BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS # 1038—1040; cf. A. 1940, III, 751)—Ascorbe midd (I) and connected with the greater solubility of crude (II) in counse. Obsuction 14.0 give the scall (C₂H₂O₁) M₂ [a]b + 486°. With 40 mols of MgO in H₂O give the scall (C₂H₂O₁) M₂ [a]b + 486°. With 40 mols of MgO an insol substance is formed which portions of tower mol. wt. act as protective colloids to those yields (I) when treated with acid. The proved preparation of d-galactur grazing Chemistry (I) in any is due to contamination of (II) with amylo. The proved preparation of d-galactur grazing (II) with amylo. The proved preparation of d-galactur grazing (II) with amylo. The proved preparation of d-galactur grazing (II) with amylo. incomedy reparation of a regarding to the state of st ## groups and ensyme is STAHQLA-, I hen degradation verge Ozonisation of organic compounds. C. C. Spencer, W. I. Weaver, E. A. Oberright, H. J. Sykes, A. L. Barney, and A. L. Elder (J. Org. Chem., 1940, 5, 610—617).—Vapourphase ozonisation of org. compounds proceeds more rapidly than ozonisation in solution owing to the greater concn. of the reactants but is applicable only to compounds with appreciable v.p. and those forming stable ozonides. The chief difficulty is caused by the ozonide mists not being easily wetted by solvents. To overcome this an electrical precipitator (described) is used. Dipentene as vapour gives a diozonide whereas in heptane a mono-ozonide is produced. Under like conditions d-limonene gives a di- and a monoozonide. Citral, ionone, 4-ionone, citronellol, citronellal, terpineol, carvone, geraniol, and isoeugenol are not sufficiently volatile to produce appreciable amounts of ozonide. Ozonisation of pinene as vapour results in oxidation of CH, in the ation of pinene as vapour results in oxidation of CH₃ in the a-position to the double linking as well as in the addition of O_2 to the unsaturated linking. Complete ozonisation of $(CH_2:CH)_2$ (I) in $CHCl_3$ gives an $\alpha\beta-\gamma\delta$ diozonide sol. in $CHCl_3$ which cannot be readily isolated owing to its great explosiveness. $H_3C_2O_4$ separates when its solution in $CHCl_3$ is kept. Hydrolysis effected in the presence of $CHcl_3$ gives CH_2O and glyoxal. $\Delta^{\alpha\gamma}$ -Buladiene mono-ozonide (II) results when O_3 is passed through (I) in light petroleum. The products of its hydrolysis do not appear to contain maleic anhydride as judged by attempts at its isolation through the 2: 4-dinitrophenylhydrazone or by conversion into maleic 2: 4-dinitrophenylhydrazone or by conversion into maleic acid. Hydrolysis yields CH₂O and acraldehyde, indicating ay addition. Evidence of a addition could not be found. (II) is relatively stable. Hydrogenation of oxygen-containing compounds. III. Preparation of $\beta\gamma$ -dimethylbutane from pinacolin. B. Moldavski and T. Nizovkina (J. Gen. Chem. Russ., 1940, 10, 653—654).— $\Pr_{\theta_2}^{\beta_2}$ is obtained in 65% yield by hydrogenation of COMeBuv (MoS₂ catalyst; 4 hr. at 340—350°). R. T. Isomerisation of n-heptane and n-octane. A. P. Sivertzev [J. Gen. Chem. Russ., 1940, 10, 799—802],—iso-Octane or heptane is obtained in ~10% yield when the n-hydrocarbons are passed through a porcelain tube at 450—600°. With 10% of AlCl₃ at 50—60° the yield is 31—37%. R. T. Application of the xanthate method of L. A. Tschugaev to dihydric alcohols or their corresponding dibromides. V. E. Tischtschenko, V. N. Schabaschova, and N. D. Sisoeva (J. Gen. Chem. Russ., 1940, 10, 1042—1054).—OEt·CS₂Na (I) and sec.-tert.- or di-tert.-dibromides at $60-80^{\circ}$ react as follows: $C_nH_{2n}Br_2 + 2(I) \rightarrow C_nH_{2n}(CS_2 OEt)_2$ (II) $+2NaBr_1$ (II) $\rightarrow C_nH_{2n} + (OEt\cdot CS_2)_2$ (III); (III) $\rightarrow CS(OEt)_2 + COS + S$. The hydrocarbon so obtained from $CH_2Br \cdot CMe_2Br$ is $(CMe_2^*)_2$, and from $CH_2Br \cdot CMe_2Br$ is $CH_2Br \cdot CMe_2Br$ is $CH_2Br \cdot CMe_2Br CMe_2$ (S·CO₂Et)₂. aa-Dichlorides of the allene series. Action of phosphorus pentachloride on methyl vinyl ketone. A. N. Tschurbakov (J. Gen. Chem. Russ., 1940, 10, 977—980).—CH2CHAC (I) and PCl₅ at 0° yield CH2Cl·CH:CMeCl, converted by 15% Na₂CO₃ at 100° into (I) and OH·CH2·CH:CMeCl (phenylurethane, m.p. 78.8°), which with 16% H2SO₄ (3 hr. at 100°) also gives (II) Manufacture of dihalogenobutanes.—See B., 1941, II, 32. Preparing ethyl alcohol from ethylene of petroleum gases .-See B., 1941, II, 30.10 O. (alfale) to no Conjugated systems. X. Reaction of bromoprene with hypobromous acid. A. A. Petrov (J. Gen. Chem. Russ., 1940, 10, 1013—1020).—Bromoprene (I) and HOBr (from NHACBr) yield ay-dibromo-Δγ-buten-β-ol, b.p. 91—92·5°/10 mm. (acetate, b.p. 99·5—100·5°), which with Br in CHCl₃ gives aββδ-tetra-bromobutan-γ-ol, m.p. 61·5—63°. This is oxidised (Na₂Cr₂O₇ in H₂SO₄) to aββδ-tetrabromobutan-γ-one, b.p. 151—153°/10 mm. (I) at 150° with 60% aq. KOH yields bromoprene oxide (II), b.p. 130·5—131°, converted by 1% H₂SO₄ (3 hr. at 40°) into β-bromo-Δα-butene-γδ-diol, b.p. 120—121°/10 mm. (diacetate, b.p. 116—117°/10 mm.). With Br in CHCl₃ (II) gives aββ-tribromobutane-γδ-diol, m.p. 121·5—123°, whilst with HBr at —5° (II) affords βγ-dibromo-Δα-butene-δ-ol, b.p. 99·5—101°/10 mm. (acetate, b.p. 108—109°/10 mm.). R. T. Grignard synthesis of unsaturated helogene-algobols. Grignard synthesis of unsaturated halogeno-alcohols. G. I. Grignard synthesis of unsaturated halogeno-alcohols. G. I. Schtukin (Bull. Sci. Univ. Kiev, 1939, No. 4, 45—80).— CH₂:CH-CH₂:MgBr and COMe-CH₂:Cl or CO(CH₂Cl)₂ in Et₂O yield a-chloro-β-methyl- (I), b.p. 53°/10 mm., 159°/750 mm., or a-chloro-β-chloromethyl-Δδ-penten-β-ol (II), b.p. 82·5°/14 mm., 190°/750 mm. (decomp.). With NHEt₂ or KCN (I) affords a-diethylamino-, b.p. 158—160°/750 mm., or a-cyano-β-methyl-Δδ-penten-β-ol, b.p. 112°/17 mm.; the corresponding products from (II) were oils, decomp. at the b.p. R. T. Reaction of $\beta\beta'$ -dichlorodiethyl ether with dimagnesium dibromoacetylene. S. N. Popov (J. Gen. Chem. Russ., 1940, 10, 1141—1143).—(Cl-[CH₂]₂)₂O is converted into (Br-[CH₂]₂)O by the action of (C-MgBr)₂ in Et₂O. R. T. Conjugated systems. IX. Reactions of β-halogenobutadienes with alkyl hypoiodites, and the synthesis of halogenoalkoxyprenes. A. A. Petrov (f. Gen. Chem. Russ., 1940, 10, 819—825).—The ethers CH₂:CX·CH(OR)·CH₂I (X = Cl, R = Me, b.p. 76·5—77°/10 mm., R = Et, b.p. 82—83°/10 mm.; X = Br, R = Me, b.p. 91·5—92°/10 mm., R = Et, b.p. 97·8°/10 mm.) are prepared from chloro- or bromo-prene, ROH, HgO, and I at room temp. With NaOH-EtOH the ethers yield CH₂:CX·C(OR):CH₂, whilst with dil. H₂SO₄ the ketones COMe·CX:CH₂ are obtained. Structure of harbeits. E. L. R. Grant (L. Ried. Chem. Structure of kephalin. E. Le B. Gray (J. Biol. Chem., 1940, 136, 167—175).—The isolation of kephalin (I) from brain, liver, and heart by a modification of Bloor's method (A., 1926, 752) is described. Reduction of (I) in AcOH-cyclohexane (I: 1) (PtO₂-H₂) gives a non-hygroscopic amorphous product, m.p. 156—162°, which differs from unreduced (I) only in those properties which depend on degree of unsaturation. Discrepancies between the theoretical and phearyal composition of (I) are due to the presence of a saturation. Discrepancies between the theoretical and observed composition of (I) are due to the presence of a hitherto unidentified group or groups low in C and H and high in O. Cuorin is not produced during extraction of lipins but exists preformed in heart and liver (not brain). W. MCC. Manufacture of a-chloroacrylic acid esters.—See B., 1941, Synthesis of alkyl ethylene orthoformates. V. G. Mchitarian (J. Gen. Chem. Russ., 1940, 10, 667—669).—(CH₂·OH)₂ and CH(OEt)₃ in presence of p-C₆H₄Me·SO₃H (I) (10 min. at the b.p.) yield ethylene Et orthoformate, CH₂·OCH·OEt, b.p. 120—123°. With menthol or borneol and (I) (2 hr. at the b.p.) this gives menthyl, m.p. 34·2°, or bornyl ethylene orthoformate, b.p. 148—152°/16 mm, R. T. Production of lævulic acid.—See B., 1941, II, 33. Vitamin-C available from plant sources in Taiwan. IV. Reaction between ascorbic acid and magnesium oxide. R. 85 tacks the glucose residues with free OH at Can Can Can and Yamato and T. Hara (J. Agric. Chem. Soc. Japan, 1940, 16, 1038—1040; cf. A., 1940, III, 751).—Ascorbic acid (I) and 0.5 mol. of MgO in H_2O give the salt $(C_0H_7O_0)_2Mg$, $[a]_1^{19}+96.5^\circ$. With 40 mols. of MgO an insol. substance is formed which yields (I) when treated with acid. J. N. A. Improved preparation of d-galacturonic acid. W. W. Pigman (J. Res. Nat. Bur. Stand., 1940, 25, 301—303; cf. Mottern and Cole, A., 1940, III, 72).—Citrous polygalacturonide in aq. NaOH ($p_{\rm H}$ 3·7) is incubated (38°) with pectinase for 10—14 days, neutralised (H₂SO₄), and filtered. The filtrate when evaporated to a syrup and extracted with boiling MeOH gives galacturonic acid monohydrate, m.p. 109—112°, $[a]_{\rm D}^{20}$ +51·5°, in 74% yield. J. L. D. Lipins of tubercle bacilli. LXII. Mycolic acid. A. Lesuk and R. J. Anderson (J. Biol. Chem., 1940, 136, 603—613; cf. A., 1939, II, 48).—Mycolic acid. (I) with PhOH, Ac₂O, and HI (d 1.73) at 150° yields iodohydroxy-, reduced (Zn + AcOH-C₅H₁₁·OH) to hydroxy-normycolic acid, m.p. 56—58°, and a OH-acid, C₁₀₄H₂₀₈O₃ (?), m.p. 74—76°, [a]₂²⁵ +4·03° in CHCl₃ (Me ester, m.p. 63—65°), both of which yield n-C₂₅H₅₁·CO₂H (II) at 250—300° (reduced pressure). With PhOH, Ac₂O, and HI (d 1.86) at 150° (I) yields di-iodonormycolic acid, m.p. 41—43°, reduced to normycolic acid, C₈₇H₁₇₄O₂, m.p. 52—54° (Me ester), which gives no volatile acid when heated. Oxidation (CrO₃ in glacial AcOH) of (I) yields a mixture containing n-C₁₇H₃₅·CO₂H, (II), and n-CO₂H-[CH₂]₁₆·CO₂H. It is concluded that (I) is a mixture of two acids, the principal one having two n-C₂₆ chains with CO₂H on one. a-tert.-Butylsulphonylpropionic acid and its mono-bromoderivative. B. Backlund (Arkiv Kemi, Min., Geol., 1940, 14, A, No. 1, 25 pp.).—a-tert.-Butylthiolpropionic acid, m.p. 92° (corr.), from BuγOH and SH·CHMe·CO₂H in aq. HCl, gives with neutral KMnO₄ a-tert:-butylsulphonylpropionic acid (I), m.p. 139° (corr.). The bromination of (I) in N-HBr has been studied from 35° to 100°; 2 mols. of Br are rapidly absorbed with hydrolysis, giving BuγOH and SO₂H-CBrMe-CO₂H. Further absorption of Br (changes of rate at 3 and 5 mols. of Br) is due to bromination of BuyOH. In buffered solutions (initial \$\rho_{\mathbf{H}}\$ 3-5, final 1-7) 1 mol. of Br is added (at 35°) to give the \$\alpha_{-}Br-derivative (II), m.p. 83° (decomp.), which gives I with acid KI. (II) decomposes slowly at room temp., rapidly at 100°, giving SO₂ 0-80, CMe₂:CH₂ 0-25, triisobutene 0-27, and CHMeBr-CO₂H (III) 0-72 mol. Hydrolysis of (II) by N-HBr at 35° gives BuyOH, (I), (III), SO₂, HBr, and H₂SO₄. M. H. M. A. Production of formaldehyde by means of the electric arc at high and low frequencies.—See A., 1941, I, 86. Accelerating effect of ketones on the Cannizzaro-Tischtschenko reaction. III. Action of ββ-dihydroxymethylbutany-one. M. N. Tilitschenko (J. Gen. Chem. Russ., 1940, 10, 718—722; cf. A., 1939, II, 49).—CMeAc(CH₂·OH)₂ is a more active catalyst of the Cannizzaro reaction than is COMEE. Electrolytic reduction potentials of organic compounds. XXVIII. Determination of sugars by polarographic method. Determination of pentoses and pentosan. I. Tachi (J. Agric. Chem. Soc. Japan, 1940, 16, 1057—1063; cf. A., 1939, I, 84).—Pentoses and pentosan are hydrolysed to furfuraldehyde (I), which is determined by the polarographic method. The relation between concn. and height of the reduction curve of (I) is very important, and when the height is determined by the so-called tangent point method, there is a linear relation. (I) is quantitatively formed when xylose is heated with HCl (d 1.06) at 160° for 2—3 hr. J. N. A. Lecture experiment for distinguishing fructose from glucose [sucrose, lactose, or maltose]. E. W. Zmaczynski (J. Chem. Educ., 1940, 17, 399—400).—1—2 drops of aq. Pb(OAc)₂ and 1—2 c.c. of glycerol are added to 60—100 mg, of the sugar mixed with 10—15 mg. of S. With fructose, a black colour is obtained on heating. L. S. T. Starch. VIII. Degradation of the constituents of starch by β -amylase. K. H. Meyer, P. Bernfeld, and J. Press (Helv. Chim. Acta, 1940, 23, 1465—1476; cf. A., 1940, II, 336).