BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS # distribution of kobaiylens. I. S. Call Physics of Superson and related of kobaiylens. I. S. Call Superson and related of kobaiylens. I. S. Superson and related of the solution of the solution. It is solution of the solution of the solution. It is solution of the solution of the solution. It is solution of the solution. It is solution of the solutio ## er show "Ismrian" I .-- ALIPHATIC. e mp. 111-5-112-5; p-bromeastlide, to.b. 114-The structure of the adds is proved by ozodolysis Photolysis of ethyl iodide in various solvents [and determination of ethyl iodide].—See A., 1941, I, 275. Cadmium-photosensitised reactions of propane.—See A., 1941, I, 275. Kinetics of oxidation of hydrocarbons.—See A., 1941, I, Chromium oxide gel catalysts for dehydro-cyclisation of n-heptane.—See A., 1941, I, 274. High-pressure chlorination of paraffins.—See B., 1941, II, Catalytic polymerisation of ethylene at atmospheric pressure. XI. Influence of hydrogen and nitrogen. XII. Action of acetylene. Y. Konaka (J. Soc. Chem. Ind. Japan, 1940, 43, 363B; cf. B., 1938, 762).—XI. The presence of H₂ diminishes the yield of polymeride oil over Ni, Co, or Fe catalysts. N₂ acts merely as a diluent. XII. C_2H_2 alone yields little oil but $C_2H_2 + H_2$ (1:1) give a good yield of mainly aromatic oil, of lower distillation range than the oil from C_2H_4 , which is paraffinic. Although present in the polymerisation products of C_2H_4 , C_2H_2 is not to be regarded as the main intermediate product. Catalytic polymerisation of ethylene at atmospheric pressure. IX, X.—See B., 1941, II, 134. Polymerisation of olefines. III. Polymeric olefines from methylisopropylcarbinol. F. C. Whitmore and W. A. Mosher (J. Amer. Chem. Soc., 1941, 63, 1120—1123; cf. A., 1941, 756).—CHMePrβ·OH and 75% H₂SO₄ at 76—80° give (cf. Drake et al., A., 1934, 1329). CHMeBuγ·CMe:CHMe (45), CMe,Et·CH₂·CMe:CHMe (I) (35), C₂HMe₃ (I), CMeEt:CHMe (3), COMePrβ (I), CHMeBuγ·CMe:CH₂ (2), other nonemark (1), and higher polymerides (5%). Reaction mechanisms are and higher polymerides (5%). Reaction mechanisms are postulated. COMe·CH₂·CMe₂Et and MgMeI give CMe₂Et·CH₂·CMeEt·OH, b.p. 86°/30 mm., dehydrated by 75% H₂SO₄ at 80° to a 20: I and by CuSO₄ to a 6: I mixture of (I) and CMe₂Et·CH:CMeEt. COMe·CHMeBuy and Property of conjugated systems. J. Kenner (Nature, 1941, 147, 482).—In a compound X:[CH:CH], Y the conjugated system is an electronic conductor between the covalent groups X and Y, and there must be a correspondence between such chemical properties of the compound as leave the conjugated system intact and those of the covalent compound XY. The val. of this generalisation as a means of insight into the reactivity, and its mechanism, of the compound XY has been overlooked. Its bearing on the nitration of paraffins, the methanism of the compound XY has been overlooked. the mechanism of nitrosation of NHMe2, and the mechanism of certain inorg. reactions is discussed. COEt CHMeBuy do not react with MgRI. Absorption spectrum of squalene.—See A., 1941, I, 192. Removal of substituents from vinyl polymerides. II. F. T. Wall (J. Amer. Chem. Soc., 1941, 63, 821—824; cf. A., 1940, II, 202).—The removal of Cl from polyvinyl chloride or a co-polymeride of vinyl chloride and acetate by Zn is treated statistically when the polymeride is made up of "head to head-tail to tail" units. The results are compared with previously derived equations for structures involving 1-2 or 1-3 removal of Cl₂. It is proved rigorously that different removal rates of 1-2 and 1-3 Cl₂ pairs have no effect on the final % of Cl in a randomly oriented polymeride. Actor 840 - 780 80 (100) W. R. A. Catalytic dehydration and dehydrogenation of butyl and amyl alcohol. V. I. Komarewsky and J. T. Stringer (J. Amer. Chem. Soc., 1941, 63, 921—922).—Passage of Bu^oOH, n- or iso-C₅H₁₁·OH over Al₂O₃-Cr₂O₃ (cf. A., 1939, II, 491) at 575—625°/128—155 mm. (apparatus described) gives 20·4—49·3% of olefine (dehydration by Al₂O₃), 1·8—15·9% of diene [(CH₂·CH)₂, CHMe:CH·CH:CH₂, or isoprene, respectively; wired dalydration dehydrogenation ansiderable amounts mixed dehydration-dehydrogenation], considerable amounts of aldehyde (dehydrogenation by Cr2O3; decomposed during the reaction to CO, CO₂, and paraffins), and free C. Over Al₂O₃ alone more olefine is formed but no diene. Absorption of oxygen by mercaptans in alkalian solution. R. S. C. Use of methylallyl chloride in the synthesis of compounds with eonjugate unsaturation. C. D. Hurd and J. L. Abernethy (J. Amer. Chem. Soc., 1941, 63, 976—977).—CH₂.CMe·CH₂Cl (I) and HOCl give ββ'-dichloro-tert.-butyl alcohol, b.p. 72—73°/23 mm., converted by KCN in hot aq. MeOH into (CN·CH₂)₂CMe·OH, an oil, which with HCl-abs. EtOH gives an OH-ester and thence by distillation with I yields CO₂Et·CH₂·CMe·CH·CO₂Et (a-CHPh·: derivative, softens at ~170°, decomp. 175—200°). With aq. Br-KBr or I-HgO, (I) gives β-chloro-β'-bromo-, b.p. 84—85°/20 mm., and -β'-iodotert.-butyl alcohol, b.p. 101—103° (decomp.)/18 mm., respectively. R. S. C. Effect of zinc chloride on octyl alcohol. M. M. Gerasimov and V. E. Glushnev (Compt. rend. Acad. Sci. U.R.S.S., 1940, 29, 462-465).-Interaction of octyl alcohol (I) vapour at 225—325° with ZnCl₂ distributed on pumice gives hexenes, heptenes, octenes, CMe₂:CH₂, CHMe:CH₂, C₂H₄, and H₂ and saturated hydrocarbons due to "cracking" of (I). The yield of H2 and unsaturated hydrocarbons is the greater the higher is the temp. Aldehydes are present in the fractions of Preparation of ay-butylene glycol from aldol by high-pressure hydrogenation. I. Reaction with nickel catalyst prepared electrolytically. II. Reaction with mixed catalyst of nickel and alumina. H. Nagai (J. Soc. Chem. Ind. Japan, 1941, 44, 41—43B, 43B).—Aldol has been hydrogenated to OH·CHMe·[CH₂]₂·OH, varying the temp., time, amount and pressure of H₂, and amount of catalyst. Optimum results are obtained with 10% of catalyst and a H₂-aldol ratio >77:23 by vol., at 80° and >30 atm. pressure. II. Addition of Al₂O₃ to the catalyst reduces the reaction rate and the yield. Catalytic preparation and interconversion of simple and mixed esters. V. N. Ipatieff and R. L. Burwell, jun. (f. Amer. Chem. Soc., 1941, 63, 969—971).—Passage of MeOH over "solid H₃PO₄" at 350°/55 atm. gives 86—87% of Me₂O. At 336°/60 atm. MeOH + EtOH gives similarly Me₂O, MeEtO, and Et₂O (largely decomposed to C₂H₄). MeOH + CH₂Ph·OH at 350°/50 atm. gives similarly CH₂Ph·OMe. Me₂O + Et₂O are decomposed by the catalyst at 450°. In an autoclave Me₂O and Et₂O are equilibrated by the catalyst at 150°. Structure of the Cori ester. M. L. Wolfrom and D. E. Pletcher (J. Amer. Chem. Soc., 1941, 63, 1050—1053).—The structure of the Cori ester (I) as d-glucopyranose 1-phosphate is confirmed. Synthetic (1) (Cori et al., A., 1938, II, 39) has $[a]_{5892.5}^{20} + 78^{\circ}$, $[a]_{461}^{20} + 90^{\circ}$ in H_2O , is hydrolysed by 5% HCl at 60° to glucose (isolated as Et_2 mercaptal penta-acetate), and is characterised as K_2 salt, $+2\mathrm{H}_2\mathrm{O}$ [mol. wt. (cryoscopy; $\mathrm{H}_2\mathrm{O}$) normal; does not reduce Fehling's solution], which consumes $2~\mathrm{HIO}_4$ giving $1~\mathrm{HCO}_2\mathrm{H}$ and no $\mathrm{CH}_2\mathrm{O}$. R. S. C. Cetyl 3: 5-dinitrobenzoate, m.p. 72.3°.—See A., 1941, III, 367. Absorption of oxygen by mercaptans in alkaline solution. J. Xan, E. A. Wilson, L. D. Roberts, and N. H. Horton (J. Amer. Chem. Soc., 1941, 63, 1139—1141).—RSH in aq. NaOH absorb more O_2 than is required for formation of R_2S_2 (reason unknown). The rate of absorption of O_2 increases with the concn. of alkali, when allowance is made for decrease in the solubility of O_2 in the solution. The rate of absorption is $R = Pr^a > Bu > n$ -amyl $> CH_2Ph > Ph$. R. S. C. Sulphonation of isobutylene. I. β-Methylpropene-αγ-disulphonic acid and related compounds. C. M. Suter and J. D. Malkemus (J. Amer. Chem. Soc., 1941, 63, 978—981).— Addition of SO₃ (4·38) and then of iso-C₄H₈ (2·2) to dioxan (3 mols.) in (CH₂Cl)₂ at 0°, warming to 50°, and keeping at 0° gives 30% of dioxan β-methylpropene-αγ-disulphonate (I), whence the Ba (II), +5H₂O (1 H₂O retained at 115°/10 mm.; unsaturated to KMnO₄), Na₂, (NH₄)₂, and (NH₂Ph)₂ (III) salts are prepared. SOCl₂ converts (I) into the acid anhydride (IV), m.p. 167—170°, which is only slowly hydrolysed by H₂O or aq. alkali, reacts only slowly with Br-CCl₄ or -H₂O, and with NH₂Ph in EtOAc gives (III). PCl₅ at 100° converts (IV), (I), or (II) into the disulphonyl chloride (V), m.p. 79·2—79·8°, which gives the diamide, m.p. 152·5—154°, and diamilide, m.p. 171·5—172·5°, at 180—210° gives SO₂ and (?) CH₂Cl·CMe:CHCl, and with 3:5-(NO₂)₂C₆H₃·CO₂Ag gives products, m.p. 56—57° and 139—142° (not derived from cis- or trans-OH·CH₂·CMe:CHCl). CH₂Cl·CMe:CH₂ and 2·25°₆ HOCl at ~15° give OH·CMe(CH₂Cl)₂ and thence by aq. Na₂SO₃ at 70—90°, followed by PCl₅ at 100°, (V). Hydrogenation of (III) to CHMe(CH₂·SO₃NH₃Ph)₂ [prepared from CHMe(CH₂Cl)₂] failed. SO₃-dioxan and BuvOH at 0—5° give dioxan H sulphate and only a trace of org. acid. Radioactive carbon as tracer in synthesis of propionic acid from carbon dioxide by propionic acid bacteria.—See A., 1941, III, 536. Thermal transformations of thallous formate.—See A., 1941, I, 278. Substituted acetylenes and their derivatives. XLII. Preparation, properties, and derivatives of a-acetylenic acids. A. O. Zoss and G. F. Hennion (J. Amer. Chem. Soc., 1941, 63, 1151—1153; cf. Campbell amd Eby, A., 1941, II, 81).— C_2HNa in liquid NH_3 at -35° is treated with RBr and then with $NaNH_2$ at -45° . The resulting crude CR: CNa is treated in Et_2O , C_6H_6 , or PhMe with CO_2 at -50° and then with with 5% of C₂R₂. CR:C·CO₂Me (prep. by H₂SO₄–MeOH) with HgO-Et₂O₃BF₃–CCl₃·CO₂H–MeOH gives OMe·CR:CH·CO₂Me (purified by distillation with a trace of p-C₆H₄Me·SO₃H), with liquid NH3-MeOH gives
CR:C·CO·NH2, and with NHPh·NH2 at 130° gives the pyrazolone. Addition of Br to the acid in CCl₄ gives CRBr.CBr.CO₂H. Thus are obtained Δα-npentinenoic, m.p. 50.0° [dibromide, m.p. 35-38.5°, b.p. 126°/6 mm. (another fraction containing 66.42% of Br had m.p. 40.2—43.7°, b.p. 118—125.5°/6 mm.); Me ester, b.p. 47°/10 mm.; amide, m.p. 146-146.5°], -hexinenoic, m.p. 24.5-25°, b.p. 111°/10 mm. (Me ester, b.p. 65°/10 mm.; dibromide, b.p. 125°/2 mm.; amide, m.p. 81·5—82°), -heptinenoic, b.p. 122°/10 mm. (Me ester, b.p. 72°/10 mm.; dibromide, b.p. 142°/7 mm.; amide, m.p. 68—69°), and -octinenoic acid, b.p. 133°/10 mm. (Me ester, b.p. $94^{\circ}/10$ mm.; dibromide, b.p. $146^{\circ}/2$ mm.; amide, m.p. $89-90^{\circ}$), Me β -methoxy- Δ^{α} -n-pentenoate, b.p. 59.5°/10 mm., -hexenoate, b.p. 76°/10 mm., -heptenoate, b.p. 88°/10 mm., and -octenoate, b.p. 100°/10 mm., 1-phenoate, b.p. ethyl-, m.p. 100—110·5°, -n-propyl-, m.p. 110·5—111°, -n-butyl-, m.p. 83—83·5°, and -n-amyl-, m.p. 95·5—96°, R. S. C. -pyrazolone. Synthesis of Δ° -pentadecenoic and -heptadecenoic acids. W. M. Lauer, W. J. Gensler, and E. Miller (J. Amer. Chem. Soc., 1941, 63, 1153—1155).—The following general synthesis is devised, increasing the C chain by one unit. CH₂R·CO₂H \rightarrow CHRBr·CO₂H \rightarrow (+KOH) OH·CHR·CO₂H \rightarrow [+Pb(OAc)₄—AcOH; 60°] RCHO (obtained also, less well, by pyrolysis) \rightarrow [+CH₂(CO₂H)₂-C₅H₅N at room temp. and later 100°] CHR·CH·CO₂H. Thus are obtained n-C₁₂H₂₅·CHO, b.p. 150—155°/28 mm. (semicarbazone, m.p. 105·5—106·5°; 2: 4-dinitrophenylhydrasone, m.p. 107—108°), n-C₁₄H₂₃·CHO, b.p. 155—160°°/12—14 mm. (semicarbazone, m.p. 108°), n-C₁₄H₂₃·CHO, b.p. 155—160°°/12—14 mm. (semicarbazone, m.p. 108°), n-C₁₄H₂₃·CHO, b.p. 155—160°°/12—14 mm. (semicarbazone, m.p. 108—109°; 2: 4-dinitrophenylhydrazone, m.p. $107\cdot5-108^\circ$), Δ^a -heptadecenoic, m.p. $57\cdot5^\circ$ (amide, m.p. $110-110\cdot5^\circ$; p-bromo-anilide, m.p. $115-116^\circ$), and -pentadecenoic acid, m.p. $47\cdot5-48^\circ$ (amide, m.p. $111\cdot5-112\cdot5^\circ$; p-bromoanilide, m.p. $114-114\cdot5^\circ$). The structure of the acids is proved by ozonolysis in CHCl₃ to give RCHO. Chemistry of fatty acids. VII. Multiple nature of linoleic and linolenic acids prepared by the bromination—debromination procedure. Purification of these acids by repeated low-temperature crystallisation. N. L. Matthews, W. R. Brode, and J. B. Brown (J. Amer. Chem. Soc., 1941, 63, 1064—1067; cf. A., 1940, II, 266).—Debromination of linoleic (I) and linolenic (II) acid bromides and crystallisation of the products from light petroleum at $\sim -60^\circ$ shows the presence of $\sim\!12$ and $\sim\!15\%$, respectively, of isomerides in the products whence existence of isomerides in the "natural" acids is inferred. (I), m.p. $-5\cdot2^\circ$ to $-5\cdot0^\circ$, and (II), m.p. $-11\cdot3^\circ$ to $-11\cdot0^\circ$ (hexabromide no. 96·0), are reported. R. S. C. Geometric isomerism of linolenic acids. Elaidolinolenic acid. J. P. Kass, J. Nichols, and G. O. Burr (J. Amer. Chem. Soc., 1941, 63, 1060—1063).—Heating the Et esters of the acids from linseed oil with Se-N₂ at 205—215°, followed by hydrolysis and treatment with Br, gives elaidolinolenic acid hexabromide (I), m.p. $169-170^\circ$ (Et ester, m.p. $114-115^\circ$), and Et₂O-sol. bromides. Zn and HCl-EtOH convert (I) into Et elaidolinolenate, b.p. $138^\circ/1$ mm., hydrolysed to the acid (II), m.p. $29-30^\circ$, f.p. $29\cdot5-30^\circ$, I val. (Wijs) 271·8, and CNS val. $149\cdot7$ (absorbs 3 H₂). Pure (II) gives only 31% of (I), whence it follows that formation of more than one bromide from linolenic acid is not evidence for existence of a β -isomeride. Malonatomanganiates.—See A., 1941, I, 278. Hydrogen bridges and isomerism, H. C. Brown (J. Amer. Chem. Soc., 1941, 63, 882—883).—Polemical against Reimer et al. (A., 1940, II, 374; 1941, II, 102). W. R. A. Wound hormones of plants. V. Synthesis of analogues of traumatic acid. J. English, jun. (J. Amer. Chem. Soc., 1941, 63, 941—943; cf. A., 1940, III, 271).—Et H sebacate and boiling SOCl₂ give the ester chloride, b.p. 129—130°/1 mm., and thence by H₂-Pd in xylene (no "poison") Et θ-aldehydo-n-nonoate, b.p. 130°/2 mm. Condensation of CO₂H·[CH₂]_n·CHO and CH₂(CO₂H)₂ by C₂H₃N at room temp. and subsequent hydrolysis by 2n-NaOH-EtOH gives CO₂H·[CH₂]_n·CH:CH·CO₂H and some CO₂H·[CH₂]_{n-1}·CH:CH·CO₂H and some cobtained Δα-nonene-aι, m.p. 103°, -n-decene-ακ-, m.p. 165°, and -n-tridecene-αν-, m.p. 108·5°, Δβ-n-nonene-αι, m.p. 90°, -n-decene-ακ-, m.p. 109°, and -tridecene-ακ-, m.p. 166°, and plants of the chloride by Br. followed by EtOH) with NPhMe₂ at 180° gives Δα-η-octadiene-αβ-dicarboxylic acid, m.p. 236—239° (decomp.), hydrogenated (1 mol. of H₂; Pt; EtOH) to Δα-n-octene-αβ-dicarboxylic acid, m.p. 173°. CO(CH₂·CO₂Et)₂·(CO₂Et)₂·(CO₂Et, and NaOEt-EtOH give an undistillable ester, which in boiling conc. HCl gives n-undecan-ζ-one-αλ-dicarboxylic acid, m.p. 114° (Et ester, b.p. 180°/0·5 mm.), hydrogenated (PtO₂), 30—40 lb.; Et₂O-EtOH) to n-undecan-ζ-ol-αλ-dicarboxylic acid, m.p. 102—103°, which with PI₃ at 100° gives an oily I-acid, converted by 25% KOH-EtOH into Δε-n-undecene-αλ-dicarboxylic acid, m.p. 72°. n-Nonan-ε-one-m.p. 111°, and n-nonan-ε-ol-au-dicarboxylic acid, m.p. 95°, but not the unsaturated acid, are similarly prepared. Other methods of prep. failed. The unsaturated acids are all plant wound hormones, more active than the saturated acids. M.p. are corr. Crystalline sodium salt of pantothenic acid. N. Gătzi-Fichter, H. Reich, and T. Reichstein (Helv. Chim. Acta, 1941, 24, 185—187).—Na pantothenate, m.p. 121—122°, [a] $^{16}_{1}$ +29°±1·5° in H₂O, is obtained from the Ba salt and Na₂SO₄ with subsequent crystallisation from EtOH with addition of COMe₂ or Et₂O or by addition of a-hydroxy- $\beta\beta$ -dimethyl-butyrolactone to NaOMe-MeOH containing β -alanine. It is very hygroscopic. Na 1-pantothenate has m.p. 120—122°, [a] $^{15}_{1}$ 5 –27·4°±2·5° in H₂O. Use of Bunte salts in synthesis. II. Preparation of derivatives of thiol-aliphatic acids. G. G. Stoner and G. Dougherty (J. Amer. Chem. Soc., 1941, 63, 987—988; cf. A., 1940, II. 159).