BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS # A., II.—Organic Chemistry NOVEMBER, 1941. # I.—ALIPHATIC. Elimination reactions in organic chemistry. (A) Mechanism. M. L. Dhar, E. D. Hughes, C. K. Ingold, A. M. M. Mandour, F. R. Webb, and L. I. Woolf. (B) Tautomerism and elimination. E. D. Hughes (Nature, 1941, 147, 812—813, 813—814).—(A) A summary of work reconciling and rationalising the Hofmann and Saytzeff rules. Reactions of "onium" salts proceeding by mechanism E2 (attack of a base on an alkyl proton) display "Hofmann influences" (=H); those going by mechanism E1 (prior formation of a carbonium ion) show "Saytzeff influences" (=S). Halide reactions by both mechanisms are governed by (S). Within the range investigated, these statements are true irrespective of whether the alkyl groups are primary, sec., or text., provided they are the alkyl groups are primary, sec., or test., provided they are saturated. Introduction of suitably placed unsaturation increases the field of application of (S). The responsible mechanism for (H) is undoubtedly the inductive effect, whilst that for (P_i) is indoubtedly the inductive enect, whilst that for (S) involves resonance due to the quasi-conjugation [cf. A., 1940, I, 390; identical with the "hyperconjugation" of Mulliken *et al.* (A., 1941, I, 100)] of the $C_{\mathcal{P}}$ H electrons with the electrons transferred in elimination from the dissolving $C_{\mathcal{P}}$ H linking to the forming C_{α} : $C_{\mathcal{P}}$ linking. The greater is the no. of $C_{\mathcal{P}}$ H linkings the larger will be this effect: a much more powerful effect of the same kind arises effect; a much more powerful effect of the same kind arises when, in place of quasi-conjugation, full conjugation is produced by the provision of γ -unsaturation as in the CH₂Ph·CH₂· group. Independent electrostatic and resonance effects thus co-exist in elimination reactions, and being separately energised they may even work in opposition. Reactions involving the production of olefines from alcohols and ethers fall within the theoretical scheme outlined. (B) The effect of alkyl groups on rate in the base-catalysed enolisation of ketones is of the Hofmann type. The base-catalysed equilibria of CAlkAlk'.CH·CO₂H are essentially dependent on the same internal mechanism as (S) (above). Production of hydrocarbons by catalytic conversion of carbon monoxide. Hydrogenation of carbon monoxide to produce hydrocarbons having more than one carbon atom in the molecule. Production of hydrocarbons by conversion of carbon monoxide with hydrogen. Catalytic conversion of carbon monoxide with hydrogen into hydrocarbons.—See B., 1941, Production of saturated hydrocarbons.—See B., 1941, II, Production of saturated hydrocarbons with branched or more highly branched chains from saturated hydrocarbons with branched or less branched chains.—See B., 1941, II, 246. Catalytic aromatisation and isomerisation of ββδ-trimethylpentane. S. J. Green and A. W. Nash (*Nature*, 1941, 148, 53—54).—Considerable formation of mixed xylenes, and some C₁₀H₈, accompanied by cracking, occurs with pure CH₂PrβBuν at 550° with a liquid catalyst-space velocity of 0·33 c.c. per c.c. per hr. and a 6 at.-% Mo oxide-activated Al₂O₃ catalyst in a mild steel tube. L. S. T. in a mild steel tube. Determination of freezing points and amounts of impurity in hydrocarbons from freezing and melting curves. B. J. Mair, A. R. Glasgow, jun., and F. D. Rossini (J. Res. Nat. Bur. Stand., 1941, 26, 591—620).—Time-temp. freezing and melting curves are analysed and a procedure for determining the f.p. of a substance and the amount of impurity in it is developed to apply to cases in which a known portion of the curves represents thermodynamic equilibrium between liquid L2 (A., II.) and cryst. phases. The method is shown to be applicable to hydrocarbons containing 0.6-11.5 mol.-% of solute. Polymerisation of ethylene.—See B., 1941, II, 290. Biochemical synthesis of carbon chains of isoprene type.— See A., 1941, III, 937. Synthesis of hydrocarbons with conjugated ethylenic linkings. III. V. I. Esafov, V. M. Guliakov, V. V. Kargopoltzeva, A. P. Kulakova, G. V. Razmislov, and N. D. Toporov (J. Gen. Chem. Russ., 1940, 10, 1973—1977).—COMEET and CaC₂ (7 hr. at 100°) yield γ-methyl-Δγ-hepten-ε-one (I), bp. 164—165°. With MgEtBr in Et₂O this gives γ-methyl-ε-ethyl-Δγ-heptenee, b.p. 154°, and with iso-C₅H₁₁·MgBr a mixture, b.p. 194—200°, of γ-methyl-ε-isoamyl-Δγ-heptadiene and βζ-dimethyl-ε-ethyl-Δβ-nonadiene. The Grignard reaction did not take place as above in the cases of CH-Ph-MgBr and did not take place as above in the cases of CH2Ph MgBr and (I) or mesityl oxide. Manufacture of butadiene, chlorobutene, and trichlorobutane.—See B., 1941, II, 290. Production of acetylene, acetone, and methyl acetate.—See B., 1941, II, 245. Isomerisation of chloroalkanes.—See B., 1941, II, 247. Production of alkyl halides from alkenes and hydrogen halide.—See B., 1941, II, 247. Manufacture of alkyl chlorides.—See B., 1941, II, 291. Manufacture of chloroform.—See B., 1941, II, 291. Manufacture of nitromethane.—See B., 1941, II, 247. Production of alcohols by catalytic hydrogenation of esters of carboxylic acids.—See B., 1941, II, 248. Addition of β_{γ} -unsaturated alcohols to the active methylene Ruttion of py-unsaturated actions to the active methylene group. III. Scope and mechanism of the reaction. M. F. Carroll (J.C.S., 1941, 507—511; cf. A., 1940, II, 266, 347).—At $150-250^{\circ}$ in the presence of an alkaline catalyst (NaOAc, NaOEt, KOH) β y-unsaturated alcohols with a compound containing an active CH₂ [CH₂Ac·CO₂Et, CHBuAc·CO₂Et, or CH₂(CO₂Et)₂] give normal additive products; from an alcohol ROH, the substances obtained are EtOH, CO2, ROAc, COMe2, ROH, the substances obtained are EUCH, CO₂, ROAC, COMe₂, CH₂AcR (or R' where rearrangement occurs) and the olefine from ROH. With CH₂Ac·CO₂Et and saturated alcohols, the ester is obtained. The reactivity of the groups attached to the active CH₂ is in the order: $\text{CH}_2(\text{CO}_2\text{R})_2 > \text{R·CO·CH}_2 \cdot \text{CO}_2\text{R}' > \text{R·CO·CHR'·CO}_2\text{R}' > \text{R·CO·CH}_2 \cdot \text{COR'}$. The mechanism of the reactions is discussed, and the results are applied to explain some analogous reactions. Search for a stable substituted vinyl alcohol. F. H. Stodola (Science, 1941, 93, 452).—Alternative formulæ for the "substituted vinyl alcohol" and the corresponding ketone prepared by Fuson et al. (A., 1941, II, 222) are suggested. The behaviour of the alcohol on oxidation (CrO₃ in AcOH) is difficult to reconcile with the vinyl alcohol formula, without assuming an unprecedented ab dehydrogenation. Synthesis of primary $\beta\gamma$ -unsaturated alcohols, glycols, and their derivatives. S. N. Chitrik (J. Gen. Chem. Russ., 1940, 10, 2098—2100).—The sole product of reaction of Mg with (CH₂Br·CH:)₂ in Et₂O is butadiene. p-C₆H₄Me·SO₃·CH₂·CH₂Cl does not react with CHPh:CH·MgBr in Et₂O, R. T. Purification of glycerol by crystallisation.—See B., 1941, II, 245. Production of pentaerythritol.—See B., 1941, II, 248. Manufacture of ethers from olefines.—See B., 1941, II, 248. Effect of alkalinity or acidity on stability of ether.—See B., 1941, II, 245. Action of oxides of nitrogen on unsaturated ethers. I. Action of nitrous anhydride on methyl allyl ether. N. J. Maslov (J. Gen. Chem. Russ., 1940, 10, 1915—1917).— OMe·CH₂·CH:CH₂ in Et₂O when saturated at -10° with N_2O_3 yields $Me \ \gamma(\beta)$ -nitro- $\beta(\gamma)$ -nitrosopropyl ether, m.p. 106— 107° , reduced by SnCl₂ in HCl to OMe·CH₂·CH(NH₂)·CH₂·NH₂ [dihydrochloride, m.p. 214° (platinichloride); dipicrate, m.p. 210°]. R. T. Acetone-[isopropylidene-]glyceraldehyde and optically active glycerides. IX. Configuration of natural batyl, chimyl, and selachyl alcohols. E. Baer and H. O. L. Fischer (J. Biol. Chem., 1941, 140, 397—410).—l(—)-isoPropylideneglycerol in (CH₂·OMe)₂ is added to a cold solution of Na-C₁₀H₈ in the same solvent. When the green colour has disappeared, $n\text{-}C_{18}H_{37}I$ is added and the solution is boiled for 48 hr. After removal of solvent and dihydronaphthalene at 160°/ 10—15 mm., d-isopropylidene-a-n-octadecylglycerol (I), m.p. $34-36^{\circ}$, $[a]_{1}^{40}-12\cdot6^{\circ}$, is isolated by distillation in a mol. still. 1- (II), m.p. $32\cdot5-33\cdot5^{\circ}$, $[a]_{1}^{40}+12\cdot4^{\circ}$, and dl- (III), m.p. 32-33°, -isopropylidene-a-n-octadecylglycerol are obtained similarly. (I) is hydrolysed by 80% AcOH at 80° to d- α -noctadecylglycerol (IV), m.p. 71—72°, [α]_D +0·8°, +0·7°, and +4·0° in CHCl₃ ($c=84,3\cdot83$, and 1·0, respectively), identical with natural baryl alcohol, (V). (II) and (III) similarly afford 1- (VI), m.p. $71-72^{\circ}$, $[\alpha]_{\rm D}$ 0.0° , -1.6° , and -2.3° in CHCl₃ [c=9.98, 3.17, and 1.10, respectively), and dl-(VII), m.p. 71—71.5°, -α-n-octadecylglycerol. (IV) gives an α'β-diacetate, readily interconvertible polymorphic forms, m.p. 34—34.5° and 42— 43° respectively, $[a]_{\rm D}$ —7.6° in CHCl₃ free from EtOH, an $a'\beta$ -diphenylurethane, m.p. 100.5—101.5°, $[a]_{\rm D}$ —6.4° in C_5H_5N , and an $a'\beta$ -di-p-nitrobenzoate, m.p. 65.5—66.5°, $[a]_{\rm D}$ —27.9° in dry CHCl₃; the first two compounds are identical -27.9° in dry CHCl₃; the first two compounds are identical with those derived from (V). Similarly (VI) gives an $a'\beta$ -diacetate, varieties, m.p. $34-34.5^{\circ}$ and $42-43^{\circ}$, respectively, $[a]_{\rm D} + 7.6^{\circ}$, $[a]_{5461} + 8.6^{\circ}$ in CHCl₃ free from EtOH, an $a'\beta$ -diphenylurethane, m.p. $101-101.5^{\circ}$, $[a]_{\rm D} + 6.5^{\circ}$ in dry C_5H_5N , and an $a'\beta$ -di-p-nitrobenzoate, m.p. $66.5-67^{\circ}$, $[a]_{\rm D} + 29.1^{\circ}$ in CCl₄. The $a'\beta$ -diacetate, b.p. $180-183^{\circ}/10^{-3}$ mm, m.p. $34-34.5^{\circ}$,
$a'\beta$ -diphenylurethane, m.p. $94.5-95^{\circ}$, and $a'\beta$ -di-p-nitrobenzoate, m.p. $73.5-74^{\circ}$, of (VII) are described. The appropriate isomorphylideneglycerol is trans-m.p. 52, $[a]_{\rm D} = 29 \cdot 2$ in dry $C_2 \Pi_2 C_1 I_4$, identical with natural chimyl alcohol (XI). Similarly (IX) gives $1 \cdot a \cdot n \cdot hexadecyl-glycerol$, m.p. $63 - 64^\circ$, $[a]_{\rm D}^{22} \pm 0 \cdot 0^\circ$ $(c = 10 \cdot 1)$, $[a]_{\rm D}^{25} - 1 \cdot 3^\circ$ $(c = 3 \cdot 22)$ and $-2 \cdot 2^\circ$ $(c = 1 \cdot 13)$ in dry CHCl₃ $(a'\beta \cdot di phenyl-urethane$, m.p. $97 - 98^\circ$, $[a]_{\rm D} + 7 \cdot 17^\circ$ in dry $C_3 H_5 N$; $a'\beta \cdot di - nitrobenzoate$, m.p. $52 - 53^\circ$, $[a]_{\rm D} + 29 \cdot 7^\circ$ in dry $C_2 H_2 C_1 I_4$, and (X) affords d1-a-n-hexadecylglycerol, m.p. $62 - 63^\circ$ $(a'\beta \cdot di phenyl-urethane)$ urethane, m.p. 92°; a'β-di-p-nitrobenzoate, m.p. 52-53°). (V) and (XI) therefore belong to the d series to which also selachyl alcohol can be assigned on account of its close relationship to (V) The unsaponifiable matter from ratfish (Chimaera monstrosa) liver oil consists mainly of (XI) with a small proportion of (V). Chemical warfare materials. XXIV. Determination of "yellow cross" $[\beta\beta'$ -dichlorodiethyl sulphide] by the spectrophotometric method. H. Mohler (Helv. Chim. Acta, 1941, 24, 571—573).—(Cl·[CH₂]₂)₂S may be determined spectrophotometrically in hexane using the band 202—203 m μ . A concolonometrically in hexane using the band 202—203 m μ . A concolonometrically in hexane using the band 202—203 m μ . For each over the range 0.0003—0.0015M. [Velocity of] hydrolysis of $\beta\beta$ '-dichlorodiethyl sulphide.—See A., 1941, I, 420. Manufacture of organic anhydrides.—See B., 1941, II, 249. Preparation of alkyl formates.—See B., 1941, II, 249. Azeotropic distillation for dehydrating acetic acid.—See B., 1941, II, 289. Configurational relationship of α-methylheptoic and γ-methylnonoic acids. P. A. Levene and M. Kuna (J. Biol. Chem., 1941, 140, 255—257).—α-Methylheptoic acid, [α]²⁵ $+8\cdot48^{\circ}$, resolved by cinchonidine, by the usual reactions yields the Et ester, $[a]_{D}^{25}$ $+8\cdot91^{\circ}$, β -methylheptan-a-ol, $[a]_{D}^{25}$ $-4\cdot01^{\circ}$, and a-iodo- β -methylheptane, $[a]_{D}^{25}$ $+1\cdot05^{\circ}$, which with CH₂(CO₂Et)₂ and NaOEt yields γ -methylnonoic acid, b.p. 92°/0·1 mm., $[a]_{D}^{25}$ $+0\cdot46^{\circ}$ (cf. A., 1932, 360). All [a] are homogeneous. A. Li. WHARPER PO Polymorphism of unsaturated fatty acids C₁₈. G. Ravitsch, V. Volnova, and T. Kuzmina (Acta Physicochim. U.R.S.S., 1941, 14, 403—413).—The polymorphism of oleic acid (I) has been studied by means of photomicrography and of heating and cooling curves. Apparatus for determining cooling curves with very slow cooling is described. When (I) is very slowly cooled the break on the cooling curve usually observed at ~9° is resolved into two, at 11° and at 8.5°; this is attributed to contamination with saturated fatty acids. The heating curves show additional thermal effects at 20—21°, the position depending on the previous history of the sample. These indicate the existence of a new modification of (I), m.p. 20—20.5°, and this is confirmed by photomicrographs. Alkenyl esters of unsaturated monocarboxylic acids of the $C_nH_{2n-1}\cdot CO_2H$ series. A. D. Petrov and V. D. Azatian (f. Appl. Chem. Russ., 1940, 13, 1602—1605).—Oleic, undecenoic, acrylic, and crotonic acid and Δ^a -hexinene at 50—70° in presence of HgO and BF₃, Et₂O give COMeBu, but not the expected esters. At \Rightarrow 30° and in Et₂O, β - Δ^a -, b.p. 110°/30 mm., and β - Δ^a -hexenyl, b.p. 89·5—92·5°/18 mm., and β - Δ^a -pentenyl crotonate, b.p. 95°/30 mm., are obtained from Δ^a - and Δ^a -hexinene and Δ^a -pentinene, respectively. Separation and identification of fatty acids. III. Preparation of pure oleic and elaidic acid by the hydroxamic acid method. Y. Inouye and H. Yukawa (J. Agric. Chem. Soc. Japan, 1941, 17, 411—413; cf. A., 1940, II, 336).