—Oxidation of the aldehydic functions of starch by I followed by removal of excess of halogen leaves a residue which is normally degraded by β -amylase (I). They are therefore not concerned in the degradation by (I) which attacks the glucose residues with free OH at $C_{(2)}$, $C_{(3)}$, $C_{(4)}$, and C(a). The so-called "enzymic coagulation" of amylose (II) is connected with the greater solubility of crude (II) in comparison with (II) of higher mol. wt. obtained by fractionation. portions of lower mol. wt. act as protective colloids to those of higher mol. wt. and these are the portions which are preferentially attacked by (I). Incomplete degradation of (II) by (I) may be due to contamination of (II) with amylopectin (III), in which case the residual solution gives a red to violet colour with I or pure (II) may become aged during enzymic attack and a pure blue colour is then obtained with I. Provided that agency is eliminated, the graph for the degradation of (II) by (I) is rectilinear until 65% hydrolysis has occurred. This is explained by assuming the removal of a maltose residue from the end of the chain whereby a second similar group is uncovered so that the conce. of terminal groups and enzyme is const. Only when degradation verges towards complete hydrolysis of some chains is there a diminution of the root of terminal groups with consequent deceleration of the reaction. Degradation of (III) by (I) is invariably accompanied by the production of a residual substance of high mol. wt. and is not suited to kinetic study. It is conveniently replaced by starch degraded in glycerol, with which the reaction is of zero order only until 30—40% degradation has occurred; subsequently the rate diminishes rapidly partly because fewer terminal groups are available owing to variation in the length of the chains and partly owing to branching of the chains. Fresh solutions of pure (II) are degraded more slowly than those of sol, starch consisting essentially of (III) since the latter has the larger no. of terminal groups. X-Ray comparison of natural and synthetic starch. W. T. Astbury and C. S. Hanes (Nature, 1940, 146, 558).—Purified potato starch and the polysaccharide synthesised by the action of potato phosphorylase on glucose 1-phosphate give essentially the same X-ray powder pattern (reproduced), with that of the synthetic starch not quite so sharp. Amyloamylose pptd. by EtOH after electrophoretic separation gives a V-pattern photograph, whilst the synthetic starch after pptn. by EtOH gives the B-pattern. L. S. T. Manufacture of dimethylamine.—See B., 1941, II, 33. Production of amino-acids.—See B., 1941, II, 34. Reaction of formaldehyde with amino-acids. X-Ray diffraction patterns. A. K. Smith, P. Handler, and J. N. Mrgudich (J. Physical Chem., 1940, 44, 874—880).—X-Ray diffraction patterns of CH₂O-treated histidine (I) show that the product cryst. Arginine and lysine similarly treated give amorphous products. The free bases are cryst, in each case. The cryst nature of the CH₂O-(I) product is increased by ageing. The other two products are unchanged after several months' ageing. C. R. H. Identification of primary aliphatic amides as oxalates. C. A. Mackenzie and W. T. Rawles (Ind. Eng. Chem. [Anal.], 1940, 12, 737—738).—By heating the appropriate amide and H₂C₂O₄ in EtoAc the following compounds are formed: (HCO·NH₂)₂,H₂C₂O₄, m.p. 107·4—107·7°, NH₂Ac,H₂C₂O₄, m.p. 127·3°, EtCO·NH₂,H₂C₂O₄, m.p. 80·8—81·0°, (PrCO·NH₂)₂,H₂C₂O₄, m.p. 65·9—66·2°, (BuCO·NH₂)₂,H₂C₂O₄, m.p. 61·1—61·4°, (C₅H₁₁·CO·NH₂)₂,H₂C₂O₄, m.p. 71·1—71·3°. Interaction of amides and H₂C₂O₄ in H₂O yields only (NH₄)HC₂O₄,H₂C₂O₄, and Pr^{\$CO·NH₂} failed to yield a salt. I. D. R. Preparation of nitriles.—See B., 1941, II, 34. Reaction of magnesium tert.-butyl chloride with propionyl, isobutylacetyl, and benzoyl chloride. A. D. Petrov and N. A. Roslova (J. Gen. Chem. Russ., 1940, 10, 973—976).—EtCOCl and MgBuyCl in Et₂O yield COEt₂, COEtBuy, Pr^αOH, EtCO₂H, EtCO₂CHEt₂, and EtCO₂CHEtBuy. With CH₂Buβ-COCl the products are isohexyl isobutylacetate, b.p. 170—178°, and dissamyl ketone, reduced by Kishner's method to βθ-dimethylnonane, b.p. 177—178°. BzCl does not react with MgBuyCl at room temp., whilst in boiling xylene only tarry products are obtained. R. T. Metallo-organic compounds. IX. Tristrimethyltin oxonium halides, [SnMe₃]₃OX. T. Harada (Bull. Chem. Soc. Japan, 1940, 15, 455—458).—The oxonium compounds (SnMe₃)₃OI, m.p. 94°, and (SnMe₃)₃OBr, m.p. 88°, have been obtained by the action of (SnMe₃)₂O on SnMe₃I or SnMe₃Br in an anhyd. solvent. F. J. C. ## II.—HOMOCYCLIC. Products of the oxidation of 1:1:4-trimethylcycloheptene. H. Barbier (Helv. Chim. Acta, 1940, 23, 1477—1480; cf. A., 1940, II, 217).—Re-examination of the product of the oxidation of trimethylcycloheptene by SeO₂ confirms the formation of 2:5:5-trimethyl- Δ^2 -cycloheptenone (I) and reveals the presence of 4:4-dimethyl- Δ^1 -cyclohepten-1-aldehyde, b.p. 76°/4 mm. The semicarbazone, m.p. 195—196° (loc. cit.), is separated into two portions, m.p. 177° [hydrolysed to (I)] and m.p. \sim 196—200°. The last-named, when hydrolysed and oxidised by Ag₂O, gives 4:4-dimethyl- Δ^1 -cycloheptene-1-carboxylic acid, m.p. 63—64° (p-phenylphenacyl ester, m.p. 73°). Photochemical oxidation of aromatic hydrocarbons. A. A. Krasnovski (J. Gen. Chem. Russ., 1940, 10, 1094—1100).—A colorimetric method of determination of org. peroxides, depending on oxidation of Fe^{II} to Fe^{III} in presence of CNS', is described. Oxidation of PhMe by atm. O_2 in ultra-violet light consists of two stages: PhMe + $O_2 \rightarrow$ PhMe, $O_2 \rightarrow$ PhCHO + H_2O . With free access of O_2 the former reaction is of the zero order, and the latter of the first order. R. T. Alkylation of aromatic hydrocarbons by means of dihalides. I. Condensation of $\alpha\gamma$ -chlorobromopropane with benzene. I. Tzukervanik and K. Jatzimirski (J. Gen. Chem. Russ., 1940, 10, 1075—1076).— C_6H_6 and $Cl\cdot[CH_2]_3\cdot Br$ at $12-13^\circ$ in presence of AlCl₃ give chiefly $Br\cdot[CH_2]_3\cdot Ph$ (40%), with PhPr and $Ph\cdot[CH_2]_3\cdot Ph$ (I) as by-products. At $80-85^\circ$ the chief product is (I) (60%), with PhPr as a by-product. R. T. Addition of hydrogen bromide to cholesteryl bromide and the oxygen effect. Y. Urushibara, K. Nambu, and T. Ando (Bull. Chem. Soc. Japan, 1940, 15, 442—448; cf. Mauthner, A., 1907, i, 921).—Cholesteryl bromide (I) with HBr and a trace of pyrocatechol or FeCl₃,6H₂O in CCl₄, or with HBr in Et₂O, yields 3:5-dibromocholestane, m.p. $101\cdot5^{\circ}$ (corr.), $[a]_D^{26}+5\cdot36^{\circ}$ in CHCl₃, which when heated in COMe₂ gives (I), and in C_8H_5N gives $\Delta^{3:5}$ -cholestadiene. (I) with HBr and O₂ in CCl₄ yields 3:6-dibromocholestane (II), m.p. 154° (corr.), $[a]_D^{26}-12\cdot1^{\circ}$ in CHCl₃, and a compound, $C_{27}H_{45}Br_{3}$, m.p. (impure) 84—127°, debrominated (NaI in EtOH) to (I). (II) yields with KOAc in glacial AcOH, cholesteryl acetate, and with Na + $C_5H_{11}\cdot$ OH, cholestene. A. Li. Reduction of nitro-compounds by means of sodium sulphide. S. Raschevskaja (J. Gen. Chem. Russ., 1940, 10, 1089—1093).—Reduction is effected via the stages: $4\text{Na}_2\text{S} + 8\text{NO}_2 + 4\text{H}_2\text{O} \rightarrow \text{NH}_2\text{R} + \text{Na}_2\text{S}_4 + 6\text{NaOH}$ (at 50°); $3\text{Na}_2\text{S}_4 + 5\text{R}\cdot\text{NO}_2 + 6\text{NaOH} + 2\text{H}_2\text{O} \rightarrow 5\text{NH}_2\text{R} + 6\text{Na}_2\text{S}_2\text{O}_3$. Substituted amides. C. V. Bowen and L. E. Smith (J. Amer. Chem. Soc., 1940, 62, 3522—3523).—The following are prepared. Propion-m-4-, m.p. 137—137·5°, -p-, m.p. 138°, and -m-2-xylidide, m.p. 115·5—116·5°, and -xenylamide, m.p. 176—177°. Laur-benzylamide, m.p. 82—82·5°, and -m-toluidide, m.p. 54—56°. Palmit-cyclohexylamide, m.p. 94—95°, benzylamide, m.p. 94·5—95°, -o-, m.p. 90—91°, and -m-toluidide, m.p. 74·5—75·5°. 2-Furo-cyclohexylamide, m.p. 112—112·5°, -benzylamide, m.p. 110·5—1111°, -m-4-, m.p. 104—105°, -p-, m.p. 89—90°, and -m-2-xylidide, m.p. 152—126°, -a-, m.p. 155—156°, and -β-naphthylamide, m.p. 152—153°, 2-fluorylamide, m.p. 201—201·5°, and -xenylamide, m.p. 171—172°. R. S. C. Substituted adipanilides.—See B., 1941, II, 35. Chemotherapeutic compounds of the streptocide series. II. M. V. Rubtzov (J. Gen. Chem. Russ., 1940, 10, 831—843).— The activity of the following compounds has been compared (figures in parentheses refer to the streptocidal activity, that of streptocide being taken as 100; compounds marked * are toxic): p-NHR·C₆H₄·SO₂·NH₂, where R = CH₂Ph (70), γ-diethylaminopropyl * (45), m.p. 140—142° (hydrochloride, m.p. 118—119°), γ-diethylamino-β-hydroxypropyl * (10), m.p. 112°, CH₂·CO₂H (125), m.p. 265—266° (decomp.), CH₂·CO·NH₂ (85), m.p. 203—204°, CH₂·SO₃Na (90), SO₃Na (20), H (80), p-NH₂·C₆H₄·SO₂·NHR, where R is CH₂Ph (65), m.p. 119—119-5° (N-Ac derivative, m.p. 160—161°), p-NH₂·C₆H₄·SO₂(33), 4-amino-3-sulphophenyl (60), p-NH₂·C₆H₄ (100) (N-Ac derivative, m.p. 228—229°), pp'-NH₂·C₆H₄·SO₂·NH·C₆H₄· (100), m.p. 268—269° (de- comp.), pp'-NH₃·C₈H₄·SO₂·NH·C₈H₃(SO₃H-m) (25). Antipyrine and ClSO₃H (5 hr. at 70—80°) yield antipyrinesulphonyl chloride, m.p. 185·5—187°, from which antipyrinesulphonamide, m.p. 220—221°, is prepared. R. T. Isomerism of guanidines. R. P. Sieg and W. M. Dehn (J. Amer. Chem. Soc., 1940, 62, 3506—3508).—Condensation of NH₂Ar with C(:NAr')₂ [prep. in situ from CS(NHAr')₂ by Pb(OH)₂] in C₆H₆ gives only NHAr·C(:NAr')·NHAr' with small amounts of a carbamide and unchanged starting material. However, NAr':C:NAr'' gives NHAr·C(:NAr')·NHAr' and NHAr·C(:NAr'')·NHAr'. Only one H thus migrates during the condensation. Literature data are corr. The following have been prepared, numbering being N·C(:N'')·N'. NN'-Diphenyl-N''-o-, m.p. 93°, -m-, m.p. 101°, and -p-, m.p. 104·5°, NN''-diphenyl-N'-o-, m.p. 110·5°, -m-, m.p. 92°, and -p-, m.p. 121°, N''-phenyl-NN''-di-o-, m.p. 93·5°, -m-, m.p. 92°, and -p-, m.p. 62°, N'-phenyl-NN''-di-o-, m.p. 97°, -m-, m.p. 86°, and -p-, m.p. 70·5°, NN''-di-o-tolyl-N''-m-, m.p. 86°, and -p-, m.p. 70·5°, NN''-di-o-tolyl-N''-m-, m.p. 86°, and -p-, m.p. 83·5°, NN'-di-m-tolyl-N''-o-, m.p. 90°, and -p-, m.p. 103°, NN''-di-m-tolyl-N''-o-, m.p. 84°, and -p-, m.p. 93°, NN''-di-p-tolyl-N''-o-, m.p. 89·5°, and -m-, m.p. 101°, -tolylguanidne. R. S. C. Chemothersprent in compounds of the greateride garier. I Chemotherapeutic compounds of the streptocide series. I. Compounds containing the azo-group. O. J. Magidson and M. V. Rubtzov (J. Gen. Chem. Russ., 1940, 10, 756—768).— The following compounds have been prepared by standard reactions (figures in parentheses refer to streptocidal activity; compounds marked * are toxic): 2: 4-diaminoazobenzene-4′-sulphonamide hydrochloride [streptocide] (100), N-(p′-2″: 4″-diaminobenzeneazobenzenesulphonyl)sulphanilamide (55), m.p. 223—225° (decomp.), 2: 4-diaminoazobenzene-3′-sulphonamide (55), m.p. 223—225° (decomp.), 2: 4-diaminoazobenzene-3′-sulphonamide (55), m.p. 219°], 6-amino-5-benzene-azoquinoline-4′-sulphonamide (100), 4-(γ-diethylamino-β-hydroxypropylamino)azobenzene-4′-sulphonamide (100), m.p. 166—167°, 4-(β-diethylaminoethylamino)azobenzene-4′-sulphonamide* (90), m.p. 185—186°, α-anilino-γ-diethylamino-β-hydroxypropane, b.p. 189—190°/12 mm., 5-benzeneazo-6-hydroxyquinoline-4′-sulphonamide (100) [hydrochloride, not melting at 290° (lit. m.p. 268°)], 1-amino-7-benzeneazo-8-hydroxy-3: 6-disulphonaphthalene-4′-sulphonamide* (100) [N-chenzeneazo-1: 3: 6-trisulphonaphthalene-4′-sulphonamide (40), 2-amino-4-hydroxyazobenzene-4′-sulphonamide (90), 2: 4-diamino-6-carboxyazobenzene-4′-sulphonamide* (85), 2: 4-dihydroxyazobenzene-4′-sulphonamide* (100), 7-benzeneazo-1: 8-dihydroxy-3: 6-disulphonaphthalene-4′-sulphonamide* (80), and 4-amino- (50), m.p. 225—228°, and 4-hydroxy-3-carboxyazobenzene-4′-sulphonamide* (100). Diazo-compounds. II. Reaction of diazo-compounds with complex heteropoly-acids. V. V. Kozlov and B. N. Archipov, III. Complex diazo-compounds of phenylenediamines with heteropoly-acids, and certain dyes produced therefrom. V. V. Kozlov, B. N. Archipov, and A. V. Simonovskaja (J. Gen. Chem. Russ., 1940, 10, 685—696, 697—704).—II. The salts (RN₂)₃H₄P(M₂O₇)₆, where M is Mo or W, and (RN₂)₄H₄Si(W₂O₇)₆ (R = Ph, o- and p-NO₂·C₆H₄·, p-C₆H₄Me·, and o-OMe·C₆H₄·), were prepared from aq. RN₂Cl and the appropriate acids, or by diazotisation of the corresponding salts of the NH₂R. The salts are considerably more stable than are the corresponding halides. In aq. suspension they are decomposed by Cu powder, in the same way as ordinary diazonium salts. III. The salts $[R(NH_2)_2]_3[H_7P(M_2O_7)_6]_2$ where M is Mo or W, and $[R(NH_2)_2]_2H_8Si(W_2O_7)_6$ (R is m- and p-C₆H₄, and 1:5-C₁₀H₆) have been prepared. Aq. suspensions of these salts when diazotised yield diazonium salts of the types $[(NH_2\cdot R\cdot N_2)_3H_4P(M_2O_7)_6]\cdot [H_7P(M_2O_7)_6]$ and $(NH_2\cdot R\cdot N_2)_2H_2[H_4Si(W_2O_7)_6]$, and couple with β -C₁₀H₇·OH giving the azo-dye salts $(NH_2\cdot R\cdot N_2\cdot C_{10}H_6\cdot OH)_3$, $H_7P(M_2O_7)_6$ and $(NH_2R\cdot N_2\cdot C_{10}H_6\cdot OH)_4$, $H_8Si(W_2O_7)_6$, from which the azo-dyes are liberated by aq. NaOH. R. T. Preparation of alkylphenols.—See B., 1941, II, 36. Synthesis of amylphenol.—See B., 1941, II, 30. Oxidation of p-propenylphenol derivatives.—See B., 1941, II, 36. Molecular structure in relation to cestrogenic activity. Derivatives of 4: 4'-dihydroxydiphenylmethane. N. R. Camp- bell (Proc. Roy. Soc., 1940, B, 129, 528—538).