—CH₂Cl·CO₂Na and aq.Na₂S₂O₃ give SO₃Na·S·CH₂·CO₂Na, oxidised by I in hot H₂O to (S·CH₃·CO₂H)₂. dl-(CHMeBr·CO₂Na)₂ gives similarly (S·CHMe·CO₂H)₂, and Cl·[CH₂]₂·CO₂H gives (S·[CH₂]₂·CO₂H)₂. Cl·[CH₂]₃·CN with Na₂S₂O₃ in boiling EtOH and later I gives di-γ-thiolbutyronitrile (70%), an oil, hydrolysed by hot conc. HCl to (S·[CH₂]₃·CO₂H)₂. CO₂H·[CH₂]₃·S·SO₃Na (prep. as above) with HCl and RCHO or COR₂ gives S-methylene-, m.p. 126—127° (cf. lit.), S-benzylidene-, m.p. 124° (lit. 122—123°), and S-isopropylidene-di(thiolacetic acid), m.p. 129° (cf. lit.), S-methylene-m.p. 149—152° (lit. 155—156°), S-benzylidene-, m.p. 149—150° (lit. 138—140°), S-isopropylidene-, m.p. 174°, and S-a'-methylpropylidene-di-(a-thiolpropionic acid), m.p. 126—127°, S-methylene-, m.p. 142°, S-benzylidene-, m.p. 90°, and S-isopropylidene-di-(β-thiolpropionic acid), m.p. 70°. R. S. C. δ-Valerosultone. T. Nilsson (Svensk Kem. Tidskr., 1940, 52, 324—325).—Br·[CH₂]₄·SO₃Na in aq. AgNO₃ at 55° for 4 hr. gives δ-valerosultone (I), liquid, polymerising on keeping. Hydrolysis of (I) in dil. aq. solution at 60° is unimol. and is thus not catalysed by H. M. A. A. [Photolytic] reactions of the acetyl radical.—See A., 1941, I, 276. Photolysis of glyoxal and acetaldehyde.—See A., 1941, I, 276. High-temperature photolysis of acetone and the action of free methyl radicals on propane.—See A., 1941, I, 276. Synthesis of methyl vinyl ketone by hydration of vinylacetylene under pressure.—See B., 1941, II, 135. Acetylene derivatives. XIV. Synthesis of ββ-dialkyldivinyl ketones by isomerisation of tert.-vinylethylcarbinol, XV. Vinyl ketones and their polymerisation. I. N. Nazarov. XVI. Action of ethylene oxide on vinylethinylcarbinols. Esterification of β-hydroxyethyl ethers of vinylethinylcarbinols with organic acids. I. N. Nazarov and V. M. Romanov (Bull. Acad. Sci. U.R.S.S., Cl. Sci. Chim., 1940, 545—551, 552—558, 559—570).—XIV. The general reaction OH-CRR'-CE-CHCH₂+R"OH->OR"-CH₂-CO-CH:CRR'-CE-CHCH₂-R"OH->OR"-CH₂-CO-CH:CRR'-CE-CHCH₂-R"OH->OR"-CH₂-CO-CH:CRR'-CE-CHCH₂-R"OH->OR"-CH₂-CO-CH:CRR'-CE-CHCH₂-R"OH->OR"-CH₂-CO-CH:CRR'-CE-CHCH₂-R"OH->OR"-CH₂-CO-CH:CRR'-CE-CHCH₂-R"OH->OR"-CH₂-CO-CH:CRR'-CE-CHCH₂-R"OH->OR"-CH₂-CH₂-CO-CH:CRR'-CE-CHCH₂-R"OH->OR"-CH₂-CH₂-CO-CH:CRR'-CE-CHCH₂-R"OH->OR"-CH₂-CH₂-CO-CH:CRR'-CE-CHCH₂-R"OH->OR"-CH₂ 558, 559—570).—XIV. The general reaction OH·CRR'·C•C·CH:CH₂+R"OH·OR"·CH₂·CH₂·CO·CH:CRR' takes place in presence of HgSO₄ (12 hr. at 35—40°) (R" = Me, R = R' = Me, Et, Pra'; R = Me, R' = Et, b.p. 91—93°; R = Me, R' = Pra'; RR' = [CH₂]₅). When heated with p-C₆H₄Me·SO₃H the keto-ethers eliminate R"OH, yielding the ketones CH₂·CH·CO·CH:CRR' (R = R' = Me, Et, b.p. 59—60°/5 mm., Pra, b.p. 80—81°/5 mm.; R = Me, R' = Et, b.p. 50—51°/6 mm., R' = Pra, b.p. 73—74°/10 mm.; RR' = [CH₂]₅, b.p. 98·5—101°/12 mm.). The ketones are hydrogenated to the saturated ketones, COEt·CH₂·CHRR' [R = R' = Me, Et, b.p. 179—181° (carbazone, m.p. 127—128°), Pra,
b.p. 209—211° (semicarbazone, m.p. 89—90°); R = Me, R' = Et, b.p. 161—162° (carbazone, m.p. 92—93°), R' = Pra, b.p. 178—180° (semicarbazone, m.p. 64—65·5°). XV. The keto-ethers described above are hydrogenated (Pt catalyst) to keto-ethers, OMe·CH₂·CH₂·CHRR', which is the sum of the state of the same s AV. The Reto-ethers described above are hydrogenated (Pt catalyst) to keto-ethers, OMe·CH₂·CH₂·CO·CH₂·CHRR', which when distilled from p-C₆H₄Me·SO₃H give ketones, CH₂·CH·CO·CH₂·CHRR' (R = R' = Me, b.p. 41—42°/22 mm., Et, b.p. 65—66°/11 mm., Pra, b.p. 90—91°/12 mm.; R = Me, R' = Et, b.p. 40—41°/7 mm.; R = Me, R' = Pra, b.p. 72—73°/16 mm.; RR' = [CH₂]₅, b.p. 96°/12 mm.). The ketones readily polymerise to elastic, transparent products. XVI. Carbinols of the type OH·CRR'·C·C·CH·CH₂ are obtained by condensation of ketones CORR' with CH:C·CH·CH₂ (R = R' = Me, Pra) by 82°/4 mm.; R = Me, R' = Ft. XVI. Carbinols of the type OH·CRR'·C:C·CH:CH₂ are obtained by condensation of ketones CORR' with CH:C·CH:CH₂ (R = R' = Me, Pr^a , b.p. 83°/4 mm.; R = Me, R' = Et; R = Me, R' = Pra·; RR' = [CH₂]₅). The carbinols condense with 1 or 2 mols. of (CH₂)₂O to yield the mono- and di-glycyl ethers, OH·CH₂·CH₂·O·CRR'·C·C·CH:CH₂[R = R' = Me, b.p. 80–81°/4 mm. (acetate, b.p. 92–93°/5 mm.; propionate, b.p. 102—104°/4 mm.; butyrate, b.p. 110—113°/4 mm.; isobutyrate, b.p. 98–100°/2·5 mm.; valerate, b.p. 120—121°/4 mm.); R = R' = Pra, b.p. 108—109°/3 mm.; R = Me, R' = Et, b.p. 89–90°/5 mm. (butyrate, b.p. 129—131°/4 mm.); R = Me, R' = Pra, b.p. 96—97°/4 mm.; RR' = [CH₂]₅, b.p. 118—119°/3 mm.], and OH·CH₂·CH₂·O·CRR'·C·C·CH:CH₂ (R = R' = Me, b.p. 103—104°/2 mm.; R = R' = Pra, b.p. 140—142°/4 mm.; R = Me, R' = Et, b.p. 125—127°/4 mm.; R = Me, R' = Pra, b.p. 135—137°/4 mm.; RR' = [CH₂]₅, b.p. 149—150°/3 mm.). All the above products polymerise on keeping to transparent gels, the tenacity of which falls with increasing mol. wt. of R and R'. Photolysis of diacetyl in the near ultra-violet.—See A., 1941, 276. Preparation of d-mannose. H. S. Isbell (J. Res. Nat. Bur. Stand., 1941, 26, 47—48).—The prep. from ivory nut shavings is described in detail. J. W. S. isoPropylidene derivative of the mercaptals of monosaccharides. VI. Crystalline 2-methyl-d-mannose and its α-methylglucofuranoside, dimethyl acetal, and dibenzyl mercaptal. E. Pacsu and S. M. Trister (J. Amer. Chem. Soc., 1941, 63, 925—928; cf. A., 1940, II, 365).—The "4-"methylmannose (I) of Pacsu et al. (A., 1930, 70) is shown to be the 2-derivative (cf. Munro et al., A., 1936, 826) and the structure of intermediates is modified accordingly. Mannose (CH₂Ph)₂ mercaptal (modified prep. from α-methyl-d-mannofuranoside) gives the (mainly 3:4-5:6-)(CMe₂)₂ derivative, a syrup, $[a]_1^{2b}$ +59·5° in (CHCl₂)₂, converted by NaOMe-MeI (twice) into the syrupy 2-Me derivative, whence conc. HCl in boiling 80% EtOH yields 83% of 2-methylmannose (CH₂Ph)₂ mercaptal (II), m.p. 117°, $[a]_2^{2b}$ -43·1° in C₅H₅N, +39·5° in CHCl₂. With HgO-HgCl₂ in MeOH at 60°, (II) gives 2-methyl-a-methylmannofuranoside (III), m.p. 82°, $[a]_2^{2b}$ +129·5° in H₂O, with a little 2-methylmannose Me₂ acetal (IV), m.p. 111—112°, $[a]_2^{2b}$ -11·3° in H₂O. N-HCl at 100° hydrolyses (III) to (I), m.p. 136—137° (lit. a syrup), $[a]_2^{2b}$ +7·0° \rightarrow +4·5° in 24 hr. in H₂O, which, according to the conditions, yields phenylglucosazone or 2-methylmannose-phenylhydrazone, m.p. 163°, [a] -49·1° \rightarrow -60·7° in 24 hr. in C_5 H₅N. Hydrolysis of (IV) by 0·05N-HCl at 21° gives 2-methyl-α- and -β-methylmannofuranoside (increased lævorotation) and then more slowly (I). The data of Pacsu et al. (loc. cil.) for (II) probably refer in error to the glucose analogue. Hydrolysis of turanose in alkaline solution. H. S. Isbell (J. Res. Nat. Bur. Stand., 1941, 26, 35—46).—Treatment of turanose (I) with aq. Ca(OH), at 20° leads to a decrease in rotation, the final val. being in accord with the view that hydrolysis occurs to glucose and d-fructose instead of the normal Lobry de Bruyn interconversion. A solution of (I) in N-KOH turns brown and becomes lævorotatory, the loss in [KOH] according with the view that the hydrolysis products enolise and decompose to yield saccharic acids. Alkaline oxidation of 0·17 mol. of fructose yields 2·9 g. and of (I) 1·8 g. of cryst. K d-arabate (II). Lactulose yields no (II) but forms the K salt of a dibasic acid, presumably 3-β-d-galactopyranosido-d-arabonic acid. These differences in behaviour and the differences in Cu-reducing vals. are discussed with reference to the effect of the glycosidic linking on the behaviour of the sugars in alkaline solution. J. W. S. [Degradation of long-chain molecules.] H. Mark and R Simha (*Trans. Faraday Soc.*, 1941, 37, 244).—A note on a recent paper by the authors (cf. A., 1940, II, 268). Separation of starch into its two constituents. E. Pacsu and J. W. Mullen (J. Amer. Chem. Soc., 1941, 63, 1168—1169).—When an adsorbent (best, cotton; also activated C, fuller's earth, or Al_2O_3) is added to cold 1% maize-starch paste, the amylose is adsorbed. Cold H_2O then removes the α -amylose (I), which can be recovered by pptn. by EtOH. Final elution with hot H_2O extracts the β -amylose (II) giving a clear aq. solution, which rapidly ppts. a degraded, insol. form; pptn. by EtOH gives a similar material. Addition of C_5H_5N during distillation of the aq. solution of (II) gives a solution of (II) in C_5H_5N , whence (II) is pptd. by EtOH. (I) and (II) have $[a_1^{(2)0}]^{\alpha} + 145^{\alpha}$ in 20% NaOH and differ only in that (a) (I) contains 0.020% of P and (II) contains no P, and (b) (I) gives a purple and (II) a deep blue colour with I. Fractionation of wheat starch.—See B., 1941, III, 68, 98, 150. Starch. IX. Degradation by β -amylase and the law of mass action. K. H. Meyer and J. Press (Helv. Chim. Acta, 1941, 24, 50—58).—The degradation of sol. starch (I) (Zulkowski) by β -amylase is a reaction of zero order; until degradation has reached 35—40% the quantity of maltose (II) formed in unit time is const. In conc. solution [0.6—1.4% of (I)] this is not remarkable but the concn. of terminal groups may be considered const. in more dil. solution in which concn. has a marked influence on the rate of reaction. The evidence points to the existence of an additive compound of enzyme and substrate in equilibrium with its products of dissociation. The reaction is inhibited by (II). In alkaline solution ($\rho_{\rm H}$ 4·8) amylose from maize or potato starch is degraded $\sim\!65\%$ as rapidly as (I). Starch. XI. Residual dextrin from maize starch (erythrogranulose). K. H. Meyer, M. Wertheim, and P. Bernfeld (Helv. Chim. Acta, 1941, 24, 212—216).—Amylopectin (I), obtained by the cautious removal of amylose from maize starch, is solubilised by $\mathrm{CCl_2}\text{-}\mathrm{CH}(\mathrm{OH})_2$ and subjected to the action of β -amylase (II) in $\mathrm{H_2O}$; all the terminal groups of (I) are found in the residual dextrin (III). Possibly the very slow attack of (II) on (III) is due to the liberation of maltose or glucose. H. W. Starch. X. Degradation of glycogen by β -amylase. K. H. Meyer and J. Press (Helv. Chim. Acta, 1941, 24, 58—62).—Glycogen (I) obtained by Brücke's method is much more slowly attacked than sol. starch by β -amylase (II) but with a high concn. of enzyme it is possible to achieve 45% degradation with formation of 55% of residual dextrin. Lyoglycogen, isolated without use of alkali and containing about $\frac{1}{3}$ its wt. of protein (III), is not attacked by (II) in a solution which has been made alkaline and then neutralised. If (III) is removed by tungstic acid the residual (I) is more rapidly attacked than Brücke's (I). Factors in the methylation of cellulose acetate and of cellulose dissolved in benzyltrimethylammonium hydroxide. G. G. Johnston (J. Amer. Chem. Soc., 1941, 63, 1043—1050). —The amount of methylation of cellulose acetate (I) achieved in one operation increases as the degree of polymerisation decreases. Repeated methylation gives products containing 1% less OMe than theoretical for trimethylation. Higher OMe is achieved only after reacetylation, which involves further depolymerisation. Only in COMe2 is methylation of (I) easier than that of cellulose. Fine division increases the ease of methylation. Methylation and deacetylation in COMe2 with conc. NaOH, but accelerate as the product ppts. and thus comes in contact with NaOH. In CH2PhNMe3OH the reaction rate is normal as the solution is homogeneous, but methylation ceases at ~43% of OMe owing to insolubility of the product. Cohesive forces (H or OH linkings) are responsible for the incomplete methylation. Amination in liquid ammonia.—See B., 1941, II, 134. Treatment of simple aliphatic amines with nitrous acid. F. C. Whitmore and R. S. Thorpe (J. Amer. Chem. Soc., 1941, 63, 1118—1120; cf. A., 1932, 1022).—Yields of ROH from NH₂R and HNO₂ are R = Me 0, Et 60, Pra 7, and Prβ 32% (also 28% of C_3H_6) with traces of Et and Pr ethers. Failure of the reaction with NH₂Me is due to hydrolysis of the nitrite occurring more readily than its decomp. R. S. C. Reductive alkylation of ammonia and amines with aldehydes and ketones. Preparation of ethylamines from acetaldehyde.—See B., 1941, II, 135. Manufacture of amino-fatty acid derivatives.—See B., 1941, II, 137. Molecular refraction of ions of l-aspartic acid.—See A., 1941, I, 194. Azlactones. III. Acylation of amino-acids in pyridine. H. E. Carter, P. Handler, and C. M. Stevens (*J. Biol. Chem.*, 1941, 138, 619—626).—70% yields of acetyl-, butyryl-, m.p. 86—87°, isobutyryl-, m.p. 105—106°, valeryl-, m.p. 84—85°, y-methylvaleryl-, m.p. 129—130°, and trimethylacetyl-phenyl-alanine, m.p. 124—125°, and the corresponding acyl-dl-valines, m.p.—, 148—149°, 165—167°, 105—106°, 144—146°, and 98—99°, are obtained from the NH₂-acid and acid chloride in C₈H₈N below 40°. dl-Valine with BzCl in C₈H₈N gives
a mixture of benzoyl-dl-valine and -dl-valylvaline, m.p. 170—205°. Leucine behaves similarly. Benzoyl-dl-phenylalanine with BzCl or (poor yield) AcCl or Ac₂O yields the azlactone, which with NH₂Ph affords the anlide. Benzoyl-dl-alanyl-, acetyl-dl-phenylalanyl-, m.p. 211—212°, and n-valeryl-dl-valyl-anilide, m.p. 164—165°, are similarly prepared. Benzoyl-dl-phenylalanylglycine, m.p. 225—237°, and n-valeryl-dl-valyl-dl-valine, m.p. 180—183°, are obtained in poor yield from the azlactone and NH₂-acid in C₅H₅N at room temp. A. Li. Synthesis of β -hydroxynorvaline. M. Botvinnik, E. Morozova, and G. Samsonova (Compt. rend. Acad. Sci. U.R.S.S., 1941, 30, 133—136).—Equimol. amounts of Δ^{α} -pentenoic acid (I) with $\mathrm{Hg}(\mathrm{OAc})_2$ in cold MeOH give a mixture of Hg derivatives of β -methoxyvaleric acid which when treated with aq. KBr-Br gives α -bromo- β -methoxyvaleric acid (II), converted by 25% aq. NH₃ under pressure at 100° for 2 hr. into α -amino- β -methoxyvaleric acid, which with boiling 48% HBr gives β -hydroxynorvaline (cf. Abderhalden et al., A., 1934, 638). (I) with AgNO₃ and Br in MeOH at 5—15° gives (II) (cf. West et al., A., 1938, II, 129). J. L. D. Benzoylation of amino-acids. H. E. Carter and C. M. Stevens (J. Biol. Chem., 1941, 138, 627—629).—l-p-Methoxyphenylalanine with excess of BzCl in aq. NaHCO $_3$ gives the partly racemised Bz derivative (I) (75—85%), and an oil hydrolysed to BzOH and (I). Similar products are obtained from dl-alanine and dl-O-methylallothreonine. Bz derivatives of > 16 NH $_2$ -acids, and some β -phenylpropionyl derivatives, have been prepared without racemisation in O-5N-NaOH. An explanation of this difference is suggested. A. Li. Sulphur in proteins. VI. Alkaline decomposition of cysteine, H. V. Lindstrom and W. M. Sandstrom (J. Biol. Chem.; 1941, 138, 445—450).—Uvitic, uvitonic, and thiolactic acids are produced by the action of boiling 2N-Ba(OH)2 on cysteine (I), or on a mixture of its primary decomp. products, AcCO2H, H2S, and NH3. The residue after extraction of the products from (I) with Et2O and then boiling alkaline Pb(OAC)2 contains alanine (II), which stabilises (I) in NaOH or KOH, but not in Ba(OH)2. It is concluded that (II), when formed, condenses with AcCO2H in presence of NaOH or KOH, inhibiting further decomp. of (I). Dehydration of hydroxy-amino-acids. M. M. Botvinnik, M. A. Prokofiev, and N. D. Zelinski (Compt. rend. Acad. Sci. U.R.S.S., 1941, 30, 129—132).—β-Hydroxyvaline (I) (1 mol.) with Bz₂O (3 mols.) at 150°/1 hr. gives the azlactone (II) of α-benzamido-β-methylcrotonic acid (III), hydrolysed (N-NaOH at 100°) to (III). When (II) is boiled with N-HCl for 5·5 hr., COPrβ-CO₂H is formed. (III) gives (II) on brief boiling with Ac₂O, or when heated with Bz₂O at 120—125° for 20 min. The sulphate of (I) is not dehydrated when fused with Bz₂O. Similarly, α-amino-β-hydroxybutyric acid, or its Bz derivative with Bz₂O yields the azlactone, m.p. 95° (cf. Carter et al., A., 1939, II, 423), hydrolysed (N-NaOH at 80°) to α-benzamidocrotonic acid, m.p. 193—195°. New sulphur-containing amino-acid (lanthionine) from sodium carbonate-treated wool. M. J. Horn, D. B. Jones, and S. J. Ringel (J. Biol. Chem., 1941, 138, 141—149).