—Oleohydroxamic acid, m.p. 61°, obtained from olive oil by treatment with NH₂OH,HCl and NaOEt, is quantitatively converted into oleic acid by hydrolysis with boiling EtOH-dil. H₂SO₄. Elaidohydroxamic acid, m.p. 91°, prepared similarly, yields elaidic acid when hydrolysed under the same conditions. I. N. A. Constitution of spiculisporic acid, a metabolic product of the mold fungus Penicillium spiculisporum (Lehman). M. Asano and Y. Kameda [with, in part, T. Naruse] (J. Pharm. Soc. Japan, 1941, 61, 57—63).—Spiculisporic acid (I) is the lactone of γ-hydroxy-γδ-dicarboxypentadecoic acid, and not of the βδ-dicarboxy-acid as stated by Clutterbuck et al. (A., 1931, 1092). (I) affords γ-ketopentadecoic acid (II) (semicarbazone, m.p. 124—125°), identical with that obtained by condensing Me·[CH₂]₁₀·CO·CHNa·CO₂Et and CH₂Br·CO₂Et at 100° for 7 hr., followed by HI (d 1·7) at 100° (bath). CO(CH₂·CO₂Et)₂-NaOEt-CH₂Br·CO₂Et at 110° yield a substance, converted by n-C₁₀H₂₁I-NaOEt at 120° into a product reduced by Na-Hg to laurone, CO(C₁₁H₂₃-n)₂, and (II). (I) and red P-HI (d 1·7) at 190—210°, followed by Zn-AcOH, and then KOH-EtOH at 100° (bath), afford para-tetradecane-αγδ-tricarboxylic acid (III), m.p. 160—162° (tri-p-phenylphenacylester, m.p. 108—111°), and the meso-αγδ-tricarboxylic acid (IV), m.p. 109—111°. CH₂(CO₂Et)₂, Cl·[CH₂]₂·CO₂Et, and NaOEt afford CH(CO₂Et)₂·[CH₂]₂·CO₂Et, b.p. 126—128°|2 mm., converted into the Na derivative and then condensed with n-C₁₀H₂₁·CHBr·CO₂Et at 120—130° to Et₄ tetradecane-αγγδ-tetracarboxylate, b.p. 210—225°|2 mm., which on hydrolysis by 50% KOH-EtOH at 100° (bath) and then heating at 140—150° yields (III) and (IV). n-C₁₀H₂₁·CNa(CO₂Et)₂. CH₂Br·CH(CO₂Et)·CH₂·CO₂Et, and NaOEt at 140—150° afford Et₄ tetradecane-βγδδ-tetracarboxylate, b.p. 215—217°|1 mm., converted by hydrolysis (KOH-EtOH) and then decarboxylation (at 150—155°) into tetradecane-αβδ-tricarboxylic acid (V), m.p. 145—147°; if (I) possessed the constitution attributed by Clutterbuck et al. (loc. cit.), it should yield (V). A. T. P. a-Hydroxy-a-methylthiodiacetic acid. E. Larsson (Svensk Kem. Tidskr., 1941, 53, 1—5).—CO₂H·CH₂·S·CMe(OH)·CO₂H (I) [from SH·CH₂·CO₂H (II) and AcCO₂H] is completely dissociated into its components in alkaline solution. In 0·1n-HCl k=0.015 and in H₂O k=0.01-0.03. The formation and dissociation of (I) are both very rapid. Similar compounds are formed from (II) and CHO·CO₂H (k very small in acid solution and dissociation slow) and CH₂O (k=0.3 in H₂O and dissociation rapid), but not COMe₂. M. H. M. A. Basic catalysis of transformation and decomposition of monosaccharides. II. Epimerisation of arabinose by anions of weak acids in acid media. A. D. Braun and R. K. Konnova (Biochimia, 1940, 5, 497—501).—Anions of weak acids cause epimerisation of arabinose in acid medium. Ketopentose, which is readily decomposed by acid, is thus produced from aldopentose by OAc' ions, the resulting solution being almost free from aldopentose. NHPh·NH₂ in presence of HSO₃' is used, e.g., in urine analysis, to detect ketopentose in presence of aldoses and other aldehydes. W. McC. Studies of the chemical properties of carbohydrates by means of heavy oxygen. I. Exchange reactions of oxygen between monoses and water. K. Goto and T. Titani (Bull. Chem. Soc. Japan, 1941, 16, 172—177).—In H₂O containing an excess of ¹⁸O at 100°, glucose, fructose, galactose, xylose, and arabinose exchange 1 O. In presence of acid or base >1 O is gradually exchanged although decomp. also occurs. Active form of simple sugars. VII. Reactivity of fructose 1:6-diphosphate. A. V. Stepanov and B. N. Stepanenko (Biochimia, 1940, 5, 567—573).—The proportions of HCN bound by fructose 1:1-diphosphate (I), fructose 1-monophosphate, and fructose during 2 hr. are 30, 13, and 0%, respectively. The high val. for (I) shows that much of this compound in the equilibrium mixture is in the keto-form. Phosphorylation of hexoses is accompanied by conversion from a cyclic form into an open-chain, more reactive keto-form. This conversion occurs gradually during the first stages of glycolysis, the six-C chain, which is most stable in free glucose, being finally disrupted. W. McC. Enzymic hydrolysis of disaccharides and halogenosalicins. W. W. Pigman (J. Res. Nat. Bur. Stand., 1941, 27, 1—8; cf. A., 1939, III, 99).—Enzymes of almond emulsin hydrolyse all of the disaccharides with β -glucosidic linkings so far tried, in agreement with the Weidenhagen theory. Rates of hydrolysis for gentiobiose (6- β -glucosido-d-glucose), 4- β -glucosido-d-mannose (I), and lactositol (4- β -glucosido-d-sorbitol) are compared with those of other disaccharides. Small changes in structure of the aglucone sugar have a large effect on rate of enzymic hydrolysis; e.g., although (I) differs from cellobiose in the configuration of only one C atom, a very marked decrease is observed in the case of (I). Theoretical considerations are discussed, and mechanisms of reaction are suggested. Rates of enzymic fission for p-chloro-, -bromo-, and -iodo-salicins are similar, but the relative ease of fission is I-> Br-> Cl-derivative; introduction of halogen in the p-position of the salicin aglucone reduces the rate to $<\frac{1}{2}$ of the val. for salicin. A. T. P. Hydrolysis of laminarin. Isolation of a new glucose disaccharide. V. C. Barry ($Sci.\ Proc.\ Roy.\ Dublin\ Soc.$, 1941, 22, 423—429; cf. A., 1939, III, 409).—Laminaribiose (? glucose-3- β -glucoside), m.p. >90° (decomp.) (one specimen was cryst., m.p. $161-162^\circ$), $[a]_1^{15}+20\cdot8^\circ$ (25 min.) in H_2O , $+16\cdot14^\circ$ (21 hr.) (osazone, m.p. 195°, $[a]_1^{10}-79\cdot6^\circ$ in EtOH; cf. Zechmeister $et\ al.$, A., 1934, 810), is present in the products of partial hydrolysis ($n-H_2C_2O_4$ or snail-juice) of
laminarin (I). It is hydrolysed by emulsin to glucose. The constitution of (I) is discussed. Carbohydrate group of egg proteins. III. P. A. Levene (J. Biol. Chem., 1941, 140, 279—284).—The polysaccharide (I) from egg proteins (A., 1929, 1478) could not be satisfactorily methylated, but on hydrolysis (10N-HCl at room temp.) yields d-mannoglucosaminide, which when hydrolysed gives mannose and when reduced (Raney Ni at 75° under pressure) yields mannitolchondrosaminide, acetylated and hydrolysed (boiling 20% HCl) to glucosamine, but no mannose. (I) with 5% HNO₃ at 100° under pressure, then conc. HNO₃ at room temp., yields no mucic acid. A. Li. Optical rotatory relationships exhibited by aromatic and aliphatic glucosides. W. W. Pigman and H. S. Isbell (J. Res. Nat. Bur. Stand., 1941, 27, 9—25).—A comparison of rotations of numerous glucosides shows that aromatic groups (Ph and substituted Ph) produce rotational effects different from those produced by aliphatic radicals. When an aromatic nucleus is attached to an asymmetric C through an O linking, the rotatory contributions of other asymmetric C attached to the former C are greater by a fairly const. amount than when the attached group is aliphatic. Substituted phenyl- β -glucosides are much more lævorotatory than the aliphatic β -glucosides ides. Phenyl- β -glucosides when substituted by o-p-directing groups in any position, or m-directing groups in the o-position, have vals. of $[M]_D^{20}$ (in H_2O) of \sim -17,000 to -20,000, whereas those of aliphatic β -d-glucosides are \sim -6500 to -9500, except in the case of glucosides of tert. alcohols (\sim -4000); m-directing groups in m- or p-positions, however, cause an increase in val. and p-nitrophenyl- β -glucoside has a val. of $[M]_D^{20}$ -31,130. A marked decrease in val. is caused by substituting two groups in the o-positions of phenyl- β -glucoside, e.g., the o-o'-xylenyl derivative has a val. of -4380 (cf. o-p-isomeride, -18,480). In a series of related glucosides, aliphatic or aromatic, the mol. rotations of the β -glucosides or rotatory contributions of the glucosidic carbons. Vals. of $[M]_D$ and $[a]_D$ for many a- and β -glucosides are recorded, with relevant literature. A parallelism observed between the dissociation consts. of phenols and the optical properties of the corresponding substituted phenyl- β -glucosides supports the view that the optical rotation is conditioned by the same intramol. electronic forces as those which control dissociation of phenolic H. β -d-a-mannoheptose hexa-acetate (improved prep.), PhOH, and p- c_0 -d-mannoheptosides, a-, m.p. 212°, $[a]_D^{20}$ +207° in H_2O , and (more sol.) β -form, m.p. 189—190°, $[a]_D^{20}$ +207° in H_2O , and (more sol.) β -form, m.p. 189—190°, $[a]_D^{20}$ +207° in H_2O , and (more sol.) β -form, m.p. 189—190°, $[a]_D^{20}$ +207° in H_2O , and (more sol.) β -form, m.p. 180—190°, $[a]_D^{20}$ +207° in H_2O , and β -form, m.p. 180—190°, $[a]_D^{20}$ +165° β - β - β -166°5°, β - β -138° in β - β -167° in β -109°, β -138° in β -100° β -138° in β -100° β -130° -130 Constitution of butrin. P. S. Rao (Current Sci., 1940, 9, 492; cf. A., 1937, II, 445).—Butrin (I) and CH_2N_2 yield a Me_1 ether, hydrolysed to a monomethylbutein. Hence (I) is not a bioside but a diglucoside of butin with the sugar nuclei in different positions. E. M. W. Syntheses of 2:4-dimethyl-β-methylglucoside. M. H. Adams, R. E. Reeves, and W. F. Goebel (J. Biol. Chem., 1941, 140, 653—661).—β-Methylglucoside 2:4:6-triacetate 3-p-toluenesulphonate is de-acetylated [Ba(OMe)₂ in dry MeOH at 0°] to the non-cryst. β-methylglucoside 3-p-toluenesulphonate, transformed by CPh₃Cl in C₅H₅N at 100° into the amorphous 6-triphenylmethyl-β-methylglucoside 3-p-toluenesulphonate (I), m.p. 76—78°, [a]²³ — 22·0° in CHCl₃ (2:4-diacetate, m.p. 145—147°, [a]²⁵ +14·5° in CHCl₃). Repeated methylation of (I) by Ag₂O and MeI gives 6-triphenylmethyl-2:4-dimethyl-β-methylglucoside 3-p-toluenesulphonate, [a]²⁵ — 2·3° in CHCl₃, and thence by Na-Hg in MeOH into 2:4-dimethyl-β-methylglucoside 3-p-toluenesulphonate, [a]²⁵ — 2·3° in CHCl₃, and thence by Na-Hg in MeOH into 2:4-dimethyl-β-methylglucoside (II), dimorphous, m.p. 105—106° or 122—124°, [a]²⁵ — 18·6° in COMe₂, in very poor yield. Disopropylideneglucose p-toluenesulphonate is converted by boiling 2% HCl-MeOH into a mixture of a- and β-methylglucoside 3-p-toluenesulphonates from which, after successive treatments with CPh₃Cl and Ac₂O-C₅H₅N, 6-triphenylmethyl-amethylglucoside 2:4-diacetate 3-p-toluenesulphonate, m.p. 191—192°, [a]²⁵ +72·8° in CHCl₃, is isolated. Gradual addition of solid KOH to diisopropylideneglucose dissolved in CH₂PhCl at 100° affords 3-benzylgliusopropylideneglucose, hydrolysed by dil. HCl to 3-benzylgliusopropylideneglucose hydrolysed by dil. HCl to 3-benzyl Synthesis of glucosides. K. Nisizawa (Bull. Chem. Soc. Japan, 1941, 16, 155—160).— β -d-Galactose penta-acetate (I), guaiacol (II), and p-C₆H₄Me·SO₃H (III) at 125—128° give a mixture, converted by boiling 0·2N-NaOMe-MeOH into β -guaiacyl-d-galactoside (IV), m.p. 203—204°, $[a]_{\rm p}^{20}$ —44·64° in H₂O, and a residue, which with Ac₂O-C₈H₅N at 100° gives a-guaiacyl-d-galactoside tetra-acetate (V), m.p. 82—84°, [a]_D²² +227·6° in CHCl₃, and thence a-guaiacyl-d-galactoside, m.p. 140—142°, [a]_D²¹ +211·4° in H₂O. (IV), [a]_D²⁸ =44·48° in H₂O, is better obtained by way of its tetra-acetate, m.p. 100—102°, [a]_D²² =16·71° in CHCl₃, from acetobromogalactose (VI), (II), NaOH, and a little H₂O in COMe₂ at room temp. At 100° (I), (II), and ZnCl₂ give mainly (V), but at 125° the same mixture is obtained as with (III). At 120°, (I), m-cresol, and ZnCl₂ give a-m-tolyl-d-galactoside (VII), m.p. 150—152°, [a]_D¹⁹ +207·0° in H₂O, by way of its tetra-acetate, m.p. 75—76°, [a]_D¹⁹ +178·0° in CHCl₃; at 125—128° with ZnCl₂ or (III) (cf. Helferich et al., A., 1935, 201), mixed crystals (? a 1:1 additive compound), m.p. 175—178°, [a]_D¹⁹ +81·0° in H₂O, of (VII) and its β-analogue (m.p. 166—167°, [a]_D —44·3° in H₂O) are obtained. p-OH·C₀H₁·COMe and (VI) give (as above) β-p-acetylphenyl-d-galactoside tetra-acetate (52%), m.p. 146—147°, [a]_D²⁸ =51·69° in C₆H₆, but (I) in presence of ZnCl₂ or (III) at 127—128° gives only the a-galactoside, m.p. 158—160°, [a]_D²⁹ +226·2° in H₂O, by way of the tetra-acetate, m.p. 155—157°, [a]²³ or ²⁹ +29·0° in CHCl₃. o-OH·C₆H₄·CHO, (VI), and Ag₂O in quinoline give β-o-aldehydophenyl-d-galactoside, m.p. 237—239°, [a]_D³⁰ —23·6° in H₂O, by way of the tetra-acetate (21·6%), m.p. 107—109°, [a]_D³⁵ —13·74° in CHCl₃. s-m-Xylenol, (VI), and NaOH in COMe₂ give β-s-m-xylyl-d-galactoside, m.p. 193—194°, [a]_D²³ —43·0° in H₂O, by way of the tetra-acetate (21·6%), m.p. 107—109°, [a]_D³⁵ —13·74° in CHCl₃, s-m-Xylenol, (VI), and NaOH in COMe₂ give β-s-m-xylyl-d-galactoside, m.p. 193—194°, [a]_D²⁵ —43·0° in H₂O, by way of the tetra-acetate (24·6%), m.p. 116—117°, [a]_D³⁵ —19·0° in C₆H₆; is similarly obtained. The procedure using (I) and 20·d₁ and 20·d₂ and 20·d₂ and 20·d₃ and 20·d₂ and 20·d₃ and 20·d₃ and 20·d₃ and 20·d₃ and 20·d₃ a Constituents of the Chinese drug "chih-shih" (Citrus fusca, Lour., of the family Rutaecee); derivatives of hesperitin. L. C. Waung (J. Pharm. Soc. Japan, 1940, 60, 164—168).— Extraction of the fruits of C. fusca, Lour., with warm EtOH gives 6—7% of material, C₂₈H₃₄O₁₅, m.p. 236—237°, identical with the new hesperidin (I) of Kolle and Gloppe (A., 1936, 970). Hydrolysis (2% HCl or H₂SO₄) of (I) gives hesperitin (II), m.p. 224—226° (oxime, m.p. 230—231°). (II) is transformed by cold Ac₂O containing a trace of conc. H₂SO₄ into the monoacetate, m.p. 127°, which does not give a colour with FeCl₃ but becomes cherry-red under the influence of Mg + HCl, by Ac₂O at 100° into the diacetate, m.p. 127—129°, which gives a red colour with Mg + HCl and a dark violet colour with FeCl₃, and by NaOAc and boiling Ac₂O into a tri-, m.p. 165—167° (which is not coloured by Mg + HCl or by FeCl₃), and a tetra-acetate, m.p. 104—106°, which gives no colour with FeCl₃ but a positive reaction with Mg + HCl. The product of the action of an excess of CH₂N₂ on (II) in Et₂O is separated by MeOH into Me₂ esters, m.p. 133—136° (III) and 153—155° (IV) respectively, and a Me₁ ester, m.p. 161—163°, all of which give positive reactions with FeCl₂ and with Mg + HCl. (III) and (IV) are transformed by Ac₂O and concn. H₂SO₄ into the monoacetate, m.p. 153—154·5°. Glucose and rhamnose are obtained by hydrolysis of (I). Glycerolysis of starch. Mol. wt. and viscosity of the products. Y. Tsuzuki (Bull. Chem. Soc. Japan, 1941, 16, 161—170).—Increasing the duration or temp. (180—200°) of heating potato, wheat, or rice starch in glycerol causes greater decrease in a and $\eta_{\rm sp.}$ of the product and its acetate and greater increase in (a) the glycerol content of the product and its acetate and (b) the Ac content of the acetate. The mol. wt. calc. from the glycerol content (end-group) agrees approx. with that determined by cryoscopy in $({\rm CH_2Br})_2$. The equation, $\eta_{\rm sp.}/c = K_m M + k$ ($k = {\rm const.}$), gives K_m independent of chain length (cf. Meyer et al., A., 1935, 1318). Wheat starch degrades more easily than does rice starch. Hydrolysis and catalytic oxidation of cellulosic materials. R. F. Nickerson (*Ind. Eng. Chem.*, 1941, 33, 1022—1026; cf. B., 1941, II, 111).—Curves relating time (t) and CO₂ evolved (C) are recorded for the hydrolysis of celluloses (I) of various origins and their derivatives by boiling HCl (2·4) + FeCl₃ (0·6 mol. per l.). With cotton-(I) and its rayon and other derivatives and linen-(I), t (corr. for the induction period of 0·4 hr.) c C, but with wood-(I) and its rayons the curves consist of two linear portions of different slopes. They indicate