—The derivatives were prepared from the appropriate CO-compound (1 mol.), PhOH or o-cresol (4 mols.), and conc. (at room temp.) or dry HCl (at ~0°). The following are new ac-dip-hydroxyphenyl-β-methylpropane, m.p. 152°, -γ-methylbutane, m.p. 145°, -β-ethylbutane, m.p. 168°, -β-n-propylpentane, m.p. 128°, -a-phenylpropane, m.p. 176°, -β-phenylethane, m.p. 140°, and -ββ-diphenylethane, m.p. 236° (decomp.); ac-di-(4-hydroxy-3-methylphenyl)-γ-methylbutane, m.p. 124°; ββ-di-(p-hydroxyphenyl)-hexane, b.p. 210° (0.5 mm., and -γ-methylpentane, m.p. 128°, -hexane, m.p. 104—105°, and -γ-methylpentane, m.p. 128°, -hexane, m.p. 104—105°, and -γ-methylpentane, m.p. 128°, -hexane, m.p. 104—105°, and -γ-methylpentane, m.p. 120°, and -hexane, m.p. 90°; δδ-di-(p-hydroxyphenyl)otane, m.p. 150°; δδ-di-(4-hydroxy-3-methylphenyl)-heptane, m.p. 173°, and -octane, m.p. 140°; εε-di-(p-hydroxyphenyl)nonane, m.p. 165°; εε-di-(4-hydroxy-3-methylphenyl)-methylphenyl)-nonane, m.p. 128°; 1:1-di-(p-hydroxyphenyl)-2-methylcyclohexane, m.p. 235°, -cyclohentane, m.p. 157°, -2-methylcyclohentane, m.p. 161°, and -3-methylcyclohentane, m.p. 171°; 1:1-di-(4-hydroxy-3-methylphenyl)-cyclohentane, m.p. 162°. The relationship between the determined cestrogenic activity and structure is discussed (A., 1941, III, 100). F. O. H. Preparation of 2: 2'-dihydroxydiphenyl.—See B., 1941, II, 36. Preparation of multivalent iodo-compounds in the o-, m-, and p-iodoanisole series. R. A. Mastropaolo F. (Anal. Asso. Quim. Argentina, 1940, 28, 101—107).—o- and m-OMe-C₆H₄ICl₂ with aq. 40% NaOH give o- (I), m.p. 260—265° (decomp.) (impure), and m-iodosoanisole, m.p. 250—251°, respectively; the mother-liquors from (I) with KI afford di-o-anisyliodinium tri-iodide, m.p. 135—136° converted by H₂O-Ag₂O followed by KI into di-o-anisyliodinium iodide, m.p. 154° (decomp.). p-OMe-C₆H₄·IO, p-OMe-C₆H₄·IO₂, and H₂O-Ag₂O followed by KI give di-p-anisyliodinium tri-iodide, m.p. 145°, whence the monoiodide, m.p. 180°. The m-iodinium compounds could not be prepared. 2:4-Dinitrophenyl alkyl ethers as stimulants of the metabolic rate. L. G. Wesson (J. Amer. Chem. Soc., 1940, 62, 3466—3468).—2:4:1-(NO₂)₂C₆H₃·OAg (prep. described) and RI at room temp., later 100° (bath), give 2:4-dinitrophenyl Prc, m.p. 30·5—31°, b.p. 172—175°/2 mm, Prβ (I), m.p. 53·4—53·6°, b.p. 152—156°/0·75 mm. [also obtained from 1:2:4-C₆H₃Cl(NO₂)₂, PrβOH, and 80% KOH], Bu^a, m.p. 1·5—1·8°, b.p. 178—180°/2 mm., Buβ, m.p. 30·3—31·5°, b.p. 152—154°/1, mm., n-, m.p. 0—1°, b.p. 186—188°/2 mm., and iso-amyl, m.p. 9·5—10°, b.p. 175—178°/1 mm., n-hexyl, m.p. 4·2—4·6°, b.p. 202—205°/2·5 mm., and n-heptyl, m.p. 16·4—16·5°, b.p. 192—194°/1 mm., ether. These ethers increase the metabolic rate of rats more slowly than does 2:4:1-(NO₂)₂C₆H₃·OH (II) (I) causes evolution of only a little NH₃ due to liver damage. 70 mg, per kg, body-wt. fed to rats for 1 month increased the basal metabolic rate by 10% and after 8 months had little other effect. 1 g, per kg, body-wt. increased the basal metabolic rate of rats by 84% and caused death in 3—4 days. (II) is present in the bile and colon of dogs after fatal, massive doses of (I). R. S. C. Di-p-aminophenyl sulphone. A. M. VanArendonk and E. C. Kleiderer (*J. Amer. Chem. Soc.*, 1940, **62**, 3521—3522).— Thioaniline (purified by means of the disulphate) is converted by boiling Ac_2O —AcOH and then H_2O_2 —AcOH at 40—50° into $(p\text{-NHAc·C}_6H_4)_2SO_2$, m.p. 275—278°, which in boiling 10% HCl gives $(p\text{-NH}_2\cdot\text{C}_6H_4)_2SO_2$, m.p. 175—176°. R. S. C. Synthesis of vitamin-A. M. V. Krauze and J. M. Slobodin (J. Gen. Chem. Russ., 1940, 10, 907—912).—Axerophthol prepared from β -ionylideneacetaldehyde (I) and CMe₂·CH·CHO (method: Kuhn et al., A., 1937, II, 288) is biologically inactive. β -Ionone and (OEt)₂CH·CH₂·MgBr in Et₂O (4 hr. at the b.p.) give (I) in 50—64% yield. R. T. Formation of insoluble digitonides of cholesterol derivatives. F. S. Spring and G. Swain (Nature, 1940, 146, 718).—A cis-3: 4-dihydroxy- Δ^5 -cholestene monobenzoate, m.p. 153—154°, which differs from that (m.p. 209—210°) described by Rosenheim et al. (A., 1937, II, 191), has been isolated. It fails to give a digitonide under conditions which effect immediate pptn. of the digitonides of cholesterol (I) and the cis-diol. Hence the formation of one of the monobenzoates has been accompanied by migration of Bz from the $C_{(3)}$ - to the $C_{(4)}$ -OH. The introduction of a C₄-cis-OBz group into (I) prohibits the digitonin reaction. L. S. T. Derivatives of homoanisic acid. A. Burger and S. Avakian (J. Org. Chem., 1940, 5, 606—609).—Addition of p-C₈H₄Me·COCl to CH₂N₂ in Et₂O at room temp. gives p-anisyl CHN₂ ketone, m.p. 90—91°, transformed by conc. aq. NH₃ and 10% AgNO₃ in dioxan at 60—70° into p-OMe·C₈H₄·CH₂·CO·NH₂, m.p. 188—189°, which is hydrolysed (KOH-EtOH) to homoanisic (p-anisylacetic) acid (I), m.p. 86—87°, the overall yield being 53%. CISO₃H at -5° to 0° and then at 40° converts (I) into 3-chlorosulphonylhomoanisic acid, m.p. 164—165° (yield 80·6%), reduced by Zn dust and H₂SO₄ at -5° to 80° to 3-thiol-p-homoanisic acid (II), m.p. 83—84°. The structure of (II) is proved thus: 3:4:1-NO₂·C₆H₃(OMe)·CH₂Cl is converted by KCN in EtOH containing a little KBr into 3-nitro-4-methoxyphenylacetonitrile, m.p. 87—87·5°, which is hydrolysed (50% H₂SO₄-AcOH) to 3-nitro-p-homoanisic acid, m.p. 132—133°, also prepared from (I) and conc. HNO₃ in glacial AcOH. This is reduced (H₂-Raney Ni-EtOH) to 3-aminohomoanisic acid, m.p. 110—111°, converted by diazotisation and boiling with 40% H₂SO₄ into homoisovanillic acid, m.p. 127—128°, and by diazotisation and treatment with alkaline Na₂S₂ into 3:3'-dithiohomoanisic acid, which is reduced (In dust and glacial AcOH at 100°) to (II). 1:3:2. C₆H₃MeBr·NO₂ is oxidised by Na₂Cr₂O₇ and boiling dil H₂SO₄ to 2:3:1-NO₂·C₆H₃Br·CO₂H, m.p. 250—251°. This and (II) are dissolved in KOH-MeOH, the solution is evaporated to dryness, and the residue is heated at 190°, thereby yielding 2'-nitro-3'-carboxy-2-methoxydiphenyl sulphide-5-acetic acid, m.p. 232—234° (decomp.), which is reduced by Fe(OH)₁-aq. NH₃ to the 2'-NH₂-acid, m.p. 222—224°. Lactones related in structure to cardiac aglucones: the lactone of β -aldehydo- β -cyclopentylpropionic acid. S. K. Ranganathan (Current Sci., 1940, 9, 458—459).—The method of Fried et al. (A., 1940, II, 312) has been applied to the prep. of β -aldehydo- β -cyclopentylpropionic acid (I) (cf. A., 1939, II, 321). OMe·CH₂·CN and Mg cyclopentyl bromide yield cyclopentyl OMe·CH₂ ketone, b.p. 192—194°/680 mm. (2:4-dinitophenylhydrazone, m.p. 130°), which with Zn and CH₂Br·CO₂Et gives Et β -hydroxy- γ -methoxy- β -cyclopentylbutyrate, b.p. 140°/6 mm., and this with HBr in AcOH followed by distillation yields (?) β -cyclopentyl- $\Delta\beta$ -buteno- γ -lactone, b.p. 155°/5 mm., which with 3% KOH-MeOH furnishes (I). F. R. G. Benzyl β -dimethylamino- α -phenyl- α -ethylpropionate (hydrochloride, m.p. 167—168°).—See A., 1941, III, 128. Stereochemical studies. XXII. Decomposition of optically active α-phenylethylthiolacetic acids. B. Holmberg (Arkiv Kemi, Min., Geol., 1940, 14, A, No. 2, 12 pp.).—Various routes for the transitions: CHPhMe·S·CH₂·CO₂H (I) ₹ CHPhMe·OH (II) have been studied with reference to optical stability and inversion. With CH₂Br·CO₂Na followed by hydrolysis, (-)-(II) gives (+)-(II) (60—80% racemised); with SH·CH₂·CO₂H this material gives inactive (I). (+)-(I) is racemised by HgCl₂ in N-HCl and the (II) formed is inactive, but the product from (-)-(I) and HgSO₄ has slight (+)-rotation. (+)-(II) with SO₂Cl₂ yields (-)-CHPhMeCl (III) (60% racemised) which is reconverted into (I) [still slightly (+)] by SNa·CH₂·CO₂Na. (+)-(I) with Br in glacial AcOH gives (-)-CHPhMeBr (IV), [a]₂0 - 46° (calc.); this racemises very rapidly. (-)-(III) (NaOH) and (-)-(IV) (H₂O) give (+)-(II). The results are discussed. Preparation of o-nitrobenzoic acid.—See B., 1941, II, 30. Beckmann rearrangement of 2:4-dihydroxybenzhydroxamic acid derivatives. A. W. Scott and W. O. Kearse (J. Org. Chem., 1940, 5, 598—605).—2:4:1-(OH)₂C₆H₃·CO₂H is converted by MeOH and HCl at room temp. into the Me ester (I), m.p. 76° (lit. 126—128°), and by boiling SOCl₂ followed by ice into 2:4-dihydroxybenzoyl chloride (II), m.p. 142°. 2:4-Dihydroxybenzhydroxamic acid (III), m.p. 162°, decomp. 171° (very difficult to purify), is prepared by the successive addition of NH₂OH,HCl and (I) to aq. KOH at room temp. or, better, by addition of free NH₂OH to a suspension of (II) in light petroleum (low b.p.). Attempts to prepare the benzoate of (III) were unsuccessful but the acetate, m.p. 188° (slight decomp.), is obtained by addition of AcCl to a cooled solution of the Na salt of (III) in H₂O or by cautious fusion of (III) with Ac₂O. KOEt in abs. EtOH transforms this substance into the K salt, explodes at 84°, which rearranges in H₂O at 90° to 1:5-dihydroxybenzoxazole (hydroxyoxy- carbonil) (IV), m.p. 288°. The following scheme is suggested: $(OH)_2C_6H_3\cdot C(OM):NO\cdot COR \rightarrow (OH)_2C_6H_3\cdot C(:N-)\cdot O- \rightarrow (OH)_2C_6H_3\cdot N: C\cdot O \rightarrow (IV)$, whereas o-hydroxybenzazide rearranges thus: $OH\cdot C_6H_4\cdot CON_3 \rightarrow OH\cdot C_6H_4\cdot C(:O)\cdot N< \rightarrow OH\cdot C_6H_4\cdot N\cdot C:O \rightarrow OH\cdot C_6H_4\cdot N: C:O$. H. W. Preparation of thiolearboxylic acids and their arylamides. I. V. Hopper, J. H. MacGregor, and F. J. Wilson (J. Soc. Dyers and Col., 1941, 57, 6—9).—The following arylamides are best prepared (unless stated otherwise) from the acid (1 mol.), NH₂Ar (2 mols.), and PCl₃ in C₅H₅N (cf. A., 1939, II, 505). o-SH·C₆H₄·CO₂H (I) gives an anilide, m.p. 236—237°, o-m.p. 217—218°, and p-toluidide, m.p. 230° (both prepared using P₂O₅-PhMe), o-chloroanilide, m.p. 218—219°, o-anisidide, m.p. 156—157°, 4-methoxy-2-methylanilide, m.p. 233—234°, and a-, m.p. 247—248°, and β-naphthylamide, m.p. 167—168°, -SH·C₆H₄·CO₂H (prep. from the intermediate S₂·acid by aq. NaOH-Na₂S₂O₄; cf. Thompson, A., 1925, i, 815) affords an anilide, m.p. 263—264°, 4-methoxy-2-methylanilide, m.p. 235—236°, and β-naphthylamide, m.p. 282—283°. 2:3-SH·C₁₀H₆·CO₂H (II) [prep. as for (I); Allen et al., Org. Syntheses, 1932, 12, 76] gives an anilide, m.p. 285—286°, o-m.p. 279—280°, and p-toluidide, m.p. 276—217°, o-anisidide 2:3-Sri C₁₀H₆CO₂H (11) [prep. as for (1); Alien et al., Org. Syntheses, 1932, 12, 76] gives an anilide, m.p. 285—286°, o., m.p. 279—280°, and p-toluidide, m.p. 276—277°, o-anistidide, m.p. 220—221°, a-naphthylamide, m.p. 306—307°, and 4-chloro-2:5-dimethoxy-, m.p. 255—256°, 4-methoxy-2-methyl-, m.p. 264—265°, and 2-methoxy-5-diethylaminosulphonyl-anilide, m.p. 214—215°. 1:8- $C_{10}H_6$ \subset CO (III) is obtained in good yield from diazonaphthostyril (suspension distinctly acid to Congored) and Na_2S_x at $\Rightarrow 5^\circ$; 1:8-SH· $C_{10}H_6$ ·CO·NHAr could not be prepared from (III). Cotton yarn, impregnated with arylamides of (I) or (II) in aq. EtOH–KOH, and treated with diazotised bases, gives dyeings of biscuit, lemon, or fawn [from (I)] or biscuit, orange, or tan [from (II)], which do not possess all-round fastness properties. Anæsthetics of the naphthalene series. II. Esters of 4-alkylamino-1-naphthoic acids. S. I. Sergievskaja and K. P. Preobrashenskaja (J. Gen. Chem. Russ., 1940, 10, 950–958).—1:4-NH₂·C₁₀H₆·CO₂K and RI yield the acids 1:4-NHR·C₁₀H₆·CO₂H [R = Et, m.p. 153° (decomp.), Pr^a , m.p. 172—173°, Bu^a , m.p. 208°, allyl, m.p. 151°], which are esterified in the usual way to 1:4-NHR·C₁₀H₆·CO₂R′ [R = Et, R' = Et, m.p. 76—77° (hydrochloride, m.p. 145—146°), Pr^a , m.p. 69° (hydrochloride, m.p. 143—145°); NEt_2 ·CH₂·CH₂ m.p. 188—189°; $R = Pr^a$, R' = Et, m.p. 38—39° (hydrochloride, m.p. 156°), NEt_2 ·CH₂·CH₂ (hydrobromide, m.p. 182—183°); $R = Pr^B$, $R' = NEt_2$ ·CH₂·CH₂ (hydrobromide, m.p. 185—186°); $R = Bu^a$, R' = Et, m.p. 54° (hydrochloride, m.p. 143—144°), Pr^a , m.p. 50·5° (hydrochloride, m.p. 114—116°), NEt_2 ·CH₂·CH₂ (hydrobromide, m.p. 180°); R = allyl, R' = Et, m.p. 67·5° (hydrochloride, m.p. 147—148°, decomp.), Pr^a , m.p. 61—62°, NEt_2 ·CH₂·CH₂ (hydrobromide, m.p. 191—191·5°)]. The activity of the NEt_2 ·CH₂·CH₂ esters is > of alkyl esters. 4-Hydroxy-3-sulphobenzoic acid. G. V. Medox and N. K. Dobrovolskaja (J. Gen. Chem. Russ., 1940, 10, 705—706).—p-OH·C₆H₄·CO₂H and 10% oleum (30 min. at 100°) afford 4:3:1-OH·C₆H₃(SO₃H)·CO₂H in 98% yield. R. T. Preparation of *m*-carboxybenzenesulphondichloroamide* and of carboxybenzene-3: 5-bis(sulphondichloroamide) from benzoic acid. O. V. Vasilevskaja (*J. Gen. Chem. Russ.*, 1940, 10, 683—684).—BzOH and CISO₃H yield m-CO₂H-C₆H₄·SO₂Cl, which with aq. NH₃ gives the sulphonamide, chlorinated to m-carboxybenzenesulphondichloroamide. BzOH and CISO₃H in oleum-P₂O₆ yield 1:3:5-CO₂H·C₆H₃(SO₂Cl)₂, from which the 3:5-disulphonamide, m.p. 249—250°, and 3:5-bis-(sulphondichloroamide) are prepared as above. R. T. Elimination of the phthalyl residue in Gabriel's synthesis [of amines]. A. A. Beer and N. K. Kotschetkov (J. Gen. Chem. Russ., 1940, 10, 714—717).—The method of Ing et al. (A., 1926, 1132) is preferred. Products of condensation of phthalic anhydride with benzidine. B. A. Porai-Koschitz and P. M. Mostriukov (*J. Gen. Chem. Russ.*, 1940, 10, 629—635).—Benzidine (I) and o-C₅H₄(CO)₂O (II) in EtOH yield a mixture of NN'-4:4'-diphenylenephthalamic acid (III) and the substance (IV). (III) is obtained almost pure when (I) is added to fused (II), whilst (IV) is the sole product when (II) is added to fused (I). 