—Hydrolysis (conc. HCl) of wool previously boiled with 2% aq. Na₂CO₃, concn. of the hydrolysate, and pptn. of the EtOH solution of the residue with C_5H_5N yields $\beta\beta'$ -diamino- $\beta\beta'$ -dicarboxydiethyl sulphide (lanthionine), decomp. 304° (softening at 270°) (NN'- Bz_2 derivative, m.p. 205— 206°), with two other compounds with similar properties and the same N content. Synthesis of new sulphur-containing amino-acid [lanthionine] isolated from sodium carbonate-treated wool. V. du Vigneaud and G. B. Brown (J. Biol. Chem., 1941, 138, 151—154).—Cysteine (from cystine and Na in liquid NH₃) with CH₂Cl·CH(NH₂)·CO₂Me,HCl and KOH yields lanthionine (preceding abstract) [NN'-dicarbobenzyloxy-derivative, m.p. 138—140° (corr.)]. High-pressure reduction of fatty acid amides. II. S. Ueno and S. Takase (J. Soc. Chem. Ind. Japan, 1941, 44, 29—308).—The amides of palmitic (I), hexoic, octoic, stearic, lauric, and myristic acid have been hydrogenated in dioxan to the corresponding sec. amines [e.g., $\rm C_7H_{12}$ ·CO·NH₂ \rightarrow ($\rm C_8H_{17}$)₂NH], varying temp., pressure, time, and quantity of catalyst (Cu–Cr₂O₃ with a trace of Ba) and of solvent. Optimum results are obtained at 270—290°/180—200 atm. for 1 hr., with 3 times as much dioxan as amide. From (I) n-cetylamine (hydrochloride, m.p. 130—133°) is also obtained. With little or no solvent the amides decompose. A. Li. Action of halogens on αβ-unsaturated ureides. C. J. Cavallito and C. S. Smith (J. Amer. Chem. Soc., 1941, 63, 995—998). -trans-CHMe:CH-COCl and CO(NH₂)₂ in CCl₄ give trans-crotonylcarbamide, which with Br-CCl₄ at 0—5° gives a dibromide, m.p. 150°. trans-cinnamylcarbamide and aq. Br give the dibromide, m.p. 180°. Maleamic and maleic acids also give dibromides ($a\beta$ -dibromosuccinamic acid has m.p. 170°), but succinuric acid does not react. Maleuric acid (I) with Br in H₂O or CCl₄ at 0—10° gives β -bromomaleuric acid (II), m.p. 147°, hydrolysed by H₂O at room temp. to β -hydroxy-maleuric acid (III), m.p. 230—270°. With Br-H₂O at 30—35°, (I), (II), or (III) gives tribromopynuvylcarbamide (IV), m.p. 260° [N-Cl-derivative (V), m.p. 210°; N-Ag salt, with alkali gives CHBr₃]. I does not react with (I). IBr and (I) in H₂O at 0—10° give β -iodomaleuric acid, m.p. 150—155°, converted by IBr at 30° into tri-iodopynuvylcarbamide, m.p. 220° [also obtained from (II) by IBr], and by Br into (IV). (IV) is a mild sedative and (V) is antiseptic. M.p. are corr. (decomp.). Sebacic acid mononitrile. B. S. Biggs and W. S. Bishop (J. Amer. Chem. Soc., 1941, 63, 944).—Distillation of ([CH₂]₄·CO·NH₂)₂ (crude or pure) or ([CH₂]₄·CO₂NH₄)₂ gives 50—55% of ([CH₂]₄·CN)₂, b.p. 204°/16 mm., and 35% of t-cyano-n-nonoic acid (I), m.p. 51·5—52° (purified by way of the Ba salt). With NaOMe-Me₂SO₄-MeOH (I) gives Me t-cyano-n-nonoite (II), b.p. 178°/16 mm. CO₂H·[CH₂]₈·CO₂Me with SOCl₂ and then aq. NH₃ gives Me n-decoamate, m.p. 77·4°, which with P₂O₅ in boiling (CHCl₂)₂ gives (II). Purification of lecithin.—See A., 1941, III, 368. Dimethyl silicon dichloride and methyl silicon trichloride. W. F. Gilliam, H. A. Liebhafsky, and A. F. Winslow (J. Amer. Chem. Soc., 1941, 63, 801—803).—Si Me₂ dichloride, b.p. 69·0—70·2°/744·5 mm., and Si Me trichloride, b.p. 66·2—67°/765·8 mm., have been prepared by a Grignard reaction between MgMeCl and SiCl₄ in Et₂O and Bu^a₂O respectively. W. R. A. Polymeric methyl silicon oxides. E. G. Rochow and W. F. Gilliam (J. Amer. Chem. Soc., 1941, 63, 798—800).—Polymeric Si Me oxides (I) have been prepared by direct hydrolysis of the product obtained by action of MgMeBr on SiCl., and by hydrolysis of mixtures of SiMeCl., and SiMe. Cl.. (I) are intermol. condensation products of Me silicols. The properties and thermal stability of the products obtained by using various Me/Si ratios are recorded. Resins prepared by both methods are identical, and appear to consist essentially of a siloxane network in which Me are attached directly to Si. Redistribution reaction. X. Relative affinity of mercury and lead for methyl and ethyl radicals. G. Calingaert, H. Soroos, and H. Shapiro (J. Amer. Chem. Soc., 1941, 63, 947—948; cf. A., 1940, II, 295).—Equilibration of HgMe₂ (2) with PbEt₄ (3 mols.) by AlCl₃ gives a random equilibrium mixture, for which the relative affinity const. is 3.4 in good agreement with that (4.5±0.4) determined previously (A., 1940, II, 300) for a mixture in different proportions. R. S. C. #### II.—HOMOCYCLIC. Catalytic dehydrogenation of cyclopentane in presence of chromic oxide.—See A., 1941, I, 273. Mechanism of catalytic hydrogenation of phenol under high pressure. VII. Comparison of hydrogenated products of cyclohexanol and cyclohexane. S. Andō (J. Soc. Chem. Ind. Japan, 1940, 43, 355—356B; cf. B., 1938, 903).—Both cyclohexane (I) and cyclohexanol (II) when hydrogenated at 380°/200 atm. over MoS₃ produced methylcyclopentane (III), the yield from (II) being > that from (I), and it is concluded that cyclohexane rather than (I) is the intermediate in the conversion of (II) into (III), whilst (II) is an intermediate in the hydrogenation of PhOH. A. R. PE. cis-trans-Isomeric stilbenes. V. Stereoisomeric forms of 2:4'-dinitrostilbene; phenanthrene syntheses. III. P. Ruggli and A. Dinger (Helv. Chim. Acta, 1941, 24, 173—185).—Protracted heating of p-NO₂·C₆H₄·CH₂·CO₂Na and o-NO₂·C₆H₄·CHO with Ac₂O and ZnCl₂ at 70° gives 2':4-dinitrostilbene-7-carboxylic acid (I), m.p. 185°; piperidine as condensing agent causes evolution of CO₂. Reduction (Raney Ni-EtOH-EtOAc) of (I) gives 2':4-diaminostilbene-7-carboxylic acid, m.p. 186° (Ac₂ derivative, m.p. 240°), converted by diazotisation and subsequent boiling with EtOH into phenanthrene-9-carboxylic acid, m.p. 252° (yield 18%). Decarboxylation of (I) in quinoline containing Cu chromite at 220° gives a mixture from which cis-2':4-dinitrostilbene (II), m.p. 140°, is isolated. (II) (or the mixture) is not appreciably affected by boiling HCl-EtOH, quinoline, or PhNO₂ but with PhNO₂ containing a trace of I at 205—210° yields pure trans-2': 4-dinitrostilbene (III), m.p. 140°. (II) is reduced (Raney Ni in EtOAc) to cis-2': 4'-diaminostilbene (IV), m.p. 105° (Ac₂ derivative, m.p. 180°), transformed into phenanthrene. 2': 4: 4'-Trinitrostilbene is reduced by (NH₄)₂S in EtOH to 2': 4-dinitro-4'-aminostilbene, m.p. 202° (hydrochloride; Ac derivative, m.p. 237°), converted by diazotisation and boiling with EtOH into (III), catalytically reduced (Raney Ni in EtOAc) to trans-2': 4-diaminostilbene, m.p. 125—126° (Ac₂ derivative, m.p. 241°). This, when diazotised and then boiled with EtOH containing a little Cu powder,
yields stilbene. It is also obtained by isomerisation of (IV) by slow distillation under 13 mm. Bromination of (III) in CHCl₃ affords a 73% yield of a dibromide (V), m.p. 212°, and an uncrystallisable resin. Under similar conditions (II) gives (V) in 16% yield with a resin from which a bromide, m.p. 165°, could be isolated in small amount. Warm C₅H₅N transforms (V) into (III) in 72% yield. Passage of Cl₂ through (III) in boiling CHCl₃ gives a dichloride (VI), m.p. 125—126°, whereas a dichloride, m.p. 204°, is derived from a mixture of (II) and (III). (VI) is converted by NaOH into a substance, C₁₄H₈O_{2.5}N₂, m.p. 244°, probably owing to ring formation. Synthesis of tricyclic hydrocarbons related to stilboestrol. A. A. Plentl and M. T. Bogert (J. Amer. Chem. Soc., 1941, 63, 989—995).—Slow addition of indan-1-one (I) in Et₂O to CH₂Ph·MgCl-Et₂O gives 65% of 1-benzylideneindane (purified by adsorption of impurities on Al₂O₃), b.p. 157—157·5°/2 mm., which probably contains 1-benzylindene since only poor yields of BzOH and (I) are obtained by KMnO₄ in aq. K₂CO₃ and COMe₂, respectively. CHPhMeBr and CN·CPhNa·CO₄Et (II) in hot EtOH give Et a-cyano-aβ-diphenyl-n-butyrate, b.p. 157°/0·2 mm., and some CHPhMe-CHPh·CN, m.p. 133° (lit. 129—130°), both converted by 1:2 HCl-AcOH at 200° into CHPhMe-CHPh·CO₄H, forms, m.p. 186° (lit. 181°) (amide, m.p. 193°) and 135° (lit. 133—134°) (amide, m.p. 173—174°), which with boiling SOCl₂, followed by AlCl₃ in CS₂, gives 2-phenyl-3-methylindan-1-one, m.p. 86° (2:4-dinitrophenyl-hydrazone, m.p. 204°; no semicarbazone), converted by MgEtI-Et₂O, followed by Ac₂O, into 2-phenyl-3-methyl-1-ethylindene, an oil. Ph·ICH₂]₂·Br and (II) in dioxan give Et a-cyano-aγ-diphenyl-n-butyrate, b.p. 174—175°/0·5 mm., and thence, as above, aγ-diphenyl-n-butyric acid, m.p. 76°, and 1-heto-2-phenyl-1:2:3:4-tetrahydronaphthalene, m.p. 79° (2:4-dinitrophenylhydrazone, m.p. 204°; no semicarbazone), 1-hydroxy-2-phenyl-1-ethyl-1:2:3:4-tetrahydronaphthalene, m.p. 79° (bath)/0·1 mm. Attempts to condense CHPhMe·MgBr and (I) failed, since only (CHPhEt)₂ was obtained. R. S. C. Formation of ions from compounds with conjugated double bonds: hydrocarbon salts. J. Weiss (Nature, 1941, 147, 512; cf. A., 1940, II, 247).—Salts of coronene, I:2-benzperylene, 3:4-benzpyrene, and anthracene with ClO₄', SO₄'', and P₂O₇''' as anions have been prepared from the hydrocarbon and an oxidising agent [CrO₃, K₃Fe(CN)₆, or H₂O₂) in presence of the moderately conc. acids at room temp. Deeply coloured, H₂O-sol. salts are formed even from the sulphonated hydrocarbons. Anthracene perchlorate (I), [C₁₄H₁₀]'[ClO₄]', m.p. >110° (decomp.), gives dark brown crystals (absorption spectrum in COMe₂ given). H₂O decomposes (I), but not the salts of the higher-mol. hydrocarbons. The deep colour of the solutions is due to the positive hydrocarbon ion, and univalent ions, [hydrocarbon]'[anion]', have been observed. The well-known hydrocarbon polynitro-compounds are present to an appreciable extent as ionic compounds of the type [hydrocarbon]'[NO₂-compound]' and [NH₂-compound]'. L. S. T. 1-Methylphenanthrene. I. Conversion of retene into 1-methylphenanthrene. T. Hasselstrom (J. Amer. Chem. Soc., 1941, 63, 1164—1165).—1-Methylphenanthrene [derived phenazine, new m.p. 183·5° (corr.)] (with propylene and an oily by-product) is obtained (97 g.) by boiling retene (250 g.) with dehydrated fuller's earth and thus becomes readily available. R. S. C. Syntheses in the phenanthrene and triphenylene series. L. F. Fieser and W. H. Daudt (J. Amer. Chem. Soc., 1941, 63, 782—788).—dl-(CHMe·CO), O (I), m.p. 88—89°, b.p. 234—237° (prep.: Bone et al., J.C.S., 1899, 75, 839), and $1\text{-}C_{10}\text{H}_7\text{-}\text{MgBr}$ in boiling Et₂O-C₆H₆-N₂ give mixed $\beta\text{-}1\text{-}naphthoyl-}\alpha\text{-}methyl\text{-}n\text{-}butyric acids}$ (II) (66.5%; the Friedel-Crafts reaction is less satisfactory), whence a small amount of a pure acid, m.p. 151·2—151·4°, is isolated. (II) enolises readily and in HCl-AcOH or -Ac₂O at room temp, or with boiling HCl-McOH gives γ -l-naphthyl-a β -dimethyl- Δ^{β} -crotonolactone, m.p. 96—97°, which reduces Tollens' reagent but gives no Legal reaction. Hydrogenation (Cu chromite; 140°/1500—2500 lb.) of the Na salt of (II) in H₂O gives 81.5% of γ-1-naphthyl-aβ-dimethyl-n-butyric acid, forms, m.p. 107.5—108.5° and 114—115°, cyclised by HF to 1-keto-2:3-dimethyl-1:2:3:4-tetrahydrophenanthrene (III) (88.5%), an oil, whence a small amount of crystals, m.p. $91-98^\circ$, is obtained. Clemmensen-Martin reduction and dehydrogenation (Pd-C; 300-330°) converts (III) into 2:3-dimethylphenanthrene (IV). MgMeBr and (III) in C₆H₆ give a carbinol, which with Pd-C at 300°, later 300—350°, gives 1:2:3-trimethylphenanthrene (42·5%), m.p. 63·8—64·8° [picrate, m.p. 187—188°; $C_6H_3(NO_2)_3$ compound, m.p. 200·7—201·5°]. 2- $C_{10}H_7$:MgBr and (I) give similarly β -2-naphthoyl-a-methyl-, m.p. 149—153° (enol lactone, m.p. 126—127·5°), and γ -2-naphthyl-a β -dimethyl-n-butyric acid, m.p. 83—84°, and thence by HF or, probably better, ZnCl₂-Ac₂O, 4-keto-2: 3-dimethyl-1: 2: 3: 4-tetrahydrophenanthrene (V), m.p. 93·4—94·5° after softening. Interaction of crude (V) with MgMeBr, dehydration at 200°, and removal of adsorbable (Al₂O₃) material at 200°, and removal of adsorbable (Al_2O_3) material gives an oil, which with Pd-C gives 17% of 2:3:4-trimethylphenanthrene, m.p. $62\cdot8-63\cdot8^\circ$ [picrate, m.p. $113-114^\circ$; $C_6H_3(NO_2)_3$ compound, m.p. $139-140^\circ$]. Al $(OPr^\beta)_3$ reduces (V) in PhMe to 4-hydroxy-2:3-dimethyl-1:2:3:4-tetrahydrophenanthrene, m.p. $111-114\cdot5^\circ$ [dehydrogenated to (IV)], converted by HCl-C₆H₆ into the chloride, which with $CH_2(CO_2Et)_2$ and NaOEt-EtOH-C₆H₆ and later boiling 40% KOH gives 2:3-dimethyl-1:2:3:4-tetrahydro-4-thenanthyl-KOH gives 2: 3-dimethyl-1:2:3:4-tetrahydro-4-phenanthrylmalonic acid, m.p. 188—190° (gas). Heating at 200° then gives 2:3-dimethyl-1:2:3:4-tetrahydro-4-phenanthrylacetic gives 2:3-dimethyl-1:2:3:4-tetrahydro-4-phenanthrylacetic acid, m.p. $110-123^\circ$, cyclised by HF to 1-keto-3:4-dimethyl-1:2:2a:3:4:5-hexahydropyrene, forms, m.p. $204\cdot5-206\cdot5^\circ$ and $197-202^\circ$. Mg 9-phenanthryl bromide and (I) give, as above, β -9-phenanthroyl-a-methylbutyric acid, m.p. $170-171\cdot5^\circ$ (slight previous softening) [picrate, m.p. $176-177^\circ$; $C_6H_3(NO_2)_3$ compound, m.p. $188\cdot5-189\cdot2^\circ$; enol lactone, m.p. $16-218^\circ$], γ -9-phenanthryl-a β -dimethyl-n-butyric acid, m.p. $158-163^\circ$ [$C_6H_3(NO_2)_3$ compound, m.p. $174-175\cdot5^\circ$], 1-keto-2:3-dimethyl-1:2:3:4-tetrahydrotriphenylene (VI), m.p. $132-138^\circ$, 1:2:3-trimethyltriphenylene, m.p. $109\cdot8-110\cdot6^\circ$ [picrate, m.p. $186-186\cdot5^\circ$; $C_6H_3(NO_2)_3$ compound, m.p. $203\cdot7-204\cdot1^\circ$], (by 2n-Hg-PhMe-HCl) 2:3-dimethyl-1:2:3:4-tetrahydrotriphenylene (VII), m.p. $158-167^\circ$ $203\cdot7-204\cdot1^{\circ}],$ (by Zn-Hg-PhMe-HCl) $2:3\text{-}dimethyl-1:2:3:4-tetrahydrotriphenylene}$ (VII), m.p. $158-167^{\circ}$ [picrate, m.p. $154-158^{\circ};$ $C_6H_3(NO_2)_3$ compound, m.p. $158-160^{\circ}$), [from (VII) by Pd-C] $2:3\text{-}dimethyltriphenylene}$ (VIII), m.p. $156\cdot7-157\cdot2^{\circ}$ [C $_6H_3(NO_2)_3$ compound, m.p. $237-237\cdot7^{\circ}$], and [from (VI) by Pd-C, which gives also some (VIII)] $1\text{-}hydroxy-2:3\text{-}dimethyltriphenylene},$ m.p. $167\cdot5-168\cdot5^{\circ}$ [C $_6H_3(NO_2)_3$ compound, $239-240^{\circ}$; picrate, m.p. $210\cdot5-211\cdot5^{\circ}$]. $1\text{-}C_{10}H_7\cdot\text{CH}:\text{CHMe}$ and (CH-CO) $_4\text{O}$ at 100° give (?) $3\text{-}methyl-1:2:3:4-tetrahydrophenanthrene-1:2-dicarboxylic anhydride}$ (77:5%), m.p. $271\cdot8-272^{\circ}$, unaffected by HCl-AcOH-Ac $_2\text{O}$ and dehydrogenated by S to $3\text{-}methyl-phenanthrene-1:2-dicarboxylic anhydride}$, m.p. $332-333^{\circ}$. M.p. are corr. R. S. C. M.p. are corr. Action of acids on β -hydroxy-sulphonamides. T. L. Cairns and J. H. Fletcher (J. Amer. Chem. Soc., 1941, 63, 1034—1035).—isoButylene oxide (I) and boiling aq. NH₃ give OH·CMe₂·CH₂·NH₂ (II). Steam-distillation of the N-p-C₆H₄Br·SO₂ derivative of (II) with 75% H₂SO₄ or 48% HBr gives p-C₆H₄Br·SO₂·NH₂ and Pr β CHO (isolated as methone derivative, m.p. 148—150°) (cf. A., 1939, II, 496). β -p-Bromobenzenesulphonyl-tert.-butyl alcohol, m.p. 89—90·5°, gives similarly EtCHO, but p-C₆H₄Br·SO₂·NH·[CH₂]₂·OH is unaffected. The fission is catalysed by acid, since it is not effected by P₂O₅ or AcCl. R. S. C. Catalytic reduction of nitrobenzene in the liquid phase.— See B., 1941, II, 173. Reductive alkylation of hindered aromatic primary amines. W. S. Emerson, F. W. Neumann, and T. P. Moundres (J. Amer. Chem. Soc., 1941, 63, 972—974).—Reductive alkylation of NH₂Ar by RCHO (cf. A., 1940, II, 11) in acid media can be accomplished if polymeride formation is prevented by substitution of Ar at positions 2, 4, and 6. Zn-Hg-AcOH- conc. HCl is an effective reducing agent. Thus, mesidine with CH₂O gives $2:4:6:1-C_6H_2Me_3\cdot NMe_2$ (I) (70%) [hydrochloride, m.p. $155-156^\circ$ (decomp.); also obtained similarly from $2:4:6:1-C_6H_2Me_3\cdot NO_2$ (II)], with RCHO gives N-isobutyl- (91%), b.p. $267-277^\circ$ [hydrochloride, m.p. $148-150^\circ$ (decomp.); Ac derivative, m.p. $71:5-72:5^\circ$], and N-isoamyl-mesidine (94%), b.p. $155-165^\circ$ /20 mm. [Bz derivative, m.p. $92-93^\circ$; hydrochloride, an oil; also obtained from (II) (61%)], and with COMe₂ gives 18% of N-isopropyl-mesidine, b.p. $118-123^\circ$ /3 mm. NH₂Ph gives similarly 31% of NHPhPrß. (I) is also obtained by using HCO₂H as reducing agent, which, however, fails in other cases. R. S. C. Synthesis and toxicity of N¹-p-fluorophenylsulphanilamide. G. P. Hager, E. B. Starkey, and C. W. Chapman (J. Amer. Pharm. Assoc., 1941, 30,