that on hydrolysis the formation of hydrocellulose results in a loss of available glucose; that mercerisation of cotton or dispersion of it in $\text{Cu}(N\text{H}_3)_4$ increases the availability of glucose by increasing the amount of non-resistant (I) above the normal $\sim 10\%$; and that the proportion of easily hydrolysed material in wood-(I) is > in cotton-(I). The theory that (I) consists entirely of chains of anhydroglucose units in various degrees of association, from a dense cryst. to an amorphous easily hydrolysed fraction, is confirmed. Depolymerised cellulose and its hydrolysis. A. Buevskoi (J. Appl. Chem. Russ., 1940, 13, 1649—1659).—Depolymerisation is effected by treatment with 65—80% $\rm H_2SO_4$ at $\rm -13^\circ$ and 20°. The mol. wt. of the products falls with increasing [$\rm H_2SO_4$], temp., and duration of contact. Products of the mol. wt. 83,400 to 505 were isolated by fractional pptn. methods. The velocity of hydrolysis of the depolymerisation products is independent of their mol. wt.; it is, however, α their solubility, rising abruptly with transition to homogeneous systems. Manufacture of primary amines.—See B., 1941, II, 294. Configurational relationships of aliphatic amines. P. A. Levene and M. Kuna $(f.\ Biol.\ Chem.,\ 1941,\ 140,\ 259-265), -$ a-Methylheptoic acid, $[a]_D^{25} - 7.8^\circ$, yields successively the chloride, b.p. $67-70^\circ/12\ \text{mm.},\ [a]_D^{25} - 5\cdot1^\circ$, and nitrile, b.p. $71-73^\circ/14\ \text{mm.},\ [a]_D^{25} - 14\cdot9^\circ$, and a-amino- β -methylheptane, b.p. $105-106^\circ/113\ \text{mm.},\ [a]_D^{25} + 3\cdot04^\circ\ (\text{hydrochloride},\ [a]_D^{25} + 2\cdot0^\circ\ \text{in}\ H_2\text{O})\ (\text{with the sec. amine, b.p. }90-100^\circ/1\ \text{mm.},\ [a]_D^{25} + 9\cdot56^\circ).\ n\text{-}C_5H_{11}\text{CHMe}\cdot[\text{CH}_2]_3\text{-Br},\ [a]_D^{27} + 2\cdot5^\circ, \text{with KCN yields }\delta$ -methyldeconitrile, b.p. $106-110^\circ/11\ \text{mm.},\ [a]_D^{25} + 1\cdot46^\circ,\ \text{reduced}\ (\text{Raney Ni})\ \text{to inactive }\alpha\text{-amino-}z\text{-methyldecane}\ (\text{inactive hydrochloride}).\ a\text{-Ethylhexoic acid,}\ [a]_D^{25} - 3\cdot54^\circ,\ \text{yields successively the chloride,}\ b.p. <math>62-64^\circ/10\ \text{mm.}$ $[a]_D^{25} - 1\cdot63^\circ,\ \text{and nitrile,}\ b.p. 98-100^\circ,\ [a]_D^{25} - 4\cdot80^\circ,\ \text{and a-amino-}\beta\text{-ethylhexane,}\ b.p. <math>98-99^\circ/90\ \text{mm.}\ [a]_D^{25} - 4\cdot80^\circ,\ \text{and a-amino-}\beta\text{-ethylhexane,}\ b.p. <math>98-99^\circ/90\ \text{mm.}\ [a]_D^{25} - 0\cdot52^\circ$ (hydrochloride, $[a]_{5875\cdot6}^{256} - 1\cdot07^\circ$ in $H_2\text{O}$). $d\text{-Nonan-}\delta\text{-ol, b.p.}\ 99^\circ/12\ \text{mm.}\ [a]_D^{25} - 1\cdot72^\circ,\ -azido-,\ \text{b.p.}\ 100^\circ/23\ \text{mm.}\ [a]_D^{25} - 0\cdot19^\circ,\ \text{and }-amino-nonane,\ \text{b.p.}\ 113-114^\circ,\ [a]_{5461}^{2561} + 0\cdot52^\circ$ (A., 1937, II, 447) (hydrochloride, $[a]_{2641}^{25} - 0\cdot94^\circ$ in $H_2\text{O}$). Rotations of some configurationally related amines are tabulated. [a] are homogeneous except where otherwise stated. Manufacture of quaternary ammonium compounds.—See B., 1941, II, 250. Preparation of β -ethylaminoethanols.—See B., 1941, II, 295. Manufacture of monosodium glutamate from gluten.—See B., 1941, II, 296. Chondrosin. P. A. Levene (J. Biol. Chem., 1941, 140, 267-277).—Chondrosin Me ester hydrochloride (I), m.p. $165-170^{\circ}$, $[a]_D^{30}+39\cdot2^{\circ}$ in MeOH, is reduced (Raney Ni under pressure) to Me d-chondrosaminido-l-gulonate; the N-Ac derivative of the hepta-acetate (Ac₂O in C₅H₅N), m.p. 122° , $[a]_D^{25}-21\cdot3^{\circ}$ in EtOH, is methylated (Me₂SO₄, then CH₂N₂, then MeI-Ag₂O) to Me N-acetyl-d-chondrosaminido-l-gulonate Me₇ ether, m.p. 67° , $[a]_D^{25}-48^{\circ}$ in EtOH, reduced (Cu chromite at 175° under pressure) to N-acetyltrimethylchondrosaminido-tetramethylsorbitol, m.p. 55-57, $[a]_D^{30}-44\cdot2^{\circ}$ in CHCl₃. The N-acetylhexa-acetate (Ac₂O + NaOAc), m.p. $99-100^{\circ}$ (softening at 98°), $[a]_D^{25}+12\cdot2^{\circ}$ in CHCl₃, of (I) is methylated (as above) to N-acetylhexamethylchondrosin Me ester, a syrup, $[a]_D^{25}-5\cdot2^{\circ}$ in CHCl₃. Methionine and its derivatives. I. Detection. Y. Tsuchiya (J. Agric. Chem. Soc. Japan, 1941, 17, 465—475).— When MeSH is passed into a solution of 0.01—0.02 g. of isatin in 100 c.c. of conc. $H_2\mathrm{SO}_4$ the yellow colour of the solution becomes grass-green. The reaction is inhibited by $H_2\mathrm{S}$. 0.2 mg. of methionine (I) can be detected as follows by this reaction: 0.2—100 mg. of dried sample, mixed with 0.45—0.75 g. of NaOH and a little $H_2\mathrm{O}$, is fused for 1—2 min. The melt is treated with dil. acid and the gases evolved are passed over Pb(OAc)₂ and then through the special reagent. Among the naturally occurring NH_2 -acids only (I) gives the reaction, which is not given by mixtures of NH_2 -acids and carbohydrates. A mixture of cystine and betaine gives the reaction and also compounds which contain the SMe group such as SMe·[CH₂]₂·CH(OH)·CO₂H, SMe·[CH₂]₃·NH₂, and SMe·[CH₂]₃·OH; oxidised derivatives of (I) such as methionine sulphoxide, homocystine, and β -methylsulphonylpropionic acid yield only H₂S and do not give the reaction, which appears to be sp. for MeSH. J. N. A. Synthesis of the aspartic acid analogue of glutathione (asparthione). G. M. Miller, O. K. Behrens, and V. Du Vigneaud (J. Biol. Chem., 1941, 140, 411—415).—N-Carbobenzyloxy-a-benzylaspartyl chloride and S-benzylcysteinylglycine Me ether in CHCl₃ at room temp. afford N-carbobenzyloxy-a-benzyl-β-aspartyl-S-benzylcysteinylglycine Me ether, m.p. 153°, hydrolysed (N-NaOH in dioxan) to the acid, m.p. 168—170°. This is converted by Na in liquid NH₃ into β-aspartylcysteinylglycine (asparthione), [a]₂²⁵ —29·0° in H₂O. H. W. Production of urea from ammonia and carbon dioxide containing inerts.—See B., 1941, II, 295. Dimorphism of bromodiethylacetylcarbamide. A Watanabe (J. Pharm. Soc. Japan, 1940, 60, 163—164).—Bromodiethylacetylcarbamide is obtained as a rhombic holohedral variety (A) by slow crystallisation of technical adalin (I) from MeOH or COMe₂ and as a monoclinic holohedral form (B), m.p. 118°, by rapidly cooling a somewhat more conc. solution of (I); crystallographic and optical data are recorded. A and B are stable at room temp. but at 70° A passes rapidly into B so that its true m.p. cannot be determined. A and B have the composition, C₇H₁₃O₂N₂Br. H. W. Oxidising action of selenious acid. I. Organic sulphur compounds. A. E. A. Werner (Sci. Proc. Roy. Dublin Soc., 1941, 22, 387—392).—Mono-, di-, and tri-alkyl- and mono-acylthiocarbamides, and thioamides with H₂SeO₃ give Se or Se + S. Strong acid suppresses the formation {by decomp. of [NRR'·C(NR')·S]₂} of S, and in very strongly acid solutions no reduction occurs. Diacetylthiocarbamides react only in strongly acid solution. In EtOH or weak acid, thioalcohols give no ppt., thioacids a complex of H₂SeO₃ with the thioacid, but in very strongly acid solutions both give Se. Compounds containing S but not SH do not reduce H₂SeO₃. The significance of these results is discussed. Synthesis of methylenediureide and its polymeride-homologues. A. A. Vanscheidt, Z. K. Naumova, and E. P. Melnikova (J. Gen. Chem. Russ., 1940, 10, 1968—1972).— CH₂(NH·CO·NH₂)₂ condenses with CH₂O in aq. Ba(OH)₂ to the compound, CH₂(NH·CO·NH·CH₂·OH)₂, which with CO(NH₂)₂ in dil. HCl at room temp. yields the compound, CO(NH·CH₂·NH·CO·NH₂)₂, m.p. 227°, with CH₂(NH·CO·NH·CH₂·NH·CO·NH₂)₂. R. T. Preparation of aceto- and benzo-nitriles. Y. S. Gwan (J. Indian Chem. Soc., 1941, 18, 164).—NH₂Ac and NH₂Bz with p-C₆H₄Me·SO₂Cl at 130—135° give good yields of the nitriles. A. Li. Synthesis of succinonitrile.—See B., 1941, II, 251. Action of olefine oxides on halides of arsine. II. M. S. Malinovski (J. Gen. Chem. Russ., 1940, 10, 1918—1922).— AsCl₃ saturated at room temp. with (CH₂)₂O yields tri-(β-chloroethyl) arsenite, b.p. 190—195°/8 mm., with di-(β-chloroethoxy)arsine chloride, b.p. 168—175°/10 mm., and β-chloroethoxyarsine dichloride, b.p. 125—135°/10 mm. Epichloroethoxyarsine dichloride, b.p. 125—135°/10 mm. Epichloroethoxyarsine dichloride, b.p. 105—chloro-α-chloromethylethyl) arsenite, b.p. 188—193°/10 mm., and β-chloro-α-chloromethylethoxyarsine dichloride, b.p. 105—120°/10 mm. Propylene oxide (II) and AsCl₃ (10 days at room temp.) yield di-(β-chloropropoxy)arsine chloride, b.p. 185—190°/5 mm. AsPhCl₂ and (CH₂)₂O (10 days at room temp.) afford phenyldi-(β-chloroethoxy)arsine, b.p. 190—193°/5 mm. AsPhCl₂ and (I) or (II) (10 days at room temp.) yield phenyl-β-chloro-α-chloromethylethoxyarsine chloride, b.p. 218—222°/5 mm., or phenyl-β-chloropropoxyarsine chloride, b.p. 190—195°/10 mm. R. T. Co-ordinated mercury compounds with ethylene- and propylene-diamines. P. Neogi and K. L. Mondal (J. Indian Chem. Soc., 1941, 18, 146—148).—Equimol. amounts of NH₂·[CH₂]₃·NH₂ (pn) and Hg salts in EtOH yield H₂O-insol. propylenediaminemercuric chloride, m.p. >250° (decomp.), bromide, and mirate. NH₂·[CH₂]₃·NH₂ salts with Hg salts in H₂O or EtOH yield H₂O-sol. compounds, [Hg(pn),2HCI]Cl₂, [Hg(pn),2HBr]Br₂, [Hg(pn),2HI]I₂, and [Hg(pn),2HNO₃](NO₃)₂. NH₂·[CH₂]₂·NH₂,2HNO₃ similarly yields compounds [Hg(en)](NO₃)₂ and [Hg(en),2HNO₃](NO₃)₃. ## II.—HOMOCYCLIC. cycloHexene derivatives.—See B., 1941, II, 251. Distribution of multiple linkings in ring systems, IV. Sixmembered rings with the allene system of linkings. N. A. Domnin (J. Gen. Chem. Russ., 1940, 10, 1939—1949).—2'-Methylcyclohexanone in light petroleum and PCl₅ yield 2:2-dichloro-1-methylcyclohexanone, b.p. 62—64°/8 mm, which with 20% KOH in EtOH (5 hr. at the b.p.) affords 2-chloro-1-methyl-Δ¹-cyclohexene, b.p. 44°/9 mm. This is chlorinated in CHCl₃ in presence of NaHCO₃ to 1:2-dichloro-1-methyl-Δ²-cyclohexene,