4:4'-Diphthalimidodiphenyl (V) added to fused (I) yields the substance (VI), which regenerates (V) when added to fused (II). R. T. Preparation of $\Delta^{9:11}$ -cholenic acid. S. Bergström (Arkiv Kemi, Min., Geol., 1940, 14, B, No. 6, 2 pp.; cf. Barnett et al., A., 1938, II, 497).—The semicarbazone, m.p. 227—230° (decomp.), of 12-keto- $\Delta^{9:11}$ -cholenic acid with NaOEt at 200°/10 hr. gives $\Delta^{9:11}$ -cholenic acid, m.p. 154—155° (Me ester, m.p. 85—86°). W. McC. 2:4-Dihydroxybenzaldehyde-2:4-dinitrophenylhydrazone. A. W. Scott and J. M. Burns (*J. Amer. Chem. Soc.*, 1940, 62, 3522).—This substance has m.p. 286° (decomp.). R. S. C. Sulphanilamide compounds. V. Arylidene derivatives of N⁴-acetyl-N¹-p-aminophenylsulphanilamide and N¹-p-aminophenylsulphanilamide. H. G. Kolloff and J. H. Hunter (I. Amer. Chem. Soc., 1940, 62, 3355—3357; cf. A., 1940, II, 327).—Sulphanil-p-aminoanilide (I), m.p. 155°, or its N⁴-Ac derivative, m.p. 230—231°, with 1 mol. of PhCHO at 140° gives sulphanil-p-benzylideneaminoanilide (II), m.p. 225°, and its N⁴-Ac derivative, m.p. 206·5—207°, respectively. Sulphanil-p-anisylidene- (III), m.p. 204—205° (N⁴-Ac derivative, m.p. 214—215° (N⁴-Ac derivative, m.p. 242°), and -p-p'-nitrobenzylidene-, m.p. 223—224° (N⁴-Ac derivative, m.p. 255·5—257·5°), -aminoanilide are similarly prepared. With 2 mols. of ArCHO, (I) gives N⁴-p-anisylidenesulphanil-p-p'-anisylidene-, m.p. 183—184°, N⁴-p-dimethylaminobenzylidenesulphanil-p-p'-dimethylaminobenzylidene-, m.p. 230°, -aminoanilide, but the (CHPh:)2 compound could not be obtained. The structure of (II) and (III) is proved by hydrogenation (Raney Ni) in dioxan at 50—58°/3 atm. to the known p-NH₂·C₆H₄·SO₂·NH·C₆H₄·NH·CH₂Ar (loc. cit.). R. S. C. Orientation in the acylation of phenol and in the rearrangement of phenolic esters. A. W. Ralston, M. R. McCorkle, and S. T. Bauer (J. Org. Chem., 1940, 5, 645—659).—In the action of octoyl chloride on PhOH in presence of AlCl₃, the use of equimol. proportions of PhOH and AlCl₃ and hence of the complex OPh·AlCl₂ (I) favours the production of the o-OH-ketone whilst if more AlCl₃ is used [hence if R·COCl, AlCl₃ (II) is present] the p-isomeride is preferentially produced. If both complexes are previously formed the acyl group shows a decided preference for the p-position. If (II) reacts with (I) the ratio p/o is >1. The previous formation of the complexes excludes the possibility of the reaction (II) + PhOH → R·COCl + (I) + HCl → OH·C₄H₄·COR, AlCl₃. When this possibility is excluded the yield of p-isomeride is materially increased. In presence of (I) but not of (II) in C₂H₂Cl₄ the yield of the isomerides is independent of the temp, over the range 50—100° but o-orientation is abnormally favoured at 30°. Similar results are obtained at 50° and 100° when the PhOH is added to the previously-formed (II) but at 30° the p/o ratio differs decidedly from that at 50° and 100°. Ester formation is the predominant reaction at the lower temp. but decreases with increase in the amount of AlCl₃ or temp. The presence of the ester as such during the reaction cannot be assumed since it may be formed by hydrolysis of the AlCl₃—ester complex. Ester formation may occur: (I) + R·COCl ⇒ R·CO₂Ph, AlCl₃ (III) and (III) → OH·C₄H₄·COR, AlCl₃. Ester-complex formation proceeds very rapidly as compared with ketone-complex formation and if hydrolysis of a mixture of o- and p-OH-ketones and ester. Repetition of the work of Cox (A., 1930, 344) using Ph octoate (IV) with excess of AlCl₃ in excess of Ph₂O gives 85% of p-phenoxyoctophenone. The high yield of (V) is due to an intermol. reaction since (VI) is almost unaffected by treatment with 2 mols. of AlCl₃ in excess of Ph₂O for 6 hr. at 70°. Fries rearrangement of (IV) by AlCl₃ in C₂H₂Cl₄ gives a the p/o ratio. The rearrangement can be represented, $C_7H_{15}\cdot CO_2Ph + 2AlCl_3 \rightarrow (I) + (II) + HCl \rightarrow C_7H_{15}\cdot CO\cdot C_6H_4\cdot O\cdot AlCl_2$. With mol, proportions of ester and $AlCl_3$ initial conditions favour the formation of the p-isomeride because of the great excess of $AlCl_3$ present but the later stages of the change are under conditions favouring the o-isomeride. The chain length of the acid group is not a significant influence in the rearrangement of Ph esters. $PhNO_2$, "Skellysolve B," $C_2H_2Cl_4$, and CS_2 are placed in order of increasing ortho-directing influence. Under the experimental conditions rearrangement of p- and o-OH-ketones is not observed. 4-cycloHexylbenzophenone and its oxime. R. D. Kleene (J. Amer. Chem. Soc., 1940, 62, 3523).—Phenylcyclohexane, BzCl, and AlCl₃ in CS₂ at room temp. and later 100° (bath) give 4-cyclohexylbenzophenone, m.p. 58—60°, b.p. 195—200°/3 mm. (oxime, m.p. 125—127°), oxidised by Na₂Cr₂O₇-H₂SO₄ to p-C₆H₄Bz·CO₂H. R. S. C. Quantitative study of the so-called "positive halogen" in ketones and esters. R. Altschul and P. D. Bartlett (J. Org. Chem., 1940, 5, 623—636).—Determinations have been made of the equilibrium const. and forward rate const. (under anti-oxidant conditions) for the debromination with HBr in glacial AcOH at 25° of CBz₃Br, CPhBz₂Br, CPh₂BzBr, CPh₃Br, CHPh₂·CBz₂Br, CMeBz₂Br, CHBz₂Br, and CBr(CO₂Et)₃. This is regarded as typical of the so-called "positive halogen." The establishment of equilibrium in the bromination of CHPh2Bz is strongly promoted by light, indicating that there must be a peroxide-catalysed mechanism for the reverse reaction which, however, has not been detected. Peroxides are necessary to the reaction between HBr and CPh3Br. However, compounds having Br in the a-position to 'CO' react with HBr at a rate which is independent of the concn. of peroxides or antioxidants (in presence of cyclohexene) and is attributable to a polar mechanism, presumably the exact reversal of the bromination of a ketone through its enol in a polar solvent. Equilibrium and rate of debromination, which are greatly dependent on structure, do not show any general parallelism with one another. These results emphasise that there can be no sharp distinction between "positive" halogen and other halogen. In no case does the mode of reaction characteristic of "positive" halogen disappear but it may become very slow and the equilibrium may become unfavourable to its Mechanism of ketone formation from trans-indene glycol and halohydrins. C. M. Suter and H. B. Milne (J. Amer. Chem. Soc., 1940, 62, 3473—3477).—Measurement of the rate of formation of indan-2-one (I) from cis- and trans-indene glycol by acid indicates that the trans- is first isomerised to the cis-glycol which more slowly yields (I). Production of indan-1-one (II) from trans-indene bromohydrin in acid is more complex, Br' being liberated faster than (II) is formed; simultaneous formation of glycol [and hence (I)] renders a quant. interpretation difficult. R. S. C. Sterols. CXIII. Sapogenins. XLII. Conversion of sapogenins into pregnenolones. R. E. Marker (J. Amer. Chem. Soc., 1940, 62, 3350—3352).—Conversion of sapogenins into ψ-derivatives by Ac₂O at 200° is nearly quant. Subsequent oxidation by CrO₃-AcOH and hydrolysis (KOH-EtOH) to Δ¹6-pregnen-3-ol-20-ones gives good (38—56%) yields if defined conditions are adhered to (cf. following abstract); protection of the ethylenic linking is unnecessary. epi-Sarsasapogenin acetate thus gives Δ¹6-pregnen-3(a)-ol-20-one (I) (52%), m.p. 194—196° (acetate, m.p. 96—99°). Tigogenin, epitigogenin, sarsasapogenin, and diosgenin acetates gives Δ¹6-allopregnen-3(β)-ol-20-one (II) (49%), m.p. 202—204°, Δ¹6-allopregnen-3(a)-ol-20-one (IV) (48%), m.p. (anhyd.) 188—190°, and Δ⁵¹¹6-pregnadien-3(β)-ol-20-one (38%), m.p. 212—214°, respectively. Similarly dihydro-ψ-episarsapogenin, -ψ-sarsasapogenin, -ψ-tigogenin, and -ψ-epitigogenin by acetylation and oxidation yield (I) (61%), (IV) (47%), (II) (60%), and (III) (56%), respectively. Na-EtOH and (I) give pregnane-3(a): 20(a)-diol, m.p. 242—243° (diacetate, m.p. 175—176°). H₂-Pd-BaSO₄ reduces (I) in EtOH-Et₂O to pregnan-3(a)-ol-20-one, m.p. 145—147° (acetate, m.p. 112—114°), whilst H₂-PtO₂ at 45 lb. in AcOH gives pregnane-3(a): 20(β)-diol, m.p. 231°. Oxidation (CrO₃-AcOH) of (I) affords Δ¹6-pregnene-3: 20-dione, m.p. 200—202°. Sterols. CXII. Sapogenins. XLI. Preparation of trillin. Its conversion into progesterone, R. E. Marker and J. Krueger (J. Amer. Chem. Soc., 1940, 62, 3349—3350).—Diosgenin, bromoacetylglucose, and Hg(OAc)₂ in boiling C₆H₈ give trillin tetra-acetate (I), m.p. 197°, identical with that (m.p. 199—200°) from the natural product (A., 1940, II, 378) and hydrolysed by 2% KOH-MeOH to trillin (~50% yield). Sarsasapogenin α-d-glucoside tetra-acetate, m.p. 227°, and the free glucoside, m.p. 245°, are similarly prepared. Ac₂O and (I) at 200° give a non-cryst. ψ-derivative, which with CrO₃-AcOH at 25° gives a product, converted by hydrolysis (conc. HCl-EtOH) and treatment with Girard's reagent into Δ⁵:16</sup>-pregnadien-3-ol-20-one, m.p. 210—212°; protection of the ethylenic linking is unnecessary. Hydrogenation (Pd-BaSO₄; Et₂O; 15 lb.) then gives Δ⁵-pregnen-3-ol-20-one, m.p. 188—190°, which with Pt-black in CO₂ at 250—300° gives progesterone, m.p. 120—121°. R. S. C. Steroids. IV. Degradation products of cholic acid and Steroids. IV. Degradation products of cholic acid and synthesis of 7: 12-dihydroxyprogesterone. M. Ehrenstein and T. O. Stevens (J. Org. Chem., 1940, 5, 660—673).—Oxidation of diphenyl-3(a): 7: 12-triacetoxyternorcholylcarbinol with CrO_3 in AcOH gives an acidic portion hydrolysed by KOH-aq. MeOH to ætiocholic [3(a):7:12-trihydroxyætiocholanic] acid (I), m.p. $254-258^\circ$, $[a]_2^{17.5}+65\cdot2^\circ$ in abs. EtOH, and a neutral portion from which Girard's reagent T removes 3(a):7:12-triacetoxypregnan-20-one (II), m.p. $149-151^\circ$ (lit. $134-135^\circ$). Oxidation of (I) by CrO_3 -AcOH affords dehydroætiocholic [3:7:12-triketoætiocholanic] acid, m.p. $245-246^\circ$. (II) is hydrolysed to 3(a):7:12-trihydroxypregnan-20-one, which is oxidised (CrO_3 in AcOH) to pregnanes 3:7:12:20-tetraone, m.p. $238-242^\circ$, $[a]_2^{10}+76\cdot3^\circ$ in $COMe_2$. Cautious alkaline hydrolysis of (II) yields 12-acetoxypregnane-3(a):7-diol-20-one, m.p. $230-233^\circ$, $[a]_2^{10}+81\cdot6^\circ$ in $COMe_2$, oxidised to 12-acetoxypregnane-3:7:20-trione, m.p. $160\cdot5-163\cdot5^\circ$, $[a]_2^{10}+125\cdot9^\circ$ in $COMe_2$, and converted by successive treatments with $Al(OPr\theta)_3$ in PhMe and cyclohexanone and $Ac_2O-C_5H_5N$ at 100° into 7:12-diacetoxypregnane-3:20-dione (III), m.p. $256-262^\circ$, $[a]_2^{10}+113\cdot7^\circ$ in $CHCl_3$. Br and a little 40° 0 HBr in AcOH transform (III) into somewhat impure 4-Br-derivative, m.p. $210-218^\circ$ 0 (decomp.), debrominated in collidine at $\sim 190^\circ$ 0 to somewhat impure 7:12-diacetoxy0.4-pregnene-3:20-dione (7:12-diacetoxyprogesterone), m.p. $249\cdot5-252^\circ$. 2-Guanidinoanthraquinone.—See B., 1941, II, 36. Reaction of naphthazarin with hexadiene and piperylene. B. Arbusov and K. Nikanorov (J. Gen. Chem. Russ., 1940, 10, 649—652).—Naphthazarin with (CHMc:CH)₂ (2 hr. at 160—170°) or CH₂:CH·CH:CHMe (20 hr. at 125—130°) in PhNO; yields 5:8-dihydroxy-1:4-dimethyl-, m.p. 226—227°, or 5:8-dihydroxy-1-methyl-anthraquinone, m.p. 236—237°, respectively. With alloocimene in EtOH the product is 1:4-dihydroxy-8-a-methylpropenyl-5:5-dimethyl-5:8:5a:8a-tetrahydroanthraquinone, m.p. 157°. R. T. ## III.—TERPENES.to.tofore C-vizonby Es- New degradation of cineolic acid. H. Rupe and R. Zweidler (Helv. Chim. Acta, 1940, 23, 1025—1045).