65—68).—p-NO₂·C₆H₄·N₂·BF₄ (from p-NO₂·C₆H₄·N₂Cl and NaBF₄; cf. Dunker et al., A., 1937, II, 39) is converted into p-C₆H₄F·NO₂ and thence p-C₆H₄F·NH₂, which with p-NHAc·C₆H₄·SO₂Cl in COMe₂-C₅H₃N affords the N⁴-Ac derivative, m.p. 190°, of N¹-p-fluorophenylsulphanilamide (I), m.p. 166·5° (corr.) (sinters 162—165°, softens 165°) (cf. Suter et al., A., 1940, II, 164). For toxicity of (I), cf. A., 1941, III, 526. Phosphoric acid derivatives of sulphanilamides.—See B., 1941, III, 161. 4-Aminodiphenyl-4'-sulphonamide. C. K. Donnell, J. H. Dietz, and W. T. Caldwell (J. Amer. Chem. Soc., 1941, 63, 1161—1162).—p-C₆H₄Ph·NO₂ and CISO₃H at, successively, <15°, room temp., and 60° give p-NO₂·C₆H₄·C₆H₄·SO₂Cl-p (94%), m.p. 178°, and thence the amide, which is reduced by Sn-HCl-EtOH to p-NH₂·C₆H₄·C₆H₄·SO₂·NH₂-p, m.p. 263° (corr.). R. S. C. Reaction of aldehydes with amines. III. N'-Acetyl-NN-dibenzyl-m-phenylenediamine. F. G. Singleton and C. B. Pollard (J. Amer. Chem. Soc., 1941, 63, 998—999).—m-NH₂·C₆H₄·N(CH₂Ph)₂ (A., 1941, II, 102) with RCHO gives Schiff's bases, but with Ac₂O at room temp. affords N'-acetyl-NN-dibenzyl-m-phenylenediamine, mp. 144—145°, which with RCHO and H₂SO₄ in boiling EtOH (tube at 100°, if necessary) gives 44—80°% of 4:4'-bisdibenzylamino-2:2'-diacetamidotriphenylmethane, m.p. 228°, 4:4'-bisdibenzylamino-2:2'-diacetamido3":4"-dimethoxy-, m.p. 231°, -2"-, m.p. 244°, and -4"-methoxy-, m.p. 224°, -3"-, m.p. 216°, and -4"-hydroxy-3"-methoxy-, mp. 196°, -triphenylmethane, 2"-, m.p. 239°, 3"-, m.p. 211°, and 4"-mitro-, m.p. 251°, 2"-, m.p. 242°, and 4"-chloro-, m.p. 248°, and 2"-chloro-5"-nitro-, m.p. 240°, -4:4'-bisdibenzylamino-2:2'-diacetamidotriphenylmethane, 4:4'-bisdibenzylamino-2:2'-diacetamidotriphenylmethane, 4:4'-bisdibenzylamino-2:2'-diacetamidodiphenylmethane, m.p. 172°, -propane, m.p. 230°, -n-butane, m.p. 245°, and -n-hexane, m.p. 201°, and a-phenyl-β-4:4'-bisdibenzylamino-2:2'-diacetamidodiphenyl-ethane, m.p. 172°, -propane, m.p. 230°, -n-butane, m.p. 245°, and -n-hexane, m.p. 201°, and a-phenyl-β-4:4'-bisdibenzylamino-2:2'-diacetamidodiphenyl-ethane, m.p. 184°. Small amounts of Schiff's bases, acridines, and CRR'₂·OH are also formed. M.p. are corr. Isomerism of diazoaminoazo-compounds. F. P. Dwyer (J. Proc. Roy. Soc. N.S. Wales, 1940, 74, 169—174; cf. A., 1939, II, 543).—Diazoaminoazobenzene, purplish-red quinonoid form (I), PhN₂·N:C₆H₄:N·NHPh, m.p. 121—122°, is obtained by neutralising p-NPh:N·C₆H₄·N₂Cl with Na₂CO₃, and coupling with NH₂Ph. (I) dissolves in C₅H₅N to a deep red solution, and addition of light petroleum then gives (after 2—3 days) brownish-yellow needles, m.p. 138—139°, of the triazen form (II), PhN₂·NH·C₆H₄·N₂Ph, m.p. 138—139°, which is best obtained by allowing a saturated solution of (I) in amyl acetate to evaporate slowly. A mixture of (I) and (II) melts at 142—143° (softens at 138°), indicating probable salt formation between the acidic (I) and feebly basic (II). When a solution of the crude salt from (I) or (II) and MeOHNaOAc-AgNO₃-C₅H₅N in C₅H₅N at 85° is cooled to 25°, the orange-yellow Ag salt (III), decomp. 200—205°, of (II), separates. When a solution of (III) in C₅H₅N at 85° is cooled rapidly to 20°, filtered, and the filtrate mixed with MeOH at —10°, the Ag salt (IV), probably dimeric, m.p. 195—200° (explodes at 205°), of (I) separates. (III) or (IV) and MeI-COMe₂ afford the same N-Me derivative, m.p. 84—85°. Reactivity of phenols towards paraformaldehyde.—See A., 1941, I, 214. 2-Nitro-4-tert.-alkylphenols.—See B., 1941, II, 178. 2:5-Dialkylphenols.—See B., 1941, II, 177. Polymorphic forms of substituted phenols. R. T. Arnold, H. Klug, J. Sprung, and H. Zaugg (J. Amer. Chem. Soc., 1941, 63, 1161).—Forms, m.p. 53—54° and 62° (stable), of 5:6:7:8-tetrahydro-β-naphthol and, m.p. 39·5—40° and 49—50° (stable), of 4-hydrindenol are prepared by alkali fusion of the Na sulphonates and from the diazonium salts, respectively. Exploration of methods for preparation of stilbene derivatives. II. Unsymmetrical stilbenes. W. H. Linnell and H. S. Shaikmahamud (Quart. J. Pharm., 1941, 14, 64—72; cf. A., 1940, II, 167).—ρ-OMe·C₆H₄·[CHBr]₂·CO₂H [from ρ-OMe·C₆H₄·CH:CH·CO₂H, prep. of which by Knoevenagel's reaction gives a little of (?) ρ-OMe·C₆H₄·CH:C(CO₂H)₂, m.p. 204°] with dry PhOH at ≯50°/30 mm., followed by treatment of the product with aq. Na₂CO₃, affords 4′-hydroxy-4-methoxystilbene (I), m.p. 209—210° [acetate, m.p. 167—168° (opaque), 182—183° (clear)], and 41·3% of (probably) p-hydroxy-β-p-anisylcinnamic acid, m.p. 185—186° (Me ether Me ester, m.p. 86—87°, hydrolysed to the Me ether, m.p. 137—138°), presumably formed by addition of PhOH to p-OMe·C₆H₄·Ci·C·CO₂H. Et β-hydroxy-β-p-acetoxyhphenyl-a-ethylvalerate, m.p. 85° (from ρ-OAc·C₆H₄·COEt, CHBrEt·CO₂Et, and Zn in C₆H₆), with SOCl₂-C₅H₅N in dry Et₁O yields Et p-acetoxy-aβ-diethylcinnamate, b.p. 162—164°/5 mm. (from which no stilbene derivative could be obtained by heating its dibromide with PhOH), hydrolysed by 25% MeOH-KOH to p-hydroxy-aβ-diethylcinnamic acid, m.p. 133° (II) and 119—121° (probably cis- and trans-forms) (II) is methylated to p-methoxy-aβ-diethylcinnamic acid (III), m.p. 63—64°. Et β-hydroxy-β-p-anisyl-a-ethylvalerate, m.p. 71—72° (from p-OMe·C₆H₄·COEt as above), similarly yields (III) (mixture of isomerides). (III) and direct addition of PhOH, however, gives an acid, m.p. 125—126° [probably either p-OMe·C₆H₄·CEtBr·CC;CHMe)·CEBr·CO₂H or p-OMe·C₆H₄·CEtBr·CC;CHMe)·CEDH or p-OMe·C₆H₄·CH; he corresponding stilbene derivative could not be similarly obtained from (III) (both forms) or p-OMe·C₆H₄·CH:CH·CO₂H, and 33% aq. CH₂C·CO₂Na in boiling COMe₂; the corresponding stilbene derivative could not be similarly obtained from (IV) and Na in C₂H₄(OH)₂], and its diacetate were examined for œstrogenic activity (cf. A., 1941, III, 509). Structures of arylhydrazones of unsymmetrically substituted quinones. L. I. Smith and W. B. Irwin (J. Amer. Chem. Soc., 1941, 63, 1036—1043).—m-Cresol and p-NO₂·C₆H₄·N₂Cl (I) in aq. NaOH give 4'-nitro-4-hydroxy-2-methylazobenzene, m.p. 163—164° (acetate, m.p. 132—133°), reduced by Na₂S₂O₄ in aq. EtOH to 2:1:5-NH₂·C₆H₃Me·OH, which is oxidised, best by steam-distillation with Fe₂(SO₄)₃, to p-toluquinone (II). o-Cresol and (I) give 4'-nitro-4-hydroxy-3-methylazobenzene (III), m.p. 205—206° (decomp.) (acetate, m.p. 144·5—146°), also obtained (in only 28% yield, cf. below) from (II) by p-NO₂·C₆H₄·NH·NH₂ (IV), and reduced by Na₂S₂O₄ to 5:1:2-NH₂·C₆H₃Me·OH. s-m-Xylenol and (I) give 4'-nitro-4-hydroxy-2:6-dimethylazobenzene, m.p. 167—168° (decomp.) (acetate, m.p. 133—133·5°), and thence 2:1:3:5-NH₂·C₆H₂Me₂·OH, m.p. 179—180° (decomp.) [lit. 180·5—181·5° (decomp.)], oxidised by Fe₂(SO₄)₃ to m-xyloquinone (V) and by FeCl₃ to 3-chloro-2:6-dimethyl-p-benzoquinone, m.p. 55·5—57°. (IV) and (V) give 4'-nitro-4-hydroxy-3:5-dimethylazobenzene (77%), m.p. 182—183° (decomp.) (acetate, m.p. 192—193°), reduced by Na₂S₂O₄ to 5:1:3:2-NH₂·C₆H₂Me₂·OH. 1:3:4:5-C₆H₂Me₃·OH (VI) and p-NO₂·C₆H₄·N₂HSO₄ (Ia) (prep. by iso-C₃H₁·O·NO) in AcOH give 4'-nitro-4-hydroxy-2:3:6-trimethylazobenzene (68% at 10°; 90%), less pure, in H₂O), m.p. 165·5—166·5° (decomp.) (acetate, m.p. 133—134°), reduced to 3:1:2:4:6-NH₂·C₆HMe₃·OH. \$\psi-Cumoquinone (VII), (IV), and H₂SO₄ in EtOH give 4'-nitro-4-hydroxy-2:3:6-trimethylazobenzene (68% at 10°; 90%), less pure, in H₂O), m.p. 165·5—166·5°, (decomp.) (acetate, m.p. 133—134°), reduced to 3:1:2:4:6-NH₂·C₆HMe₃·OH. \$\psi-Cumoquinone (VII), (IV), and H₂SO₄ in EtOH give 4'-nitro-4-hydroxy-2:3:6-trimethylazobenzene (68%) at 10°; 90%, less pure, in H₂O₃ from the solution of o m.p. 177—178·5° [179—183° (decomp.)], which gives (VIII) by oxidation. 2:4:1-(NO₂)₂C₆H₃·N₂Cl (IX) and (VI) in AcOH at 15—16° give 2':4'-dinitro-4-hydroxy-2:3:6-tri-methylazobenzene, m.p. 188·5—189° (decomp.) (acetate, m.p. 155—156°), whence reduction and then oxidation gives only a trace of (VII). (VII) with 2:4:1-(NO₂)₂C₆H₃·NH·NH₂ (X) in H₂SO₄-EtOH gives 2':4'-dinitro-4-hydroxy-2:3:5-trimethylazobenzene (90%), m.p. 220—221° (decomp.), and with p-SO₃H-C₆H₄·NH·NH₂ in aq. EtOH gives a compound, m.p. 224—228° after decomp. Durenol and (IX) give 2':4'-dinitro-4-hydroxy-2:3:5:6-tetramethylazobenzene (95%), orange, m.p. 199—200° (decomp.) (acetate, m.p. 181·5—182°), also obtained in a [? polymorphous (X-ray)] form, deep red, m.p. 197—197·5° (190—191°) (decomp.), from (VIII) and (X). Reduction of the (NO₂)₂-compounds gives inseparable mixtures. The azo-compounds and their acetates are purified by adsorption of impurities on Al₂O₃. R. S. C. Alkylpyrocatechol esters of phosphorous acid. A. E. Arbuzov and F. G. Valitova (Bull. Acad. Sci. U.R.S.S., Cl. Sci. Chim., 1940, 529—544).—Esters, RP·OR', where $R = o \cdot C_6H_4 < \bigcirc \bigcirc$ and $R' = Me \ (+CuBr, \text{ m.p. } 130-135^\circ)$, Et $\ (+CuBr, \text{ m.p. } 142-145^\circ)$, $Pr^a \ (+CuI, \text{ m.p. } 138^\circ)$, $Pr^{\beta} \ (+CuCl, \text{ m.p. } 143^\circ; +CuI, \text{ m.p. } 178-179^\circ)$, $Pr^a \ (+CuCl, \text{ m.p. } 202^\circ)$, and $Properator Properator Properator (+CuCl, \text{ m.p. } 208-210^\circ)$ are obtained from RPC1 and NaOR' in Et₂O. The esters readily isomerise to RPR'O, which with Properator Properat Reaction between 2-methylnaphthaquinone and magnesium phenyl bromide. (Miss) H. M. Crawford (J. Amer. Chem. Soc., 1941, 63, 1070—1073; cf. A., 1940, II, 82; Smith et al., A., 1939, II, 543).—2-Methyl-1: 4-naphthaquinone and MgPhBr give in poor yield 1: 4-dihydroxy-1: 2-diphenyl-2-, m.p. 189—190° [with K₂Cr₂O₇ gives COPhMe and o-C₆H₄Bz·CO₂H (I)], and -3-methyl-1: 2-dihydronaphthalene (II), m.p. 196·5—197° (or, in one experiment, a substance, m.p. 218—220°). (II) is oxidised to (I), BzOH, and substances, m.p. 243—244° (III) and 215—217°, and is dehydrated, best by ZnCl₂-HCl-C₆H₆, to 3: 4-diphenyl-2-methyl-1-naphthol (IV), m.p. 181—182° [acetate (V), m.p. 176—177°, obtained also from (II) by Ac₂O]. K₂Cr₂O₇-AcOH-H₂O oxidises (IV) to 3: 4-diphenyl-1:
2-naphthaquinone, but (V) gives (III). (II), (IV), and (V) have no vitamin-K activity in 5-mg, doses, but 2-methyl-1: 4-naphthaquinone has a potency of 2000 units per mg. Interactions between polycyclic hydrocarbons and sterols in mixed surface films at the air-water interface.—See A., 1941, I, 257. Isolation of a new phytosterol, campesterol. E. Fernholz and H. B. MacPhillamy (J. Amer. Chem. Soc., 1941, 63, 1155—1156).—Rapeseed oil yields brassicasterol (acetate bromide insol. in Et₂O-AcOH) and campesterol (I), C₂₈H₄₈O, m.p. 157—158°, [a]₂₃²³ —33° in CHCl₃ (acetate, m.p. 137—138°, [a]₂₃²³ —35° in CHCl₃; benzoate, m.p. 158—160°, [a]₂₃²³ —8-6° in CHCl₃; 3:5-dinitrobenzoate, m.p. 202—203°, [a]₂₃²³ —6-0° in CHCl₃; absorbs 1 O from BzO₂H; sol. acetate bromide). (I) is also obtained from soya-bean oil (by way of the bromide; with stigmasterol) and wheat-germ oil (directly), but not cotton-seed or tall oil. R. S. C. Constitution of campesterol. E. Fernholz and W. L. Ruigh (J. Amer. Chem. Soc., 1941, 63, 1157—1159).—Campesterol (I) is shown to differ from 22:23-dihydrobrassicasterol only in configuration at C₍₂₄₎. Its acetate is hydrogenated (H₂–PtO₂–AcOH; later reacetylation) to campestanyl acetate (II), m.p.143—144°, [a]₂₃²³ +18·3° in CHCl₃, and oxidised (CrO₃–90% AcOH; 95°; later hydrolysis by 2N-NaOH) to β-3-hydroxynorallocholanic acid, (?) d-Me γδ-dimethylamyl ketone (semicarbazone, m.p. 152—153°, [a]₂₄²⁴ +11·9° in CHCl₃, does not depress the m.p. of the l-isomeride), and COMe₂. 5% KOH—EtOH hydrolyses (II) to campestanol, m.p. 146—147°, [a]₂₄²⁴ +31° in CHCl₃ (3:5-dimitrobenzoate, m.p. 198°, [a]₂₄²⁴ +22° in CHCl₃). (I) gives i-campesteryl p-toluenesulphonate, m.p. 150—152°, and thence i-campesteryl Me ether, m.p. 61—63°, [a]₂₄²⁴ +62° in CHCl₃. R. S. C. Sterols. CXX. Anterior pituitary gland extracts. R. E. Marker and E. L. Wittbecker (J. Amer. Chem. Soc., 1941, 63, 1031—1032).—COMe₂ extracts from anterior pituitary glands (ox) cholesterol (only sterol), Na stearate, substances (a), $C_8H_{10}O_4N_4$ or $C_{10}H_{13}O_5N_5$, m.p. $281-284^\circ$, and (b) $C_{20}H_{40}O_2$, m.p. $96-98^\circ$, a carbinol, m.p. $79-81^\circ$, and the known hydrocarbon, C28H58. Effect of ortho-substitution on bacteriostatic properties of phenylacetic acid. C. F. Feasley and B. H. Gwynn [with E. F. Degering and P. A. Tetrault] (J. Amer. Pharm. Assoc., 1941, 30, 41—45).—Slow addition of HNO₃ (d 1·41) to p-NO₂·C₆H₄·CH₂·CO₂H in boiling AcOH-I yields 2-iodo-4-nitro-phenylacetic acid, m.p. 236°, reduced (H₂, colloidal Pt. EtOH) to 2-iodo-4-aminophenylacetic acid, m.p. 184°. For bacterio-static properties of these and related compounds of A. 1941. static properties of these and related compounds, cf. A., 1941, III, August. Normal and alkaline esters of m-aminomandelic acid and related compounds. L. S. Fosdick and J. C. Calandra (J. Amer. Chem. Soc., 1941, 63, 1101—1103; cf. A., 1938, II, 322).—Crude m-NO₂·C₆·H₄·CH(OH)·CN (prep. described) with HCl-ROH gives Me, m.p. 66°, Et, m.p. 63°, Pr°, m.p. 73°, Prβ, m.p. 57°, and Bu^a m-nitromandelate, m.p. 65°, hydrogenated (PtO₂; 45 lb.) to the NH₂-esters, m.p. 139°, 55°, 101°, 146°, and 110°, respectively. Cl·[CH₂]₂ m-nitromandelate, m.p. 76°, gives Cl·[CH₂]₂ m-aminomandelate, m.p. 91°, which with NHEt₂ at 100° gives NEt₂·[CH₂]₂ m-aminomandelate, unstable (hydrochloride, m.p. 133°). The NH₂-esters have little or no anæsthetic activity. M.p. are corr. R. S. C. Normal and alkaline esters of m-aminomandelic acid and Reaction of anhydrous rare earth bromides with ethyl benzoate.—See A., 1941, I, 278. Alkamine esters of p-fluorobenzoic acid and their salts. L. S. Fosdick and E. E. Campaigne (J. Amer. Chem. Soc., 1941, 63, 974—975).—p-C₆H₄F·CO₂H is obtained in 16% yield from p-C₆H₄MeF or from p-C₆H₄Br·NH₂ (by way of p-C₆H₄BrF and p-C₆H₄F·MgBr) and in 20% yield from NH₂Ph (by way of PhF and p-C₆H₄F·COMe). Di-ethyl-, b.p. 136—137°/7 mm. (hydrochloride, m.p. 124—126°; borate, B,5HBO₂), -propyl-, b.p. 149—150°/7 mm. (hydrochloride, m.p. 115—116°; borate, B,5HBO₂), -butyl-aminoethyl, b.p. 168—169°/7 mm. (hydrochloride, m.p. 115—116°; borate, B,5HBO₂), -butyl-aminoethyl, b.p. 168—169°/7 mm. (hydrochloride, m.p. 115—116°; borate, B.5HBO₂), di-ethyl-, b.p. 148—149°/7 mm. (hydrochloride, m.p. 122—124°; borate, B,7HBO₂), -propyl-, b.p. 161—161·5°/7 mm. (hydrochloride, m.p. 124—126°; borate, B,6HBO₂), and -butyl-aminopropyl, b.p. 175·5—177°/6 mm. (hydrochloride, m.p. 100°; borate, B,6HBO₂), p-fluorobenzoate are described; they are efficient, non-toxic, but irritant anæsthetics. 4:5-Dinitro-2-methoxybenzoic acid. H. Goldstein and A. Jaquet (Helv. Chim. Acta, 1941, 24, 30—37).