b.p. 80—82°/8 mm., and 1:2:2-trichloro-1-methylcyclohexane, b.p. 100—102°/8·5 mm. Benzcyclooctatetraenes. I. W. S. Rapson and R. G. Shuttleworth (J.C.S., 1941, 487—490).—o-Iodobenzanitide, m.p. 142·5°, and PCl₅-PhMe, followed by SnCl₂-HCl-Et₂O (ice-cooling), afford o-C₆H₄I·CHO (I), converted by CH(OEt)₃-EtOH-NH₄Cl into its Et₂ acetal, b.p. 159°/23 mm. (I) and Cu-bronze in an inert atm. at 200—220° give diphenyl-2: 2'-dialdehyde, m.p. 63°, but attempts to prepare 1:2:3:4-dibenz-A¹:3:5²-cyclooctatetraene (II) from it by reaction with succinic acid or Et₂ succinate failed. o-Iodocinnamaldehyde [from (I) and MeCHO in EtOH-NHEt₂] and o-C₆H₄I·CH₂·CO₂H (improved prep.) (Et ester, m.p. 42—43°) with PbO-Ac₂O at 150—160° give aδ-bis-o-iodophenyl-Δαγ-butadiene (III), isomerides, m.p. 249—250° (III) and 180—181° (IV), not converted into (II). (III) and Cu-bronze alone at 280° or in a little boiling quinoline yield intermol. condensation products (a substance, C₃₂H₂₄I₂, m.p. 200—202°, is isolable); in more dil. solution trans-aδ-diphenyl-Δαγ-butadiene is formed. Cu-bronze and (IV) at 300° in an inert atm. (no reaction in quinoline) afford a product, ? C₄₈H₃₆I₂, m.p. ~200°. 2:2'-Dibromodiphenyl and Na give Ph₂ (cf. Mascarelli et al., A., 1934, 62). CHNaAc-CO₂Et and o-C₆H₄I·COCl in Et₂O yield a product, hydrolysed by dil. H₂SO₄ to o-C₆H₄I·COMe, b.p. 112°/4 mm. (semicarbazone, m.p. 178·5—179·5°), and o-C₆H₄I·CO₂Et, b.p. 122°/4 mm., in approx. equimol. proportions. Condensation of alcohols with aromatic hydrocarbons in presence of aluminium chloride. Condensation of cycloheptanol with benzene and toluene. N. G. Sidorova and I. P. Tzukervanik (J. Gen. Chem. Russ., 1940, 10, 2073—2076).—Suberol and C₆H₆ condensed in presence of AlCl₃ yield cycloheptylbenzene, b.p. 132—135°/28 mm., nitrated to p-nitrocycloheptylbenzene, b.p. 203—210°/38 mm., from which p-cycloheptylaniline, an oil (Bz, m.p. 173°, and Ac derivative, m.p. 136—137°), is prepared. With PhMe suberol yields a mixture of m- and p-cycloheptylloluene. R. T. Polymerisation of styrene in heavy alcohol. (Mechanism of chain polymerisation of styrene in solution.) T. Yosida and T. Titani (Bull. Chem. Soc. Japan, 1941, 16, 125—136).— Exchange of H of CHPh:CH₂ (I) or polystyrene is not observed when freshly prepared (I) (2 c.c.) is heated in a sealed tube for 22 hr. at 130° with 3.6% or 10.4% EtOD or with 9.8% or 11.5% C₂H₄D·OH. The mechanism of polymerisation is discussed. J. L. D. Free aryl radicals in the Fittig and Ullmann reactions. W. S. Rapson and R. G. Shuttleworth (Nature, 1941, 147, 675).—A series of Ullmann, Fittig, and related reactions showed that one of the products formed on treating ArX (X = Cl, Br, or I) with Na or Cu is the compound, ArH. This is attributed to the formation of free aryl radicals in the reaction, from which ArH is formed either by reaction with the diluent when present, or by dismutation when the diluent is absent. The isolation of diphenyl-2- and -4-carboxylic acids from the reaction between PhI and EtOBz in presence of Cu-bronze supports this view. L. S. T. Electrolysis of iodonium compounds. Attempt to prepare iodonium amalgam. E. V. Zappi and R. Mastropaolo F. (Anal. Asoc. Quim. Argentina, 1941, 29, 88—94).—No amalgam is obtained by electrolysis, at 45 v. and 0° with an agitated Hg cathode, of diphenyl-, o- and p-dianisyl-iodonium hydrates. The products isolated consist of the corresponding aryl iodide and diaryl. F. R. G. Velocity of decomposition of naphthalene, tetra- and decahydronaphthalene, and dodecane during destructive hydrogenation.—See A., 1941, I, 421. Preparation of a-chloro-a $\beta\beta$ -triphenylethylene. W. Tadros (Nature, 1941, 148, 53).—SO₂Cl₂ (35 g.), CPh₂:CHPh (prep. described) (50 g.) in CCl₄ (25 c.c.), and Bz₂O₂ (0·2 g.) are refluxed on a water-bath for 45 min. Excess of SO₂Cl₂ is removed by distillation under reduced pressure, and the oily residue recryst. twice from EtOH. The mother-liquors are conc., and the oil that separates is recryst. from EtOH. The yield of CPh₂·CClPh, m.p. 117°, is 45 g. L. S. T. Certain peculiarities of reactions involving formation of conjugated double linkings. Preparation of $\delta \varepsilon$ -diphenyl- $\Delta^{\alpha\gamma\varepsilon\eta}$ octatetraene from γ-benzoylpropyl bromide. S. N. Chitrik (J. Gen. Chem. Russ., 1940, 10, 2095—2097).—Bz·[CH₂]₃·Br and Na-Al in moist Et₂O yield aθ-dibromo-δε-diphenyloctane-δε-diol, m.p. 160—161°, converted by fusion in presence of sulphanilic acid into δε-diphenyl-Δαγεη-octatetraene, m.p. 84- Preparation of methyl halide [halogenomethyl] derivatives of aromatic hydrocarbons.—See B., 1941, II, 297. Nitrous acid as a nitrating and oxidising agent. IV. alkylanilines. H. H. Hodgson and D. E. Nicholson (J.C.S., alkylanilines. H. H. Hodgson and D. E. Nicholson (J.C.S., 1941, 470—475; cf. A., 1936, 1501).—The behaviour of N-dialkylanilines towards excess of HNO₂ (2 or 5 times that required for nitrosation) in 5% or 15—16% HCl at 0° is studied. NPhMe₂ thus gives a 3:1 mixture of solid p-NO·C₆H₄·NMe₂, HCl (I) and p-NO₂·C₆H₄·NMe₂; the filtrate, when kept, affords p-NO₂·C₆H₄·NMe·NO (II), a little 2:5:1-(NO₂)₂C₆H₃·NHMe (indicates some m-nitration), and still less (?) (NO₂)₃C₆H₂·NMe₂. p-Nitrosation and p-nitration are considered to be simultaneous initial reactions. NPhEt readily. sidered to be simultaneous initial reactions. NPhEt, readily sidered to be simultaneous initial reactions. NPfiltz readily affords p-NO₂·C₆H₄·NEt·NO (III), whilst NHPhMe(Et) afford the respective N-NO-derivative, and thence (II) [or (III)]. NPhMeEt affords p-nitrosomethylethylaniline, m.p. 69°, converted on long keeping (with HNO₂) into (II) + (III) (~83:17). CH₂Ph·NPhMe (in aq. HCl-AcOH-NaNO₂) gives a mixture of 4-nitro- (IV) and some 2:4-dinitro-benzyl-methylaniline (VV) the formula being converted by HNO₂ into methylaniline (\mathbf{V}), the former being converted by \mathbf{HNO}_2 into (mainly) (\mathbf{V}) and a little $p\text{-NO}_2\cdot \mathbf{C}_0\mathbf{H}_4\cdot \mathbf{N}(\mathbf{NO})\cdot \mathbf{CH}_2\mathbf{Ph}$ (\mathbf{VI}). (\mathbf{V}) and boiling conc. HCl yield 2:4:1-(\mathbf{NO}_2) $_2\mathbf{C}_0\mathbf{H}_3\cdot \mathbf{N}\mathbf{HMe}$, whereas (\mathbf{IV}) is similarly unchanged. $\mathbf{CH}_2\mathbf{Ph}\cdot \mathbf{NPhE}$ readily whereas (IV) is similarly unchanged. Craze in reacts to give (VI). In no case is the CH₂Ph group expelled by HNO₂ and Et is more readily removed than is Me. An improved prep. of (I) is described. A. T. P. Production of diarylamines.—See B., 1941, II, 332. Cu and Co^{III} 1-nitroso-β- and 2-nitroso-α-naphthylamine.— See A., 1941, I, 429, 430. N¹-β-Aminoethyl- and N¹-β-diethylaminoethyl-sulphanilamide. L. H. Amundsen and L. A. Malentacchi (Science, 1941, 93, 286).—p-NHAc·C₈H₄·SO₂Cl with NHAc·CH₂·CH₂·NH₂ and NEt₂·CH₂·CH₂·NH₂ in CHCl₃ + aq. NaHCO₃ followed by hydrolysis (6N-HCl) gives N¹-β-aminoethyl- and N¹-β-diethylaminoethyl-sulphanilamide dihydrochloride, m.p. 217-220° (decomp.) and 190-195° (decomp.), respectively. L. S. T. Sulphanilylguanidine. T. Dewing and S. Smith (Nature, 1941, 148, 24).—Fusion of sulphanilamide with dicyanodiamide gives sulphanilylguanidine and not phenylguanidine-4-sulphonamide (cf. A., 1938, III, 937; Marshall *et al.*, A., 1941, III, 786). L. S. T. Theory of aromatic substituents and rearrangement with special reference to the benzidine change. E. D. Hughes and C. K. Ingold (J.C.S., 1941, 608—613; cf. A., 1926, 833).—Views expressed previously are modified. With the recognition of the quantal theory of mesomerism, theories involving "chronology" of electron displacements (those which specify a succession of electron displacements in an identical nuclear framework) are superseded. The mechanism of the benzidine rearrangement is discussed (cf. A., 1933, 1044; Robinson, J.C.S., 1941, 220). An argument against homolysis of the N-N bond is that the benzidine change does not occur under conditions in which this form of dissociation is known to be considerable; heterolysis is assumed. Homolysis and heterolysis refer to bond fission according to schemes X. Y and Xi-Y, respectively (dots denote shared electrons), independently of states of electrification of X and Y and any concomitant covalency changes. The transition state, although largely ionic, is partly covalent; the electronic system of the transition state is examined in detail. Stereochemical aspects of the benzidine change are discussed, and A. T. P. also the nature of the semidine rearrangement. Comparison of hydrogenation of aliphatic and alicyclic azines. I. Azines of hexahydrobenzaldehyde and heptazines. I. Azines of hexahydrobenzaldehyde and heptaldehyde. II. Azines of cyclobexanone and ethyl propyl ketone. P. G. Ugriumov (J. Gen. Chem. Russ., 1940, 10, 1985—1994, 1995—1998).—I. Hexahydrobenzaldehyde and N₂H₄ yield the azine (I), b.p. 140—141°/3 mm., 166—167°/11 mm. The velocity of hydrogenation (Pt-black in EtOH) of (I) is considerably < of diheptylideneazine (II); the chief product formed is NN'-dihexahydrobenzylhydrazine, b.p. 140—142°/3 mm. [hydrochloride, m.p. 193—194°; dihydrochloride, m.p. 205—206° (decomp.); NN'-Bz₂ derivative, m.p. 146—146·5°], oxidised by PbO in Et₂O to ω-azohexahydrotoluene, (N·CH₂·C₆H₁₁)₂, b.p. 116—117°/3 mm., 164—166°/18 mm. (II) similarly yields NN'-di-n-heptylhydrazine, b.p. 118—119°/3 mm. (dihydrochloride, m.p. 160—170°; NN'-Bz₂ derivative, m.p. 48—49°), oxidised to a-azoheptane, (N·C₇H₁₅)₂, b.p. 3 mm. $(ainyarochioride, m.p. 160-170^\circ; NN-Bz_2$ derivative, m.p. $48-49^\circ$), oxidised to a-azoheptane, $(:N\cdot C_7H_{15})_2$, b.p. $110-111^\circ/2\cdot 5$ mm., $144-145^\circ/17$ mm. II. The velocity of hydrogenation of cyclohexanoneazine is slightly > of $(CEtPr.N)_2$, which yields NN'-diethyl-NN'-di-n-propylhydrazine, b.p. $99\cdot 5-100^\circ/10$ mm. R. T. Diazo-compounds. IV. Effect of polyhydric alcohols and of certain carbohydrates on tetrazotisation of
m-phenylene-diamine. V. V. Kozlov and B. I. Stepanov (J. Gen. Chem. Russ., 1940, 10, 1510—1523).—The yield of tetrazonium derivative obtained from m-C₆H₄(NH₂)₂ in presence of polyhydric alcohols and of the the presence of polyhydric alcohols and al hydric alcohols (A) rises with increase in the no. of OH in the mol. of, and with increasing concn. of, (A). At the same mole concn. the effect of various (A) increases in the order glycol < glycerol < glucose < mannitol < maltose < sucrose < raffinose. R. T. Structure and properties of the so-called p-diazoimines. A. M. Simonov (J. Gen. Chem. Russ., 1940, 10, 1220—1229).— The following mesomerism of diazoimines is suggested: $NR \cdot C_6H_4 \cdot N : N \Rightarrow NR : C \xrightarrow{CH:CH} C \xrightarrow{N}$, in which the second mesomeride is bipolar. Coupling with OH-compounds takes place in the same way as with ordinary diazo-compounds. The following are described: compounds of 2': 4'-dinitro-4-diazodiphenylamine (I) with a-C₁₀H₇·NH₂, m.p. 257—258°, with CH₂Ac·CO₂Et, m.p. 203·5—204°, with CH₂Ac·CO₂Et, m.p. 180·5—182·5° (decomp.), and with 1-phenyl-3-methyl-5-pyrazolone, m.p. 283°. (I) and p-O:C₆H₄:O in aq. NaOAc at 30° yield 2-(p-2': 4'-dinitroanilinophenyl)-p-benzoquinone, m.p. 241·5—242·5°. 2': 4'-Dinitro4-dimethylaminodiphenylamine methiodide, m.p. 182° (decomp.), is readily converted by KOH in MeOH into the com- pound, 2:4:1-(NO₂)₂C₆H₃·N·C₆H₄·NMe₃, m.p. 218·5—220° (decomp.). Alkylpyrocatechols.—See B., 1941, II, 333. Com dinitroso-resorcinol and -orcinol and Com oximinodimedone.—See A., 1941, I, 430. Syntheses of stilbene derivatives. II. Synthesis of trans-4: 4'-dihydroxy-a\(\theta\)-diethylstilbene. S. Kuwada, Y. Sasagawa, and M. Nisikawa (J. Pharm. Soc. Japan, 1940, 60, 224—226; cf. A., 1940, II, 215).—OH-CHEt-COEt and p-OMacC H. Marga (Transport of the Coet). Cf. A., 1940, 11, 215).—OH-CHEF-COEt and p-OMe-C₈H₄-MgBr (**I**) give γδ-dihydroxy-γ-p-anisylhexane, b.p. 143—144°/0·5 mm., m.p. 83—84° (monoacetate, m.p. 101—102°), isomerised by hot 30% H₂SO₄ to γ-p-anisylhexan-δ-one, b.p. 140—155°/14 mm. (oxime, m.p. 133·3°). This and (**I**) afford γδ-di-p-anisylhexan-γ-ol, m.p. 115—117°, which is dehydrated to γδ-di-p-anisyl-Δγ-hexne, demethylated (Spāth) to γδ-di-p-hydroxyphenyl-Δγ-hexene (trans-4:4'-dihydroxyaβ-diethylstilbene). 4:5-Methylenedioxychrysene. L. H. Briggs and (Miss) J. M. Wilson (J.C.S., 1941, 500—501).—α-C₁₀H₇·CH₂·CO₂K J. M. Wilson (J.C.S., 1941, 500—501).—a-C₁₀H₇·CH₂·CO₂K and 6-nitropiperonal in Ac₂O at 100° give 2-nitro-, m.p. 203·5—206·5°, and thence [Fe(OH)₂-aq. NH₃] 2-amino-4: 5-methylenedioxy-a-1'-naphthylcinnamic acid, m.p. 161·5—163·5° (decomp.), which when diazotised (H₂SO₄-C₅H₁₁·O·NO at 25—30°) and treated with Cu powder + Cu-bronze in aq. NaH₂PO₂ at 45° to b.p. gives a crude acid, decarboxylated (Cu-bronze at 200—240° |0·04 mm.) to 4:5-methylenedioxychrysene, m.p. 222—223° (picrate, m.p. 202—202·5°). A. T. P. Sinomenine. XLVIII. Degradation of sinomenolquinone dibenzoate to 2:3:3':4'-tetramethoxydiphenyl. K. Goto and H. Shishido (Bull. Chem. Soc. Japan, 1941, 16, 170—172).—Sinomenolquinone dibenzoate (cf. A., 1929, 1187) and H₂O₂ in warm AcOH give 5:6'-dibenzoyloxy-4:5'-dimethoxy-diphenic acid, m.p. 233—235° (decomp.) (Me₂ ester, m.p. 170—173°), converted by hot KOH-MeOH-H₂O in H₂ and then Me₂SO₄-KOH into 4:5:5':6'-tetramethoxydiphenic acid, m.p. 206—208° (could not be resolved; Me₂ ester, sinters at 124°, m.p. 132°), which with Cu powder in quinoline at 240—250° gives 2:3:3':4'-tetramethoxydiphenyl, m.p. 96—100°. 2: 4-Dinitro-5-naphthylaminophenols.—See B., 1941, II, 332. 4:6-Diamino-3-methoxytoluene. K. I. Bogatscheva (J. Appl. Chem. Russ., 1940, 13, 1606—1607).—4:6:1:3-(NO₂)₂C₆H₂Me·OMe is reduced by Fe in aq. EtOH-HCl (I hr. at the b.p.) to 4:6-diamino-3-methoxytoluene, m.p. 101°; with H₂SO₄-HNO₃ at 120° it yields 2:4:6-trinitro-3-methoxytoluene, m.p. 92°. R. T. Ephedrine alkanesulphonates.—See B., 1941, III, 269. Action of alkali on chemical and physiological properties of adrenaline. F. H. Shaw (Austral. J. Exp. Biol., 1941, 19, 151—155).—During the action of alkali on adrenaline (I) an intermediate is rapidly formed which is probably the corresponding o-quinone; it retains the physiological activity of (I). After 2—5 min. action, the physiological activity has disappeared; the final product is not adrenochrome and its exact nature is unknown. D. M. N. Physico-chemical study of products of oxidation of adrenaline. I. Isolation of adrenochrome. J. S. Rozum and S. S. Urazovski (J. Gen. Chem. Russ., 1940, 10, 1573—1579).— Adrenochrome is shown by chromatographic analysis to be a mixture of < 7 substances. Of these, a brown substance predominates. At any given $\rho_{\rm H}$ a state of dynamic equilibrium exists between all these substances. R. T. Sterols. XXII. Identity of bessisterol and spinasterol. S. Kuwada and S. Yosiki (J. Pharm. Soc. Japan, 1940, 60, 161—162; cf. A., 1940, II, 218).—Comparison of a-spinastenol, spinastanol, and spinastanone and their derivatives with the corresponding compounds from a-bessistaenol establishes the identity of bessisterol with spinasterol. H. W. Sterols. XXIII. Sterol from the seeds of Momordica Cochinchinensis, Spreng. S. Kuwada and S. Yosiki (J. Pharm. Soc. Japan, 1940, 60, 232—233).