—The action of Mg aryl or alkyl halides on cineolic anhydride (I) consists exclusively of addition to CO attached to C₍₆₎. Addition of one or two radicals is a question of constitution. In the first case a CO-acid is produced which is immediately reduced to the OH-acid by the Grignard compound. In the second case a OH-acid is produced. Addition of (I) to MgPhBr (2 mols.) in Et₂O affords 6-diphenylcarbinyleucalyptanic acid (II), OH·CPh₂·CMe CH₂·CH₂·CH·CO₂H, m.p. 162—163°, also formed with cineolic acid when 1 mol. of MgPhBr is used. (The name "eucalyptan" is proposed for the parent 2: 2: 6-trimethyltetrahydropyran.) (II) is transformed by KOH-Me₂SO₄ into the Me ester (III), m.p. 90—91°, and by boiling Ac₂O into the lactone, m.p. 133—134°, which is converted by HBr in MeOH into a very unstable compound, C₂₃H₂₇O₃Br, transformed by C₅H₅N into Me benzhdzyl-Δ⁵-eucalyptenate, preferably obtained from (III) and P₂O₅ in boiling C₆H₅. The corresponding acid, m.p. 145°, is oxidised by KMnO₄ to CPh₂Me·CO₂H, m.p. 172° (p-toluidide, m.p. 110—111°), and a little terebinic acid (II) which alone is produced by the action of O₃. (III) is oxidised by CrO₃ to COPh₂ and (IV) (Ag salt; p-toluidide, m.p. 186—187°). p-C₆H₄Me·MgBr and (I) yield 6-di-p-tolylcarbinyleucalyptanic acid, m.p. 151—152°, whilst 6-di-p-benzyl-, m.p. 137—138°, and 6-di-1'-naphthyl-, m.p. 210—212°, -carbinyleucalyptanic acid are similarly derived. (I) and MgMeBr or MgMeI afford 6-dimethylcarbinyleucalyptanic acid, m.p. 110—111° (Me ester, b.p. 139—141°/12 mm.). The corresponding lactone, b.p. 146—148°/12 mm., m.p. 77-78°, is reduced by Na in boiling EtOH to 3-hydroxymethylbe distilled without loss of H₂O. (II) and MgEtBr give 6-directly learning leaves and methylcarbinyleucalyptan, a viscous liquid which could not be distilled without loss of H₂O. (II) and MgEtBr give 6-diethylcarbinyleucalyptanic acid, m.p. 137·5—138°, b.p. 188°/11 mm. (slight decomp.) (Mg, Ca, and Cd salts). The lactone (V), m.p. 89—90°, b.p. 163—165°/14 mm., is hydrolysed with difficulty by NaOH and is not reduced by H_2 -Pd-C in COMe₂ or H_2 -Ni-EtOAc at 90°/170 atm. Boiling HI (d 1.57) gives very unstable compounds containing I. The Me ester (VI), b.p. 162—165°/15 mm., is very stable towards boiling Ac₂O b.p. 162—165°/15 mm., is very stable towards boiling Ac₂O or HCO₂H. It is converted by SOCl₂ or PCl₅ into a very unstable Cl-ester, better obtained from (V) and MeOH-HCl. It is almost unaffected by attempted hydrogenation (Pd-BaSO₄; Zn-Cu; Zn-Pd in EtOH) and a Cl-free product is obtained only with difficulty by C₅H₅N. The corresponding unstable Br-ester is transformed by boiling C₅H₅N into Me methyldiethyl-Δ⁵-eucalyptenate, b.p. 139—141°/10 mm. [better obtained from (VI) and P₂O₅], which could not be hydrogenated (Pd-BaSO₄ or Ni). Incautious treatment of (V) with HBr may cause fission of the pyran ring followed by replaceated (Pd-BaSO₄ or Ni). Incautious treatment of (V) with HBr may cause fission of the pyran ring followed by replacement of the OH produced by Br, giving a compound transformed by C_5H_5N into a doubly unsaturated compound, $C_{15}H_{26}O_2$, b.p. $123-127^{\circ}/10$ mm. The non-cryst. diethylmethyl- Δ^5 -eucalyptenic acid (VII) loses some CO₂ when distilled under diminished pressure and passes at atm. pressure into (?) 6-methyldiethyl- Δ^5 -eucalyptene, b.p. $104-107^{\circ}/14$ mm. Ozonisation of (VII) in CCl₄ or, preferably, oxidation with KMnO₄ yields (IV). (VII) is with difficulty reduced (Na salt-Ni-H₂ at 142°/200 atm.) to 6-methyldiethyleucalyptanic acid, a liquid (Me ester, b.p. 147—150°/11 mm.), accompanied by a neutral liquid, C₁₃H₂₈O, b.p. 119—121°/11 mm. MgPr^aBr and (I) yield 6-di-, m.p. 111—112°, and 6-mono-, m.p. 179°, -propylcarbinyleucalyptanic acid, the latter arising from the reduction of a primary CO-acid by a second mol. of MgPraBr. (I) and MgPrβBr afford a resin and 6-isopropylcarbinyleucalyptanic acid, m.p. 114—115° (Ag salt; lactone, m.p. 119—120°); it is hydrogenated (Ni-H₂ at 125°/185 atm.) to βδ-dimethyl-η-isopropyloctane-γδθ-triol, m.p. 59—60°, which consumes 1·09 mol. of Pb(OAc)₄ and is oxidised by CrO₃ to 6-isobutyryleucalyptan-3-carboxylic acid, m.p. 86—87° (transformed by MgEtBr into 6-α-hydroxy-α-isopropyl-n-propyleucalyptan-3-carboxylic acid, m.p. 150—152°), and (IV). Mg cyclohexyl bromide and (II) give 6-cyclohexylcarbinyleucalyptanic acid, m.p. 180—181° (Ag salt; Me and p-bromophenacyl, m.p. 109—111°, esters). p-Nitrobenzyllhiuronium chloride, m.p. 217—218°, yields derivatives, C₂₀H₃₁O₆N₃S, m.p. 151—152°, and C₂₂H₃₅O₆N₃S, m.p. 130—131°, with dimethyl- and diethyl-carbinyleucalyptanic acid. (I) and MgPrBr afford a resin and 6-isopropylcarbinyleucalyptcarbinyleucalyptanic acid. Degradation of isoborneol by the xanthate method. A. I. Schavrigin (J. Gen. Chem. Russ., 1940, 10, 807—811).—isoBornyl or bornyl xanthate decomposes at 210—220°, giving bornylene in 40—50% yield. R. T. Diterpenes. XLIII: Position of the double linkings of l-pimaric acid. L. Ruzicka and S. Kaufmann (Helv. Chim. Acta, 1940, 23, 1346—1356; cf. A., 1940, II, 184).—Two possibilities (A) and (B) remain for the distribution of the double linkings in l-pimaric acid (I) whereas the structure (C) is no longer tenable. Preference is accorded to (A) particularly with respect to the transformation of (I) into abietic acid since (B) postulates the wandering of the two double linkings over two C atoms. Ozonisation of the Me_3 ester of the adduct (II) of (I) and maleic anhydride in AcOH at room temp. and decomp. of the ozonide with H_2O gives small amounts of amorphous acids and a mixture of neutral products from which a singly unsaturated ketotricarboxylic ester (III), $C_{28}H_{38}O_7$, m.p. 168-169 (oxime, m.p. $174-176^\circ$), and a doubly unsaturated tricarboxylic ester (IV), $C_{27}H_{38}O_6$, m.p. 124—126°, which gives a marked yellow colour with $C(NO_2)_4$ have been isolated. Hydrogenation (PtO₂ in AcOH) of (IV) causes absorption of 2 H with re-formation of (II). Since loss of CH₂ occurs during the production of (III) it is therefore probable that ozonisation follows an unusual course. The most probable hypothesis is the entry of OH into Prβ followed by elimination of H₂O during ozonisation yielding ·CMe·CH₂ which can react with O₃ with production of Ac. The ultraviolet absorption spectrum of (III) proves it to be an aβ-unsaturated ketone and the double linking of (II) is therefore in conjugation to the CO of the degradation product. The location of CO in a side-chain is proved by treatment of (III) with NaOBr in alkaline solution, whereby 2 CO₂Me are hydrolysed with production of CHBr₃ and a Me H₃ tetracarboxylate (V), C₂₂H₃₀O₈,0·5H₂O, m.p. 280—283°, converted by CH₂N₂ into a Me₄ ester, C₂₆H₃₆O₈, m.p. 152—153°. The absorption spectrum of (V) shows the bands characteristic of aβ-unsaturated acids and that of (IV) exhibits those required for CO₂Me R CH·CO₂Me CH·CO₂Me two conjugated double linkings. The structures of (I), (IV), and (III) are represented by (D) (R = $\Pr\beta$, CMe.CH₂, and Ac respectively). Partial hydrolysis of (III) gives a Me_2 H ester, m.p. $226-228^\circ$, and hydrogenation (PtO₂ in AcOH) affords a mixture from which the hydroxytricarb- from which the hydroxytricarboxylic ester, $C_{26}H_{38}O_7$, m.p. $128-129^\circ$, can be isolated; in this compound the double linking can be detected by $C(NO_2)_4$ since it is no longer vicinal to CO. Reduction (Clemmensen) of (III) and dehydrogenation (Se) of the non-cryst. product gives a hydrocarbon, m.p. $86-87^\circ$, which must be 1-methyl-7-ethylphenanthrene [additive compound with $C_6H_3(NO_2)_3$, m.p. $131-133^\circ$] provided that isomerisations have not occured during the transformations. Treatment of (III) with a large excess of MgEtI and dehydrogenation (Se) of the resulting product yields similarly 1-methyl-7-sec.-butylphenanthrene, m.p. $60-62^\circ$ [additive compound, m.p. $121-123^\circ$, with $C_6H_3(NO_2)_3$], oxidised (CrO₃ in AcOH) to the quinone, $C_{19}H_{18}O_2$, m.p. $138-140^\circ$. All m.p. are corr. Diterpenes. XLIV. Action of ozone and permanganate on the additive product of maleic anhydride and *I*-pimaric acid. L. Ruzicka and W. A. Lalande, jun. [with S. Kaufmann] (Helv. Chim. Acta, 1940, 23, 1357—1366; cf. A., 1933, 279; 1938, II, 287; Wienhaus et al., A., 1936, 1385).—Ozonisation in AcOH of the additive product of maleic anhydride and Me *I*-pimarate gives the compound (I), C₂₅H₃₄O₈, m.p. 252—253° (decomp.) after softening, and two isomeric Me H esters, C₂₅H₃₄O₆, m.p. 289—290° (II) and 226—227° (III). (III) and CH₂N₂ give a cryst. Me₂ ester, C₂₆H₃₆O₆ (IV), m.p. 182—183°, whereas the corresponding derivative of (II) is amorphous. In (II) and (III) 2 O are present in CO₂H and 2 in CO₂Me and since the compounds are unsaturated towards $$CO_2Me$$ CO_2Me $CH \cdot CO_2H$ $CH \cdot CO_2H$ $CH \cdot CO_2H$ C(NO₂)₄ it is probable that the remaining 2 O are present in a difficultly hydrolysed lactone group. For (II) and (III) the formulæ (A) and (B) group. For (II) and (III) the formulæ (A) and (B) are probable whilst (I) is possibly (C). The presence of CO in (I) is now recognised spectroscopically but the group is hindered so that it does not react with the customary ketonic reference. agents. Oxidation of (I) by KMnO₄ (O = 1) fails to give the compound, $C_{24}H_{34}O_7$, m.p. $191-192^\circ$, recorded by Arbusov (A., 1933, 392), its place being taken by two lactonedicarboxylic acids, $C_{24}H_{32}O_6$ (V), m.p. $211-212^\circ$, and $C_{24}H_{34}O_6$ (VI), m.p. $250-252^\circ$ after softening. (V) gives a yellow colour with $C(NO_2)_4$ and titrates as a dibasic acid, the lactone group being hydrolysed with difficulty; its Megester, m.p. $182-184^\circ$, is identical with (IV). The lactone group of (VI) is hydrolysed by N-KOH. With CH_2N_2 (VI yields a Me_2 ester (VII), m.p. $218-220^\circ$. Neither (VI) nor (VII) gives a yellow colour with $C(NO_2)_4$. The constitution of (VI) remains obscure. The action of $KMnO_4$ (O = 2) on (I) gives (V) in 75% yield whereas with $KMnO_4$ (O = 3) a substance, $C_{24}H_{32}O_8$ (VIII), m.p. $307-308^\circ$ (decomp.), results in 12-18% yield. (VIII) does not give a yellow colour with $C(NO_2)_4$, is titrated as a monobasic acid, and with CH_2N_2 , gives a Me_1 ester, $C_{22}H_{34}O_8$, m.p. $276-278^\circ$. Acid and ester are readily hydrolysed, whereby 3 CO_2H are identified. In addition to CO_2H (VIII) therefore contains an anhydride group. Two further O atoms are probably present as OH since warm Ac_2O and C_5H_5N give a diacetate, $C_{28}H_{34}O_{10}$, m.p. $273-275^\circ$, although in very poor yield. 2 OH are also detected by Zerevitinov's method. The function of the final O is not explained. Reaction products could not be obtained with NH_2OH or $NH_2\cdot CO\cdot NH\cdot NH_2$ but the presence of strongly masked CO is not excluded. All m.p. are corr. Triterpenes. LIV. Lupenal and lupenalol and their further transformations. L. Ruzicka and G. Rosenkranz (Helv. Chim. Acta, 1940, 23, 1311—1324; cf. A., 1940, II, 137).—Replacement of C_eH_e by AcOH in the oxidation of lupeol acetate by SeO₂ (loc. cit.) leads to the more rapid production in better yield of lupenalol acetate (I) (formerly "ketolupeol acetate"), m.p. 224—226°, [a]_D +4·2° in CHCl₃, the aldehydic nature of which is established by its oximation, with simultaneous hydrolysis, to lupenaloloxime, m.p. 245—246°, [a]_D +2° in CHCl₃, which is converted by Ac₂O at 120° into acetyl-lupenolonitrile, m.p. 254°, [a]_D +18·6° in CHCl₃; the absorption spectrum of this compound is very closely similar to that of 17-cyano-3-acetoxy-Δ⁵:16-androstadiene which contains an αβ-unsaturated nitrile. Oxidation of a-lupene (II) (Heilbron et al., A., 1938, II, 195) with SeO₂ in AcOH affords lupenal (III), m.p. 203°, [a]_D +4·3° in CHCl₃ [hydrazone, m.p. 214—216° (decomp.)], the absorption spectrum of which closely resembles that of lupenalol (IV). The formation of an aβ-unsaturated aldehyde from a compound with semicyclic CH₂ requires a migration of the double linking into the ring; this is rendered the more improbable in the present case by the re-formation of lupeol and (II) by the Wolff-Kishner treatment of (IV) and (III). Further the oxidative degradation of (I) confirms the absence of semicyclic CH₂ and renders probable the presence of 'CMc:CH₂; (I) and CrO₃ in AcOH give a saturated acetoxymonocarboxylic acid (V), C₃₀H₄₈O₄, m.p. 237°, [a]_D −17·6° in dioxan, which is not hydrogenated (PtO₂) and does not give a yellow colour with C(NO₂)₄. Alkaline hydrolysis of (VI) gives Me bisnorlupanolate, m.p. 221—223°, [a]_D −17·1° in dioxan, whilst similar treatment of (V) affords bisnorlupanolic acid (VII), C₂H₄O₃, m.p. 261—262°, [a]_D −14·1° in dioxan. Confirmation of the presence of CMe:CH₂ in lupeol is given by the formation of COMe₂ by oxidation with CrO₃, the 'CMe:CH The structures of lupeol (R = Me) and betulin $(R = {}^{4}CH_{2}{}^{4}OH)$ are provisionally represented by (A), which passes by ring enlargement of the *cyclo*pentano-group into the structure (B) of the oleanolic group. Triterpenes. LV. Products of the oxidation of betulin and betulin diacetate. L. Ruzicka and M. Brenner (Helv. Chim. Acta, 1940, 23, 1325—1337).—The double linking of betulin can be hydroxylated (Crieger) and the so-formed dihydroxydihydrobetulin (tetrahydroxylupan) (I), m.p. 303—305° (vac.) (II), m.p. $229-231^\circ$, $[a]_D-20.8^\circ$ in CHCl₃ [diacetate (III), m.p. $\sim 190^\circ$, $[a]_D-11.0^\circ$ in CHCl₃]. Oxidation of betulin diacetate (IV) with CrO₃ affords, as neutral product, (III), which does not give cryst. derivatives with NH₂OH or NH₂·CO·NH·NH₂ but in which the presence of 'CO is established by the absorption spectrum and by reduction (H₂-PtO₂-AcOH at room temp.) to diacetoxynorlupanol (V), m.p. $252-254^\circ$, $[a]_D-11\cdot1^\circ$ in CHCl₃, oxidised to the ketone. The acid products of the oxidation are separated as their Me esters, whereby Me (+)-diacetoxylupanate, m.p. $234-236^\circ$, $[a]_D+18\cdot9^\circ$ in CHCl₃, and Me (-)-diacetoxylupanate, m.p. $213-214^\circ$, $[a]_D-48^\circ$ in CHCl₃, are obtained. Further, the acids can be separated from one another by stepwise extraction with alkali or by fractional dissolution of them adsorbed on Al₂O₃. Me (+)-dihydroxylupanate has m.p. $248-249^\circ$, $[a]_D+4\cdot9^\circ$ in CHCl₃. With H₂O₂ and (IV) there result the two isomeric acids and a mixture of neutral compounds from which only formyldiacetoxynorlupanol, m.p. $235-237^\circ$, $[a]_D-8\cdot4^\circ$ in CHCl₃, has been isolated. Its constitution is established by its synthesis by the action of HCO₂H and COCl₂ in C₅H₅N on (V) and by its hydrolysis to norlupantriol, m.p. $\sim 315^\circ$, $[a]_D-19\cdot5^\circ$ in dioxan. H. W. Triterpenes. LVI. Oxidation of betulin monoacetate and methyl acetylbetulinate with chromium trioxide. L. Ruzicka and A. H. Lamberton (Helv. Chim. Acta, 1940, 23, 1338—1345; cf. A., 1939, II, 29).