—4:2:1-NO₂·C₆H₃(OMe)·CO₂H (obtained by oxidation of 4:1:2-NO₂·C₆H₃Me·OMe with KMnO₄) with HNO₃ (d 1·52) and conc. H₂SO₄ at 0° gives 4:5-dinitro-2-methoxybenzoic acid (I), m.p. 144°, transformed by conc. NH₃ at room temp. into 5-nitro-4-amino-2-methoxybenzoic acid (II), m.p. 248° (Ac derivative, m.p. 193°), which is converted (diazo-reactions) into 5:2:1-NO₂·C₆H₃(OMe)·CO₂H and 4-iodo-5-nitro-2-methoxy-benzoic acid, m.p. 227°. (I) and KOH-MeOH at 50° give 5-nitro-2:4-dimethoxybenzoic acid, m.p. 220° (Me ester, m.p. 150°), reduced (SnCl₂-conc. HCl) to 5-anino-2:4-dimethoxybenzoic acid, m.p. 199° (Ac derivative, m.p. 217°). (I) is transformed by boiling 7% NaOH into 5-nitro-4-hydroxy-2-methoxybenzoic acid, m.p. 192°. When leated with the requisite base (I) is converted into 5-witro-4-dimethoxympa-m.p. 208° benzoic acia, m.p. 192°. When heated with the requisite base, (I) is converted into 5-nitro-4-dimethylamino-, m.p. 208°, 5-nitro-4-anilino-, m.p. 204°, 5-nitro-4-phenylhydrazino- (III), m.p. 193°, and 5-nitro-4-hydrazino-, m.p. 237° (Ac, m.p. 256°, and GMe₂°, m.p. 242°, derivatives), -2-methoxybenzoic acid. (III) is transformed by boiling glacial AcOH into 3-oxido-6-control 2 heavillanguage 5 achterials 5 achterials 5 achterials 5. methoxy-2-phenylbenztriazole-5-carboxylic acid, m.p. 208°. (I) is slowly transformed by $\mathrm{Na}_2\mathrm{S}_2$ in boiling EtOH into di-6-nitro-3-methoxy-4-carboxyphenyl disulphide, m.p. 264° (decomp.). M.p. are corr. Chlorination of derivatives of o-orsellinic acid. T. J. Nolan and D. Murphy (Sci. Proc. Roy. Dublin Soc., 1941, 22, 315—319).—Et o-orsellinate and Cl₂ in CCl₄ at room temp. give the 4: 6-Cl₂-derivative (I), m.p. 158—161°, hydrolysed (boiling 5% aq. KOH) to 2: 4-dichloro-orcinol, m.p. 121°, converted by CH₂N₂-COMe₂ into the Me₂ ether, an oil. Equimol. amounts of Me o-orsellinate (II) and Cl₂ in CHCl₃-CCl. at room temp. give Me 4: 6-dichloro-o-orsellinate CCl₄ at room temp. give Me 4:6-dichloro-o-orsellinate (+0.5H₂O) (III), m.p. 117°. (II) with excess of Cl₂ in CHCl₃-CCl₄ at room temp. affords Me 3:3:5:5-tetrachloro-2:4-diheto-6-methyl-2:3:4:5-tetrahydrobenzoate, m.p. 132— 134°, converted by SnCl₂ in AcOH-HCl at room temp. into (I) with excess of CH2N2 in Et2O-COMe2, followed by hydrolysis (boiling 5% aq. KOH), gives 4:6-dichloro-3:5-di-methoxy-o-toluic acid, m.p. 135—136°. Equimol. amounts of o-orsellinic acid and CH₂N₂ in Et₂O-COMe₂ give Me 3-hydroxy-5-methoxy-o-toluate (IV), m.p. 63—65°, which with a small excess of Cl₂ in CHCl₃-CCl₄ gives Me 4:6-dichloro-3-hydroxy-5-methoxy-o-toluate (IV), m.p. 79—81°. With excess of Cl₂, (IV) gives Me 3:3:5:5-tetrachloro-2-keto-4-methoxy-6-methyl-2:3:4;5-tetrahydrobenzoate, m.p. 144—146°, reduced (SnCl₂-ACOH HCl) to (IV) AcOH-HCI) to (V). Manufacture of unsaturated aldehydes.—See B., 1941, III, Reactions of 2: 8-dihydroxy-1-naphthaldehyde. and D. E. Burney (*J. Amer. Chem. Soc.*, 1941, **63**, 1103—1107).—2:8:1-(OH)₂C₁₀H₅·CHO (I) [prep. from 2:8-C₁₀H₆(OH)₂ by Zn(CN)₂-HCl in 34—38% yield] and its derivatives do not react in the tautomeric forms characteristic of the gossypol series. (I) gives a normal phenylhydrazone and oxime (II), m.p. 161—162°, dehydrated by Ac.O at room temp. to 2-hydroxy-peri-naphthoxazine (III), m.p. 190—191°, the Me ether (prep. by CH₂N₂-Et₂O or K₂CO₃-Me₂SO₄-COMe₂), m.p. 111—112°, of which with boiling Ac₂O-NaOAc gives 8-acetoxy-, m.p. 94·5—96°, and thence by HCl 8-hydroxy-2-methoxy-1-naphthonitrile (IV), m.p. 194—195°. 10% KOH-MeOH converts (III) into (IV). The Ac derivative, m.p. 159—160°, of (III) is obtained by Ac₂O from (II) or (III) and is converted by boiling Ac₂O-NaOAc into 2-acetoxy-peri-naphthoacetimidolactone, m.p. 100—101° [also obtained similarly from (II) or (III)]. Conc. HCl at room tens. 1940. gives 2-hydroxy-peri-naphtholactone (90%), m.p. 193–194° (acetate, m.p. 134—135°), the Me ether (prep. by CH₂N₂–Et₂O or K₂CO₃–Me₂SO₄–COMe₂), m.p. 128—129°, of which with hot Me₂SO₄–aq. NaOH gives Me 2:8-dimethoxy-l-naphtholate, m.p. 131—133°. 2:8-Dimethoxy-l-naphtholate. naphthoate, in.p. 131—132. 2:8-Dimethoxy-1-naphthaldehyde [prep. from (I) by Me₂SO₄–K₂CO₃–COMe₂], m.p. 90—91° (phenylhydrazone, m.p. 126—127°), gives the oxime, m.p. 137—139°, dehydrated by boiling Ac₂O to 2:8-dimethoxy-1-1-naphthonitrile, m.p. 148—149°, which is also obtained from (IV) by Me₂SO₄–NaOH. M.p. are corr. R. S. C. Metallic derivatives of acetomesitylene. H. Gilman and R. G. Jones (J. Amer. Chem. Soc., 1941, 63, 1162—1163).— The MgBr derivative of acetomesitylene (I), prepared by MgPhBr, gives the Michler's ketone test. The Li and Na MgPhBr, gives the Michler's ketone test. derivatives (prep. by LiPh and NaPh, respectively) regenerate 97 and 86%, respectively, of (I) and give the Michler's ketone Hydroxyalkyl ethers of substituted acylphenols.—See B., 1941, II, 177. Naphthalene series. VI. Synthesis of 2-propyl-1-naphthol and properties of 2-propionyl-1-naphthol. R. D. Desai, A. Hamid, and H. P. Shroff. VII. Attempted synthesis of Hamid, and H. P. Shroft. VII. Attempted synthesis of 4-stearyl-, 4-palmityl-, and 4-lauryl-1-naphthol. R. D. Desai and W. S. Waravdekar (*Proc. Indian Acad. Sci.*, 1941, 13, A. 33—38, 39—42).—VI. a-C₁₀H₁·OH with hot EtCO₂H and ZnCl₂ yields 2-propionyl-1-naphthol (I) (*picrate*, m.p. 88°; semicarbazone, m.p. 304°;
phenylhydrazone, m.p. 78°; p-nitrophenylhydrazone, m.p. 232°; Me ether, m.p. 45°). (I) with AlCl₃ in PhNO₂ at room temp. gives a compound, C₂₈H₂₂O₄, m.p. >300°, and with Br in AcOH-I (trace) yields 4-bromo-2-propionyl- (II) and 4-bromo-2-g-bromoyields 4-bromo-2-propionyl- (II) and 4-bromo-2-a-bromo-propionyl-1-naphthol (III), m.p. 145°. (II) with NaOA and Ac₂O at 180—185° yields 6-bromo-2: 3-dimethyl-1: 4-anaphthapyrone, new m.p. 225°, hydrolysed (10% NaOH) to 1:4:2-OH-C₁₀H₅Br-CO₂H. (III) with 10% NaOH yields 4-bromo-2-lactyl-1-naphthol, m.p. 214°, and with NaOMe in 4-bromo-2-lactyl-1-naphthol, m.p. 214°, and with NaOMe in MeOH affords 4-bromo-2-acrylyl-1-naphthol, m.p. 204°, and 5-bromo-2-methylnaphthacoumaranone, m.p. 252°. HNO3 (d 1-5; 1 mol.) and (I) in AcOH give 4-nitro-2-propionyl-1-naphthol, m.p. 162°, which with NaOAc and Ac2O at 100—140° yields 6-nitro-2:3-dimethyl-1:4-a-naphthapyrone, m.p. 226°, hydrolysed (10% NaOH) to 4:1:2-NO2*C₁₀H₅(OH) CO2H; with 2 or >2 mols. of HNO3, 2:4:1-(NO2)2*C₁₀H₅OH is formed. Reduction (Clemmensen) of (I) yields 2-propyl-1-naphthol (IV), b.p. 165°/6 mm. (picrate, m.p. 113°; Me ether, b.p. 145°/6 mm.), and (?) 2-propyl-1:2:3:4-tetrahydro-1-naphthol, b.p. 120—121°/7 mm. (IV) with PhN2Cl yields 4-benzeneazo-2-propyl-1-naphthol, m.p. 180°, and the phenylhydrazone, m.p. propyl-1-naphthol, m.p. 180°, and the phenylhydrazone, m.p. 112°, of 2-propyl-1: 4-naphthaquinone, m.p. 243° VII. α-C10H7·OH, stearyl chloride, and ZnCl2 in PhNO2 at room temp. yield 2- (80%) and 4-stearyl-1-naphthol (6%), m.p. $159-160^{\circ}$. a-C₁₀H₇·OMe similarly yields 70% of 1-methoxy-4-stearylnaphthalene, m.p. $125-126^{\circ}$ (with some 4:4'-dimethoxy-1:1'-dinaphthyl), which with AlCl₃ in C₆H₆ gives only C₁₇H₃₅·CO₂H and a-C₁₀H₇·OH, but is reduced (Clemmensen) to 1-methoxy-4-octadecylnaphthalene, m.p. 202—203°. Similar methods yield 1-methoxy-4-palmityl- (which with AlCl₃ in C₆H₆ gives only C₁₅H₃₁·CO₂H and a-C₁₀H₂·OH), -hexadecyl-, m.p. 224—225°, -lauryl-, m.p. 111—112°, and -dodecyl-naphthalene, m.p. 165—166°. A. Li. [Relation between] structure and absorption spectra of aβ-unsaturated ketones. R. B. Woodward (J. Amer. Chem. Soc., 1941, 63, 1123—1126).—The following corrections convert absorption max. of aβ-unsaturated ketones in the solvent named into max, in abs. EtOH: MeOH -1, CHCl₃ 0, Et₂O +6, hexane +7 m μ . Structure and the position of absorption max are strictly correlated as follows: CO·CH:CHR or CO·CR:CH₂ 225 \pm 5, CO·CH:CRR' or CO·CR:CR' or CO·CR:CR' 239 \pm 5, CO·CR:CR'R' 254 \pm 5 m μ . It is suggested that the substances (absorption max. <230 m μ .) obtained (Heilbron et al., A., 1938, II, 103) from halogeno-6-ketocholestanyl acetates by basic reagents have the annexed structure. Colour reaction for phenolic steroids (naturally occurring œstrogens). I. S. Kleiner (J. Biol. Chem., 1941, 138, 783—784).—Œstrone (I), œstriol, and œstradiol with o- C_0 - H_4 ($CO)_2$ O and $SnCl_4$ at 116— 120° yield characteristic phthalein colours not given by non-phenolic steroids. Quant results may be obtained with as little as $0.25~\mu g$. of (I). A. Li. Absorption spectra in relation to quinones: 1:4-naphthaquinone, anthraquinone, and their derivatives.—See A., 1941, I, 238. 1-Alkylamino-4-hydroxyanthraquinones.—See B., 1941, II, 179. #### III.—TERPENES. Detection and estimation of α-terpinene by means of the diene synthesis. R. M. Gascoigne (J. Proc. Roy. Soc. N.S. Wales, 1940, 74, 353—358).—Combination (modified method of Birch, B., 1938, 981) of α-terpinene (I) (purified by method of Richter et al., A., 1930, 1172) and maleic anhydride (II) to the adduct, m.p. 60—61°, is quant. at room temp.; 94% purity of (I) was shown by this method. (I) regenerated from its dihydrochloride is absorbed to the extent of 44% by (II). The product from α-terpineol and dil. H₂SO₄ on reacting with (II) (modified method of Diels et al., A., 1938, II, 330) gives a 52% content of (I). (I) and ρ-O:C₆H₄:O in EtOH afford α-terpinene-benzoquinone adduct, m.p. 87—88°, in 29% yield. Configuration of the nickel salt of formylcamphor.—See A., 1941, I, 238. Fission of the cyclopropane ring of a-thujene. R. M. Gascoigne (J. Proc. Roy. Soc. N.S. Wales, 1940, 74, 359—364).—a-Thujene (I) (from Eucalyptus dives oil), b.p. 152—153°/760 mm., $[a]_{21}^{21}+19\cdot61^{\circ}$, and warm 5% HCl—EtOH afford a- (II) and y-terpinene (III) (does not react with maleic anhydride). Probably (I) changes into (III), which partly isomerises to (II). (I) heated with maleic anhydride yields the a-terpinene adduct, the dl-a-phellandrene adduct, and p-cymene; any (III) formed would be immediately isomerised. (I) and p-O:C₆H₄O in HCl—EtOH afford the a-terpinene-p-benzoquinone adduct. A. T. P. Volatile vegetable substances. XIII. α- and β-Vetivone. Y. R. Naves and E. Perrottet (Helv. Chim. Acta, 1941, 24, 3—29).—α- (I) and β-Vetivone (II) are steric isomerides and their mol. structure should be interpreted on an approx. tetrahedral basis modified by constraint due to cyclisation and to space relationships. (I) (2:4-dinitrophenylhydrazone, m.p. 149°) purified through its semicarbazone, m.p. 222—223°, [α]_D +334·20°±0·40° in AcOH, has b.p. 126—127°/0·85 mm., 144—144·5°/2·0 mm., m.p. 51—51·5°, [α]_D +238·25° in EtOH; it rapidly alters on exposure to air. (II) (2:4-di-EtOH; it rapidly alters on exposure to air. (II) (2:4-dinitrophenylhydrazone, m.p. 190·5—191°), similarly purified through the semicarbazone, m.p. 228—229°, [a]_D —71·10° in AcOH, has b.p. 130—132°/1·15 mm., 141—142°/2 mm., m.p. 44—44·5°, [a]_D —38·92° in EtOH. Various colour reactions of (I) and (II) are recorded. Dehydrogenation of (I) by Se at 260—280° and then at 280—300° affords vetivazulene (2·3%; picrate, m.p. 122—122·5°), eudalinol, m.p. 85—85·5° (phenylurethane, m.p. 135°), and a non-zulenic neutral fraction which does not give a well-defined azulenic neutral fraction which does not give a well-defined picrate or styphnate. Ozonolysis of (I) gives 1 mol. of COMe, and smaller proportions of CH2O and HCO2H; with COMe₂ and smaller proportions of CH₂O and HCO₂H; with (II) the results are similar but the amounts of CH₂O and HCO₂H are less. The sesquiterpenes [(III) and (IV)] derived from the semicarbazones of (I) and (II) (Wolff-Kishner) have b.p. $124^{\circ}/4 \cdot 2$ mm., $a_D + 98 \cdot 64^{\circ}$, and b.p. $103 - 103 \cdot 5^{\circ}/2 \cdot 8$ mm., $a_D - 33 \cdot 76^{\circ}$; (III) gives an intense blue colour becoming olive-green with Br-CHCl₃ whereas (IV) decolorises the reagent. Hydrogenation (PtO₂ in AcOH at 70°) of (III) affords a vetivane, b.p. $102 - 103^{\circ}/2 \cdot 2$ mm., $a_D - 3 \cdot 21^{\circ}$, whilst (IV) yields β -vetivane (V), b.p. $101 - 102^{\circ}/2 \cdot 3$ mm., $a_D - 2 \cdot 96^{\circ}$; neither gives a colour with Br-CHCl₃, or C(NO₂)₄. Similar hydrogenation of (I) and (II) gives closely related products, b.p. $106^{\circ}/2 \cdot 4$ mm., $a_D - 3 \cdot 92^{\circ}$ and b.p. $94 - 94 \cdot 5^{\circ}/1 \cdot 65$ mm., $a_D - 1 \cdot 85^{\circ}$, very like the decahydro-S- and -Se-guaiazulene of and -1.85°, very like the decahydro-S- and -Se-guaiazulene of Ruzicka and Haagen-Smit. The attempted isomerisation of (V) by AlCl₃ gives a hydrocarbon, $C_{15}H_{28}$, b.p. $98-99^{\circ}/3\cdot2$ mm., $a_{\rm D}\pm0^{\circ}$ which is scarcely affected by Se at $280-300^{\circ}$. The alcoholic fraction obtained by the hydrogenation of (II) Interaction obtained by the hydrogenation of (11) contains tetrahydro-β-vetivol [β-vetivanol] (VI), m.p. 108—108·5°, [a]_D 0° in EtOH (3:5-dinitrobenzoate, m.p. 161—161·5°; allophanate, m.p. 196—196·5°; the allophanate of the isomeric β-vetivanol, m.p. 76—76·5°, has m.p. 218—218·5°). (VI) is oxidised (CrO₃ in AcOH) to tetrahydro-β-vetivone [β-vetivanone], b.p. 134—136°/2 mm., m.p. 38° (semicarbazone, m.p. 198·5—199°). Partial hydrogenation (Raney Ni; EtOH) of (II) gives 6: 7 dibydro β-vetival, m.p. 108·5—100° σ- ±0° of (II) gives 6: 7-dihydro- β -vetivol, m.p. $108\cdot 5-109^{\circ}$, $a_{\rm D}\pm 0^{\circ}$ (3: 5-dinitrobenzoate, m.p. $129\cdot 5-130^{\circ}$; allophanate, m.p. 221—221·5°). Tetrahydro-a-vetivol [a-vetivanol], b.p. 132·5—134°/2·5 mm., $a_{\rm D}$ ±0° (allophanate, m.p. 225·5—226°; noncryst. 3:5-dinitrobenzoate), obtained by hydrogenation of (I), is oxidised to tetrahydro-a-vetivone [a-vetivanone] (semi-carbazone, m.p. 224·5—225°; isomeric 2:4-dinitrophenyl-hydrazones, m.p. 95—95·5° and 131·5—132°, respectively). ### IV.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES. Sterols. CXV. Sapogenins. XLIV. Relation between diosgenin and cholesterol. R. E. Marker and D. L. Turner (J. Amer. Chem. Soc., 1941, 63, 767—771).—Diosgenin (I) and Zn-Hg in conc. HCl-EtOH give tetrahydrodiosgenin (II), m.p. 178—179° [triacetate (III), m.p. 119·5°; tribenzoate, m.p. 166—187°], whence H₂-PtO₂ at 3 atm. in AcOH yields tetrahydrotigogenin, m.p. 195—197° [triacetate, m.p. 67—68°, also obtained by similar hydrogenation of (III); tribenzoate, m.p. 162°]. SeO₂ in boiling 97% AcOH, followed by KOAc, and finally EtOH-KOH, oxidises (III) to a tetrahydroxycholestene, m.p. 196°, converted by boiling HCl-EtOH into 16: 27-dihydroxy-3-keto-Δ⁴-cholestene, m.p. 163—164°. Treatment of (II) with PBr₃ in boiling C₆H₅, then with KOAc-AcOH, and finally with Na-PrOH gives Δ⁶-cholestene (reduced catalytically to cholestane) and cholesterol. Diosgenin acetate and CrO₃ in AcOH at 50—53° give an acid, C₂;H₄₀O₅, decomp. 226° (rapid heating to 200°), 7-ketodiosgenin acetate (IV), m.p. 197°, and unchanged material. NaOEt-EtOH at 180° converts the semicarbazone, decomp. 282°, of (IV) into (V) (below) (small yield). With boiling 15% KOH-EtOH, (IV) gives (?) 7-keto-3: 5-dihydrotigogenin, C₂₇H₃₈O₃, m.p. 197—198°. 4-Dehydrotigogenone with Zn-Hg-HCl-EtOH or Zn-HCl-EtOH gives 4-dehydrodeoxytigogenin, m.p. 145·5—146°, and with Al(OPrβ)₃-PrβOH gives 3: 5-dehydrodeoxytigogenin (V), m.p. 168—169°, reduced (H₂-Pd-BaSO₄-Et₂O) to