—Extraction of the seeds with Et_2O followed by hydrolysis of the extract and purification of the unsaponifiable matter (A) through the 3:5-dinitrobenzoate and then chromatographically (Al $_2\text{O}_3$) leads to the isolation of a sterol, $\text{C}_{28}\text{H}_{46}\text{O}$, m.p. 156·5—163·5°, $[a]_2^{12}$ +5·81°. Chromatography with the crude cryst. material from (A) gives a sterol, $\text{C}_{28}\text{H}_{46}\text{O}$,0·5H $_2\text{O}$, m.p. 163·5—167·5°, $[a]_2^{12}$ +4·04° (acetate, m.p. 174·5—176·5°; benzoate, m.p. 196—198°), probably identical with cucurbitasterol (Lendle, A., 1938, III, 358). M.p. are corr. Pentacyclic steroids. O. Rosenheim (Nature, 1941, 147, 776—777).—Transannular tautomeric changes explain some of the reactions of $cis-\Delta^5$ -cholestene-3: 4-diol, the formation of i-cholesterol from cholesterol, and the migration of Bz in 6-chloro-3-benzoyloxy- Δ^4 -cholestene. L. S. T. a-Œstradiol dimethyl and 17-methyl ether and related compounds. Y. Urushibara and T. Nitta (Bull. Chem. Soc. Japan, 1941, 16, 179—182).—Figures given in parentheses below are min. œstrogenic doses (rats; $\mu g.$ in oil). The Na derivative of a-œstradiol 3-Me ether (I) (4—5), m.p. 95—97°, and Me₂SO₄ in boiling Et₂O and later C₆H₆ give the Me₂ ether (<10, >5), m.p. 161—162°, also obtained from œstrone Me ether (15), Na, and Me₂SO₄ in C₆H₆ and converted by HI–AcOH into a-œstradiol 17-Me ether (<2·5), m.p. 213·5—214·5° (3-benzoate, m.p. 165·5—166·5°; 3-p-toluenesulphonate, m.p. 124·5—125·5°). (I) gives the 17-acetate, m.p. 103·5—104·5°, 17-benzoate, m.p. 131—132°, and 17-p-toluenesulphonate (~100), m.p. 171—172°, di-p-toluenesulphonate, m.p. 172—173°, and 3-benzoate 17-p-toluenesulphonate, m.p. 174–173°, are prepared. Min. effective doses are æstrone 2 and diethylstilbæstrol 0·5 (Me₂ ether 5) μg . Dur- ation of cestrus is recorded for numerous compounds. M.p. are corr. R. S. C. Configurations of cholesterol oxides, Λ^4 -cholestene- and cholestane-3: 6-diols, Y. Urushibara (Bull. Chem. Soc. Japan, 1941, 16, 182—185).—Known reactions establish configurations as follows. Cholesterol α - (I), m.p. 140— 141° , and β -oxide (II), m.p. 136° ; $5(\beta)$ -chloro- $6(\beta)$ -hydroxycopro- stan-3(β)-ol = ''5-chloro-6-hydroxycholestanol''; Δ^4 -cholestene-3(β): 6(β)-, m.p. 257—258°, and -3(β): 6(α)-diol, m.p. 178—179°; cholestane-3(β): 6(β)-, m.p. 194—195°, and -3(β): 6(α)-diol (III), m.p. 216°. This is confirmed by reduction of (I) to (III) by Na–C₅H₁₁-OH. R. S. C. 7-Hydroxy- and 7-keto-cholesterol.—See B., 1941, III, 269. Recovery of pregnanediol.—See B., 1941, III, 269. Zinc dust distillation of benzenoid compounds, Z. Nikuni, H. Hayashi, and S. Tsuji (J. Agric. Chem. Soc. Japan, 1941, 17, 414—418).—Distillation of guaiac resinic acid [a-3-hydroxy-4-methoxyphenyl- δ -4-hydroxy-3-methoxyphenyl- β - γ -dimethyl- Δ -butene] with Zn dust in H₂ yields 2: 3-C₁₀H_{δ}Me₂ and anthracene (I). CHPh.CH·CO₂H yields small amounts of stilbene, whilst CH₂Ph·CO₂H yields distilbene and a trace of (I). In every case an unidentified yellowish oil is also formed. J. N. A. Reaction of acraldehyde with anthracene. A. G. Slobodski and V. I. Chmelevski (J. Gen. Chem. Russ., 1940, 10, 1199—1201).—Anthracene and CH₂·CH·CHO in presence of aq. SO₂ (3 hr. at 130°) yield an oily product, oxidised by Ag₂O to αβ-endo-9: 10-dihydroanthracene-9: 10-propionic acid. Chloralamides. X. Reactivity of α-halogen in α-halogenochloral-nitro- and -bromo-methoxybenzamides. N. W. Hirwe, (Miss) K. D. Gavankar, and B. U. Patil (Proc. Indian Acad. Sci., 1941, 13, A, 371—373).—The customary reactions lead to the following: α-chloro-, m.p. 149—150°, α-methoxy-, m.p. 144°, α-ethoxy-, m.p. 146—147°, α-anilino-, m.p. 168—169°, α-o-toluidino-, m.p. 151—152°, and α-p-toluidino-, m.p. 171—172°, -chloral-5-nitro-2-methoxybenzamide; α-chloro-, m.p. 150—151°, α-bromo-, m.p. 140°, α-ethoxy-, m.p. 147—149°, α-anilino-, m.p. 168—169°, α-o-toluidino-, m.p. 166—167°, α-p-toluidino-, m.p. 175—177°, and α-phenoxy-, m.p. 191—192°, -chloral-5-bromo-2-methoxybenzamide; α-chloro-, m.p. 166—167°, α-anilino-, m.p. 166—167°, α-o-toluidino-, m.p. 166—167°, α-no-toluidino-, m.p. 166—167°, α-no-toluidino-, m.p. 166—167°, α-p-toluidino-, m.p. 173—174°, -chloral-3:5-dibromo-2-methoxybenzamide; α-methoxychloral-3-nitro-2-methoxybenzamide and PCl₅ appear to afford 3:5-dinitro-2-methoxybenzamide 3:5-dini Constitution of erythrin. Y. Sakurai (J. Pharm. Soc. Japan, 1941, 61, 45—46).—Erythrin (I), C₂₀H₂₂O₁₀ (also +1H₂O),
m.p. 148°, from Roccella montagnei from Java or R. sp. from Zanzibar, is converted by NaOAc and boiling Ac₂O into a hexa-acetate, m.p. 85°, and by CH₂N₂ into a Me₃ ether (II), m.p. 111° (triacetate, m.p. 110°). (II), anhyd. COMe₂, and CuSO₄ slowly give isopropylidene-erythrin Me₃ ether (III), m.p. 65°, whereas (I) yields isopropylidene-erythrin, m.p. 105°; both substances readily afford COMe₂ in presence of cold mineral acid. (I) is insol. in alkali carbonate but sol. in alkali hydroxide, by which it is transformed at 40° into Me orsellinate (IV) and r-erythritol (V), whereas in boiling MeOH it gives (IV) and picroerythrin, m.p. 136·5° (lit. 158°), further methanolised to (IV) and (V). (II) is hydrolysed by KOH-EtOH to orsellinic acid Me₂ ether, isoevernic acid, and (V), thus establishing the depside nature of both orsellinic acid components. Carbethoxyisoevernyl chloride is reduced (Rosenmund) to the aldehyde, which is decarboxylated and coupled with orsellinyl chloride Me₂ ether to lecanorylaldehyde Me₃ ether, m.p. 131°, unusually sensitive to light. This is oxidised to the acid, m.p. 179°, the chloride of which with isopropylidene-erythritol (VI) in C₅H₆N gives (III) and thence (II). (VI) is CMe₂·O CH·CH(OH)·CH₂·OH since it is oxidised by Pb(OAC), to CH₂O and glyceraldeby. The (I) is therefore (A). CO.0 supposed conversion of (I) by CO₂C₄H₉O₃ dissolution in AcOH or in (A.) Me alkali with subsequent acidification into the so-called "erythric acid" is erroneous since these operations lead to unchanged (I). 323 Preparation of diarylmaleonitriles. A. H. Cook, J. Downer, and B. Hornung (J.C.S., 1941, 502—506).—2:1-OH·C₁₀H₆·CHO and Al-Hg in moist Et₂O afford (2:1-OH·C $_{10}$ H $_{6}$) $_{2}$ CH $_{2}$, 2: 1-OH·C $_{10}$ H $_{6}$ CH $_{2}$ ·OH, and a small amount of 2: 2'-dihydroxy-1: 1'-dinaphthylethylene, m.p. 252° [Me $_{2}$ ether (I), m.p. 222°]. 2-C $_{10}$ H $_{7}$ ·OMe, (CH $_{2}$ O) $_{3}$, and HCl-AcOH at <15° yield 2-methoxy-1-chloromethylnaphthalene (II), decomp. 120° (loses HCl); polymeric material is obtained at high temp. or from (II) at 120°. HCl is removed from (II) in COMe₂ by AgNO₃-EtOH at 30° to give s-2:2'-dimethoxy-1:1'-dinaphthylethylene, β-form, m.p. 145°; this and (I) are probably cis- and trans-isomerides. (II) and warm aq. COMe₂-NaHCO₃ afford 2: 1-OMe·C₁₀H₆·CH₂·OH, whilst (II) and dil. KOH–EtOH at 40° yield 2-methoxy-1-naphthyl-carbinyl Et ether, b.p. 173—175°/12 mm. (II) is converted by KCN-aq. COMe₂ at 30—35° into 2-methoxy-1-naphthylacetonitrile (III), m.p. 111° (Br-derivative, m.p. 145—146°, prep. by Br-CHCl₃), which does not give the corresponding diarylmaleonitrile with Br or I and bases. 2: 1-OMe·C₁₀H₆·CH(OH)·CN and SOCl₂-C₆H₆ at room temp. yield di-2-methoxy-1-naphthylcyanomethyl ether (IV), m.p. 121°, whereas at higher temp. with excess of SOCl₂, or from (IV), 2- methoxy-1-naphthylchloroacetonitrile, m.p. 130°, is formed. The latter and warm C_5H_5N yield 2-methoxy-1-naphthylcyanomethylpyridinium chloride, m.p. 165° (slight decomp.), converted by aq. Na_2CO_3 into the orange 2-methoxy-1-naphthylcyanomethylpyridinium enimine-betaine, m.p. 150° (decomp.), which at 200°/0.001 mm. gives (III) and 2:2'-dimethoxy-1: 1'-dinaphthylmaleonitrile, two stereoisomerides, a-, m.p. 255°, and β -, m.p. 290° (5% yield of each) (heating with Cu or Cu salts gives octanaphthylporphyrazines; FeCl₃ at 300° or Cu salts gives octanaphthylporphyrazines; FeCl₃ at 300° affords Fe porphyrazine pigments). Cyanomethylpyridinium chloride (V), m.p. 178°, and aq. K₂CO₃ or KOH give the corresponding betaine, which does not decompose to a nitrile; (V) and Bz₂O in CHCl₃-aq. K₂CO₃ yield ω-cyanophenacyl-pyridinium benzoate (cf. Kröhnke, A., 1939, II, 124). Neither (V) nor acetamidopyridinium chloride, m.p. 202—203°, gives any dimeric product on heating. CHClMe-CN affords a pyridinium salt and an unstable betaine. CHClPh-CN and C₂H₆N (2 days) give a-cyanobenzylpyridinium chloride, m.p. 159° and thence the enimine-betaine which at 120°/yac and thence the enimine-betaine, which at 120°/vac. yields diphenylmaleonitrile (~50% yield) (cf. Kröhnke, loc. cit.). Thus dimerisation appears to proceed only with arylhalogenoacetonitriles. CH₂Ph·CH(OH)·CN and PCl₅-C₆H₆ give α-chloro-β-phenylpropionitrile, b.p. 128—130°/13 mm., and thence the betaine, converted into cinnamonitrile. CHPh:CH(OH)·CN and SOCl₂ give α-chloro-γ-phenyl-Δβ-bytenonitrile, has characteristic prodictions and the converted into cinnamonitrile. butenonitrile (no characteristic pyridinium salt or betaine is obtained), which when kept affords (probably) 2:5-diphenyl- obtained), which when kept affords (probably) 2:5-dipmenyl-dihydroterephthalonitrile, m.p. 114°. p-OMe·C₆H₄·CH(OH)·CN and SOCl₂ yield a-chloro-a-p-anisyl-acetonitrile, b.p. 153—155°/13 mm.; the pyridinium salt decomposes to di-p-anisylmaleonitrile, m.p. 186—187°, which gives a porphyrazine with Fe at 280—300°. 2:1-C₁₀H₆Me·CH₂Cl and KCN-85% EtOH give 2-methyl-1-naphthylacetonitrile, m.p. 78°; in presence of much H₂O, 2-methyl-1-naphthylcarbinol, m.p. 137—138°, is formed. Phthalic anhydride.—See B., 1941, II, 334. Preparation of substituted phthalic anhydrides.—See B., 1941, II, 334. Preparation of phenylacetaldehyde. A. K. Schumeiko (J. Appl. Chem. Russ., 1941, 14, 93—95).—Ph·[CH₂]₂·OH in C_6H_6 or PhMe is oxidised by $K_2Cr_2O_7$ - H_2SO_4 (30 min. at room temp.) to CH_2 Ph·CHO (40% yield). R. T. Oxidation of organic compounds with selenium dioxide. VII. Oxidation of substituted acetophenones. N. N. Melnikov and M. S. Rokitzkaja (J. Gen. Chem. Russ., 1940, 10, 1439— 1441).—The velocity of oxidation of C_6H_4R ·COMe by SeO₂ in 75% AcOH at 30° rises in the order R=m-NO₂ < p-Br < p-Cl < H < p-OMe < p-Me < p-I. That of CH₂Ph·COMe is > that of p-C,H,I-COMe. Dispersion spectra of crystalline and amorphous benzo-phenone.—See A., 1941, I, 397. Pinacol-pinacolone rearrangement of phenyl-substituted benzopinacols. H. H. Hatt, A. Pilgrim, and (Miss) E. F. M. Stephenson (J.C.S., 1941, 478—483).—o-C₆H₄Ph·COPh (I) (anil, m.p. 91—92°) and Zn-KOH-EtOH at 30° for 5 days afford o-phenylbenzhydrol, m.p. 71°, which is converted by warm H_2SO_4 —AcOH (3:1) into 9-phenylfluorene. With Zn—AcOH at 25—30° for 10 days, or with Na–Et₂O in N₂, (I) gives s-di-o-phenylbenzopinacol (II), α - (+H₂O), m.p. 175° (decomp.), and β -form (+H₂O), m.p. 152—160° (boiling CHCl₃ (decomp.), and \$\beta\$-form (+H₂O), m.p. 152—160° (boiling CHCl₃ converts \$\beta\$ into \$a\$), also obtained in small yield from MgPhBr, Mg, and \$\sigma \cdot \ reduction in PrBOH affords s-di-m-phenylbenzopinacol (III), m.p. 178°, in 55% yield (20% yield by Zn-AcOH). Migratory aptitudes in the pinacol-pinacolone rearrangement are found to aptitudes in the pinacoi-pinacoione rearrangement are found to be p-, 3-7, and m- C_6H_4 Ph, 0-4 (Ph = 1; o- C_6H_4 Ph = 0), which agrees with the order suggested by Burton et al. (A., 1929, 1052), viz., a- $C_{10}H_7 > \beta$ - $C_{10}H_7 > \gamma$ - C_6H_4 Ph > m- C_6H_4 Ph, in connexion with the stability of CAr₃. A comparison of agents [2% HClO₄ in anhyd. AcOH (3.75) or in AcOH + 4% H₂O (2.6); HI-AcOH (3.75); γ - C_6H_4 Me·SO₃H-AcOH (3.9)] used (2.6); Hi-AcOH (3.75); γ - C_6H_4 Me·SO₃H-AcOH (3.9)] used (2.6); he heavylhogopinacol (W) mp. 198—201°, as subwith s-di-p-phenylbenzopinacol (IV), m.p. 198—201°, as substrate shows that the extent of migration of p-C₆H₄Ph (aptitude quoted) and Ph is independent of the agent, except in case of AcCl-AcOH-C6H6, which suggests increased migrain case of AcCl-AcOH- C_6H_6 , which suggests increased imgration of Ph. The migratory aptitude of p- C_6H_4 Ph as obtained by Gomberg *et al.* (A., 1927, 245) is not confirmed. Wide differences in vals, for migratory aptitudes with various reagents are encountered with (II); agents other than HClO₄ bring about the pinacolone change so slowly that side reactions entirely supervene. (II)-HI-AcOH yield (I), whilst (II)- $\frac{1}{2}$ -C-H-MesO-H-AcOH give 9-phenylfluorene, Rearrangep-C₆H₄Me·SO₃H-AcOH give 9-phenylfluorene. Rearrangement of (II) with HClO₄ affords solely o-phenylbenzoyldiphenyl-o-diphenylylmethane (V), m.p. 195·5°, which is unchanged by boiling 10% KOH-MeOH or -EtOH for 300 hr. Fission to methanes and mixed benzoic acids of (V) is carried out with KOH + a little iso-C₅H₁₁·OH, or better with KOH-NaOH (1:1) at 185—195°, and of (III) and (IV), after rearrangement, with KOH-NaOH (1:1) or KOH-MeOH. (V) gives some o-phenyltriphenylmethane, m.p. 138°. Fission of pure o-, m-, or p-C₆H₄Ph-COPh is carried out by KOH-NaOH (1:1) and cleavage figures are given. A. T. P. Synthesis of substances related to sterols. XXXV. Furfurylideneacetone as a reagent for the extension of ring systems. L. E. King and (Sir) R. Robinson (J.C.S., 1941, 465—470).—2-Methylcyclopentanone, anhyd. HCN, and a little aq. KCN at 0° afford the cyanohydrin, converted by SOCl₂–C₅H₅N at 100° (bath) into 1-cyano-2-methyl-Δ²-cyclopentene, b.p. 68—70°/14 mm., hydrolysed by aq. KOH fo the 1-carboxylic acid, m.p. 125°. The corresponding Ba salt with (HCO₂)₂Ba and sand at 150—200°/2 mm. yields 2-methyl-Δ¹-cyclopentene-1-aldehyde, b.p. 70—75°/14 mm. (2:4-di-mitrophenylhydrazone, m.p. 200°), which polymerises when kept. cycloPentanone, CH(OEt)₃, and NaOEt in Et₂O afford 2-ethoxymethylenecyclopentanone, b.p. 115—122°/11 mm. (semicarbazone, m.p. 222—223°), which with MgMeI-Et₂O gives (probably) 2-methyl-1-ethylidene-Δ²-cyclopentene, b.p. 96—98°/11 mm. (no adduct with maleic anhydride in C₆H₆). 2-Methylcyclopentanone and NaNH,-Et,O, followed by CH₂Cl·CO₂Et, afford Et 2-methylcyclopentanone-2-acetate, b.p. $130-133^{\circ}/14$ mm., purified by conversion with Et₂C₂O₄ and Na in light petroleum (3 days) into an oil, which loses CO at 180°/18 mm. to give Et 5-carbethoxy-2-methylcyclopentanone-2-acetate, b.p. 142—146°/0·5 mm., which is subsequently hydrolysed (conc. HCl) and esterified. cis-8-Methyl-6-hydrindanone and