—On the basis of the formula (A) for betulin (R = CH₂·OH, R' = CMc·CH₂) the structures (B) and (C) are assigned provisionally to the dicarboxylic acid A OH $$(A.) \qquad R \qquad R'$$ $$(B.) \qquad \text{Me } CO_2H$$ (I) and acetyldicarboxylic acid E (II) obtained (loc. cit.) by the oxidation of betulin monoacetate (III) with CrO₃. The oxidation of (III) and acetylbetulic acid with CrO₃ is described. Treatment of Me acetylbetulate with CrO₃ in AcOH at 80—90° gives the Me₁ ester of (II), m.p. 259—260°, which does not give a colour with C(NO₂)₄ and is converted by CH₄N₂ into the Me₂ ester of (II), m.p. 243—245°, [a]p +19° in CHCl₃, hydrolysis (KOH-MeOH) of the products insol. in alkali gives the Me₁ ester of (I), m.p. 274—276°, which does not give a colour with C(NO₂)₄ and is converted by CH₂N₂ into the Me₂ ester of (I), m.p. 178—180°, [a]p —60°±6° in CHCl₃. The neutral oxidation product is identified as Me norlupanolonate (cf. A, R = CO₂Me; R' = Ac), m.p. 250—252°, [a]p —33° in CHCl₃, which is unchanged by boiling N-KOH-MeOH and does not give a yellow colour with C(NO₂)₄. It is converted by boiling Ac₂O into a substance, m.p. ~235° after softening at 205°; it does not give cryst. compounds with NH₂OH on NH₂·CO·NH·NH₂. (I) is transformed by Ac₂O-C₅H₅N into its acetate, m.p. ~310°, which is dehydrogenated (Se at 355—370°) to 1:5:6-C₁₀H₅Me₃. This, with a substance, (?) C₂₉H₄₆O₂, m.p. 240—241°, which does not give a colour with FeCl₃, is obtained similarly from (II). M.p. are corr. Triterpenes. LVII. 2-Deoxybetulin and 2-deoxyallobetulin. L. Ruzicka and S. D. Heinemann (Helv. Chim. Acta, 1940, 23, 1512—1518; cf. preceding abstract).—Betulin 2-monoacetate (I) is transformed by BzCl in C₈H₅N at 100° into betulin 2-acetate x-benzoate, m.p. 205·5—206°, which could not be smoothly hydrolysed to the Ac-free benzoate. (I) and PhNCO in boiling C₈H₈ give betulin 2-acetate x-phenylcarbanate, m.p. 226·5—227°, hydrolysed by 2% K₂CO₃ in boiling 75% MeOH to betulin 2-phenylcarbanate, m.p. 239·5—240·5°. This is oxidised by CrO₃ in AcOH to betulone 2-phenylcarbanate, m.p. 226·5—227° [oxime, m.p. 257·5—258°; azine, 73 Me2 Me Me (II.) OH·CH, 1. $356-357^{\circ}$ (decomp.)], which is transformed by N_2H_4, H_2O , followed by C_5H_{11} ·ONa in C_5H_{11} ·OH at 200° , into 2-deoxybetulin (II), m.p. $140-141^{\circ}$, $[a]_D+16^{\circ}\pm 2^{\circ}$ in CHCl₃ (acetate, m.p. $164-164\cdot 5^{\circ}$; formate, m.p. $133-135^{\circ}$). This is cyclised by 100% HCO₂H in CHCl₃ at 100° to 2-deoxyallobetulin, m.p. $234-235^{\circ}$, $[a]_D+54^{\circ}$ $\pm 1^{\circ}$ in CHCl₅ also obtained by + 1° in CHCl3, also obtained by the successive action of N₂H₄,H₂O and Na in C₅H₁₁·OH at 200—210° on allobetulone (III); in EtOH (III) is transformed into the azine, C60H96O2N2, m.p. 364-365°. All m.p. Triterpenediols. IV. Constitution of onocerin. J. Zimmermann (Helv. Chim. Acta, 1940, 23, 1110—1113).—The previous hypothesis (A., 1938, II, 372) that the conversion of a- into β -onocerin (I) consists of a transformation of a tetrainto a penta-cyclic structure cannot be maintained since titration of (I) with BzO₂H discloses the presence of two double linkings. Ozonisation of a-onocerin diacetate and treatment of the ozonide with steam gives CH2O and a substance not volatile in steam which is hydrolysed (KOH-EtOH) to a compound, C₂₈H₄₅O₄, m.p. 217° (diacetate, m.p. 165°, and its dioxime, m.p. 265°). Similar treatment of β-onocerin diacetate gives COMe2 and a non-cryst. resin which affords a minute amount of yellow crystals when hydrolysed (KOH-EtOH). Triterpene resinols and related acids. XII. Oxidation of β -amyradienyl-I acetate with selenium dioxide, a new route to Jacobs' keto-diol, $C_{30}H_{44-46}O_3$. C. W. Picard and F. S. Spring (J.C.S., 1941, 35—39).—The prep. of β -amyradienol-I from β -amyrenonol (reduction with Na-EtOH or C_5H_{11} OH) is accompanied by the formation of β -amyradienol-II, identical with the companied by the formation of β -amyradienol-II, identical with the compound obtained by oxidation (SeO₂) of β-amyradienyl esters. The two ethylenic linkings as a conjugated system are located in -I in a single ring but in -II the system is not contained in a single ring. Oxidation (SeO₂) of β amyradienyl-I acetate gives the keto-acetate, $C_{32}H_{48(46)}O_4$, of Jacobs and Fleck (A., 1930, 1292). Oxidation (Br-AcOH) of β -amyrenonyl benzoate affords β -amyradienonyl benzoate, m.p. 251—252°, hydrolysed (KOH) to β -amyradienonol (I), m.p. 239—240°; the acetate, m.p. 255°, is oxidised (KMnO₄) to an acetate, $C_{32}H_{48}O_4$, m.p. 234—235° (slight decomp.), not identical with Jacobs' keto-acetate. A provisional structure is assigned to (I) is assigned to (I). F. R. S. ## IV.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES. Mytiloxanthin, m.p. 140-144° (block; corr.).-See A., 1941, III, 123. Nature of Haslewood's hepatols. H. B. MacPhillamy (J. Amer. Chem. Soc., 1940, 62, 3518—3519).—Hog liver yields \$7-hydroxycholesterol and Haslewood's hepatol (I), m.p. 277—279° (A., 1939, III, 707). However, (I) is digitogenin (diacetate, m.p. 231—233°), derived from digitonin by Haslewood's method of isolation. The second hepatol (loc. cit.) is probably impure (I). Hydrogenation of lignin, E. E. Harris (Paper Trade J., 1940, 111, TAPPI Sect., 297—298).—The % of MeOH, n-propylcyclohexane derivatives (I), high-boiling resin, and H₂O obtained by hydrogenating various lignins in dioxan + Cu chromite are tabulated. With isolated sulphite and sulphate lignin S acts as a catalyst poison but it is possible to remove S as H_2 S or MeSH and to hydrogenate the resulting products, H_2 O containing Ni may also be used as solvent. The products are similar to those obtained in dioxan but OMe is less extensional similar to those obtained in dioxan but OMe is less extensions. sively removed. At higher temp. OH and OMe are eliminated with production of *n*-propylcyclohexane. Wood chips are completely converted into oils and products sol. in H₂O when hydrogenated at about 250°/5000 lb. MeOH, PrOH, and reduced carbohydrates are found in the portion sol. in H₂O; the identified oils consist of (I). At lower temp. and pressure hydrogenation can be controlled so that only a small proportion of gas is absorbed; a pulp remains. H. W. portion of gas is absorbed; a pulp remains. Sclerotiorin, $C_{20}H_{20}O_5Cl$ (P), metabolic product of Penicillium sclerotiorum, von Beyma.—See A., 1941, III, 138. ## V.-HETEROCYCLIC. Derivatives of furfuryl and tetrahydrofurfuryl alcohols. R. D. Kleene and S. Fried (J. Amer. Chem. Soc., 1940, 62, 3516).—Furfuryl, m.p. 75—77°, and tetrahydrofurfuryl pnitrobenzoate, m.p. 46—48°, and tetrahydrofurfuryl 3:5-dinitrobenzoate, m.p. 83—84°, are prepared. R. S. C. Complex rotatory dispersion of optically active tetrahydro-furyl-2-carbinol.—See A., 1941, I, 74. Coumarones and chromans.—See B., 1941, II, 37. Structural interpretations of flavone spectra.—See A., 1941, Additive compounds of zinc, cadmium, cobalt, and nickel halides with 1:4-dioxan. R. Juhasz and L. F. Yntema (J. Halides with 1: 4-dioxan. R. Junasz and L. F. Yhtena (y. Amer. Chem. Soc., 1940, 62, 3522).—Anhyd. dioxan (I) gives additive compounds, (a) X,(I) in which $X = ZnCl_2$, $CdCl_2$ CdC Thianthren series. I. 2-Sulphothianthren sulphone and 2-chlorothianthren sulphone. V. V. Kozlov, E. P. Fruktova, and O. M. Schemjakina (J. Gen. Chem. Russ., 1940, 10, and O. M. Schemjakina (J. Gen. Chem. Russ., 1940, 10, 1077—1088).—Thianthren sulphone and 62% oleum (5.5 hr. at 140—145°) yield 2-sulphothianthren sulphone (I) [Na, +H₂O, K, +0.5, 1, and 3H₂O; Cu^{II}, Ba, Zn, Al, Fe^{II}, Fe^{III}, Pb^{II}, Ag salts; chloride, m.p. 194° (decomp.); amide, m.p. 178°], which with PCl₅-POCl₃ (5 hr. at 180°) affords 2-chlorothianthren sulphone, m.p. 120°. Fusion of (I) with NaOH (20 min. at 300°) yields PhOH, resorcinol, and p-OH·C₆H₄·SO₃H. R. T. Attempts to prepare 7-substituted dicyclo[1:2:2]-azaheptanes. G. R. Clemo and E. Hoggarth (J.C.S., 1941, 41-47) Et pyridine-4-carboxylate (picrate, m.p. 142°) and MgMeI give dimethyl-4-pyridylcarbinol (I) (picrate, m.p. 95°, picrolonate, decomp. 236°, and platinichloride, m.p. 194°), which could amount of 4-isopropylpyridine (picrate, m.p. 135°, picrolonate, m.p. 208°, and platinichloride, m.p. 202°), not identical with 4-a-methylvinylpyridine, b.p. 82°/15 mm. [picrate (+EtOH), and picrolonate, m.p. 231°], prepared by dehydration (P₂O₅) of (I). Reduction of 4-acetylpyridine with Pr\$\text{P}\$OH and Al(OPr\$\text{B}\$)₃ affords methyl-4-pyridylcarbinol, m.p. 54° (picrate, m.p. 125°, picrolonate, m.p. 232°, and platinichloride, m.p. 206°), which could not be hydrogenated. Et 1-acetylpiperidine-4-carboxylate, b.p. 135—136°/1 mm., with MgMeI gives dimethyl-1-acetyl-4-piperidylcarbinol, b.p. 162—165°/1 mm., which could not be deacetylated. Et 1-benzoylpiperidine-4-carboxylate, m.p. 77°, and MgMeI yield in small amount a mixture of COMe2 and dimethyl-4-piperidylcarbinol (II), m.p. 136° [picrate, two forms, m.p. 156° and 187°; picrolonate, m.p. 265° (decomp.)] HBr and (II) give 4-a-bromoisopropylpiperidine, m.p. 192°, which with Ag2O or K2CO3 affords (II) and an amine, C3H15N, b.p. 58—62°/12 mm. (picrolonate, m.p. 221°), reduced (PtO2-H2) to 4-isopropylpiperidine. Et piperidine-4-carboxylate and MgMeI yield 4-acetylpiperidine (?), b.p. 108—110°/25 mm. [picrate, m.p. 266° (decomp.), picrolonate, m.p. 206°, and platinichloride (+EtOH), m.p. 206°], not identical with that described by Prelog (A., 1938, II, 456); the base with MeI gives a compound, C2H13ON,MeI, of (I). Reduction of 4-acetylpyridine with PrbOH and II, 456); the base with MeI gives a compound, $C_7H_{13}ON$, MeI, m.p. 170°, which with Ag₂O yields a base, b.p. $108-109^\circ/25$ mm. (picrolonate, m.p. 215°). Cuprammine salts. D. A. Maruchian (J. Gen. Chem. Russ., 1940, 10, 917—920).—CuCl or CuBr and excess of C₅H₅N afford the salts [Cu₂(C₅H₅N)₄]Cl₂ (I) or [Cu₂(C₅H₅N)₄]Br₂ (II). With Cl₂ (I) gives [Cu(C₅H₅N)₄]Cl₂, also obtained from (II), R. T. via (I). Action of acid chlorides on tetrahydrofuran, and certain derivatives of δ-diethylaminobutan-α-ol. L. M. Smorgonski and J. L. Goldfarb (J. Gen. Chem. Russ., 1940, 10, 1113—1119).—Tetrahydrofuran and p-NO₂·C₆H₄·COCl or p-NO₂·C₆H₄·COBr (4 hr. at the b.p.) yield δ-chlorobutyl, b.p. 205—206°/7 mm., or δ-bromobutyl p-nitrobenzoate, b.p. 191—194°/3 mm., m.p. 45—46°. δ-Bromobutyl acetate, b.p. 95—0°/11 mm. chaired productive reactivity Nullet inclining 96°/14 mm., obtained analogously, reacts with NHEt, yielding δ-diethylaminobutyl acetate, b.p. 112°/22·5 mm., hydrolysed to OH·[CH₂]₄·NEt₂ [picrolonate, m.p. 65—66°; p-nitrobenzoate (I) (hydrochloride, m.p. 158—159°; picrate, m.p. 151—152°)]. (I) is reduced (SnCl₂) to δ-diethylaminobutyl p-aminobenzoate, decomp. 60-80°. an oil (hydrochloride, m.p. 171°). At room temp. (I) is rapidly converted into 1:1-diethylpyrrolidinium p-nitrobenzoate. a-Nitropyridines. M. G. Bistritzkaja and A. V. Kirsanov (J. Gen. Chem. Russ., 1940, 10, 1101—1107).—When 5-chloroor 5-bromo-2-aminopyridine is added to H₂O₂-H₂SO₄ at 0—5°, and the mixture is diluted after 48 hr. at room temp. and made neutral with aq. NH₃, 5-chloro-, m.p. 120·5—121°, or 5-bromo-2-nitropyridine, m.p. 149·5—150°, separates. These compounds yield the corresponding 2-aminopyridines when reduced with Na₂S₂O₄ or SnCl₂, whilst with As₂O₃ in aq. NaOH they give 5:5'-dichloro-, decomp. 204°, or 5:5'-di-bromo-2:2'-azoxypyridine, decomp. 200°; with As₂O₃ and Na₃AsO₃ the products are 5:5'-dichloro-, decomp. 248°, and 5:5'-dibromo-2:2'-azobenzene, decomp. 235°. 3-Nitro-2-aminopyridine and aq. CH₂O at room temp. afford NN'-(3:3'-dinitro-2:2'-dipyridyl)diaminomethane. 5-Nitro-2-aminopyridine and aq. NaOCl yield a substance, C₅H₈O₂N₃Cl₂, probably a perchloride or a chloroamine, Preparation of phenyl 2-pyridyl and 8-quinolyl sulphides and sulphones. H. C. Winter and F. E. Reinhart (J. Amer. Chem. Soc., 1940, 62, 3508—3511).—8-Chloro-5-nitroquinoline with Na₂S₂ in boiling EtOH gives di-5-nitro-8-quinolyl disulphide, m.p. 245°, and with PhSH or p-NO₂·C₆H₄·SH (I) and NaOAc in boiling EtOH gives Ph, m.p. 100°, and p-NO₂·C₆H₄ 5-nitro-8-quinolyl sulphide, m.p. 223°, respectively. 2-Chloro-5-nitropyridine with PhSH at 135—150° gives Ph*, m.p. 121°, and with (I) and NaOAc in boiling EtOH gives p-NO₂·C₆H₄ 5-nitro-2-pyridyl sulphide, m.p. 126—129°. Reduction of the appropriate NO₂-compound by SnCl₂-HCl yields Ph 5-amino-2-pyridyl*, m.p. 125—127° (lit. 120°), and 5-amino-8-quinolyl*, m.p. 128° (Ac derivative, m.p. 97—98°), sulphide. H₂O₂ in AcOH oxidises the appropriate sulphide to Ph 5-nitroquinolyl sulphoxide, m.p. 145—146°, Ph 5-nitro-*, m.p. 151—153° (m·NO₂-derivative, m.p. 169—170°), and 5-amino-2-pyridyl sulphone*, m.p. 169—170°, p-NO₂·C₆H₄ 5-nitro-2-pyridyl sulphone*, m.p. 217°, Ph 5-nitro-*, m.p. 180—181°, and 5-amino-8-quinolyl sulphone*, m.p. 224° (Ac derivative, m.p. 268—269°). p-NO₂·C₆H₄ 5-nitro-8-quinolyl sulphone, m.p. 237°, is prepared using CrO₃ (not H₂O₂) in AcOH first at room temp., later at b.p. 8-Quinoline-sulphonylsulphanilic acid*, +H₂O (Na salt), is also prepared Compounds marked*, K 5-nitro-2-pyridinesulphonic acid, quinoline-8-sulphonic acid and its amide, 8-aminoquinoline-5-sulphonic acid, di-5-nitro-2-pyridyl and -8-quinolyl sulphide [prep. from 8-chloro-5-nitroquinoline by CS(NH₂)₂ and NaOEt] have no antistreptococcal activity. R. S. C. #### 6-Ethoxy-2: 4-dimethylquinoline.