deoxytigogenin. Treating (I) with β-O:C₆H₄;O in PhMe and then with Al(OPrβ)₃ gives, after removal of acids and carbinols, 4: 6-dehydrotigogenone, m.p. 205—207°. Chlorination of (I) gives chlorodeoxydiosgenin, m.p. 211—213°, hydrogenated (PtO₂: AcOH) to 3-chlorodeoxytigogenin (VI), m.p. 204—207°. An isomeride, m.p. 210—212°, of (VI) is obtained from tigogenin by PCl₅ and CaCO₃ in CHCl₃ at 20° and in boiling quinoline gives 2-dehydrodeoxytigogenin, m.p. 163—166°. 4-Dehydrotigogenone and Al(OPr^{β})₃- $\text{Pr}^{\beta}\text{OH}$ give 4-dehydroepitigogenin, m.p. 208—210° [in boiling Ac₃O gives (?) (∇)], and a product, m.p. 167—169° (digitonide; dehydrated at 100° /vac.). R. S. C. Sterols. CXXI. Sapogenins. XLVIII. Bromosarsasapogenin and bromodiosgenin. R. E. Marker, D. L. Turner, A. C. Shabica, and P. R. Ulshafer (J. Amer. Chem. Soc., 1941, 63, 1032—1034).—The Br of bromosarsapogenin (I) is shown to be at C₍₂₃₎. The acetate of (I) and CrO₃ at 60° give 3-hydroxy-16-ketobisnorcholanic acid. Diosgenin acetate (II), Br, and a drop of HBr in AcOH at 20° give the 5: 6: 23-Br₃-derivative (III), m.p. 172° (decomp.), converted by KI in boiling EtOH into 23-bromodiosgenin acetate, m.p. 177—179° (decomp.) or 197—198° (decomp.), which is reduced by Zn-AcOH to (II), is hydrolysed by boiling 1% KOH-EtOH to bromodiosgenin, m.p. 195° (decomp.), is oxidised by SeO₂ (with subsequent hydrolysis) to 23-bromo-4-hydroxydiosgenin, m.p. 203° (decomp.), and with CrO₃-AcOH-H₂O at 50° gives (?) 7: 16-diketo-3-acetoxy-Δ⁵-bisnorcholenic acid, m.p. 226—227° (semicarbazone, decomp. 195°), and a small amount of 23-bromo-1-ketodiosgenin acetate, decomp. 214°. With 1% EtOH-KOH followed by CrO₃-AcOH at 20° and then KI-EtOH, (III) gives 23-bromo-4-dehydrotigogenone, decomp. 214°. R. S. C. Sterols. CXVI. Sapogenins. XLV. isoSarsasapogenin configuration. R. E. Marker, D. L. Turner, R. B. Wagner, and P. R. Ulshafer (J. Amer. Chem. Soc., 1941, 63, 772—774).—Reactions are described supporting the view that sapogenins having the isosarsasapogenin differ from those having the sarsasapogenin configuration only in configuration at C₍₂₂₎. Tigogenin and H₂S₂O₈-AcOH at 25° give allopregnane-3(β): 16: 20-triol, m.p. 235—237° (triacetate, m.p. 166°; tribensoate, m.p. 204°), also obtained from tigogenin acetate by 30% H₂O₂ in AcOH at 70° and later KOH-EtOH. epi-Tigogenin gives (H₂S₂O₈) allopregnane-3(a): 16: 20-triol, m.p. 210—212° (triacetate, m.p. 148—150°), whilst smilagenin affords the same pregnane-3(β): 16: 20-triol, m.p. 223—226°, as is obtained (A., 1940, II, 376) from sarsasapogenin. Diosgenin and MgEtBr in Et₂O, later boiling C₆H₆, give 22-ethyl-dihydrodiosgenin, m.p. 211—214° (di-p-nitrobenzoate, m.p. 183—184°), hydrogenated (PtO₂-AcOH; 35 lb.) to 22-ethyl-dihydrotigogenin, m.p. 192—194° (di-p-nitrobenzoate, m.p. 183—184°), which is obtained also from tigogenin by MgEtBr and with CrO₃ in 90% AcOH at 15° gives the keto-acid, C₂₉H₄₆O₄, m.p. 221—223°. Smilagenin and MgEtBr give a 22-ethyldihydro-derivative, m.p. 161—162° (diacetate, m.p. 89—91°), isomeric with that obtained from sarsasapogenin. #### V.—HETEROCYCLIC. Co-ordination compounds with furfuraldoxime as a chelate group. I. Additive compounds with metallic salts. A. Bryson and F. P. Dwyer (J. Proc. Roy. Soc. N.S. Wales, 1940, 74, 107—109).— β -Furfuraldoxime and CuCl₂,2H₂O-EtOH, Cu₂Cl₂-EtOH, AgNO₃-aq. EtOH, aq. AgClO₄, Ag₂SO₄ aq. EtOH, NiCl₂,6H₂O-EtOH, or CoCl₂,6H₂O-EtOH, respectively, afford compounds, Cu(C₅H₅O₂N)₂Cl₂, Cu(C₅H₅O₂N)₂Cl, Ag(C₅H₅O₂N)₂NO₃, Ag(C₅H₅O₂N)₂ClO₄, Ag₂(C₅H₅O₂N)₄SO₄, Ni(C₅H₅O₂N)₄Cl₂, and Co(C₅H₅O₂N)₄Cl₂, respectively. a-Furfuraldoxime does not give additive compounds with metallic salts, but rearranges to give an additive compound of the β -oxime. A. T. P. Furfuraldoxime as a chelate group. II. Palladium compounds with a-(syn)furfuraldoxime. A. Bryson and F. P. Dwyer (J. Proc. Roy. Soc. N.S. Wales, 1940, 74, 240—246).—Pd alone of the common metals forms complexes with a-furfuraldoxime (I) (cf. A., 1935, 752, and J. Proc. Roy. Soc. N.S. Wales, 1935, 68, 107). (I) and Na chloropalladite in aq. EtOH-NaOAc afford Pd bis-a-furfuraldoxime (II), Pd(C₅H₄O₂N)₂ (monomeric form), decomp. without melting; keeping the solid or a conc. solution in COMe₂, at room temp. converts it into the trimeric form (III), [Pd(C₅H₄O₂N)₂]₃, decomp. without melting. (I) can be recovered from either form. Structural formulæ are given. (II) in cold C₅H₅N yields bispyridine palladous oximate (IV), Pd(C₅H₄O₂N)₂,2C₅H₅N (C₅H₅N) is lost at 100—110°), converted by cold dil. HCl into Pd(C₅H₅N)₂Cl₂. (IV) is sol. in H₂O or CHCl₃, indicating an equilibrium between the true ionic oximate form and a covalent form. In boiling CHCl₃ with C5H5N or p-C6H4Me·NH2, (III) shows no evidence of further co-ordination. (III) and C_5H_5N at $80-90^\circ$ give bispyridine Pd bisfurfuraldoxime, $[Pd(C_5H_4O_2N)_2]_3, 2C_5H_5N$, gradually decomp. in C_5H_5N at 90° to give (IV). (II) or (III) and $(CH_2\cdot NH_2)_2-C_6H_6-CHCl_3$ afford the same ethylenediamine compound (V), $Pd(C_5H_4O_2N)_2, C_2H_5N_2$, sol. in H_2O or $CHCl_3$, and considered to be ethylenediamine palladous oximate in equilibrium with ethylenediamine Pd bisfurfuraldoxime. (V) and $(CH_2\cdot NH_2)_2-CHCl_3$ give the ionic H_2O -sol. bisethylenediamine compound. A. T. P. 2-Hydroxy-4-benzoyl-2: 5-diphenylfuran-3-one. R. E. Lutz, J. M. Smith, jun., and A. H. Stuart (J. Amer. Chem. Soc., 1941, 63, 1143—1148).—COPh·CO·CH:CPh·ONa and BzCl in boiling Pr\$\(^{\beta}_2\)Ogive benzoates [including COPh·CH:C(OBz)·COPh and (?) COPh·CO·CH:CPh·OBz], whence 10% NaOH-aq. MeOH yields 2-hydroxy-4-benzoyl-2: 5-diphenyl-2: 3-dihydrofuran-3-one (I) (15%), m.p. 166° (cf. A., 1936, 1524). Reactions below are considered to prove that (I) has only the furan structure; alternative nechanisms are set out for those reactions which appear to indicate existence of (I) in open-chain phase. Kurt-Meyer titration with Br-EtOH at -16° to -19° is too slow for an enol (56—60% in 1, 74% in 5, 99% in 120 sec.). Boiling HCl-80% EtOH has no effect on (I), which is also remarkably stable to EtOH has no effect on (I), which is also remarkably stable to alkali. Hydrolysis requires boiling 33% KOH in 50% MeOH, yielding then a substance (semicarbasone, m.p. 285°), BzOH, and (CHO)₂. The benzoate (II), m.p. 182° , of (I) was isolated in poor yield as intermediate in the prep. of (I) and was also obtained ($\sim 80\%$) from (I) by Bz₂O-H₂SO₄ at room temp. (not by BzCl) or (20%) from the Ag salt of (I) by BzCl in boiling Pr 3 ₂O. Ac₂O and a drop of H₂SO₄ convert (I) at 25° into its acetate, m.p. $120 \cdot 5^\circ$, which in 10% KOH-MeOH-H₂O at 60° regenerates (I). With HCl-MeOH at room temp., (I) or (II) gives 4-benzoyl-2-methoxy-2: 5-dibhenvl-2: 3-dihvdrofuran-(II) gives 4-benzoyl-2-methoxy-2:5-diphenyl-2:3-dihydrofuran-3-one (III), m.p. 131°, also obtained (15%) from the Ag salt of (I) and MeI in boiling Prβ₂O and converted by o-C₆H₄(NH₂)₂ into 2-phenyl-3-dibenzoylmethylquinoxaline (V), m.p. 157° (cf. below), and by O₃ in CHCl₃ into BzOH (37%; no BzCO₂H is isolated). 4-Benzoyl-2-ethoxy-2:5-diphenyl-2:3-dihydrofuran-3-one, m.p. 83°, is similarly obtained from (II) by HCl-EtOH. Boiling (I) in SOCl₂ gives, probably, the 2-Cl-compound, since the oily product is converted by NaOMe-MeOH at 0° into (III). Br and (I) in EtOH at 0° give β-bromo-β-benzoyl-αδ-diphenylbutan-αyδ-trione (V), m.p. 114·5°, which with KI regenerates (I) and with HCl-MeOH gives (III) and a small amount of a product, m.p. 110°. (IV) is obtained slowly at the b.p. from (I) in EtOH but immediately from (V) or (VI) (see below); it gives a slowly deepening FeCl₃ colour and with (II) gives 4-benzoyl-2-methoxy-2: 5-diphenyl-2: 3-dihydrofuran-(see below); it gives a slowly deepening FeCl₃ colour and with NaOMe gives an unstable enolic form, m.p. 60—65°, which gives an immediate deep FeCl₃ colour; with boiling NH₂OHor NHPh·NH2-NaOAc or a little HCl in boiling 75% EtOH, (IV) gives 2-phenyl-3-phenacylquinoxaline, m.p. 166° (cf. loc. cit.); with CrO₃-AcOH it gives 2-hydroxy- and 2-carboxy-3-phenylquinoxaline and BzOH. CH₂N₂-Et₂O and (I) give OMe·CPh·C(COPh)·CO·COPh (VI), an oil, the structure of which is proved by the following reactions. At 25° (VI) readily gives (IV); with O₃ in CHCl₃ at 0° it gives BzOH, BzCO₂H, and MeOBz; with boiling HCl-AcOH or 2% KOH in boiling 70% MeOH it gives (I) (50%); with MeOH-HCl it gives (III); with NaOMe at 25° it gives a substance, m.p. 119—121°. M.p. are corr. R. S. C. Synthesis of 2-hydroxy-4-benzoyl-2:5-diphenylfuran-3-one by way of benzoyldiphenylfuran and bromotribenzoylethylene. R. E. Lutz and J. M. Smith, jun. (J. Amer. Chem. Soc., 1941, 63, 1148—1150).—The structure of 2-hydroxy-4-benzoyl-2:5-diphenyl-2:3-dihydrofuran-3-one (I) is confirmed by a synthesis proving attachment of the Bz to C. CH₂Bz·CHBrBz [best prepared from (CHBz!)₂ by HBr-AcOH] and H₂SO₁-Ac₂O give 3-bromo-2:5-diphenylfuran, the Grignard reagent from which with CO₂ gives 2:5-diphenyl-3-furoic acid and with (best) Bz₂O-Et₂O at 0° (later room temp.) gives 3-benzoyl-2:5-diphenylfuran (II), m.p. 77° (oxime, m.p. 173—176°; semicarbazone, m.p. 225°) (and in both cases also some bis-2:5-diphenyl-3-furyl). With Br-CCl₄ or PBr₅ at 25° [not by the method of Kohler et al. (A., 1919, i, 533)], (II) gives the 4-Br-derivative, m.p. 119·5—120°, which with HNO₃-AcOH at 50° gives β-bromo-γ-benzoyl-αδ-diphenyl-Δβ-butene-αδ-dione [bromotribenzoylethylene] (54%), m.p. 101°. This is converted by H₂-Pd-BaSO₄ into (II), by Zn dust in AcOH at 25° or 50° into a substance (poor yield), m.p. 167—169°, by HCl-MeOH at room temp. into 2-methoxy-4-benzoyl-2:5-diphenyl-2:3-dihydrofuran-3-one [hydrolysed to (I]), by H₂SO₄-Ac₂O into 2-acetoxy-4-benzoyl-2:5-diphenyl-2:3-dihydrofuran-3-one [and thence (I)], by 2% KOH in boiling MeOH into CHBz:CBz·OH, by NaOMe-MeOH at 25° into CHBz:CBz·OMe,
and by NH₃-MeOH at room temp. into CHBz:CBz·NH₂. M.p. are corr. Derivatives of coumaran. VII. Synthesis of isotubanol and isotubaic acid. R. L. Shriner and M. Witte (J. Amer. Chem. Soc., 1941, 63, 1108—1110; cf. A., 1940, II, 20).—3-Hydroxy-2-keto-1: 2-dihydrobenzfuran, COMe2, and KOH in abs. EtOH at room temp. give the 1-CMe2; derivative, m.p. 121° (phenylurethane, m.p. 143°), converted by BzCl-Na2CO3-aq. COMe2 into 2-keto-1-benzoyloxy-1-isopropylidene-1: 2-dihydrobenzfuran, m.p. 160°. H2-PtO2 in abs. EtOH containing a little HCl at 48 lb. then gives 2-hydroxy-3-benzoyloxy-1-isopropyl-1: 2-dihydrobenzfuran, an oil, dehydrated to isotubanol benzoate by distillation. Hydrolysis thereof by NaOH gives isotubanol (phenylurethane, m.p. 142°), which with NaOMe-MeOH-CO2 gives isotubaic acid (acetate, new m.p. 153°; prep. from rotenone by way of isorotenone modified). R. S. C. Reaction between quinones and metal enolates. XIII. Trimethylethylbenzoquinone and sodiomalonic ester. XIV. Synthesis of the three 6-hydroxy-3-carboxy-Bz-dimethylethylcoumarins and their ethyl esters. L. I. Smith and J. W. Opie (J. Amer. Chem. Soc., 1941, 63, 932—936, 937—940; cf. A., 1941, II, 144).—XIII. The success and direction of condensation of methyl-p-benzoquinones with CHNa(CO₂Et)₂ (I) depend on the nature of other substituents. Whereas the Br of 1:2:3:5:6:4-O:C₆Me₃Br:O causes unidirectional reaction (loc. cit.), replacement of the Br by Et gives a much less marked effect. 1:2:3:5:6:4-O:C₆Et₄:O [prepared from 1:2:4:5-C₆H₂Et₄ by way of the (NO₂)₂, m.p. 149—151° (lit. 143—145°), and (NH₂)₂-compound], m.p. 60—62° (lit. 56—58°), does not condense with (I). 1:2:3:5:6:4-O:C₆Me₃Et:O (similar prep. improved), m.p. 43—45°, with (I) in boiling C₆H₆ gives 40% of the derived quinol, m.p. 169—170° (diacetate, m.p. 136—136·5°), and a red Na salt, hydrolysed to a mixture, whence adsorption on Al₂O₃, fractional elution, and crystallisation gives material, m.p. 185°, shown by thermal analysis to be a binary mixture of Et 6-hydroxy-7:8-dimethyl-5-ethyl- (II) and 6-hydroxy-5:8-dimethyl-7-ethyl-coumarin-3-carboxylate (III), and material, m.p. 150—152°, shown similarly to be a ternary mixture of (II), (III), and Et 6-hydroxy-5:7-dimethyl-8-ethylcoumarin-3-carboxylate (IV). (IV). XIV. Ethyl-o-, -m-, and -p-xyloquinone, respectively, with Zn-AcOH-H₂O give 2:3-dimethyl-5-, m.p. 160—160·5°, 2:6-dimethyl-3-, m.p. 158—158·5°, and 2:5-dimethyl-3-ethyl-quinol, m.p. 158—159°, the diacetates, m.p. 90—91°, (V) 65—66°, and 74·5—75·5°, of which with Me₂SO₄—KOH-MeOH give the oily Me₂ ethers. With CH₂O-HCl-H₂ these give 2:5-dimethoxy-3:4-dimethyl-6-, m.p. 61—62°, -4:6-dimethyl-3-, m.p. 60—62°, and -3:6-dimethyl-4-, m.p. 81—82°, -ethylbenzyl chloride, which with boiling KOAc-AcOH give the corresponding acetates, m.p. 30—40°, an oil, and m.p. 54·5—56·5°, respectively, and thence by KOH-aq. EtOH the alcohols, m.p. 116·5—118°, 107—108°, and 127·5—128·5°, respectively. CrO₃—AcOH at <50° then gives 2:5-dimethoxy-3:4-dimethyl-6-, m.p. 53—54°, -4:6-dimethyl-3-, an oil, and -3:6-dimethyl-4-, an oil, -ethylbenzaldehyde, which with (I) in EtOH at room temp. and later boiling 48% HBr give 6-hydroxy-7:8-dimethyl-5-, m.p. 232—234° [Et ester (II), m.p. 180°], -5:7-dimethyl-8-, m.p. 232—234° [Et ester (IV), m.p. 173—174·5°], and -5:8-dimethyl-7-, m.p. 250° [Et ester (III), m.p. 199—201°], -ethylcoumarin-3-carboxylic acid. CH₂O-HCl converts (V) into 2-hydroxy-5-acetoxy-4:6-dimethyl-3-ethylbenzyl chloride, m.p. 144·5—146°, which with Na and CH₂(CO₂Et)₂ in boiling Et₂O gives Et 6-acetoxy-5:7-dimethyl-8-ethyl-3:4-dihydrocoumarin-3-carboxylate, m.p. 128·5—129·5°. The corresponding Me₃ compound could not be dehydrogenated. R. S. C. Reaction between lactones and Grignard reagents. I. Diphenyl-1:8-naphthalide. T. A. Geissman and L. Morris (J. Amer. Chem. Soc., 1941, 63, 1111—1114).—Only 1 mol. of MgRHal reacts with diphenyl-1:8-naphthalide (I) to give 1:8- $C_{10}H_{\bullet}$ CR(OH)—O. Thus are obtained 1-isobutyryl-(II), m.p. 176°, -propionyl- (III), m.p. 142—143°, -n-valeryl-(IV), m.p. 114—115°, -isovaleryl-, m.p. 135—136° (decomp.), and -benzoyl- (V), m.p. (+ $C_{\bullet}H_{\bullet}$) \sim 115° (decomp.), (anhyd.) 200—201° (lit. 202°), -8- α -hydroxybenzhydrylnaphthalene semiketal. In H_2SO_4 the primary alkyl ketones give deep yellow colours and with $HCl-AcOH-FeCl_3$ (III), (IV), and (V) give ferrichlorides, m.p. $150-153^{\circ}$ (decomp.), $134-135^{\circ}$ (decomp.), and $148-150^{\circ}$ (decomp.), respectively; the structures (A) and (B) are assigned to the cations. The semiketals decompose at or slightly > the m.p., yielding (I) and [from (II)] the paraffin (C_3H_8) or [from (III)] the olefine (C_2H_4) and H_2 . With NaOAc in boiling AcOH, (III) and (II) give 1:1-diphenyl-3-ethylidene-, m.p. 134° , and -propylidene-peri-naphthopyran, 1:8- $C_{10}H_6$ - CPh_2 - $C_{10}H_6$ C_{10 Effect of unsaturated chromophores on pyronine dyes. II. Dyes obtained from maleic and succinic acids. I. N. D. Dass and J. D. Tewari (Proc. Indian Acad. Sci., 1941, 13, A, 68—76; cf. A., 1931, 1426).—Condensation of maleic and succinic acids with 1:2:3-C₆H₃(OH)₃, o- and m-cresol, and m-NH₂·C₆H₄·OH in presence of H₂SO₄ yields maleins, m.p. \$\pm\$300°, 228°, 155°, and 225° (changing colour at 212°), and succineins, m.p. 290°, 230° (blackening at 195°), 112°, and 198° (changing colour at 120°), respectively. Pyrocatechol-malein, m.p. 148°, and -succinein, m.p. 290°, are prepared without condensing agent and purified by SnCl₄. Phenolmalein (H₂SO₄) has m.p. 195° (blackening at 170°), β-naphtholmalein (ZnCl₂), 140° (softening at 133°), a-naphtholsuccinein (H₂SO₄), 185°, and m-phenylenediamine-malein and -succinein, 285° and 210° (changing colour at 192°) respectively. Except those from m-NH₂·C₆H₄·OH, the maleins are more coloured than the succineins. m-C₆H₄(OH)₂ with CO₂H·CH₂·CHBr·CO₂H gives a product (I) similar to resorcinolmalein (II), and with (CO₂H·CHBr)₂ yields an acetylenic compound (III) (darkens at 250°, then decomp.). Bromination of (II) or (I) and of (III) yields Br₄-compounds, m.p. 185° and 220° (contracting at 183°) respectively. Dyes of this series crystallise with 1H₂O. Absorption max. of Benzopyrone series. III. Synthesis of coumarino- and flavono-a-methyl-7: 8-dihydrofurans. B. Krishnaswamy and T. R. Seshadri (Proc. Indian Acad. Sci., 1941, 13, A, 43—48). —Umbelliferone with CH₂:CH-CH₂Br and K₂CO₃ in COMe₂ yields 7-allyloxy-, m.p. 79—80°, transformed by heating at 195—200°|20 mm. into 7-hydroxy-8-allyl-coumarin, m.p. 162—163°. This with HgCl₂ in EtOH yields 2'-chloromercurimethyl-, m.p. 168—169°, reduced (Na + EtOH) to 2'-methyl-2': 3'-dihydrocoumarino-(7: 8-5': 4')-furan, m.p. 148—149°. By similar reactions 7-allyloxy-4-methyl-2'-chloromercurimethyl-, m.p. 225—227°, and -2'-iodomethyl-, m.p. 158—159°, and 2: 4-dimethyl-2': 3'-dihydrocoumarino-(7: 8-5': 4')-furan, m.p. 182—183°, and 3-methoxy-7-allyloxy-, m.p. 107—108°, yields 7-hydroxy-3-methoxy-8-allyl-flavone, m.p. 243—244°, 3-methoxy-2'-chloromercurimethyl-, decomp. ~200°, -2'-iodomethyl-, m.p. 205—206°, and -2'-methyl-2': 3'-dihydroflavono-(7: 8-5': 4')-furan, m.p. 133—134°. A. Li. these compounds are given. Hæmorrhagic sweet clover disease. V. Identification and synthesis of the hæmorrhagic agent. M. A. Stahmann, C. F. Huebner, and K. P. Link. VI. Synthesis of the δ-diketone derived from the hæmorrhagic agent through alkaline degradation. C. F. Huebner and K. P. Link (J. Biol. Chem., 1941, 138, 513—527, 529—534).