Br-AcOH-HBr afford a bromoketone (I), which with boiling dry C₅H₅N or quinoline gives an oily, saturated product from which a semicarbazone, m.p. 199°, is obtained. (I) and NMe₃-EtOH at 100° yield a quaternary bromide, m.p. 240°, converted by Ag₂O-90% EtOH into an oil, b.p. 112—118°/12 mm. (semicarbazone, m.p. 200°). cis-5-Hydrindanol and PBr₃ at <0° give 5-bromohydrindane, b.p. 104-105°/15 mm., which with boiling 20% KOH-EtOH gives a mixture, b.p. 175—177°/750 mm., of Δ⁴- and Δ⁵-tetrahydrohydrindenes, oxidised by KMnO₄-aq. KOH at 40° to two acids, m.p. 173° and 101° (cf. Hückel et al., A., 1935, 208). Hydrogenation (SrCO₄-Pd-MeOH) of 1-keto-7-methoxy-2-methyl-1:2:3:4:9:10-hexahydrophenanthrene affords a hydrophenanthrol, converted by Al(OBuγ)₃-COMe₂-C₆H_δ into 1-keto-7-methoxy-2-methyl-1:2:3:4:9:10:11:12-octahydrophenanthrene (II), m.p. 118—119° (through hydrolysis of mixed semicarbazones), which with Mg Δγ-butenyl bromide (method: Hibbit et al., A., 1936, 713) yields a product cyclised by H₂SO₄-Ac₂O-AcOH to an acetate, hydrolysed by KOH-EtOH to 5-hydroxy-14-methoxy-3-methyl-1:2:3:4:5:6:7:8:9:10:11:18-dodecahydrochrysene, m.p. 161—168° (p-nitrobenzoate, m.p. 239°). The Na derivative (prep. by NaNH₂ in Et₂O) of 2-methylcyclohexanone with furfurylideneacetone (III) in Et₂O gives 2-keto-4-furyl-10-methyl-Al:9-octahydronaphthalene, b.p. 160—170°/0-05 mm., hydrogenated (Pd-SrCO₃-MeOH) to 2-keto-4-furyl-10-methyldecahydronaphthalene, the semicarbazone, m.p. 126°, of which with NaOEt-EtOH, at 180° yields 1-furyl-9-methyldecahydronaphthalene (IV), b.p. 122—124°/0-4 mm., and a non-ketonic oil, b.p. 155—160°/0-4 mm. (IV) and HCl (d 1·16)—EtOH, followed by HCl-aq. AcOH, give an oil, oxidised by KMnO₄-COMe₂ to 9-methyldecahydronaphthalene-1-carboxylic acid, m.p. 164°. (II) and NaNH₂-Et₂O (in N₂) followed by (III) in Et₂O afford 6-keto-14-methoxy-4-furyl-3-methyl-1:2:3:4:5:6:9:10:11:18-decahydrochrysene, m.p. 172°. Et β-2-methoxy-6-naphthoyloropionate gives no new products Et β -2-methoxy-6-naphthoylpropionate gives no new products in attempted Reformatsky reactions with Et α -bromo-propionate and -succinate. A. T. P. Production of cis-androsterone.—See B., 1941, III, 269. Hydroxyquinones. III. Constitution and synthesis of rapanone, the anthelmintic principle of Rapanea Maximowiczii, Koidz. M. Asano and K. Yamaguti (J. Pharm. Soc. Japan, 1940, 60, 237—242).—Rapanone (I), m.p. 139—140°, is converted by BzCl and C5H5N into the dibenzoate (II), m.p. 88—90°, and by Zn powder and boiling Ac5O into the leucotetraacetate (III), m.p. 117—118°. (I) is decomposed by boiling 5% NaOH in H2 into a-ketopalmitic acid, m.p. 65—66° (oxime, m.p. 81—82°), oxidised by alkaline H2O2 to n-pentadecoi acid (IV), identified as the p-toluidide, m.p. 92—93°. The synthesis of (IV) from Et myristate is described. Oxidation (KMnO4-KOH) of (I) gives myristic acid, m.p. 51° (p-toluidide, m.p. 90—91°). 3:4:5:1-(OMe)4C6H2-CO-CH2-CO2Et, n-C12H25I, and NaOEt in boiling EtOH give Et a-3:4:5-trimethoxybenzoylmyristate, m.p. 54°, hydrolysed by boiling 1% KOH-EtOH to 3:4:5-trimethoxymyristophenone, m.p. 69°. This is converted by Na and boiling iso-C5H11-OH into 3:5-dimethoxytetradecylbenzene, bp. 178° (0-02 mm., m.p. 43°, oxidised (Na2Cr2O7, ACOH) to 6-methoxy-2-tetradecyl-p-benzoquinone, m.p. 81—82°, which with EtOH-NH2Me and subsequent aëration yields 3:6-di(methylamino)-2-tetradecyl-p-benzoquinone (VI), m.p. 143°. Acid hydrolysis of (V) affords 3:6-dihydroxy-2-tetradecyl-p-benzoquinone (VII), m.p. 94—95°; leucotetra-acetate (VIII), m.p. 121·5°]. The m.p. of (I) and (II) is not depressed by (VI) and (VII), respectively, whereas (VIII) causes a small but definite depression of the m.p. of (III). A similar series of changes gives successively Et a-3: 4:5-trimethoxytridecophenone, m.p. 61—62°, 3:5-dimethoxytridecylbenzene, m.p. 41·5-42·5°, 6-methoxy-, m.p. 82—83·5°, 3:6-di(methylamino)-, m.p. 141—142°, and 3:6-dihydroxy-2-trimethoxytridecyl-benzoquinone (IX), m.p. 118°]. Since (IX), (X), and (XI) do not depress the m.p. of (I), (II), and (III), respectively, the identity of (I) and (IX) is regarded as established. Hydroxyquinones. IV. Synthesis of dihydroxy-2-alkyl-p-benzoquinones. M. Asano and Z. Hase (J. Pharm. Soc. Japan, 1941, 61, 1—6).—Quinol di-n-dodecate (prep. from quinol, $C_{11}H_{23}$ ·CO₂H, and ZnCl₂ at 140—165°), m.p. 83°, and $C_{12}H_{23}$ ·CO₂H, and ZnCl₂ at 140—165°), m.p. 83°, and $C_{12}H_{23}$ ·COCl, and AlCl₃ in CS₂, first at room temp. and later at (?) >100°, give 2-n-dodecoylquinol 4-Me ether (I), m.p. 42—43° (2:4-dinitrophenylhydrazone, m.p. 121—124°), and 2-n-dodecoylquinol, m.p. 99° [with $C_{12}H_{23}$ gives (I)]. Zn-Hg-HCl reduces (I) to 2-n-dodecylquinol 4-Me ether, m.p. 54—56°, b.p. 165—168°/0-3 mm., converted by AlCl₃ in hot $C_{4}H_{4}$ into 2-n-dodecylquinol, m.p. 109—111°, which with boiling aq. FeCl₃ gives 2-n-dodecyl-p-benzoquinone, m.p. 74° (lit. 81°). With NH₂Me-EtOH this gives 1:3:6:2:4-O:C₆H(NHMe)₂(C₁₂H₂₅-n):O, m.p. 146—148°, hydrolysed by H₂SO₄-AcOH to 1:3:6:2:4-O:C₆H(OH)₂(C₁₂H₂₅-n):O (structure proved by oxidation by H₂O₂ to n-C₁₂H₂₅-CO₂H). Similarly are prepared: 2-n-undecoyl-, m.p. 73·5—74·5° [4-Me ether, m.p. 47·5—48·5° (2:4-dinitrophenylhydrazone, m.p. 125—127°); dibenzoate, m.p. 93—94·5°], 2-n-tetradecoyl-, m.p. 101—103° (4-Me ether, m.p. 51—52°), 2-n-hexadecoyl-, m.p. 103—104° (4-Me ether, m.p. 51—60·5°), 2-n-octadecoyl-, m.p. 106—108·5° (4-Me ether, m.p. 63—64°), 2-n-undecyl-, m.p. 100—101·5° (4-Me ether, m.p. 51—52·5°, b.p. 162°]0·5 mm.), 2-n-tetradecyl-, m.p. 110—111°, and 2-n-octadecyl-, m.p. 112—114° (4-Me ether, m.p. 57—60°, b.p. 195°]0·15 mm.), 2-n-hexadecyl-, m.p. 110—111°, and 2-n-octadecyl-, m.p. 112—114° (4-Me ether, m.p. 57—59°, 2-n-tetradecyl-, m.p. 78—79°, 2-n-hexadecyl-, m.p. 82—83°, and 2-n-octadecyl-, m.p. 84—85°, p-benzoquinone; 3:6-di(methylamino)-2-n-undecyl-, m.p. 145—148° (with H₂SO₄-AcOH gives embelin), -2-n-hexadecyl-, m.p. 140°, and -2-n-octadecyl-, m.p. 132—134° (dibenzoate, m.p. 93—95°), and -2-n-octadecyl-p-benzoquinone, m.p. 134—135° (dibenzoate, m.p. 92—93°). Reduction of the (OH)₂-quinone by Zn dust, Ac₂O, and a drop of H₂O at 100° and later, when cold, a little conc. H₂SO₄ gives 2:3:5:6-tetra-acetoxy-n-hexa-, m.p. 117—119°, and -octa-decylbenzene, m.p. 119·5—120·5°. Hydroxyquinones. VI. Synthesis of dihydroxydialkylbenzoquinones. M. Asano and H. Takahashi (J. Pharm. Soc. Japan, 1941, 61, 65—66).—Et₂C₂O₄, CH₂R·CO₂Et (R = iso-C₅H₁₁, n-C₇H₁₅, n-C₁₀H₂₁), and Na in Et₂O afford small amounts only of 3:6-dihydroxy-2:5-diisoamyl-, m.p. 177—178° (dibenzoate, m.p. 170°), -di-n-heptyl-, m.p. 143° (dibenzoate, m.p. 100°), and -di-n-decyl-benzoquinone, m.p. 131—132° (dibenzoate, m.p. 87°), and thence (Zn-Ac₂O + H₂O) 2:3:5:6-tetra-acetoxy-1:4-diisoamyl-, m.p. 162°, -di-n-heptyl-, m.p. 107°, and -di-n-decyl-benzene, m.p. 112°, respectively. A. T. P. Peroxidase action. III. Oxidation of mesidine. N. B. Chapman and B. C. Saunders (J.C.S., 1941, 496—500; cf. A., 1940, II, 283).—The system dil. aq. H₂O₂ (added gradually) and peroxidase oxidises mesidine (I) (2% solution) at room temp. and p_H 4·0—4·7 (dil. AcOH), when 2:6-dimethyl-p-benzoquinone-4-(2':4':6'-trimethyl)anil (II), m.p. 97°, separates gradually; a purified enzyme prep. gives 95% yield. Formation of (II) thus involves loss of Me, and the mechanism of reaction of discussed. (I) and H₂O₂-FeSO₄-dil. AcOH yield an amorphous product containing only traces of (II). (I)-PbO₂-AcOH-Et₂O afford (chromatographic analysis) azomesitylene, m.p. 75°. (II) with Zn dust in boiling Ac₂O-C₅H₅N gives the ON-Ac₂ derivative, m.p. 143°, of 4-hydroxy-2:6:2':4':6'-pentamethyldiphenylamine; hydrolysis (boiling 10% H₂SO₄) of (II) yields (I) and 1:2:6:4-O:C₆H₂Me₂O (III), whilst (I) and (III), alone or in aq. AcOH (+a trace of COMe₂), give (II). (I) does not condense with 5-nitroso-m-2-xylenol. Oxidation (K₂Cr₂O₇-aq. NaOH at room temp.) of (I) gives (II) (8%), but equimol. mixtures of (I) with m-2- or m-5-xylenol afford 26 or 0—1%, respectively, of (II). Phenol amidine reaction: detection of guanidine, guanidine derivatives, and carbamide by thymol and hypochlorite. W. R. Fearon (Sci. Proc. Roy. Dublin Soc., 1941, 22, 415—421; cf. Sakaguchi, J. Biochem. Japan, 1925, 5, 13, 23).—At $p_{\rm H}$ 8:5—10, CO(NH₂)₂, NH:C(NH₂)₂, and NH₂·C(NH)·NHR (free or in protein form) with thymol (or a phenol containing H para to OH) and NaOCl give stable yellow quinonoid pigments probably of the type p-O·C₆H₄:N·C(NH)·NR·C₆H₄·OH-p. At $p_{\rm H}$ >11 only substituted guanidines react. The conditions and mechanism of this and the indophenol reaction are discussed. A. Li. Hydroxyquinones. V. Synthesis of phthiocol, pigment of the tubercle bacillus. M. Asano and Z. Hase (J. Pharm. Soc. Japan, 1941, 61, 55—57).—2-Methyl-1:4-naphthaquinone and NH₂Me-EtOH at room temp., aërated for 1 hr., yield 3-methylamino-, m.p. 127—129°, and thence (50% H₂SO₄-AcOH) 3-hydroxy-2-methyl-1:4-naphthaquinone (I) (phthiocol), m.p. 171—172° (benzoate, m.p. 129—130·5°; Ac₂O-Zn-NaOAc afford 1:2:4-triacetoxy-3-methylnaphthalene, m.p. 155·5—156°). Et butyrophenone-o-carboxylate, b.p. 160—163°/11 mm., and isoamyl nitrite in HCl-Et₂O give a-oximino-butyrophenone-o-carboxylic acid (II), m.p. 157° (decomp.), and some 2:5-di-(o-carboxyphenyl)-3:6-dimethyl-1:4-benzoquinone-dioxime, m.p. 273—274° (decomp.). (II) and aq. H₂SO₄ at 100° (bath) give o-carboxyphenyl Et diketone, m.p. 88—90°, the Et ester, b.p. 130°/3 mm., of which with NaOEt-Et₂O then affords (I). ## III.—TERPENES. Distribution of the double linkings in irone, A. E. Gillam and T. F. West (Nature, 1941, 148, 114).—Irone shows an intense absorption band at 2280 A., and an inflexion near 3080 A., the two together being characteristic of a aβ-unsaturated ketone. The location of the intense band indicates the presence of a monosubstituted aβ-unsaturated ketone, probably CHR:CH·COR, and shows that the C:C·C:C·C:Co structure is absent. The similarity
between the absorption spectra of a-ionone (λ max. 2285 A.) and irone (λ max. 2280 A.) supports this view. Catalytic transformations of terpenes. I. Action of activated clay on dipentene. G. A. Rudakov (J. Gen. Chem. Russ., 1940, 10, 1673—1681).—Dipentene is converted into terpinolene, and this in turn into a-terpinene, by boiling under reflux with fireclay treated with HCl. p-Cymene, and polyterpenes are also formed as secondary products, and, as these are more stable than are the primary ones, they alone survive prolonged treatment. R. T. Halogen derivatives of fenchone, and their transformations. L. J. Briusova (J. Gen. Chem. Russ., 1940, 10, 1462—1470).— Chlorination of fenchone at 60—70° (Cu catalyst) yields chlorofenchone, b.p. 113—117°/12 mm. Bromofenchone, as obtained by Czerny (A., 1900, i, 675), is a mixture of products, including bromocamphor, 6-bromofenchone, and probably bromoisofenchone. The mixture is converted by NaOEt in EtOH into a mixture of alcohols, of which borneol, probably isofenchyl alcohol, and possibly fenchyl alcohol were identified. Reduction with Na in EtOH of the polybromide fraction of the bromination product gave an alcohol, C₁₀H₁₇·OH, b.p. 88·4—89°/13 mm. (H phthalate, m.p. 101—103°; acetate, b.p. 88—89°/10 mm.), oxidised by HNO₃ to fenchone. R. T. isoFenchone. II. isoFenchoquinone and its derivatives, and hydroxyisofenchones. A. K. Rushentzeva and N. M. Delektorskaja (J. Gen. Chem. Russ., 1940, 10, 1653—1656; cf. A., 1941, II, 172).—isoFenchone and SeO. in Ac.O (5 hr. at 140—150°) yield isofenchoquinone, m.p. 69—70° (lit., m.p. 49—50°) (semicarbazone, m.p. 165—166°; phenylhydrazone, m.p. 125—126°; oxime, m.p. 138·5—139·4°), reduced by Zn in AcOH to hydroxyisofenchoquinone, obtained in two isomeric forms, m.p. 50—53° and 114—115°. R. T. Order of reactions of hydrogenation and dehydrogenation.— See A., 1941, I, 421. Triterpenes from Japanese Skimmia species. I. Skimmiol and skimmione. K. Takeda (J. Pharm. Soc. Japan, 1941, 61, 63—65).—Extraction of the leaves of Skimmia Japonica, Thunb., and S. repens, Nakai (cf. Asahina, A., 1930, 1454), gives a neutral portion, m.p. $236-238^\circ$, which affords (chromatographic analysis) skimmiol (I), $C_{30}H_{50}O$, m.p. $279-281^\circ$, $[a]_{1}^{39}+3\cdot1^\circ$ in CHCl₃ [mono-acetate (II), m.p. $298-299^\circ$, $[a]_{2}^{32}+13\cdot8^\circ$ in CHCl₃, -benzoate, m.p. $287-289^\circ$, $[a]_{1}^{31}+35\cdot5^\circ$ in CHCl₃, and -formate, m.p. $267-269^\circ$], and skimmione (III), $C_{30}H_{48}O$, m.p. $241-243^\circ$, $[a]_{2}^{23}+12\cdot2^\circ$ in CHCl₃ [mono-oxime, m.p. $292-294^\circ$; oxime acetate, m.p. $224-225^\circ$ (decomp.); dibromide, m.p. 211° (decomp.)], reduced (Clemmensen) to skimmiene, $C_{30}H_{50}$, m.p. $188-190^\circ$, $[a]_{2}^{31}-20\cdot5^\circ$ in CHCl₃. (I) is oxidised by CrO₃ to (III). Catalytic hydrogenation of (III), followed by acetylation, affords (II). (III) is reduced by Na and iso- C_5H_{11} ·OH to (I) and isoskimmiol (chromatographic separation), m.p. $267-269^\circ$, $[a]_{2}^{12}+11\cdot9^\circ$ in CHCl₃ (acetate, m.p. $205-207^\circ$, $[a]_{1}^{16}-31\cdot8^\circ$ in CHCl₃; benzoate, m.p. $274-275^\circ$, $[a]_{1}^{13}-25\cdot2^\circ$ in CHCl₃. Saponins. XVI. Constitution of nitro-compounds of the oleanolic acid series. II, III. S. Kuwada and K. Takeda (J. Pharm. Soc. Japan, 1940, 60, 157—160, 249—250; cf. A., 1940, II, 221).