—See B., 1941, II, 37. Condensation of halogeno-pyridines, -quinolines, and -isoquinolines with sulphanilamide. M. A. Phillips (J.C.S., 1941, 9—15).—When halogeno-pyridines, -quinolines, and -isoquinolines are condensed with p-NH₂C₆H₄·SO₂·NH₂ (I) in presence of K₂CO₃-Cu, condensation generally occurs at the SO₂·NH₂ end of the mol., probably owing to the intermediate formation of the K salt of (I). In the absence of K₂CO₃, condensation occurs exclusively at the NH₂ end of (I). 2-Chloro-5-nitropyridine with (I) and K₂CO₃-Cu gives a mixture of 5-nitro-2-(p-aminobenzenesulphonamido)pyridine, m.p. 218—220° (Ac derivative, m.p. 279°), and p-(5'-nitro-2'-pyridyl-amino)benzenesulphonamide, m.p. 209—210° (Na salt; 5'-NH₂-derivative, m.p. 221°), the former predominating. The following are described: Na salt of 2-(p-aminobenzenesulphonamido)-quinoline, m.p. 194° (Ac derivative, m.p. 216°); p-(1'-isoquinolylamino)benzenesulphonamide, m.p. 275°; 1-(p-aminobenzenesulphonamido)isoquinoline, m.p. 263° (Ac derivative, m.p. 225°); 5-amino-2-(p-aminobenzenesulphonamido)pyridine, sinters 140—150°; and p-(2'-pyridylamino)benzenesulphon-2'-pyridylamide, m.p. 204°. F. R. S. Heterocyclic amidines.—See B., 1941, II, 37, 37, 38. Carbazole and its derivatives. I. Carbazolemonosulphonic acid. K. G. Mizutsch. II. Bromination of carbazole and carbazole-3-sulphonic acid. K. G. Mizutsch and A. J. Savtschenko (J. Gen. Chem. Russ., 1940, 10, 844—851, 852—854).—I. Carbazole (I) and KCNS in 96% AcOH are maintained for 1 hr. at 6—10°, and Br in AcOH is added gradually at 20° for 2 hr., yielding 3-thiocyanocarbazole (II), m.p. 111·7— 112·7° (N-Ac derivative, m.p. 121—122°), also prepared by the Sandmeyer reaction from 3-diazocarbazole thiocyanate, m.p. 122—123° (decomp.). A by-product of the former reaction is 3 : 6(?)-dithiocyanocarbazole, m.p. 197·5–198·5° (N-Ac derivative, m.p. 196·5—197·5°). (II) is reduced (Zn in HCl-AcOH) to 3-thiolcarbazole, m.p. 199·5—202°. This is oxidised by I in AcOH to dicarbazyl 3 : 3'-disulphide, m.p. 240—241·5°, and by H₂O₂ in AcOH to carbazole-3-sulphonic acid (III) [Na, p-chloroaniline, m.p. 215·5—216·5°, phenylhydrazine, m.p. 223·2—223·8° (decomp.), a-C₁₀H₇·NH₂, m.p. 231—232°, benzidine salts]. II. Oxidation of (I) is not observed during bromination with MarcO (Marchage) in the carbazole are reached as a superior of the control of the control of the control of the carbazole during bromination with MarcO (Marchage) in the carbazole are reached. with KBrO₃-KBr; the products are mono-, di-, and 1:3:6-tri-bromocarbazole. (III) is brominated similarly to 1:3:8-tribromocarbazole-3-sulphonic acid, which with 3% HCl at 200° gives 1:3:8-tribromocarbazole, m.p. 178—180°. R. T. Formation of pyrazolines from unsymmetrically substituted dibenzylideneacetones. L. C. Raiford and R. H. Manley (J. Org. Chem., 1940, 5, 590—597).—Condensation of αβ-diunsaturated unsymmetrical ketones containing the p-C6H4Cl·CH. and vanillylidene or substituted vanillylidene radicals with NHPh·NH₂ does not yield the phenylhydrazones but the isomeric pyrazolines. Oxidation (KMnO₄) of these gives invariably p-C6H4Cl·CO2H and the required pyrazole-3-carboxylic acid, showing that the direction of rearrangement is away from the p-C6H4Cl·CH: radical. Vanillylideneacetone or its substitution product is mixed with p-C6H4Cl·CHO in EtOH and the liquid is kept for several hr. at 0° after being made strongly alkaline with NaOH; the Na salt which separates is treated with AcOH. Thus are obtained : vanillylidene-4'-chlorobenzylideneacetone, m.p. 137—138°, and its 5'-Br-m.p. 191—192°, 6'-Br-, m.p. 179—180°, and 5'-NO₂-, m.p. 186—187°, derivatives. These are condensed with NHPh-NH₁ in glacial AcOH at room temp. for several days, thus giving the following -pyrazolines: 3-phenyl-1:5-di-p-chlorophenyl-, m.p. 135—136°; 5-phenyl-1:3-di-p-chlorophenyl-, m.p. 135 m.p. 135—136 , 5-phenyl-1 . 5-di-p-chtorophenyl-, m.p. 136—135-5°; 3-p-chlorostyryl-1-phenyl-5-4'-hydroxy-3'-methoxy-phenyl-, m.p. 174°; 3-p-chlorostyryl-1-phenyl-5-5'-bromo-4'-hydroxy-3'-methoxy-phenyl-, m.p. 170—171°; 3-p-chlorostyryl-1-phenyl-5-6'-bromo-4'-hydroxy-3'-methoxy-phenyl-, m.p. 161—162°, and 3-p-chlorostyryl-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-phenyl-5-5'-nitro-4'-hydroxy-3'-methoxy-1-ph methoxyphenyl-, m.p. 208-209°. Oxidation (KMnO, in C5H5N at room temp.) of the appropriate pyrazoline yields the following 1:5-diphenylpyrazole-3-carboxylic acids (substituents in C_6H_5 at $C_{(5)}$): 4'-hydroxy-3'-methoxy-, m.p. 165° after softening; 5'-bromo-4'-hydroxy-3'-methoxy-, m.p. 161–163°; 6'-bromo-4'-hydroxy-3'-methoxy-, m.p. 175°; 5'-nitro-4'-hydroxy-3'-methoxy-, m.p. ~90°. H. W. Associating effect of the hydrogen atom. VII. N-H-N bond. Derivatives of pyrazole and indazole. H. T. Hayes and L. Hunter (J.C.S., 1941, 1-5).—Contrasts in b.p., solubility in donor solvents, and degree of association are shown between derivatives of pyrazole and indazole possesing a free imino-H and those in which this atom has been replaced by an alkyl, aryl, or acyl group. The high vals. of these properties of the former class of compound are attributed to H-bond formation involving the imino-H. Cryoscopic measurement of mol. wt. of 16 derivatives is made over a range of concn. in C_0H_0 or $C_{10}H_8$ solution. A possible mechanism of pyrazole tautomerism is proposed. F. R. S. 2-Amino-1': 9'-pyrimidinoanthrone.—See B., 1941, II, 36. Syntheses of carbaza-condensed systems from 2- and 6-aminonicotines. III. Reaction of bromopyruvic ester with 2- and 6-aminonicotine. J. L. Goldfarb and M. S. Kondakova. IV. Condensation of 2-aminonicotine with acetoacetic ester. M. S. Kondakova and J. L. Goldfarb (J. Gen. Chem. Russ., 1940, 10, 1055—1064, 1065—1068).—III. 2-Aminonicotine (I) in Et₂O and CH₂Br·CO·CO₂Et (12 hr. at room temp.) yield an additive product which when treated with boiling EtOH and then with K₂CO₃ gives 7-(1'-methyl-2'-pyrrolidyl)-2-carbethoxy-1-azaindolizine, b.p. 233—234°/6 mm. m.p. 96—97° (hydrobromide, m.p. 213—214°; picrate, m.p. 177—178°). This is hydrolysed (50% HCl; 20 hr. at the b.p.) to 7-(1'-methyl-2'-pyrrolidyl)-2-carboxy-1-azaindolizine [mono-, m.p. 198—201°, di-hydrochloride, m.p. 232—237°, picrate, m.p. 113—116°; amide, m.p. 225° (dihydrochloride, m.p. 244—254°)], readily losing CO₂ at 225—235°, to yield 7-(1'-methyl-2'-pyrrolidyl)-1-azaindolizine, b.p. 159°/5 mm., m.p. 44—47° [dihydrochloride, m.p. 257° (decomp.); platinochloride; picrate, m.p. 240°]. Nitration of this compound gives 3-nitro-7-(1'-methyl-2'-pyrrolidyl)-2-azaindolizine, m.p. 96—97°, also obtained by hydrolysis of Et 3-nitro-7-(1'-methyl-2'-pyrrolidyl)-1-azaindolizine-1-carboxylate (II), m.p. 111—112°. (II) yields (I) when oxidised (CrO₃ in H₃SO₄) or when heated with KOH in EtOH. 6-Aminonicotine and CH₂Br·CO·CO₂Et react as above, yielding Et 5-(1'-methyl-2'-pyrrolidyl)-1-azaindolizine-2-carboxylate, b.p. 235—237°/4 mm. m.p. 154° [picrate, m.p. 225° (decomp.)], which with 50% HCl (24 hr. at the b.p.) gives 5-(1'-methyl-2'-pyrrolidyl)-1-azaindolizine, b.p. 160°/4 mm. (dipicrate, m.p. 204—205°; platinichloride). platinichloride 1000 platinichloride). IV. (I) and CH₂Ac·CO₂Et (3:5 hr. at 170—185°) yield 2(4)-keto-9-(1'-methyl-2'-pyrrolidyl)-4(2)-methyl-1-azaquinolizine, m.p. 112° [dipicrate, m.p. 209°; dihydrochloride, m.p. 244—247° (decomp.); platinichloride], regenerating (I) when hydrolysed with 20% HCl or KOH-EtOH, and giving the 3-NO₂-derivative, m.p. 120—121°, with HNO₃-H₂SO₄. MeI adds on to the pyrrolidine-N, giving a methiodide, m.p. 238—240° (decomp.). 4-Glyoxalinyl-4'-hydantoylmethane and its hydrolysis. M. N. Schtschukina (J. Gen. Chem. Russ., 1940, 10, 1108—1112).— A solution of histidine (I) and CO(NH₂)₂ in H₂O is boiled for 5 hr., made acid with HCl, and evaporated to dryness. This gives 4(5)-glyoxalinyl-4'-hydantoinylmethane, m.p. 255° (picrate, m.p. 209°), which regenerates (I) when subjected to acid or alkaline hydrolysis. R. T. ## Phthalocyanines.—See B., 1941, II, 40. Preparation of aromatic oxazolidines. M. Meltsner, E. Waldman, and C. B. Kremer (J. Amer. Chem. Soc., 1940, 62, 3494—3495).—Boiling OH·[CH₂]₂·NH₂ (1) and ArCHO (1 mol.) in BuOH or BuOH—Bu₂O gives 2-phenyl-, b.p. 157°/24 mm., 2-m-, b.p. 159°/14 mm., and 2-p-tolyl-, b.p. 153°/15 mm., 2-o-, b.p. 195°/27 mm., and 2-p-anisyl-, b.p. 180°/12 mm., 2-p-hydroxyphenyl-, m.p. 169°, 2-m-, m.p. 73°, and 2-o-nitrophenyl-, m.p. 58°, -oxazolidine. o-OH·C₆H₄·CHO and o-C₆H₄·Cl-CHO give additive compounds, b.p. 180°/13 mm., and 178°/22 mm., respectively. 178°/22 mm., respectively. #### 2:6-Dimethylmorpholinoethyl alcohol.—See B., 1941, II, 38. Polymethine dyes of the 3-hydroxythionaphthen series. II. Condensation of anils of 3-hydroxythionaphthen-2-aldehyde and its vinylene homologues with quaternary salts of 1-methylbenzthiazole. I. I. Levkoev, N. N. Sveschnikov, and V. V. Durmaschkina (J. Gen. Chem. Russ., 1940, 10, 773—778; cf. A., 1940, II, 381).—Polymethine dyes were prepared by the reaction o-C₆H₄ C(OH) C·[CH:CH]_n·CH:NPh + $\begin{array}{l} o\text{-}C_8H_4 \diagdown \stackrel{\mathrm{NRI}}{\searrow} \mathrm{CMe} \to \mathrm{HI} + \mathrm{NH_2Ph} + \\ o\text{-}C_8H_4 \diagdown \stackrel{\mathrm{CO}}{\searrow} \mathrm{C:CH}\text{-}[\mathrm{CH:CH}]_n\text{-}\mathrm{CH:C} \diagdown \stackrel{\mathrm{NR}}{\searrow} \mathrm{C_8H_4}\text{-}\sigma \quad [n=0,] \end{array}$ R = Me, m.p. $249-250^{\circ}$ (decomp.), R = Et, m.p. $212-214^{\circ}$ (decomp.), R = Pr^{α} , m.p. $208-209^{\circ}$ (decomp.), R = Bu^{α} , m.p. $177-178^{\circ}$; R = Et, n=1, m.p. $219-220^{\circ}$ (decomp.), n=2, m.p. $177-178^{\circ}$]. The position of the band of max. absorption is not affected by varying R, but is shifted towards longer wave-lengths by increase in $n_{\rm c}$ 1-Methylthiolbenzthiazole and $p\text{-}C_6\text{H}_4\text{Me}\cdot\text{SO}_3\text{Et}$ are heated (6 hr. at 130—140°), and the product is heated with 2-hydroxy-1: 2-dihydrothionaphthen in EtOH, in presence of NaOAc (30 min. at the b.p.), yielding the substance o-C₆H₄ CO C:C NEt C₈H₄-o, m.p. 214—216°. Benzoylmethyldibenzthiazyl 1-sulphide.—See B., 1941, II, 38. Structure-chemical investigations. II. Structure of thiazole compounds and the Fe'-specific group. H. Erlenmeyer and H. Ueberwasser (Helv. Chim. Acta, 1940, 23, 1268—1275).—Addition of solid FeSO₄ to a solution of 4:4'-dithiazolyl (I) in HBr in a closed vessel followed by NaOH gives the compound, [Fe(C₆H₄N₂S₂)₂]Br₂,2H₂O, pale red crystals which become yellow at 120°. Under these conditions 2:2-dithiazolyl (II) gives a substance, [Fe(C₆H₄N₂S₂)₂]Br₂,2H₂O, intensely coral-red crystals which [Fe(C₆H₄N₂S₂)₂]Br₂,2H₂O, intensely coral-red crystals which are immediately decolorised by neutral H₂O. In these salts Fe has the co-ordination no. 4. The difference in the behaviour of dithiazolyls and dipyridyl (III) is attributed to the difference in the aromatic structure of C5H5N and thiazole, As a first approximation and taking account of the valency angle the following structures are assigned: In (I) and (II) the valency angle of -N N- differs appreciably from that in (III). Quinthiazole (IV) and FeSO₄ immediately give a lemon-yellow colour (capable of detecting 1 mg. Fe per 1.) and the *bromide*, [Fe(C₁₀H₆N₂S)₂]Br₂,2H₂O, can be obtained in which Fe" has [Fe(C₁₀H₆N₂S)₂]Br₂,2H₂O, can be obtained in the co-ordination no. 4. The group -N N- in (IV) has not the Fe"-sp. structure which occurs in (III) and H. W. o-phenanthroline. (A) Hydroxystyryl derivatives of quaternary heterocyclic salts. (B) Influence of the solvent on the colour of organic dye solutions. (C) Absorption spectra of cyanine dyes in the ultra-violet. A. I. Kiprianov and V. E. Petrunkin (J. Gen. Chem. Russ., 1940, 10, 600—612, 613—619, 620—628).— (A) σ- or ρ-OH-C₆H₄·CHO was condensed with the ethiodides of quinaldine, 1-methylbenzthiazole, and 4-phenyl-2-methylor 2: 4-dimethyl-thiazole, in presence of C₆H₆N, to yield the following hydroxystyryl compounds: 2-p-, m.p. 257—258° (decomp.), or 2-o-hydroxystyryl-4-methyl-3-ethyl-, m.p. 215°, and 2-p-hydroxystyryl-4-phenyl-3-ethyl-thiazole iodide, m.p. 222—223° (decomp.), 1-o-, m.p. 241° (decomp.), or 1-p-hydroxystyryl-2-ethylbenzthiazole iodide (I), m.p. 246° (decomp.), and 2-o-, m.p. 198—200°, or 2-p-hydroxystyryl-1-ethylquinoline iodide, m.p. 232—233°. These iodides are converted by aq. KOH into the quinonoid dyes (A) [R = 4-methyl-3-ethyl-2: 3-O dihydrothiazolidene-2-, +H₂O, m.p. 173°; R = 2-ethyl-1: 2-dihydrobenzthiazolidene-2-, m.p. 140—145° (decomp.); R = 1-ethyl-1: 2-dihydroquinolidene-2-, m.p. 160—163° (decomp.)], and (B) [R = 4-methyl-3-ethyl-2: 3-dihydrothiazolidene-2-, +H₂O, m.p. 178° (decomp.); R = 4-phenyl-3-ethyl-2: 3-dihydrothiazolidene-2-, m.p. 150—155° (decomp.)]