—V. A method of mass isolation of the compound C₁₉H₁₂O₆ (I), m.p. 288—289° (Campbell et al., A., 1941, III, 23) [diacetate, m.p. 250—252° (decomp.)], is described. (I) yields, with KOH at 300°, ο-OH·C₆H₄·CO₂H, with 30% EtOH-KOH or 10% ag. NaOH, ay-disalicoyl-propane (II), m.p. 101—102° (Me₂ ether, m.p. 86—88°) (which, fused with KOH, gives ο-OH·C₆H₄·CO₂H), with NH₂Ph at 180°, 4-anilo-3: 4-dihydrocoumarin, m.p. 262—263°, and with NHPh·NH₂, a diphenylhydrazone, C₂₁H₁₀O₂N₄, m.p. 189—189·5°. (I) is 3: 3'-methylenebis-(4-hydroxycoumarinyl) (Anschütz, A., 1909, i, 663) (from 4-hydroxycoumarin and CH₂O), which shows hæmorrhagic activity in rabbits. VI. (II) with N₂H₄,HCl and NaOAc yields a compound, C₁₇H₁₆O₂N₂, m.p. 252°, which gives a yellow colour with aq. NH₅. o-OMe·C₆H₄·CO·CH₂·CO₂Et (from o-OMe·C₆H₄·CO₂Me and EtOAc), new m.p. 130—131°, with Na and CH₂I₂ in C₆H₆ yields a product hydrolysed (cold 10% NaOH) to the Me₂ ether, m.p. 86—88, of (II). Ph glutarate with AlCl₃ in CS₂ viside (II). yields (II). Isosteric compounds, III. tert.-Dibenzthienyl amino-alcohols. A. Burger and H. W. Bryant (J. Amer. Chem. Soc., 1941, 63, 1054—1057; cf. A., 1939, II, 386).—Dibenzthiophen and phenanthrene are not isosteric. They are not isomorphic; their absorption spectra and pharmacological properties are dissimilar. 3-Bromoacetyldibenzthiophen and the appro-vac.)], -acetyldibenzthiophen, hydrogenated (PtO₂; MeOH) as hydrohalide to 3-β-dimethylamino- [hydrochloride, m.p. 228—228-5° (decomp.; vac.)], -acetate hydrochloride, m.p. 206—208° (decomp.; vac.)], -diethylamino- (I), m.p. 59—60° [hydrochloride, m.p. 163—164°; acetate hydrochloride, m.p. 188—192° (decomp.; vac.)], -piperidino- (II), m.p. 88—89° [hydrochloride, m.p. 225—229° (decomp.; vac.); acetate hydrochloride, m.p. 220—225°], and -1': 2': 3': 4'-tetrahydroisoquinolino-, m.p. 106—107° [hydrochloride, m.p. 243—244° (decomp.; vac.); hydrobromide, m.p. 250—252° (decomp.; vac.)], -a-hydroxyethyldibenzthiophen. 3-Acetyldibenzthiophen (III), paraformaldehyde, and the appropriate sec. amine hydrochloride in boiling iso-C₅H₁₁·OH (IV) or cyclohexanol (V) give 3-β-dimethylamino- [hydrochloride, m.p. 192—195° (V) give 3-β-dimethylamino- [hydrochloride, m.p. 192-195° (decomp.; vac.)], -diethylamino- [hydrochloride, m.p. 150—151°; prep. in (V); in (IV) a non-basic substance, m.p. 82— 82.5°, is formed], -piperidino- [hydrochloride, m.p. 201—203° (decomp.; vac.]], and -1': 2':
3': 4'-tetrahydroisoquinolino-, m.p. 106—107° [hydrochloride, m.p. 197—198° (decomp.; m.p. 106—107° [hydrochloride, m.p. 197—198° (decomp.; vac.)], -propionyldibenzthiophen, hydrogenated as above to 3-γ-dimethylamino- (VI), m.p. 118° (hydrochloride, m.p. 137—139°; acetate hydrochloride, m.p. 149—150°), -piperidino- (VII), m.p. 102° [hydrochloride, m.p. 201—201-5° (decomp.; vac.); acetate hydrochloride, m.p. 185—186°], and -1':2':3':4'-tetrahydroisoquinolino-, m.p. 136° [hydrochloride, m.p. 183—185°; acetate hydrochloride, m.p. 193—196° (decomp.; vac.)], -β-hydroxy-n-propyldibenzthiophen. 1-β-Piperidinopropionyl-, m.p. 112° [hydrochloride, m.p. 229—232° (decomp.; vac.)], and 1-γ-piperidino-β-hydroxy-n-propyl-, m.p. 105°, -dibenzthioand 1-γ-piperidino-β-hydroxy-n-propyl-, m.p. 105°, -dibenzthio-phen are similarly prepared. Boiling Al(OPrβ)₃-PrβOH reduces (III) to 3-a-hydroxyethyldibenzthiophen, m.p. 76—77° (oily acetate). Analgæsic and other physiological properties of (I), (II), (VI), and (VII) are reported. R. S. C. Preparation and attempted resolution of 2: 2-dimethylethyl-Preparation and attempted resolution of 2: 2-dimethylethyleneimine. T. L. Cairns (J. Amer. Chem. Soc., 1941, 63, 871—872).—NH₂·CMe₂·CH₂·OH (I) distilled with aq. H₂SO₄ (first up to 115° [atm. pressure and later 150—170° [25—30 mm.) gives 2: 2-dimethylethyleneimine (II), b.p. 69—70°, stable to KMnO₄ and converted by dil. H₂SO₄ into NH₂·CH₂·CMe₂·OH. d-CHMePh·NH₂, HCl and COCl₂ in boiling PhMe give l-a-phenylethylcarbimide, b.p. 82—83° [12—14 mm., [a]₁²⁴—2° in C. H. which with NH. C. H. gives d. a phenylethylcarbimide Figure 14 min., $[a]_{5}^{-} - 2$ $[a]_{5}^{-}$ Aminoethanol derivatives possessing local anæsthetic activity. F. C. MacIntosh and T. S. Work (Quart. J. Pharm., 1941, 14, 16—25).—7: 1-OMe·C₁₀H₆·CO·CH₂·NMe₂ (from the bromide and NHMe₂ in MeOH-Et₂O) is reduced (H₂, PtO₂, MeOH-HCl) to 7-methoxy-1-naphthyldimethylaminomethylcarbinol (an oil) [hydrochloride, m.p. 209°; picrate, m.p. 158° (sinters at 95°)]. Similarly, condensation of COPh·CH₂Br with piperidine (I) and reduction of the resultant base affords phenylliberidinomethylcarbinol hydrochloride. base affords phenylpiperidinomethylcarbinol hydrochloride, m.p. 195°. C₆H₁₈Ph (prep. from hexoylbenzene by Clemmensen or Wolff-Kishner reduction) with CH2Cl·COCl and AlCl3 in CS2 yields p-hexylphenacyl chloride, m.p. 32°, b.p. 154-156°/0.9 mm., which with (I) in Et₂O and subsequent reduction affords p-hexylphenylpiperidinomethylcarbinol (picrate, m.p. 133—135°); similarly PhBu gives p-butylphenacyl chloride (II), b.p. 142—144°/2 mm., the corresponding acyl chloride (II), b.p. 142—144°/2 mm., the corresponding piperidino-ketone (an oil) (III), and p-butylphenylpiperidino-methylcarbinol (an oil) (picrate, m.p. 137—138°). p-Butylphenylethylpiperidinomethylcarbinol (hydrochloride, m.p. 178°) was prepared from (III) and MgEt1 in Et₂O; the corresponding methylcarbinol (hydrochloride, m.p. 186°) was obtained from (II) and MgMeI (which yielded an oil and a cryst. substance, C₁₂H₁₈O, m.p. 121°) and subsequent treatment of the resulting oil with (I). a-Chlorotridecan-β-one, m.p. 46° (from lauryl chloride and CH₂N₂ in Et₂O, the resultant diazoketone, m.p. 44°, being decomposed in Et₂O by dry HCl), with (I) in Et₂O gives a piperidino-ketone, reduced to piperidinomethylundecylcarbinol (picrate, m.p. 69—70°). The above compounds of the type OH-CRR'-CH₂-N·IR', together with others previously described (A., 1940, II, 356), were examined for local anæsthetic activity (cf. A., 1941, III, 528). **Piperidinologypapenityle m.p. 55°** Sec. A. 1041, I. 271. p-Piperidinobenzonitrile, m.p. 55°.—See A., 1941, I, 271. Synthesis of dihydroindole, dihydrothionaphthen, and dihydrobenzofuran. G. M. Bennett and M. M. Hafez (J.C.S., 1941, 287—288).—o-Amino-β-phenylethyl alcohol (O-Bz derivative, m.p. 168°) when heated with HCl and made alkaline or with PhSO₂Cl and cold aq. alkali gives indoline (p-C₆H₄Me·SO₂, m.p. 99°, and Ac derivatives, m.p. 105°). Diazotisation of the alcohol in H2SO4 and treatment with NaHCO₃ affords 2: 3-dihydrobenzofuran and introduction of S by the Leuckhardt process followed by warming with acid yields dihydrothionaphthen. Vitamin-B₆.—See B., 1941, III, 161. Petroleum bases. II. Amino- and hydroxy-derivatives. Chemistry of diazo-oxides. L. R. Modlin, jun., and A. Burger (J. Amer. Chem. Soc., 1941, 63, 1115—1118).—5-Hydroxy-Chemistry of diazo-oxides. L. R. Modili, Julia, and A. Burge. (J. Amer. Chem. Soc., 1941, 63, 1115—1118).—5-Hydroxy-2:3:8-trimethylquinoline (I) (A., 1940, II, 288) and HNO₂ (d 1·5) at 0° give the 6-NO₂-derivative, m.p. (+EtOH or anhyd.) 152—152·5°, converted by CH₂N₂-EtOH-MeOH into the Me ether (II), m.p. 128—129°, also obtained by nitrating 2:3:8:5-C₁₀H₄Me₃·OMe at —10°. SnCl₂-HCl reduces (II) to 6-amino-5-methoxy-, m.p. 137—138° [hydrochloride, m.p. 255—259° (decomp.)], converted by HBr into 6-amino-5-hydroxy-2:3:8-trimethylquinoline (III), unstable [hydrobromide, m.p. 330—335° (decomp.; vac.)]. Treating the dihydrobromide of (III) with NaNO₂ in 17% HCl at —5° and then with CO(NH₂)₂ and pouring the mixture into boiling then with CO(NH₂)₂ and pouring the mixture into boiling CO H₂O gives 2:3:8-trimethylquinoline-6- Na:C Me H_2O gives 2.5.8-vimeny quinotine-odiazo-5-oxide (IV), darkens at 167° , decomp. 228° (vac.). With Na₂S₂O₄ in boiling aq. EtOH, (IV) gives (I), and with NH₂OH,HCl and C₅H₅N in boiling EtOH gives 2:3:8-trimethylquinoline-5:6-quinonedioxime, m.p. 189—190° (decomp.; vac.) which in boiling 109′ NaOH gives quinoneatoxime, m.p. 189—190° (decomp.; vac.), which in boiling 10% NaOH gives 2:3:8-trimethylquinolinofurazan, m.p. 130°. 5-Amino-2:3:8-trimethylquinoline is hydrogenated (PtO₂-EtOH or Raney Ni) to the 1:2:3:4-H₄-derivative, b.p. 110°/0·1 mm. (dihydrochloride, decomp. >300°; Ac₂, m.p. 152°, and N-NO-derivative, cryst.), also obtained from 5-nitro-2:3:8-trimethylquinoline by H-PtO-RtOH Hydrogenation of trimethylquinoline by H_2 -PtO₂-EtOH. Hydrogenation of (I) gives similarly 5-hydroxy-2:3:8-trimethyl-1:2:3:4-tetrahydroquinoline (65%) [hydrochloride, m.p. 258—263° (decomp.)], and an alkali-insol. oil. R. S. C. Synthesis and pharmacology of dialkylmalonylguanidines. O. H. Miller and L. Fischer (J. Amer. Pharm. Assoc., 1941, 30, 45—47).—The following were prepared by treatment of the appropriate dialkylmalonic Et₂ ester with guanidine hydrochloride in presence of NaOEt at 80-90° for 60 hr. : diethyl-, ethylisopropyl-, ethyl-n-butyl-, ethylisoamyl-, and ethylphenyl-malonylguanidine (all m.p. >300°). For pharmacology of above compounds, cf. A., 1941, III, August. F. O. H. Pyrimidines. CLXIX. Action of 5:5-bromo-oxyhydro-uracil on ethylenethiocarbamide. T. B. Johnson and C. O. Edens (J. Amer. Chem. Soc., 1941, 63, 1058—1060).—5: 5-Dibromo- or -dichloro-hydroxydihydrouracil in boiling EtOH oxidises ethylenethiocarbamide (I) to (CH₂·NH₂, HHal)₂, S, and the substance (II), C₆H₁₀N₄S, m.p. 218—220°, of Jaffe et al. (A., 1894, i, 437). (II) is di-4: 5-dihydro-2-glyoxalinyl sulphide. It is obtained from (I) (loc. cit.) or (CH₂·NH₂)₂ by $CSCl_2$, reaction proceeding by way of $CH_2 \cdot NH > C \cdot S \cdot CSCl$ and, from (I), $CH_2 \cdot NH > C \cdot S$ CSCl and $CH_2 \cdot NH > C \cdot S$ CSCl and CSCl C 5-Amino-1-aryl-3-methylpyrazoles. F. Bell (J.C.S., 1941, 285—287).—The methods of preparing 5-amino-1-phenyl-3-methylpyrazole (I) are reviewed; the most satisfactory is from NHPh·NH₂ and diacetonitrile, which give cyano-acetonephenylhydrazone, converted by 6N-HCl into (I). Similarly o-C₆H₄Cl·NH·NH₂ affords cyanoacetone-o-chloro-phenylhydrazone, m.p. 74—77°, and 5-amino-1-(2'-chloro-phenylhydrazone, m.p. 74—77°, and 5-amino-1-(2'-chloro-phenyl)-3-methylpyrazole hydrochloride (+2H₂O), m.p. 123—126°, and 2:5-C₆H₂Cl₂·NH·NH₂ (II) yields cyanoacetone-2:5-dichlorophenyllydrazone, m.p. 112—114°, and 5-amino-1-(2':5'-dichlorophenyl)-3-methylpyrazole hydrochloride, m.p. 214—220°. CH₂Ac-CO₂Et and (II) give Et acetoacetate 2:5-dichlorophenyllydrazone, m.p. 66—68°, which with POCl₃ affords 5-chloro-1-(2':5'-dichlorophenyl)-3-methyl-pyrazole, b.p. 195°/25 mm. Chloral amides VII. H. W. III. Chloral amides. VII. H. W. Hirwe and P. Y. Kulkarni (Proc. Indian Acad. Sci., 1941, 13, A, 49-52; cf. A., 1940, II, 220).—Chloral and o-NH₂·CO·C₆H₄·NH₂·HCl at 60—70° yield 4-keto-2-trichloromethyl-1:2:3:4-tetrahydroquinazoline, yield 4-keto-2-trichloromethyl-1:2:3:4-tetrahydroquinazoline, m.p. 202° (Ac derivative, m.p. 194—195°), stable towards HCl. Chloral, warmed with the appropriate amide, yields chloral-2- (I), m.p. 172—173°, -3-, m.p. 164—165°, and -4-acetamido-, m.p. 259—260°, -2-, m.p. 168—169°, -3-, m.p. 232—233°, and -4-benzamido- (requires long heating), m.p. 212—213°, and -5-bromo-2-acetamido- (II), m.p. 171—172°, and -benzamido-benzamide, m.p. 171°. (I) with Br in glacial AcOH yields (II), hydrolysed (10% NaOH) to 6-bromo-4-keto-2-methyl-3:4-dihydroquinazoline. A. Lt. Triazine and glyoxaline series. A. H. Cook and D. G. Jones (J.C.S., 1941, 278-282).—Polymerisation of the appropriate nitrile with CISO₃H affords the kyaphenine; triappropriate nitrile with CISO₃H affords the kyaphenine; trio-methylkyaphenine, m.p. 110°, is prepared from o-C₆H₄Me·CN. m-Nitrokyaphenine, m.p. 206°, is obtained by heating a mixture of PhCN, m-NO₂·C₆H₄·COCl, NH₄Cl, and AlCl₃; the p-compound, m.p. 218°, is similarly prepared. m-NO₂·C₆H₄·CN with BzCl gives di-m-nitrokyaphenine, m.p. 253°, and the p-compound, m.p. 297°, is obtained similarly, whilst p-NO₂·C₆H₄·CN and p-NO₂·C₆H₄·COCl yield dinitrocyano-benzophenone, m.p. 218°. Nitration (KNO₃-H₂SO₄) of trip-methylkyaphenine gives the NO₂-derivative, m.p. 239°, whilst with fuming HNO₂ the m-(NO₂)₃-compound, m.p. 305—307°, also obtained by polymerisation of 2:1:4-NO₂·C₆H₃Me·CN, is prepared. Dinitrotri-p-chlorokyaphenine, m.p. 348°, is formed by nitration. Reduction of the corresponding NO₂-derivative with NHPh·NH₂ affords m-, m.p. 214°, and
p-amino-, m.p. 273° (decomp.) (Ae derivative, m.p. 214°, and p-amino-, m.p. 273° (decomp.) (Ac derivative, m.p. 315°), and m-aminotri-p-methyl-, m.p. 231°, and di-m-nitrotri-m-amino-p-methyl-kyaphenine, m.p. 261°. Reduction (Zn-AcOH) of tri-p-chlorokyaphenine yields tri-p-chlorolophine, m.p. 268°. Condensation of benzil with the appropriate m.p. 268°. Condensation of benzil with the appropriate aldehyde and NH₄OAc gives 4:5-diphenyl-2-ethyl-, m.p. 229°, 4:5-diphenyl-2-isopropyl-, m.p. 248°, 2-0-hydroxyphenyl-4:5-diphenyl-, m.p. 209°, 2-p-methoxyphenyl-4:5-diphenyl-, m.p. 229°, 2-o-, m.p. 230°, 2-m-, m.p. 309°, and 2-p-nitrophenyl-4:5-diphenyl-, m.p. 240°, 4-p-nitrophenyl-2:5-diphenyl-, m.p. 229°, 2-o-hydroxyphenyl-4:p-nitrophenyl-5-phenyl-, m.p. 229°, 2-o-hydroxyphenyl-4-p-nitrophenyl-5-phenyl-, m.p. 217° and 2 m-itrophenyl-4-p-nitrophenyl-5-phenyl-glyoxaline 225, 2-0-nyaroxyphenyl-4-p-nitrophenyl-5-phenyl-glyoxaline, m.p. 226° and 2-m-nitrophenyl-4-p-nitrophenyl-5-phenyl-glyoxaline, m.p. 226° and 256°, and 2-phenyl-, m.p. 314°, and 2-0-nitrophenyl-4:5:9':10'-phenanthriminazole, m.p. 267°. Reduction (NHPh:NH₂) affords 2-0-, m.p. 196°, and 2-m-aminophenyl-4:5-diphenyl-, m.p. 283° (decomp.), and 4-p-aminophenyl-2:5-diphenyl-glyoxaline, m.p. 245° (decomp.). Most of the new glyoxalines exhibit chemiluminescent properties of the new glyoxalines exhibit chemiluminescent properties recalling those of lophine. F. R. S. recalling those of lophine. Bile pigments from choleglobin and verdohæmochromogen. -See A., 1941, III, 447. Addition compounds of morpholine. H. M. Haendler and G. McP. Smith (J. Amer. Chem. Soc., 1941, 63, 1164).— Morpholine gives 2:1 additive compounds with ZnCl₂, softens at 200—210°, later melts, ZnBr₂, decomp. 230—240°, CdBr₂, decomp. 250—252°, CdI₂, decomp. 205—210°, HgBr₂, decomp. 131—135°, CdCl₂, and HgCl₂. Co and Cu^{II} halides react, but the Cu^{II} compounds are very sensitive to H₂O. Reactions of monoalkylanilines with $\beta\beta$ -dichlorodiethyl ether. 4-Phenylmorpholine. H. C. Brill, C. N. Webb, and H. S. Hakbedel (J. Amer. Chem. Soc., 1941, 63, 971—972).— (Cl-[CH₂]₂)₂O and NHPhAlk give N-phenylmorpholine (I), the yield being higher if Alk is Me or Et than if it is Bu^a or isoamyl. The alkiodide of (I) may be an intermediate. R. S. C. Stable derivative of 4-amino-3-hydroxybenzenesulphonamides. J. V. Scudi and R. P. Buhs (J. Amer. Chem. Soc., 1941, 63, 879—880).—Benzoxazolone (prep. in 50% yield from o-OH·C₆H₄·NH₂ by COCl₂-C₅H₅N) and CISO₃H at 10—15° and later 60° give the 5-sulphonyl chloride, m.p. 182—183° (corr.), from which aq. NH₃ and boiling NH₂Ph-dioxan give benzoxazolone-5-sulphon-amide (I), m.p. 269—270° (decomp.), and -anilide, m.p. 215—216° (corr.), respectively. Ingestion of (I) does not protect mice against hæmolytic streptococci; examination of the urine shows that the oxazolone ring is not cleaved. R. S. C. Dimorpholine salts.—See B., 1941, II, 178. Thiazoline-m-cresol. Functional derivatives and substitution products. W. F. Hart and J. B. Niederl (J. Amer. Chem. Soc., 1941, 63, 945—947).—2-5'-Hydroxy-o-tolyl-5-Chem. Soc., 1941, 63, 945—947).