—II. Nitration of acetyloleanolic acid (I) with fuming HNO₃ in AcOH and methylation (CH₂N₂) of the product affords Me nitroacetyloleanolate (II), decomp. 228°, [a]₁³ +98·5°, This when boiled with Zn dust and AcOH is converted into a neutral product separated by MeOH into ketoacetyloleanolactone (III) decomp. 317°, [a]₂²⁴ +116·5°, Me isoketoacetyldihydro-oleanolate (IV), m.p. 261—263°, [a]₂²⁰ $+6.4^{\circ}$, and Me ketoacetyldihydro-oleanolate (V), m.p. $198-199^{\circ}$, $[a]_D^{24}$ -12.0° . (III) does not contain OMe, does not give an oxime or semicarbazone, has an absorption max. at 273 m μ ., and is hydrolysed exclusively to keto-oleanolo-lactone (VI), decomp. 322° , $[a]_D^{24}$ $+118.4^{\circ}$. (IV) contains 1 OMe, and has an absorption max. at 264 m μ .; on hydrolysis it affords solely Me isoketodi-hydro-oleanolate, m.p. $220-221^{\circ}$. OH CO₂H it affords solely Me isoketodihydro-oleanolate, m.p. $220-221^\circ$. The absorption curve of (V) has a max. at 286 m μ . The Röntgen spectra of (IV) and (V) are distinct so that (IV) and (V) must be regarded as isomerides. Hydrolysis of (V) gives Me ketodihydro-oleanolate, m.p. $202-203^\circ$. Oxidation (CrO₃) of (VI) gives keto-oleanonolactone, m.p. $276-279^{\circ}$, $[a]_{D}^{22}+155^{\circ}$ (oxime, decomp. $276-277^{\circ}$; absorption max. at 272 m μ .). The changes recorded are in harmony with the constitution (A) for oleanolic acid. M.p. etc. are corr. and [a] are in CHCl₃. III. Fuming HNO₃ in AcOH converts (I) into nitroacetyloleanolic acid (VII), decomp. 221—222°, [a]²³₂ +95·5° in CHCl₃, hydrolysed by 5% KOH–MeOH to nitro-oleanolic acid, decomp. 229—230°, and methylated by CH₂N₂ to (II). (VII) is transformed by Zn dust and AcOH into neutral and acid products. The former are separated by MeOH into a-(VIII), decomp. 314°, and β-ketoacetyloleanololactone (IX), decomp. 286—288°, [a]¹₀ +9·4° in CHCl₃. (VIII) and (IX) are distinguished from one another by the Röntgen diagrams. Under the influence of 10% KOH–MeOH (VIII) only loses Ac whereas (IX) is converted into ketohydroxydihydro-oleanolic acid, decomp. 304°. Probably (VIII) is a γ- and (IX) is a δ-lactone. The physical properties and certain derivatives of the so-called "ketoacetyl-lactone" obtained by oxidising (I) with CrO₃ agree completely with those of (IX). The acidic product is ketoacetyldihydro-oleanolic acid. H. W. Position of the carboxyl group in oleanolic and related acids. P. Bilham and G. A. R. Kon (Nature, 1941, 147, 745).—Evidence that the CO₂H is in one of the terminal rings is discussed. L. S. T. Constituents of the branches of Akebia quinata, Decne. R. Kawaguchi and K. W. Kim (J. Pharm. Soc. Japan, 1940, 60, 236).—" Akebigenin," obtained by hydrolysis of akebin, is a mixture of hederagenin and oleanolic acid. H. W. Constituents of "senso." XI. Constitution of acetyl-ψ-deacetylbufotalin. S. Ohno (J. Pharm. Soc. Japan, 1940, 60, 226—230; cf. A., 1939, II, 382, 438).—Acetyl-ψ-deacetyl-bufotalin (I) is oxidised by KMnO₄ to ψ-ætiocholanic acid, m.p. 180—183°, which does not give a cryst. phenacyl ester. The presence of a tert. OH at C₍₁₄₎ in it is established by the production of a lactone under the influence of HCl-EtOH. In the sterol nucleus of (I) there remains OH which cannot be acylated. To elucidate its nature the nuclear C₁₇ ketone (loc. cit.) is oxidised by KOBr in alkaline solution, whereby little acid is produced and the sterol nucleus appears to be altered, by SeO₂ in AcOH, whereby an o-diketone is formed in small amount, and by CrO₃ in warm AcOH, giving a neutral substance, C₁₈H₂₈O₄, sol. in warm 2% NaHCO₃, and a dicarboxylic acid which readily loses CO₂ to yield a monocarboxylic acid. This partial decarboxylation is completed and lactonisation occurs during distillation in a high vac. The lactone (II) in C₅H₅N affords a p-nitrobenzoate, so that OH at C₍₃₎ is not involved in lactone formation and the tert. OH at β-C₍₁₄₎ is certainly not adapted thereto. Probably the active OH is at C₍₉₎ and trans to OH at C₍₁₄₎. This is shown by conversion of (II) by AcOH-HBr followed successively by 20% KOAc-EtOH and Ac₂O into a deoxyacetyl-lactone, C₁₈H₂₆O₃·C₂H₂O, which immediately decolorises KMnO₄. This is ozonised in CHCl₃ to a little of a neutral substance, an acid (III) which gives an orange-red colour with FeCl₃, but no H₂C₂O₄. (III) gives a distinct diazoreaction, and yields a non-cryst. Me ester and a semi-carbazone, C₂₁H₃₂O₆·CH₃ON₃, m.p. >280°, which does not give the diazo-change. (III) is therefore a β-CO-acid. It follows therefore that a tert. non-acylable OH is at C₍₉₎ and forms a link of the β-CO-lactone. Formulæ are suggested. Constituents of Zyzyphus vulgaris, Lamark, var. spinosus, Bunge. II. Betulic acid. R. Kawaguchi and K. W. Kim (J. Pharm. Soc. Japan, 1940, 60, 235—236).—Betulonic acid, m.p. 253°, obtained by the oxidation of betulic acid, gives a semicarbazone, m.p. 282—283°. It is reduced catalytically to dihydrobetulonic acid, m.p. 256—257°, shown by comparison of its semicarbazone, m.p. 284—285°, to be identical with the acid obtained by oxidation of dihydrobetulin and dihydrobetulic acid. H. W. 329 Substitution reactions of dehydroabietic acid. II. W. P. Campbell and M. Morgana (J. Amer. Chem. Soc., 1941, 63, 1838—1843; cf. A., 1939, II, 30).—6-Sulphodehydroabietic acid (I) (modified prep.; 78% yield; cf. loc. cit.), +3H₂O, m.p. (immediate) 215° (evolution of H₂O), resolidifies, decomp. 227°, and Br or Br-NaBr in H₂O at 100° give 92% of 6-bromodehydroabietic acid (II), m.p. 200—202°, [a]₂₅²⁵ +81° in EtOH (Me ester, m.p. 140·5—141°, [a]₂₅²⁵ +71° in COMe₂), also obtained (impure acid, pure ester) from dehydroabietic acid by Br-CCl₄ at 60°. The structure of these acids is proved by conversion of (I) by 12% aq. NaOH-N₂ at 290° and then CH₂N₂-Et₂O into the known Me 6-hydroxydehydroabietate (27—44%), m.p. 158—161·5°. With conc. aq. NH₃ and CuBr at 200°, (II) gives 42% of 6-aminodehydroxydehydroabietate (27—44%), isolated (59%) as cryst. hydrochloride. Me 6: 8-dinitrodehydroabietate (IV) (orientation rendered very probable by reactions given below) and boiling H₂S-NH₃-H₂O-MeOH give 91% of Me 8-nitro-6-aminodehydroabietate (V), m.p. 239—242°, [a]₂₅²⁵ +105° in COMe₂ (impure hydrochloride, m.p. 247—248·5°; NN-Ac₂ derivative, m.p. 203·5—206°, [a]₂₅²⁵ +97° in COMe₂). Reduction of the 6: 8-(NO₂)₂-acid by Na₂S-NH₄Cl-aq. EtOH gives 11% of 8-nitro-6-aminodehydroabietic acid (VI), m.p. 285·5—286° (decomp.), [a]₂₅²⁵ +117° in COMe₂ [isolated (22%) as hydrochloride; Me ester = (V)].
H₂SO₄-HNO₃ and (III) at <0° give a moderate yield of (VI) [m.p. 282·5—283° (decomp.); Me ester = (V), m.p. 241—243°]. Diazotisation (H₂SO₄-NaNO₂-H₂PO₄) of (V) and digestion of the diazonium salt in EtOH with or without Zn powder gives 40% of Me 8-nitrodehydroabietae, m.p. 194—195°, [a]₂₅²⁵ +29° in COMe₂, and thence (H₂SO₄-HNO₃; 0°) (IV). With H₂SO₄-HNO₃, in yields varying according to the conditions, (I) gives 8-nitro-6-dehydroabietic acid (up to 81%) (Me₂ ester, m.p. 243·5—244°; cf. Hasselstrom et al., A., 1941, II, 143) and (by way of 6-nitrodehyd # IV.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES. Luminescent oxidation of luciferin. P. N. Chakravorty and R. Ballentine (J. Amer. Chem. Soc., 1941, 63, 2030—2031).—Purified extracts of Cypridina luciferin (I) contain only C, H, and O. CO·CH₂·OH is present. With NH₂OH, AcOH it gives a micro-cryst. ppt., which is inactive towards luciferase (II) but is reactivated by acid hydrolysis. Luminescent oxidation involves R·CO·CH₂·OH \rightarrow (II) RCO₂H (irreversible). The luminescent activity is restored by the reactions, RCO₂H \rightarrow (SOCl₂) RCO·CH₂·OH. Oxidation of the quinol nucleus is the reversible oxidation of (I) by O₂. R. S. C. Action of organic nitrogen bases on cornstalk lignin. E. Fisher and R. S. Bower (J. Amer. Chem. Soc., 1941, 63, 1881—1883).—The amounts of cornstalk tissues or the lignin isolated therefrom by 72% $\rm H_2SO_4$ which is dissolved by aq. or anhyd. mono-, di-, or tri-ethanolamine, morpholine—EtOH, or NEt₃ increase with the strength of the base. Compound formation is probable. R. S. C. # V.—HETEROCYCLIC. Condensation of furan derivatives. XIII. Displacement of one aldehyde by another from carbonyl-ethylene compounds. V. V. Tschelincev and E. K. Nikitin (J. Gen. Chem. Russ., 1940, 10, 1453—1456).—The velocities of reaction of COMe, in aq. KOH with salicylaldehyde, vanillin, PhCHO, and furfuraldehyde are as 0.00125:0.00645:0.2:1. Each member of the series will displace the preceding ones from condensation with COMe. R. T. Constitution of the condensation product of furfuraldehyde and aniline (Schiff's base). E. R. Riegel and (Miss) M. Hathaway (J. Amer. Chem. Soc., 1941, 63, 1835—1838).—The violet substance obtained from furfuraldehyde (I), NH₂Ph, and NH₂Ph,HCl (Stenhouse et al., Annalen, 1870, 156, 199) is 2-di-(p-aminophenyl)methylfurfuraldehyde monohydrochloride, +H₂O (II) (cf. Zincke et al., A., 1906, i, 33), since it is quantitatively tetrazotised in 95% EtOH and then coupled with 9 products to give dyes. Similar results are recorded for products from (I) and other bases. A mechanism is proposed to account for formation of NH₂Ph and 3-hydroxy-1-phenylpyridinium halide from (II) by boiling AcOH or, less well, EtOH. The violet substance obtained (König, A., 1904, i, 449) differs from (II) and does not react with HNO₂. R. S. C. Benzopyrone series. IV. Synthesis of karanjin. T. R. Seshadri and V. Venkateswarlu (*Proc. Indian Acad. Sci.*, 1941, 13, A, 404—410).—Karanjic acid (I) is converted (MeOH-conc. H₂SO₄) into its *Me* ester, m.p. 105—106°, transformed by MeI and anhyd. K₂CO₃ in boiling COMe₂ but not by Me₂SO₄-NaOH into *Me* O-methylkaranjate, also obtained directly by the prolonged action of K₂CO₃ and MeI on (I) in boiling COMe₂. It is hydrolysed by 25% aq. NaOH to O-methylkaranjic acid, m.p. 148°, which with PCI₅ in CCI₄ gives the chloride, m.p. 72°. This is condensed with Et ay-dimethoxysodioacetoacetate (II) in Et₂O and the product is hydrolysed to 4-methoxy-5-ω-methoxyacetylcoumarone, m.p. 87—88°, which was also obtained by the protracted action in boiling COMe₂ of MeI and K₂CO₃ on 4-hydroxy-5-ω-methoxy-acetylcoumarone (III), obtained in 95% yield by the action of KOH-anhyd. MeOH on karanjin (IV); very little (I) is produced by this method. Gradual addition of AcCl to (I) in well-cooled C₅H₅N leads to acetylkaranjic acid; the noncryst. chloride is condensed with (II) to (III), from which (IV) is obtained in good yield by the action of Bz₂O and NaOBz at 180°. Condensation of α-substituted acetoacetates with phenols. III. Pechmann condensation of ethyl α-(βββ-trichloro-α-hydroxyethyl)acetoacetate. IV. Condensation of cresols and other less reactive phenols with ethyl α-(βββ-trichloro-α-hydroxyethyl)acetoacetate. D. R. Kulkarni, R. L. Alimchandani, and N. M. Shah (J. Indian Chem. Soc., 1941, 18, 113—119, 123—126).—III. m-C₆H₄(OH)₂, 1:2:3- and 1:3:5-C₆H₃(OH)₃, α-C₁₀H₇·OH, and 1:3:5-C₆H₃Me(OH)₂ with CCl₃·CH(OH)·CHAC·CO₂Et (I) and POCl₃ give good yields of 7-hydroxy-, m.p. 207—208° (decomp.) (II) (Me₂ ether, m.p. 154—155°; Ac₂, m.p. 149—150°, and Bz derivative, m.p. 169—170°), 7:8- (III), m.p. 223° (decomp.) (Me₃ ether, m.p. 216—217°, 4-methyl-3-βββ-trichloro-α-hydroxyethyl-1:2-α-naphthapyrone, m.p. 231—232° (Ac derivative, m.p. 147—148°), 4-methyl-3-βββ-trichloro-α-hydroxyethyl-1:2-α-naphthapyrone, m.p. 231—232° (Ac derivative, m.p. 207—208°), and 5-hydroxy-4:7-dimethyl-3-βββ-trichloro-α-hydroxyethylcoumarin, m.p. 223—224° (decomp.), respectively. (II) and (III) are reduced (Zn + AcOH) to 7-mono-, m.p. 254—255° (decomp.) Ac derivative, m.p. 169—170°), and 7:8-di-hydroxy-4-methyl-3-β-chlorovinylcoumarin, m.p. 231—232° (decomp.), which with Me₂SO₄ and aq. KOH in COMe₂ at 100° yield 2:4-di-, m.p. 172—173° (Ag salt), and 2:3:4-tri-methoxy-β-methyl-α-(β-chlorovinyl)cinnamic acid, m.p. 125—126° (Ag salt). With H₂SO₄ or P₂O₅ as catalyst, m-C₆H₄(OH)₂ and 1:3:5-C₆H₃(MOH)₃ condense with (I) as above, but α-C₁₀H₇·OH does not condense. 1:2:3-C₆H₄(OH)₃ and 1:3:5-C₆H₃(MOH)₂ with P₂O₅ do not condense, and with H₂SO₄ give uncrystallisable products. AlCl, is unsatisfactory. condense, and with $H_2 > O_4$ give uncrystalisable products. AlCl₃ is unsatisfactory. IV. PhOH, $a \sim C_{10}H_7 \sim OH$, $p \sim C_6H_4(OH)_2$, and 1:2:4-COMe·C₆ $H_3(OH)_2$ give no cryst. products with (I). (I) with p-cresol and $H_2 > O_4$ at $<0^\circ$ yields 4:6-dimethyl- $3 \sim \beta \beta \beta$ -trichloro-a-hydroxyethylcoumarin, m.p. $202-203^\circ$ (Me ether, m.p. $207-203^\circ$). (I) and o- and m-cresol in cold EtOH with $H_2 > O_4$ yield $\gamma \gamma \gamma$ -trichloro- β -4-hydroxy-3-, m.p. $186-187^\circ$ (Ac derivative, m.p. 75° ; semicarbazone, m.p. $256-257^\circ$), and -2-methylphenylpropyl Me ketone, m.p. $208-209^\circ$ (decomp.) (Ac derivative, m.p. $104-105^\circ$; semicarbazone, m.p. 214°). Colouring matters of the flavone series. VI. Constituents of Zinnia elegans (Jacq.); synthesis of apigenin glucoside. T. Nakaoki (J. Pharm. Soc. Japan, 1940, 60, 190—191; cf. A., 1939, II, 441).—The flowers yield apigenin glucoside (\sim 1%), m.p. 226—227° (from aq. C_5H_5N) (5:7:4'-trihydr- oxyflavone-7-glucoside), identical with that obtained by synthesis through apigeninglucose tetra-acetate. A. T. P. Synthesis of nobiletin (5:6:7:8:3':4'-hexamethoxy-flavone), Z. Horii (J. Pharm. Soc. Japan, 1940, 60, 246—248).