L „  =

271
2(l m - l J

■em

[l-cos(n.em)],

(6)

(7)

(8 )

Lm is the inductance in aligned position of the rotor.
Lm is the inductance in unaligned position.

For practical utilization it is sufficient to take only five or seven first terms of the series.
In the area of saturation the minimal inductance U , stays constant, but the maximal inductance 

Lm declines into U, with the excitation current. The magnitude of declination depends on the 
magnetization characteristic of the motor magnetic circuit. This one can be expressed by the 
relative coefficient of magnetization X, which is defined:

x = J _ 8 4 Ê l  (9)
Lm di

There are many possibilities of interpretation of the magnetization curve. One of them is the 
interpolation on the measured values. The interpolation is empirical in form and mathematically
simple. But we are expressed the magnetization curve analytically, which is advantageous for
successive derivation, to obtain the coefficient o f magnetization.

The magnetization curve was analytically expressed by a tangential hyperbolic function:
<j>(i) = k , . i+ k 2.tgh(k3.i). (10)

where the coefficients k,, k2, k3 can be calculated from the geometry and the phase winding of the 
motor. The coefficient of magnetization is obtained by differentiation of the equation (10):

1 dè(i) 1 f. k 2k 3
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The figure 4 shows the magnetization curve and the relative coefficient of magnetization as a 
function of the excitation current.

Fig. 4. Magnetization curve and coefficient of magnetization versus excitation current

To introduce the effect o f saturation into the inductance waveforms, it is necessary to multiply 
the inductance LM in the equations (7) and (8) by the coefficient o f magnetization.
The coefficients o f Fourier series will be in the form:

i _ i . ~ l-m A
Lo -  l-m +    ,

271

n .x.«m

In the figure 5 there are shown the curves of inductance o f the variable-reluctance motor including 
saturation effect calculated by Fourier series.

Fig. 5. Curves of inductance including saturation effect

4. THE SOLUTION OF VOLTAGE EQUATION

To predict the current waveform it is necessary to solve the voltage nonlinear equation (3). After 
substituting the equation (6) into (3) one obtains:
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u = Ri -  ico[L| s in 0 + . . .  +  nL„ sin(n0)]+ <b[l 0 + L , cos0 + . . .  + L n cos(n (12)
d9

After its arrangement one receives:
{-u  + Ri — ico[L, sine + ... + nL„ sin(ne)])dt + to[L0 +L, cos9 + ... + L„ cos(ne)]di = 9 . (13)

The equation (13) presents the exact differential equation of the type:
P(0,i)de + Q(01i)di = O. (14)

The exact differential equation has an analytical solution provided that:
3P M = 3Q M

s i ae ( ’
The condition is fulfilled when neglecting the excitation winding resistance (R=0). The equation 

(13) will take form:
{ -u - ito [L , sin0 + ... + nL„ sin(n0)]jdt + co[L0 +L , cos0 + ... + Ln cos(n 9)]di = 9 .

The general solution has the following form:
u.0-L(o[Lo +L , cos0 + ... + L „co s (n 9 )]= C . (16)

5. DYNAMIC OPERATION

The flux in the reluctance motor is not constant. It must be established from zero every stroke. 
In motoring operation the build-up is timed to coincide with the period when the rotor poles are 
approaching the stator poles of the phase.

It is assumed, that each phase is supplied by the circuit shown in the figure 6.

Fig. 6. Conduction modes in one phase

Both transistors T1 , T2 are switched at the turn on angle 0, and both are switched off at the turn 
off angle 0d. When the transistors T1 and T2 are open, the voltage impressed on the stator winding 
is the DC supply voltage. The integral constant C in the equation (16) can be calculated for this 
interval from the initial condition:

i = 0 for 0 = 0. and u = U .

By substituting into (16) and its arrangement we get the equation describing the excitation current 
curve in this interval:

i = —i-------------- u (e ~ e . ) ---------- j— t t .  (17)
co[L0 +1*! cos9 + ... + L „  cos(n0)J

When the T1 and T2 are closed the stator winding voltage is equal to the negation of the DC 
supply voltage because of the current flow in the freewheeling diodes. The integral constant C can 
be calculated from the condition:

i = ld for 0 = 0d and u = -U  .

For this interval the current curve can be expressed as:
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i = I L 0 + L i cos8d + ... + L n cos(n 8d) _______ U(9d - 6 ) ___________

L 0 + L, cos9  + . . .  + L n cos(n 9) co[Lq + L j c o s 9 + ... + L„ cos(n 9)J ^

where ld is the current at the rotor position 9d, (commutation of T 1 and T2) given by the formula (17).
The expressions (17) and (18) allow to calculate the excitation current curve as a function of the

rotor position, with L0, L i,..., L„ as the parameters.

6. CURRENT CALCULATION.

In addition to the magnetic circuit, the magnetization curve and the applied voltage magnitude, 
the switching excitation turn-on and turn-off angles for the controller switches will affect the phase 
current waveform. Generally, turn-on should be before the approaching rotor poles begin to overlap 
the stator poles and turn-off should be before alignment. For the best performance these angels 
must be adjusted as a function of both speed and torque.

The current waveform is determined by numerical approximation. The results for constant 
speed are shown in Figs. 6 and 7. For this analysis, the voltage impressed on the stator phase 
windings is assumed to have a rectangular form.
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Fig. 7. Waveform of phase current versus rotor position for low rotor speed

After switching the voltage on at 8a, the minimum inductance of each phase, corresponding to 
the rotor in unaligned position, allows the current to build up rapidly to its peak value. Subsequently, 
the increasing inductance and back electromotive force cause the current to decrease somewhat 
from the peak value. The switches are opened at 9d, before the maximum inductance is reached 
which would occur with the rotor in the aligned position. Then, because of the negative voltage 
applied to the circuit, the current falls rapidly and current will flow into power supply.

Considering, the excitation current amplitude is controlled by the conduction angle 9c
9c = 8 d - 9 . .  (19)

The current amplitude changes significantly with the change of the turn on angle.
The applied voltage amplitude variation can also control the current amplitude.
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a) Medium rotor speed.
Fig. 8. Waveform of phase current versus rotor rotor position

7. TORQUE CALCULATION

The rotor torque is calculated as a function of rotor position. When the rotor is moving the 
current and torque are no constant. The instantaneous current and torque waveforms are functions 
of speed, stator winding turns, applied voltage magnitude and switching ON and OFF times. 
Assuming the rotor speed to be constant the Instantaneous torque can be calculated from the co
energy formula expressed by the relationship:

y  =  (20)
’  2 de

The torque waveform is determined by numerical approximation from the equation (20). The 
results for constant speed are shown in Figs. 8 and 9. The Figs 8 shows the torque waveform for 
low rotor speed. The torque corresponds with the current In the figure 6.
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Figure 9. Waveform of phase current versus rotor speed

Shows the waveforms of torque for medium and high rotor speed. The corresponding excitation 
currents are presented in Fig. 7.
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a) Medium rotor speed.
Fig. 10. Variation of phase torque with rotor position

8. CONCLUSIONS

The obtained results show that the method of analysis presented in this paper allows to 
calculate accurately the instantaneous current and torque of a variable-reluctance motor. The 
effects of switching the excitation voltage are described. The influence of various speeds on the 
operation of the single motor phase is shown as well.
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