. Bands of max absorption are recorded for solutions of the quinnoid max. absorption are recorded for solutions of the quinonoid dyes in H_2O , EtOH, $CHCl_3$, and C_3H_5N ; the colour of the solutions varies greatly according to the nature of the solvent (B) Where resonance of apolar structure with bipolar ionic structure is possible, the colour of the solution depends on the μ of the solvent, which determines the composition of the equilibrium mixture. (c) The absorption spectra of carbocyanine dyes of the types σ-C₆H₄ Z_{NMe} C·CH:CH·CH:C Z_{NMe} C₆H₄-σ (Z = CH:CH, S, O, NMe, CMe₂), CH:CH, S, O, NMe, CMe2), CH.CH, S, O, NMe, CMe₂), CH₂—S C·CH:CH·CH:C NMe·CH₂, or CH₂·NMe CH₂ CMe·NMe CMe·NMe CMe·NMe CMe·NMe CMe·NMe CMe·NMe CMe·NMe CMe·NMe CMe·NMe·CMe the ultra-violet (285—385 m μ .). The absorption spectra of the methiodides of σ -C $_{e}H_{4}$ $\stackrel{Z}{\swarrow}$ CH or thiazole resemble those of the derived carbocyanine dyes. Max. absorption in the ultra-violet shifts towards longer wave-lengths with increase in length of the polymethine chain of the dyes o-C₆H₄<NMe C·[CH:CH]_n·CH:C<NMe C₆H₄-o (n = 0, 1, +2) Cyanine dyes.—See B., 1941, II, 40, 67. [Stability of nicotinamide, nicotinuric acid, and trigonelline.] See A., 1941, III, 118. Resolution of racemic scopolamine into optical isomerides. M. N. Schtschukina, S. S. Okun, D. N. Jurigin, and N. A. Preobrashenski (J. Gen. Chem. Russ., 1940, 10, 803—806).—dl-Scopolamine di-d-camphorate, crystallised from H₂O, gives the 1-scopolamine salt, m.p. 157—158°, [a]_D +18° in H₂O, from which l-scopolamine (I) is prepared. The residual d-salt in the mother-liquor is racemised, and (I) is separated from the racemate, as above. R. T. Alkaloids of the Papaveraceæ family. VII. Alkaloids of Papaver armeniacum. Structure of armepavine. S. Junusov, R. A. Konovalova, and A. P. Orékhov (J. Gen. Chem. Russ., 1940, 10, 641—648).—Armepavine (I) and CH₂N₂ in MeOH yield methylarmepavine, m.p. 63—64°, [a]_D —84·48° in CHCl₃ [methiodide (II), m.p. 135—136°], oxidised by HNO₃ to anisic acid. (II) and KOH in MeOH (l hr. at the b.p.) yield de-ON-dimethylarmepavine, m.p. 86° [hydrochloride, m.p. 229—230°; methiodide (III), m.p. 233—234°]. (III) when heated with KOH in MeOH gives NMe₃ and a-p-anisyl-β-(3:4-dimethoxy-6-vinylphenyl)ethylene, m.p. 79°, oxidised by KMnO₄ in COMe₂ to anisic acid and m-hemipinic acid. (I) and Et₂SO₄ yield ethylarmepavine, an oil, from which p-OEt-C₆H₄·CO₂H is obtained by oxidation with KMnO₄. (I) is oxidised similarly to p-OH·C₆H₄·CO₂H and 1-keto-6: 7-dimethoxy-2-methyl-1:2:3:4-tetrahydroisoquinoline. (I) is therefore 6:7-dimethoxy-1-p-hydroxybenzyl-2-methyl-1:2:3:4-tetrahydroisoquinoline. R. T. Cinchona alkaloids in pneumonia. VIII. Sulphur derivatives of apocupreicine ethers and aminoquinolines. (Miss) A. G. Renfrew and C. L. Butler (J. Amer. Chem. Soc., 1940, 62, 3304—3305).—The prep. and toxicity of p-acetamidomp. 105°, and -amino-benzenesulphonylhydroxyethylapocupreicine, m.p. 99°, N-p-acetamido- and -amino-benzenesulphonylquinicine, 6-, m.p. 240°, and 8-amino-5-p-sulphonamidophenylazoquinoline, m.p. 245°, ethylapocupreicine monohydrochloride, cryst., [a]p. -26·7° in H₂O, hydroxyethylapocupreicine dihydrochloride, cryst., and quinicine monohydrochloride are described. They have no useful antipneumococcic activity. Hydroxyethylapocupreicine, a gum, [a]p. -29° in N-H₂SO₄, gives a monohydrochloride, +EtOH, m.p. 90°. R. S. C. #### VI—ORGANO-METALLIC COMPOUNDS. Organic mercury derivatives.—See B., 1941, III, 57. #### VII.—PROTEINS. Constitution of silk fibroin. K. H. Meyer, M. Fuld, and O. Klemm (Helv. Chim. Acta, 1940, 23, 1441—1444).—Silk fibroin appears to contain only 10.8% of tyrosine instead of 13.2% recorded by Bergmann and Niemann (A., 1938, III, 210). X-Ray interferences of silk show that the crystallites have very appreciable length and comprise at least six identical periods in the direction of the fibre axis. The position within and without the chain can be represented by the scheme (G = glycyl, A = alanyl, T = tyrosyl, Ar = arginyl, S = seryl) G Ar G T G A G A G S G A G A G A G T Ar G. amorphous in the crystallite amorphous Complex pseudoglobulin-lecithin in the vitellus.—See A., 1941, III, 204. ## VIII.—ANALYSIS. Quantitative capillary luminescence analysis.—See A., 1941, I. 90. Systematic qualitative organic micro-analysis. Determinations of specific gravity. H. K. Alber (Ind. Eng. Chem. [Anal.], 1940, 12, 764—767).—The construction and use of micro-pipettes (capacities 100—6 cu.mm.) for determination of d are described. The accuracies obtained are sufficiently great for the identification of unknown liquids or solids. Iodometric determination of small quantities of nitrogen without distillation.—See A., 1941, III, 64. Apparatus for Van Slyke determination of amino-nitrogen in solid substances. O. Klemm and K. H. Meyer (Helv. Chim. Acta, 1940, 23, 1444—1445).—The apparatus has been modified to allow the use of solid substances such as silk or wool. H. W. Determination of micro-quantities of organic phosphorus. B. L. Horecker, T. S. Ma, and E. Haas (J. Biol. Chem., 1940, 136, 775—776).—1 μ g. of P in protein is determined to $\pm 3\%$ by a modification of the method of Fiske et al. (A., 1926, 443), using the photo-electric spectrophotometer of Hogness et al. (A., 1937, I, 331). Micro-tests for elements in organic compounds. II. Phosphorus, arsenic, and antimony. C. L. Wilson (Analyst, 1940, 65, 405—406; cf. A., 1938, II, 301).—Org. mixtures containing P. As, and Sb are oxidised in a fusion mixture (1 Na₂O₂: 2 KNO₃). P is identified as the double Mg NH₄ salt. As and Sb are distinguished by reduction with a Sn-Pt "couple" followed by a modified Gutzeit test. The elements are detected correctly in mixtures containing 5—20 μ g. of P compound, 10—20 μ g. of As compound, and 20—30 μ g. of Sb compound. E. C. B. S. Determination of boron in volatile organic compounds using the Parr oxygen bomb. W. M. Burke (Ind. Eng. Chem. [Anal.], 1941, 13, 50—51).—The sample mixed with Na₂CO₃ is oxidised in the Parr bomb and the H₃BO₃ determined by titration in presence of mannitol. The method provides a means of decomp. org. B compounds without the use of large amounts of reagent and gives accuracy < previous methods. Elimination of formaldehyde in the analysis of formaldehydeformic acid mixtures. A. Hickling and F. Rodwell (J.C.S., 1941, 51—52).—Most of the CH₂O is pptd. by excess of H₂S in strongly acid solution, H₂S removed by CuSO₄, and the excess of this pptd. by boiling with NaOH. The remaining CH₂O is determined by I titration and the CH₂O + HCO₂H with KMnO₄. A. LI. Analytical procedures employing Karl Fischer reagent. V. Determination of water in presence of carbonyl compounds. W. M. D. Bryant, J. Mitchell, jun., and O. M. Smith $(f, Amer. Chem. Soc., 1940, 62, 3504-3505; cf. A., 1939, I, 577).—Aldehyde and ketone interference in the Karl Fischer titration for <math>H_2O$ is inhibited by the presence of an excess of 2% HCN solution in C_5H_5N , the resulting cyanohydrins being inert towards the reagent. Analytical data for a series of 8 aldehydes and 5 ketones are given. W. R. A. Microscopic identification of certain sugars and polyhydric alcohols, J. A. Quesne and W. M. Dehn (Ind. Eng. Chem. [Anal.], 1940, 12, 556—560).—Photomicrographs are reproduced of crystals of gentiobiose, d-lyxose, trehalose, dulcitol, mannitol, sorbitol, and binary mixtures of various sugars pptd. from saturated aq. solution by COMe₂, EtOH, MeCN, and dioxan. J. D. R. Determination of pentoses. R. E. Reeves and J. Munro (Ind. Eng. Chem. [Anal.], 1940, 12, 551—553).—The pentose is boiled with HCl and xylene and the furfuraldehyde (I) in the xylene layer is determined colorimetrically with NH₂Ph,AcOH by comparison with standard solutions of (I) in xylene. 100% conversion of d-xylose into (I) is achieved. I. D. R. Determination of methionine in certain mixtures. Precision method. J. J. Kolb and G. Toennies (Ind. Eng. Chem. [Anal.], 1940, 12, 723—724).—The purity of methionine can be determined with an accuracy of ±0·1% by oxidation with H₂O₂ in HClO₄ followed by determination of the unused H₂O₂ by KI-Na₂S₂O₃. The method is applicable to mixtures, as other NH₂-acids (except tryptophan, cysteine, and cystine) do not interfere. Procedure is detailed and data on the stability of H₂O₂ in I—4N-HClO₄ are presented. J. D. R. Photocolorimetric determination of furfuraldehyde. R. A. Stillings and B. L. Browning (Ind. Eng. Chem. [Anal.], 1940, 12, 499—502).—To a solution of neutral furfuraldehyde (I) in 20% NaCl is added NH₂Ph,AcOH and the transmittance of the red solution measured photometrically and compared with a known calibration curve. Beer's law is valid for concns. of (I) of 0.5—4.5 p.p.m. Methyl- and hydroxymethyl-furfuraldehyde introduce an error <1%, and CH₂O at 100 p.p.m. does not interfere. Procedure is detailed. J. D. R. ## INDEX OF AUTHORS' NAMES, A., II. MARCH, 1941. Alber, H. K., 79. Altschul, R., 67. Anderson, R. J., 59. Ando, T., 61. Arbusov, B., 68. Archipov, B. N., 62. Astbury, W. T., 60. Avakian, S., 64. Backlund, B., 59, Barbier, H., 61. Barney, A. L., 57. Barlett, P. D., 67. Bauer, S. T., 66. Beer, A. A., 65. Bergström, S., 66. Bernfeld, P., 59. Bistritzkaja, M. G., 75 Bowen, C. V., 61. Brenner, M., 71. Browning, B. L., 80. Bryant, W. M. D., 80. Burger, A., 64. Butler, W. M., 86. Butler, C. L., 79. CAMPBELL, N. R., 62. Clemo, G. R., 74. Debrovolskaja, N. K., 65. Dehn, W. M., 62, 80. Durmaschkina, V. V., 77. Ehrenstein, M., 68. Elder, A. L., 57. Erlenmeyer, H., 77. Fried, S., 74. Fruktova, E. P., 74. Fuld, M., 79. GOLDFARB, J. L., 74, 76. Gray, E. Le B., 58. HAAS, E., 80. Handler, P., 60. Handler, P., 60. Hara, T., 58. Harada, T., 60. Harris, E. E., 73. Hayes, H. T., 76. Heinemann, S. D., 72. Hickling, A., 80. Hoggarth, E., 74. Holmberg, B., 64. Hopper, I. V., 65. Horecker, B. L., 80. Hunter, J. H., 66. Hunter, L., 76. Jatzimirski, K., 61. Juhasz, R., 74. Junusov, S., 79. Jurigin, D. N., 79. KAUFMANN, S., 69, 70. Kearse, W. O., 64. Kiprianov, A. I., 78. Kirsanov, A. V., 75. Kleene, R. D., 67, 74. Kleiderer, E. C., 63. Klemm, O., 79. Kolb, J. J., 80. Kolloff, H. G., 66. Kondakova, M. S., 76. Konovalova, R. A., 79. Kotschetkov, N. K., 65. Koslov, V. V., 62, 74. Krasnovski, A. A., 61. Krauze, M. V., 63. Kremer, C. B., 77, Krueger, J., 68. Lalande, W. A., jun., 70. Lamberton, A. H., 72. Lesuk, A., 59. Levkoev, I. I., 77. Levkoev, I. I., 11. MA, T. S., 80. McCorkle, M. R., 66. MacGregor, J. H., 65. Mackenzie, C. A., 60. MacPhillamy, H. B., 73. Magidson, O. J., 62. Manley, R. H., 76. Marker, R. E., 67, 68. Maruchian, D. A., 74. Mastropaolo, R. A., 63. Mchitarian, V. G., 58. Mcdox, G. V., 65. Metdsner, M., 77. Meyer, K. H., 59, 79. Milne, H. B., 67. Mitchell, J., jun., 80. Mizutsch, K. G., 75. Mostriukov, P. M., 65. Mrgudich, J. N., 60. Muurro, J., 80. Namu, K., 61. Nambu, K., 61. Nikanorov, K., 68. Nizovkina, T., 57. OBERRIGHT, E. A., 57. Okun, S. S., 79. Orékhov, A. P., 79. PETROV, A. A., 58. Petrov, A. D., 60. Petrunkin, V. E., 78. Phillips, M. A., 75. Picard, C. W., 73. Pigman, W. W., 59. Popov, S. N., 58. Porai-Koschitz, B. A., 65. Preobrashenskaja, K. P., 65. Preobrashenski, N. A., 79. Press, J., 59. QUESNE, J. A., 80. RAIFORD, L. C., 76. RAISTON, A. W., 66. RAISTON, A. W., 66. RANGANAHAN, S. K., 64. RASCHOVSKAIA, S., 61. RAWLES, W. T., 60. REEVES, R. E., 80. REINHART, F. E., 75. RENIFOW, A. G., (Miss) 79. ROSENKAIZ, G., 71. ROSIOVA, N. A., 60. RUBIZOV, M. V., 61, 62. RUPE, H., 68. RUZICKA, L., 69, 70, 71, 72. SAVTSCHENKO, A. J., 75. Schabaschova, V. N., 57. Schavrigin, A. I., 69 Schemiakina, O. M., 74. Schtschukina, M. N., 77, 79. Schtukin, G. I., 58. Scott, A. W., 64, 66. Sergievskaja, S. I., 65. Sieg, R. P., 62. Sisoeva, N. D., 57. Sivertzev, A. P., 57. Slobodin, J. M., 63. Smith, A. K., 60. Smith, L. E., 61. Smith, O. M., 80. Smorgonski, L. M., 74. Spencer, C. C., 57. Spring, F. S., 63, 73. Stevens, T. O., 68. Stilllings, R. A., 80. Suter, C. M., 67. Sveschnikov, N. N., 77. Swain, G., 63. Sykes, H. J., 57. Tacht, I., 59. Tilitschenko, M. N., 59. Tilschtschenko, V. E., 57. Toennies, G., 80. Tschurbakov, A. N., 57. Tzukervanik, I., 61. UEBERWASSER, H., 77. Urushibara, Y., 61. Van Arendonk, A. M., 63. Vasilevskaja, O. V., 65. WALDMAN, E., 77. Weaver, W. I., 57. Wesson, L. G., 63. Wilson, C. L., 79. Wikon, F. J., 65. Winter, H. C., 75. Yамато, R., 58. Yntema, L. F., 74. ZIMMERMANN, J., 73. Zmaczynski, E. W., 59. Zweidler, R., 68. ## JUDACTAN ## ANALYTICAL REAGENTS WITH ACTUAL BATCH ANALYSIS Each Batch subjected to INDEPENDENT ANALYSIS before label is printed You are invited to compare the above actual batch analysis with the purities ACTUAL BATCH **ANALYSIS** guaranteed by the specifications of any competing maker in this Country or abroad THE GENERAL CHEMICAL & PHARMACEUTICAL CO. LTD. Chemical Manufacturers, Judex Works, Sudbury, Middlesex