—2-5'-Hydroxy-o-tolyl-5-methylthiazoline (A., 1939, II, 347) gives by standard methods the methiodide, m.p. 166°, Me, m.p. 107—108° (picrate, m.p. 117°; methiodide, m.p. 160°), Et (hydrochloride, m.p. 156°; picrate, m.p. 118°; methiodide, m.p. 148°), Pra (hydrochloride, m.p. 183°; picrate, m.p. 121°; methiodide, m.p. 101°), Prß (hydrochloride, m.p. 190°; picrate, m.p. 107°; methiodide, m.p. 93°), Bua (hydrochloride, m.p. 180°; picrate, m.p. 111°; methiodide, m.p. 108°), allyl (hydrochloride, m.p. 163°; picrate, m.p. 112°; methiodide, m.p. 117°), n-C₁₂H₂₈ (hydrochloride, m.p. 148°; methiodide, m.p. 82°), cetyl (hydrochloride, m.p. 143°; methiodide, m.p. 66°), and NEt₂·[CH₂]₂ (dihydrochloride, m.p. 189°) ether, oxyacetic acid derivative [carboxymethyl ether?] (hydrochloride, m.p. 230°; Na salt; Et ester hydrochloride, m.p. 184°), phenylurethane, m.p. 105° (hydrochloride, ether?] (hydrochloride, m.p. 230°; Na salt; Et ester hydrochloride, m.p. 184°), phenylurethane, m.p. 105° (hydrochloride, m.p. 187°), NO_2 -, m.p. 144° (hydrochloride, m.p. 180°), and NH_2 -derivative, m.p. 224° (dihydrochloride, m.p. 250°). 15% oleum at 100° gives the sulphonic acid, m.p. 300° (Na salt). NaOMe–MeOH at 80° and then, after removal of the MeOH, CO₂ at 170—175° gives the 4'-carboxylic acid, m.p. 219—220° [hydrochloride, m.p. 225—230°; Na salt; Me, m.p. 76—77° (hydrochloride, m.p. 181—183°; methiodide, m.p. 172—175°), and Et ester, m.p. 77—78° (hydrochloride, m.p. 173—175°; methiodide, m.p. 161—163°; picrate, m.p. 142—143°)]. R. S. C. Amino-analogue of vitamin-B₁. D. Price and F. D. Pickel (J. Amer. Chem. Soc., 1941, 63, 1067—1069),—4-Methyl-5-thiazolylacetamide (prep. from the Et ester by aq. NH₃ at room temp.) and POCl₃ at 115—120° give 4-methyl-5-thiazolylacetonitrile (I), b.p. 92—93°/2 mm. (picrate, m.p. 171°), hydrogenated (Raney Ni-EtOH or Pd- or ZrO₂-AcOH-HCl) to 4-methyl-5-β-aminoethylthiazole, b.p. 82—85°/2 mm. (picrate, m.p. 227°), which with 6-amino-2-methyl-5-bromomethylpyrimidine dihydrobromide in Bu^αOH at 120—125° gives 3-6'-amino-2'-methyl-5'-pyrimidylmethyl-4-methyl-5-β-aminoethylthiazolium bromide dihydrobromide (II), m.p. 250—251° (derived picrate, m.p. 204—206°). (I) and the appropriate thiazole derivative give similarly 3-6'-amino-2'-methyl-pyrimidylmethyl-4-methyl-5-cyanomethylthiazolium bromide hydrobromide (III), +H₂O, m.p. 231—232° (derived picrate, m.p. 199—200°). (II) and, by hydrolysis, (III) give the Pauly reaction. (II), but not (III), gives the thiochrome reaction. (II) has no vitamin-B₁ activity. R. S. C. Erythrophleum alkaloids. IV. Coumingine, a crystalline Erythrophleum alkaloids. IV. Coumingine, a crystalline alkaloid from the bark of E. couminga (H. Baillon) and its relationship to cassaine. L. Ruzicka, G. Dalma, and W. E. Scott (Helv. Chim. Acta, 1941, 24, 63—76).—The powdered bark is extracted with Et₂O and the alkaloid mixture is crystallised from COMe₂-H₂O; the crude alkaloid is purified by adsorption on Al O. followed by alkaloid with C. H. by adsorption on Al2O3 followed by elution with C6H6-Et2O and crystallisation from Et₂O, thereby giving homogeneous countingine (I), $C_{28}H_{45}O_6N$, m.p. 142° , $[a]_{20}^{90}-70^\circ\pm1^\circ$ in 95% EtOH [hydrochloride, m.p. 195° (vac.); oxime, m.p. 165°]. Pure (I) does not react with cold or hot $Ac_2O-C_5H_5N$ whereas crude (I) gives an acetate, $C_{30}H_{47}O_7N$, m.p. $154-155^\circ$. Hydrogenation (PtO₂ in AcOH at room temp.) of (I) affords dihydrocoumingine, m.p. $95-96^{\circ}$, $[a]_{20}^{90} + 8^{\circ} \pm 1^{\circ}$ in EtOH (very hygroscopic hydrochloride, m.p. $160-162^{\circ}$). Acid hydrolysis of (I) gives coumingic acid (II), $C_{24}H_{36}O_{6}$, m.p. 200° (vac.), 207 [a] $_{D}^{20}$ $-81^{\circ}\pm3^{\circ}$ in 95% EtOH [Me ester, m.p. 217—218° (high vac.), [a] $_{D}^{120}$ $-83^{\circ}\pm1^{\circ}$ in 95% EtOH, and its oxime, m.p. 124—125°], and NMe₂·[CH₂]₂·OH. Alkaline hydrolysis of (I) affords cassaic acid (III), m.p. 223—224° (high vac.), [a] $_{D}^{20}$ $-123^{\circ}\pm1^{\circ}$ in 95% EtOH, also identified as the Me ester, m.p. 188—189°, [a] $_{D}^{20}$ $-124^{\circ}\pm2^{\circ}$ in 95% EtOH, and its Ac derivative, new m.p. 150°; (III) is also obtained by the alkaline hydrolysis of (II). (III) is oxidised by CrO₃ in AcOH to diketocassenic acid, m.p. 249° (high vac.), [a] $_{D}^{20}$ $-152^{\circ}\pm2^{\circ}$ in 95% EtOH (Me ester, m.p. 132—133°, [a] $_{D}^{20}$ $-156^{\circ}\pm2^{\circ}$ in 95% EtOH). (I) is an ester of cassaine with an acid C₄H₈O₃ which contains the O atom of unknown function in (I). #### VI.-ORGANO-METALLIC COMPOUNDS. Preparation of organo-bismuth compounds from diazonium compounds. H. Gilman and H. L. Yablunky (f. Amer. Chem. Soc., 1941, 63, 949—954).—Determination of Bi in org. compounds is modified. Compounds, (a) o-C₆H₄Me·N₂Cl,BiCl₃, decomp. 82°, (b) (ArN₂Cl)₂,BiCl₃ in which Ar = Ph, decomp. 94°, α-, decomp. 120°, and β-C₁₀H₇, decomp. 118°, o-, decomp. 160°, and ρ-C₆H₄Cl, decomp. 154°, o-, decomp. 155°, and ρ-C₆H₄Br, decomp. 147° (fuses at 120°), ρ-C₆H₄I, decomp. 129°, o-, decomp. 153°, and ρ-C₆H₄·OMe, decomp. 115°, and ρ-C₆H₄·CO₂Me (I), decomp. 122°, o- (II), decomp. 115°, and ρ-C₆H₄·CO₂Et, unstable, decomp. 91°, and ρ-C₆H₄·SO₂·NH₂, decomp. 123°, and (c) (ArN₂Cl)₃,BiCl₃ in which Ar = ρ-tolyl, decomp. 127° (fuses at 110°), and ρ-C₆H₄Ph, decomp. 121°, are prepared. With (best) Cu-bronze in abs. EtOH and later N₂H₄, these compounds usually give BiAr₃ in poor yield, examples being Ar = p-C₆H₄Br (III), m.p. 144·5-145°, Ph, o- and ρ-tolyl (IV), α-C₁₀H₇, ρ-C₆H₄Cl, o- and ρ-C₆H₄·OMe; some ArCl and (ArN.)₂ are also formed. With Cu-bronze in abs. EtOH, (I) gives Bi di-o-carbomethoxy-phenyl chloride (10·3%), m.p. 180—181°, and o-carbomethoxy-phenyl dichloride (10·3%), m.p. 220—221°, but (II) gives Bi di-o-carbothoxy-phenyl dichloride (1·95%), m.p. 220—221°, but (II) gives Bi di-o-carbothoxy-phenyl chloride (1·95%), m.p. 147—148°; these chlorides are unusually stable. Presence of NaI during the decomp. leads to BiPh₃, but not (III) or (IV). Similar decomp. of ρ-C₆H₄Br·N₂Cl,ZnCl₂ gives ρ-C₆H₄BrCl (46·7%) and of PhN₂Cl,BF₃ gives (NPh₂). Organic mercury derivatives of basic triphenylmethane dyes: dimercuri-derivatives of malachite-green. L. Chalkley (J. Amer. Chem. Soc., 1941, 63, 981—987).—Colourless, but not coloured, compounds of the CHPh3 dye series are readily mercurated. The coloured compounds resemble quaternary salts in their resistance to Hg(OAc)₂. (p-NMe₂·C₆H₄)₂CPh·CN (I) and Hg(OAc)₂-AcOH in boiling EtOAc, followed by KOH-MeOH, give 4: 4'-bisdimethylamino-3-hydroxymercuri-3'-methoxymercuritriphenylacetonitrile, decomp. >200° (variable), converted by irradiation (ultra-violet) in 1% AcOH-MeOH into the impure dye, 4:4'-bisdimethylamino-3-hydroxymercuri-3'-cyanomercuritriphenylcarbinol (cf. A., 1940, II, A
more convenient synthesis utilises acid-labile colourless compounds CAr_3X (X = OH, OMe, NH₂), which in "nonionising" org. solvents exist mainly in the colourless form, are thus readily mercurated, and are then transformed into the coloured mercurials by acid in, e.g., H₂O or EtOH. Isolation of the coloured mercurial is often difficult, e.g., [4:3-NMe₂·C₆H₃(Hg·OAc)]₂CPh·CN is more sol. in EtOH or EtOAc than is (I). Details are given for conversion of (p-NMe₂·C₆H₄)₂CPh·OH by Hg(OAc)₂ in EtOAc at 70° and later 56° into 4: 4'-bisdimethylamino-3: 3'-di(acetoxymercuri)triphenylcarbinol, +xAcOH and solvent-free, decomp. >~115°, hydrolysed by 2N-KOH-MeOH to the (HgOH)₂-compound (II), decomp. >200°, whence NaCl-MeOH-H₂O-AcOH (little) ppts. the impure (HgCl)₂-compound. Hg₁ derivatives cannot be obtained free from Hg₂ compounds. In solutions of the Hg compounds the coloured and colourless forms are in equilibrium, the relative amounts depending on the concn. of acid present and on the temp. (more dye at higher temp.); this complicates isolation. Aq. solutions of (I) become coloured at $p_{\rm H}$ 13—11.4, but those of (II) only at $p_{\rm H}$ 7. In acid baths, (II) dyes silk at 1 in 5×10^6 , but the colour is somewhat lighter than is given by (I). In weakly alkaline or neutral baths, (II) exhausts onto silk, giving only slightly coloured fibres. The Hg derivatives are surface-active. R. S. C. #### VII.—PROTEINS. Origin of the humin formed by the acid hydrolysis of proteins. IX. Hydrolysis in presence of dienkolic and thiazolidine-4-carboxylic acids. H. A. Lillevik and W. M. Sandstrom (J. Amer. Chem. Soc., 1941, 63, 1028—1030; cf. A., 1924, i, 762).—Hydrolysis of djenkolic (I) or thiazolidine-4-carboxylic acid by 20% HCl gives CH₂O and cysteine + cystine (isolated), the reaction being confirmed by polarographic and colorimetric analysis and by condensation of CH₂O with tryptophan (II). (I) may be the aldehyde responsible for humin formation from gelatin and (II). (CH₂O)₃ is less effective than these acids. R. S. C. Separation of amino-acids by means of copper salts. III. Hydrolysis of gliadin. Dicarboxylate fraction; isolation of r-glutamic acid as hydrolysis product. B. W. Town (Biochem. J., 1941, 35, 417—432).—40·4% of glutamic acid has been isolated from gliadin; 5% of this is obtained as r- and 95% as l(+)-glutamic acid. r-Glutamic acid gives a 3:5-dinitrobenzoyl derivative, m.p. 204° as compared with 104° for the same derivative of the dl-mixture, which, on hydrolysis and rebenzoylation, gives only 4·5% of the compound of m.p. 204°. Similar treatment of the high-melting derivative yields 42·6% of the same compound, thus indicating the presence of the r-compound as a definite hydrolysis product. 0·43% of aspartic acid and 0·18% of serine have also been isolated from the dicarboxylic acid fraction, the presence of the latter tending to interfere with crystallisation of the other acids. P. G. M. Hydrogen linking in protein structure.—See A., 1941, I, 245. #### VIII.—ANALYSIS. Electric heating mortar for use in carbon and hydrogen micro-combustions.—See A., 1941, I, 283. Application of the grating microspectrograph to the problem of identifying organic compounds.—See A., 1941, I, 282. Colour reactions of aliphatic acids. G. Roeder (J. Amer. Pharm. Assoc., 1941, 30, 74—76).—Colour reactions of the following substances with hot Ac₂O in presence of an org. base or an alkali salt of a carboxylic acid are described: malonic, aconitic, citric, cetylcitric, tartaric, acetonedicarboxylic, ascorbic, and d-isoascorbic acid, glucono-d- and glucoheptono-lactone. Hydroxydimethylbutyrolactone does not give a colour. F. O. H. Determination of threonine by periodate. L. A. Shinn and B. H. Nicolet (J. Biol. Chem., 1941, 138, 91—96).—Threonine (I) is determined in protein hydrolysates by oxidation (HIO₄), removal of MeCHO in a current of CO_2 , absorption in NaHSO₂, and titration. Casein contains 3.5% and gelatin 1.4% of (I). A. LI. Decolorisation of acid digestion mixtures for determination of nicotinic acid. T. E. Friedemann and C. J. Barborka (J. Biol. Chem., 1941, 138, 785—786).—A decolorisation technique is described involving digestion with dil. HCl and treatment with ZnSO₄ and NaOH. A. LI. Determination of carotene.—See A., 1941, III, 455. Simplification of the Petering-Wolman-Hibbard method for determination of chlorophyll and carotene. H. G. Petering, E. J. Benne, and P. W. Morgal (Ind. Eng. Chem. [Anal.], 1941, 13, 236; cf. A., 1940, III, 549).—Instead of adding Ba(OH)₂,8H₂O to the aq.-COMe₂ extract, saturated aq. Ba(OH)₂ is added to the COMe₂ extract in amount sufficient to remove all the chlorophyll, and the mixture treated as in the original procedure (loc. cit.). J. D. R. Detection of quinicine and cinchonicine. J. W. Millar and S. J. Dean (J. Amer. Pharm. Assoc., 1941, 30, 52—53).— PhN₂·SO₃H reagent gives reliable tests for quinicine (I) and cinchonicine (II) in aq. or EtOH solution and in presence of the parent alkaloid or alkaloidal salts; dinitrothiophen reagent is also satisfactory, excepting in presence of the alkaloidal salts. A modified Lipkin test (Br-aq. NH₃, followed by extraction with CHCl₃) differentiates between quinine and (I) and cinchonine and (II), whilst K₄Fe(CN)₈ reagent differentiates between (I) and (II). F. O. H. #### INDEX OF AUTHORS' NAMES, A., II. JULY, 1941. ABERNETHY, J. L., 182. Adams, R., 196. Andō, S., 189. Arbuzov, A. E., 194. Arnold, R. T., 193. Barborka, C. J., 208, Bell, F., 205, Bell, F., 205, Benne, E. J., 208, Bennett, G. M., 204, Biggs, B. S., 189, Bishop, W. S., 189, Bogert, M. T., 190, Botvinnik, M., 188, Brill, H. C., 206, Brode, W. R., 184, Brown, G. B., 188, Brown, H. C., 184, Brown, H. C., 184, Brown, J. B., 184, Bryson, A., 199, Buhs, R. P., 206, Burger, A., 203, 204, Burney, D. E., 196, Burr, G. O., 184, Burwell, R. L., jun., 182, Capper T. L., 191, 202 CAIRNS, T. L., 191, 203. Calandra, J. C., 195. Caldwell, W. T., 192. Calingaert, G., 189. Campaigne, E. E., 195. Carter, H. E., 187, 188. Cavallito, C. J., 188. Cavallito, C. J., 188. Chalkley, L., 207. Chapman, C. W., 192. Cook, A. H., 205. Crawford, (Miss) H. M., 194. Dalma, G., 206. Dass, I. N. D., 202. Daudt, W. H., 190. Dean, S. J., 208. Degering, E. F., 195. Desai, R. D., 196. Dietz, J. H., 192. Dinger, A., 189. Donnell, C. K., 192. Dougherty, G., 184. Du Vigneaud, V., 188. Dwyer, F. P., 192, 199. EDENS, C. O., 204. Emerson, W. S., 191. English, J., jun., 184. FEASLEY, C. F., 195. Fernholz, E., 194. Fieser, L. F., 190. Fischer, L., 204. Fletcher, J. H., 191. Fosdick, L. S., 195. Friedemann, T. E., 208. GASCOGNE, R. M., 197. Gatzi-Fichter, N., 184. Geissman, T. A., 201. Gensler, W. J., 183. Gerassimov, M. M., 182. Gilliam, W. F., 189. Gilman, H., 196, 207. Glushnev, V. E., 182. Goldstein, H., 195. Gwynn, B. H., 195. Gwynn, B. H., 195. HAENDLER, H. M., 205. HA[ez, M. M., 204. Hager, G. P., 192. Hakbedel, H. S., 206. Hamid, A., 196. Handler, P., 187. Hart, W. F., 206. Hasselstrom, T., 190. Hennion, G. F., 183. Hirwe, H. W., 205. Horn, M. J., 188. Hotton, N. H., 183. Huebner, C. F., 202. Hurd, C. D., 182. IPATIEFF, V. N., 182. Irwin, W. B., 193. Isbell, H. S., 186. JACQUET, A., 195. Johnson, T. B., 204 Johnston, G. G., 187. Jones, D. B., 188. Jones, D. G., 205. Jones, R. G., 196. Kass, J. P., 184. Kenner, J., 181. Kleiner, I. S., 197. Klug, H., 193. Komarewsky, V. I., 182. Konaka, Y., 181. Krishnaswamy, B., 202. Kulkarni, P. Y., 205. Lauer, W. M., 183. Liebhafsky, H. A., 189. Lillevik, H. A., 208. Lindstrom, H. V., 188. Link, K. P., 202. Linnell, W. H., 193. Lutz, R. E., 200. MacIntosu, F. C., 203. MacPhillamy, H. B., 194. Malkemus, J. D., 183. Mark, H., 186. Marker, R. E., 194, 198, 199. Matthews, N. L., 183. Meyer, K. H., 186, 187. Millar, J. W., 208. Miller, E., 183. Miller, O. H., 204. Modlin, L. R., jun., 204. Morgal, P. W., 208. Morgady, E., 188. Morris, L., 201. Mosher, W. A., 181. Moundres, T. P., 191. Mullen, J. W., 186. Murphy, D., 195. Nagai, H., 182. Naves, Y. R., 197. Nazarov, I. N., 185. Neumann, F. W., 191. Nichols, J., 184. Nicolet, B. H., 208. Niederl, J. B., 206. Nilsson, T., 185. Nolan, T. J., 195. OPIE, J. W., 201. PACSU, E., 186, Perrottet E., 197. Petering, H. G., 208, Pickel, F. D., 206. Plentl, A. A., 190. Pletcher, D. E., 182, Pollard, C. B., 192, Press, J., 186, 187. Price, D., 206. Prokofiev, M. A., 188. REICH, H., 184. Reichstein, T., 184. Ringel, S. J., 188. Roberts, L. D., 183. Rochow, E. G., 189. Roeder, G., 208. Romanov, V. M., 185. Ruggli, P., 189. Ruigh, W. L., 194. Ruzicka, L., 206. Samsonova, G., 188. Sandstrom, W. M., 188, 208. Scott, W. E., 206. Scott, J. V., 206. Seshadri, T. R., 202. Shabica, A. C., 199. Shaikmahamud, H. S., 193. Shapiro, H., 189. Shinn, L. A., 208. Shriner, R. L., 201. Shroff, H. P., 196. Simha, R., 186. Singleton, F. G., 192. Smith, C. S., 188. Smith, G. McP., 205. Smith, J. M., jun., 200. Smith, L. I., 193, 201. Soroos, H., 189. Sprung, J., 193. Stahmann, M. A., 202. Starkey, E. B., 192. Stevens, C. M., 187, 188. Stoner, G. G., 184. Stringer, J. T., 182. Stuart, A. H., 200. Suter, C. M., 183. TAKASE, S., 188. Tetrault, P. A., 195. Tewari, J. D., 202. Thorpe, R. S., 187. Town, B. W., 208. Trister, S. M., 186. Turner, D. L., 198, 199. UENO, S., 188. Ulshafer, P. R., 199. Valitova, F. G., 194. WAGNER, R. B., 199. Wall, F. T., 181. Waravdekar, W. S., 196 Webb, C. N., 206. Weiss, J., 190. Wertheim, M., 187. Whitmore, F. C., 181, 187. Wisson, E. A., 183. Wirtbecker, E. L., 194. Witte, M., 201. Wolfrom, M. L., 182. Woodward, R. B., 197. Work, T. S., 203. XAN, J., 183. YABLUNKY, H. L., 207. Zauge, H., 193. Zelinski, N. D., 188. Zoss, A. O., 183.