—2-Hydroxy- is oxidised by $K_2S_2O_8$ and NaOH to 2:5-dihydroxy-3:4:6-trimethoxyacetophenone, m.p. 125—126°, partly methylated (Me₂SO₄ and K_2CO_3 in COMe₂ at 50°) to 2-hydroxy-3:4:5:6-tetramethoxyacetophenone, b.p. 148°/7 mm., which with veratroyl chloride and C_5H_4 N at 100° affords the veratroyl derivative, m.p. 118·5—119·5°. This is isomerised by NaNH₂ in PhMe at 100° to 2-hydroxy-3:4:5:6-tetramethoxy-ω-veratroylacetophenone, m.p. 113·5—114·5°, converted by NaOAc and glacial AcOH at 100° or by conc. H_2SO_4 at 0° into 5:6:7:8:3':4'-hexamethoxyflavone (I), m.p. 136·5—137·5°, identical with nobiletin. (I) is transformed by boiling 30% HCl into 5-hydroxy-6:7:8:3':4'-pentamethoxyflavone, m.p. 144—145°. It is demethylated by HI (d·1·7) at 140° and then converted by Ac_2O and C_5H_4 N into hexa-acetoxy-, m.p. 230·5—231·5°, and by BzCl and C_5H_4 N at 100° into hexabenzoyloxy-flavone, m.p. 244—245°. Tetrahydrocannabinol homologues with marihuana activity. IX. R. Adams, S. Loewe, C. Jelinek, and H. Wolff. X. R. Adams, C. M. Smith, and S. Loewe. XI. R. Adams, C. K. Cain, and S. Loewe (J. Amer. Chem. Soc., 1941, 63, 1971—1973, 1973—1976, 1977—1978; cf. A., 1940, II, 379).— Relative marihuana potencies are denoted P below relative to the n-amyl derivative. M.p. are corr. IX. 5:1:3- $C_6H_3R(OH)_2$, Et 5-methyleyelohexanone-2-carboxylate (I) and POCl₃ in C_6H_6 give 6"-hydroxy-5'-methyl-4"-n-propyl-, m.p. 233—235°, -n-butyl-, m.p. 199—200°, -n-hexyl-, m.p. 173—174°, -n-heptyl-, m.p. 172—173°, and -n-octyl-, m.p. 165—167°, -3':4':5' 8'-tetrahydro-3':4:5'6-dibenspyrone, converted by MgMeI into 6"-hydroxy-2:2:5'-trimethyl-4"-n-propyl-, m.p. 145—146°, b.p. 185°/2 mm. (P 0.40 ±0.08), -n-butyl-, b.p. 178—180°/1 mm. (P 0.37 ±0.12), -n-amyl- (II) (P 1.00), -n-hexyl-, b.p. 190—192°/1 mm. (P 1.82 ±0.18), -n-heptyl-, b.p. 225—228°/0.05 mm. (P 1.05 ±0.15), and -n-octyl-, b.p. 215—220°/0.01 mm. (P 0.66 ±0.12), -3':4':5':6'-tetrahydro-3:4:5:6-dibenzpyran. 6"-Hydroxy-2:2:5':4"-tetramethyl-3':4':5':6'-tetrahydro-3:4:5:6-dibenzpyran, has P < 0.2. 5-n-Octylresorcinol has b.p. 164—168°/4 mm. has P < 0.2. 5-n-Octylresorcinol has b.p. $164 - 168^\circ / 4$ mm. X. 6"-Hydroxy-5'-methyl-4"-n-amyl-3': 4': 5': 6'-tetra-hydro-3: 4: 5: 6-dibenzpyrone [modified prep. from (I) and olivetol (III) by POCl₃-C₆H₆] with MgEtBr or MgPr^aBr gives 6"-hydroxy-5'-methyl-3: 3-diethyl-, b.p. $185 - 195^\circ / 0.02$ mm. (P 0.12 ± 0.024), and -di-n-propyl-, b.p. $200 - 204^\circ / 2$ mm. (P 0.04 ± 0.01), -4"-n-amyl-3': 4': 5': 6'-tetrahydrodibenz-pyran. Et 4- or 6-methylcyclohexanone-2-carboxylate, (III) and POCl₃ in C₈H₆ give 6"-hydroxy-4'-, m.p. $169 - 169 \cdot 5^\circ$, and -6'-methyl-4"-n-amyl-3': 4': 5': 6'-tetrahydro-3: 4: 5: 6-dibenzpyrone, m.p. $194 - 194 \cdot 5^\circ$, and thence 6'-hydroxy-2: 2: 4'-m.p. $72 - 73^\circ$ (P 0.137 ± 0.01), and -2: 2: 6'-trimethyl-4"-n-amyl-3': 4': 5': 6'-tetrahydro-3: 4: 5: 6-dibenzpyrone, b.p. $181 - 185^\circ / 0.5 - 1.0$ mm. (P 0.25 ± 0.05). Et cyclohexanone-2-carboxylate and (III)
similarly give 6"-hydroxy-4"-n-amyl-3': 4': 5': 6'-tetrahydro-3: 4: 5: 6-dibenzpyrone, m.p. $183 - 183 \cdot 5^\circ$, and thence 6"-hydroxy-2: 2-dimethyl-4"-n-amyl-3': 4': 5': 6'-tetrahydro-3: 4: 5: 6-dibenzpyrone, m.p. $185 - 180^\circ / 0.02$ mm. (P 0.126 ± 0.05). Condensation of pulegone and orcinol (IV) or olivetol gives compounds, as (II) but impure (absorption spectra), [a] depending on the amount of POCl₃ used; that corresponding with (II) has P 1.04 ± 0.37 (cf. Ghosh et al., A., 1941, II, 145). (cf. Ghosh et al., A., 1941, II, 145). XI. CH₂Ac·CO₂Et (**V**) and (**IV**) in 85% H₃PO₄ give 5-hydroxy-4: 7-dimethylcoumarin, m.p. 258—259° (lit. 250°). (**V**), (**III**), and POCl₃ in boiling C₆H₆ give 5-hydroxy-4-methyl-7-n-amylcoumarin, m.p. 178—179°, converted by MgMeI in Bu₂O at 90° into 5-hydroxy-2: 2: 4-trimethyl-7-n-amyl-1: 2-benzpyran, b.p. 140—142°/0·02 mm. (P 0·033±0·01). CHBu²Ac·CO₂Et with (**IV**) or (**III**) and POCl₂ in C.-H₆ at room CHBu²Ac·CO₂Et with (IV) or (III) and POCl₃ in C_6H_6 at room temp. give 5-hydroxy-4:7-dimethyl-3-n-butylcoumarin (62%), m.p. 191—195° (and a trace of ? 7-hydroxy-4:5-dimethyl-3-n-butylcoumarin, m.p. 158—159°), and 5-hydroxy-4-methyl-3-n-butyl-7-n-amylcoumarin (66%), m.p. 140-5—141°, respectively, and from the latter 5-hydroxy-2:2:4-trimethyl-3-n-butyl-7-n-amyl-1:2-benzpyran, b.p. 176—177°/0-05 mm. (P 0-04±0-01). Photochemistry of fluorescein dyes.—See A., 1941, I, 423. 2:6-Dichlorodiphenylene dioxide. S. Uyeo (Bull. Chem. Soc. Japan, 1941, 16, 177—179).—2:6-Dinitrodiphenylene dioxide, m.p. 262°, and H₂-Pd-C in AcOH give quantitatively the (NH₂)₂-compound, m.p. 249°, which by a Sandmeyer reaction yields 2:6-dichlorodiphenylene dioxide (I), m.p. 207°. The dipole moment [Higasi], 0.62, of (I) indicates a folded structure and is < that (0.64) of diphenylene dioxide. Aluminium chloride, a new reagent for the condensation of β-ketonic esters with phenols. V. Condensation of substituted resacetophenones with ethyl acetoacetate. C. V. Deliwala and N. M. Shah (*Proc. Indian Acad. Sci.*, 1941, 13, A, 352—358; cf. A., 1938, II, 152).—5-Ethylresacetophenone condenses with CH₂Ac·CO₂Et in dry PhNO₂ containing AlCl₃ at ~115° to 5-hydroxy-6-acetyl-4-methyl-8-ethylcoumarin, m.p. 168—169° (cf. Desai et al., A., 1939, II, 173), reduced (Clemmensen) to 5-hydroxy-4-methyl-6: 8-diethylcoumarin, m.p. 171°, and acetylated (Kostanecki) to 3'-acetyl-4: 2'-dimethyl-6'-ethyl-7': 8': 6: 5-chromono-a-pyrone, m.p. 173°. Condensation cannot be effected by conc. H₂SO₄. 5-Bromoresacetophenone and CH₂Ac·CO₂Et in dry PhNO₂ containing AlCl₃ at 115—120° and subsequently at 130° give 8-bromo-5-hydroxy-6-acetyl-4-methylcoumarin, m.p. 208—210° (acetate, m.p. 150°; oxime, m.p. >250°), which gives a cherry-red colour with FeCl₃ and a non-fluorescent, yellow solution in alkali; it is transformed by Ac₂O and NaOAc at 170—180° into 6'-bromo-4: 2'-dimethylchromono-7': 8'-6: 5-a-pyrone, m.p. 240—241°. Condensation does not succeed in the presence of POCl₃ or H₂SO₄. 5-Nitro-, 5-benzyl-, and ω-methoxy-resacetophenone, Me β-resacetophenonecarboxylate, 4: 6- and 2: 4-diacetylresorcinol do not condense or yield tarry material. 4: 1-C₁₀H₆Ac·OH and CH₂Ac·CO₂Et afford 4-methyl-1: 2-α-naphthapyrone, m.p. 172°, obtained also from 4: 1-COEt·C₁₀H₆·OH. Sulphur. XVII. Synthesis of sulphathiophen, 2-sulphanilamidothiophen, R. W. Bost and C. F. Starnes (*J. Amer. Chem. Soc.*, 1941, **63**, 1885—1886; cf. A., 1940, II, 296).—2-Aminothiophen stannichloride (modified prep.) and p-NHAc·C₆H₄·SO₂Cl give 2-N⁴-acetylsulphanilamido-, m.p. 196°, and thence (10·4% H₂SO₄) 2-sulphanilamido-thiophen, m.p. 156·5—157·5°. R. S. C. Phenylhydantoins. H. R. Henze and L. M. Long (J. Amer. Chem. Soc., 1941, 63, 1936—1938).—COPh·[CH₂]₂·Ph, (NH₄)₂CO₃, and KCN in 50% EtOH at 60° give 5-phenyl-5β-phenylethylhydantoin (67%), m.p. 201° (Na salt, strong anticonvulsant), which with Na and then Me₂SO₄ in abs. EtOH gives 5-phenyl-5-β-phenylethyl-3-methylhydantoin (not anticonvulsant), m.p. 144°. COPh·C₁₁H₂₃-n, (NH₄)₂CO₃, and KCN in NH₂Ac at 110° give 5-phenyl-5-n-undecylhydantoin, m.p. 125°. COR·CH:CHPh, (NH₄)₂CO₃, and KCN in H₂O at 59° or 60° give 5-styryl-5-methyl-, m.p. 222—223° [lit. 21° (decomp.)], -5-ethyl-, m.p. 214°, -5-n-propyl-, m.p. 171—174°, and -5-n-butyl-hydantoin, m.p. 125—130°. 5-Phenylhydantoin and Br-AcOH give the 5-Br-derivative, m.p. 210—215°, which with COPhMe at ~70° gives 5-phenyl-5-phenacyl-hydantoin, m.p. 221°. With KCN and (NH₂)₂CO₃ in OH·[CH₂]₃·OH at 110° this gives 5:5'-methylenebis-5-phenyl-hydantoin, m.p. 358° (decomp.). M.p. are corr. R. S. C. Reactions of 2-aminopyridine with diketones. I. Reaction of 2-aminopyridine with benzil. P. G. Sokov (J. Gen. Chem. Russ., 1940, 10, 1457—1461).—2-Aminopyridine (I) and benzil (60—90 min. at 200—225°) yield a-2-pyridylaminodiphenylacetic acid, melting with decomp. at 156°, giving 2-pyridylaminodiphenylmethane [2-benzhydrylaminopyridine], m.p. 104—105° (hydrochloride, m.p. 190—191°; hydrobromide, m.p. 195—196°; picrate, m.p. 183—184°), also prepared from (I) and CHPh₂Br, or from (I) and OH·CPh₂·CO₂H. R. T. Preparation of sulphapyridine. B. Bobrański and I. M. Eker (J. Appl. Chem. Russ., 1940, 13, 1637—1641).—A 1:2 mixture of p-NHAc·C₆H₄·SO₂Cl and 2-aminopyridine heated for 1 hr. at 100° gives acetylsulphapyridine (64% yield). This, heated for 1 hr. at 58—62° with 15% HCl, gives sulphapyridine in 75% yield. R. T. Synthesis of 3-ethylpyridine. T. Ikeda and C. Ashizawa (J. Pharm. Soc. Japan, 1941, 61, 42—45).—Nicotinoyl chloride hydrochloride and CH₂N₂ in dry Et₂O give a dark red resin, converted by warm AcOH into 3-acetoxyacetylpyridine, m.p. 83—84°, in very poor yield. 3-Acetylpyridine (hydrochloride, m.p. 174—177°; semicarbazone, m.p. 207—208°), from Et nicotinate and EtOAc followed by boiling 10% HCl, is reduced by N_2H_4 , H_2O at $120-130^\circ$ followed by KOH at 150° to 3-ethylpyridine (picrate, m.p. $125-128^\circ$) and the azine, $C_{14}H_{14}N_4$, m.p. $108-109^\circ$ (dipicrate, decomp. 241°). N_2H_4 picrate, decomp. 190° , is incidentally described. Preparation of indole. F. T. Tyson (J. Amer. Chem. Soc., 1941, 63, 2024—2025).—Indole is best (46%) obtained from o-C₆H₄Me·NH·CHO by KOBur (1·5 mol.) at 350—360°. Other proportions or use of KNH₂-NH₃, KOMe, or KOEt is less satisfactory and Na salts are useless. R. S. C. 7-Bromo-5-iodoisatin and 3-bromo-5-iodo-2-aminobenzoic acid. W. C. Sumpter (J. Amer. Chem. Soc., 1941, 63, 2027—2028).—5-Iodoisatin and Br in boiling EtOH give 7-bromo-5-iodoisatin, m.p. 247—248°, which with 3% H₂O₂ in alkali gives 3-bromo-5-iodo-2-aminobenzoic acid, m.p. 226—227°, also obtained from 2:5:1-NH₂·C₆H₃I·CO₂H by Br-EtOH. 5-Bromoisatin is unaffected by ICl. R. S. C. Preparation of 1-acyl-1: 2-dihydroquinoline-2-nitriles and their hydrolysis to aldehydes. J. M. Grosheintz and H. O. L. Fischer (J. Amer. Chem. Soc., 1941, 63, 2021—2022).—RCOCI, HCN, and quinoline (1:1:2 mols.) in C_6H_6 at -5° and later room temp. (16 hr.) give usually 64-96% of 2-cyano-1-acetyl-, m.p. $96-97^\circ$, -propionyl- (10%), m.p. $49-50^\circ$, -benzoyl-, m.p. $154-155^\circ$, -cinnamoyl-, m.p. $154-155^\circ$, -r. m.p. $97\cdot5-96^\circ$, and -iso-butyryl-, m.p. $129-129\cdot5^\circ$, -isovaleryl-, m.p. $90-90\cdot5^\circ$, -o-, m.p. $164-164\cdot5^\circ$, and -p-anisoyl-, m.p. $120\cdot5-121\cdot5^\circ$, -o-, m.p. $165-166^\circ$, -m- m.p. $116-119^\circ$, and -p-chlorobenzoyl-, m.p. $140-143^\circ$, -1: 2-dihydroquinoline, which yield 90% of RCHO and quinoline-2-carboxylic acid when the acid ($5-10n\cdot H_2SO_4$) solution is distilled in steam. For direct prep. of aldehydes from acids, isolation of RCOCl and Preparation of 1-acyl-1: 2-dihydroquinoline-2-nitriles and the acid (b—10N-H₂SO₄) solution is distilled in steam. For direct prep. of aldehydes from acids, isolation of RCOCl and the nitrile is unnecessary. CHR:N·NH·C₆H₄:NO₂-p are reported in which R = Me, m.p. 127·5—128°, Et, m.p. 128—129°, Pr^a, m.p. 90—91°, Pr^β, m.p. 131·5—132°, o-, m.p. 208°, and p-OMe·C₆H₄, m.p. 162°, o-, m.p. 247—248°, m-, m.p. 220°, and p-C₆H₄Cl, m.p. 219°, CHPh:CH, m.p. 169·5—170·5°, and Ph, m.p. 193—194°, and CHR:N·NH·C₆H₃(NO₂)₂-2 : 4 in which R = Bu^a, m.p. 96—98°, and Bu^β, m.p. 122—123°. Condensation of ethylaniline with acetylene in presence of HgCl₂. I. F. Kriuk (*J. Gen. Chem. Russ.*, 1940, 10, 1507—1509).—A solution of NHPhEt and HgCl₂ in EtOH, saturated with C_2H_2 , yields indole (I) and quinaldine (II) by the reactions: NHPhEt + $C_2H_2 \rightarrow$ NPhEt·CH;CH₂ (III); 2(III) \rightarrow NPhEt·CHMe·CH:CH·NPhEt \rightarrow (I) + (II) + C_2H_6 + 2H₃. Acridine derivatives. VI. S. J. Das-Gupta (J. Indian Chem. Soc., 1941, 18, 25—28; cf. A., 1939, II, 364).—The hydrochlorides, m.p. 187° and 257°, respectively, of 4:2:1-or 5:2:1-NH₂·C₆H₃Cl·CO₂H, and p-NHAc·C₆H₄·SO₂Cl-aq. Na₂CO₃ afford 2-chloro-4, m.p. 142°, and -5-(p-acetamidobenzene)sulphonamidobenzoic acid, m.p. 263°, converted by p-NH₂·C₆H₄·OMe-K₂CO₃-C₅H₁₁·OH-Cu powder into 4-, m.p. 158—160°, and 5-(p-acetamidobenzene)sulphonamido-4'-methoxydibhenylamine-2-carboxylic acid. m.p. 218—220° and 158—160°, and 5-(p-acetamidobenzene) sulphonamido-4'-methoxydiphenylamine-2-carboxylic acid, m.p. 218—220°, and thence by POCl₃ at 100° (bath) into 5-chloro-2-, m.p. 245—247° (decomp.), and -3-(4'-acetamidobenzene) sulphonamido-7-methoxyacridine (I), m.p. 243—244° (decomp.) (hydrolysed by aq. HCl-EtOH to the corresponding 4'-NH₂-compound, m.p. ~180°). Equimols of 2:5-dichloro-7-methoxyacridine and p-NH₂·C₈H₄·SO₂·NH₂, p-NH₂·C₈H₄·SO₂·NEt₂, or p-NH₂·C₈H₄·NHAc in PhOH at 110—120°, 120°, or 150—160°, respectively, give N⁴-(2-chloro-7-methoxy) acridylaminobenzene-sulphon-amide, m.p. 286°, -diethylamide, m.p. 175° (hydro-chloride, m.p. 260—261°), or -acetamide, m.p. 248—250°. Similarly prepared are N⁴-(7-methoxy) acridylaminobenzene-sulphon-diethylamide, m.p. 263—264°, and -acetamide,
m.p. 143—145°. A. T. P. Acridine synthesis and reactions. II. Synthesis of proflavine from m-phenylenediamine and its derivatives (continued). A. Albert (J.C.S., 1941, 484—487; cf. A., 1941, II, 148).—By interrupting the reaction between m-C₆H₄(NH₂)₂ (I), m.p. -120° (decomp.), and bis-2: 4:2′: 4′-tetra-amino-benzhydryl ether (III), m.p. -295° (decomp.), are obtained. NHPh·C₆H₄·NO₂-m, ZnCl₂, and HCO₂H as 3·-miro-N-formyldiphenylamine (I), m.p. 138·5°, N-2′: 4′-diamino-a-hydroxybenzyl-m-phenylenediamine (II), m.p. ~120° (decomp.), and bis-2: 4:2′: 4′-tetra-amino-benzhydryl ether (III), m.p. ~295° (decomp.), are obtained. NHPh·C₆H₄·NO₂-m, ZnCl₂, and HCO₂H give 3-nitro-N- formyldiphenylamine, m.p. 77°, reduced to the 3-NH₂-compound, m.p. 131—132° (decomp.); 3:3'-dinitro-N-formyldiphenylamine, m.p. 145—146°, similarly prepared, is reduced to (I). By heating m-C₆H₄(NH₂)₂ with HCO₂H and H₃BO₃ in distilling PhMe, (II) is obtained and when this is warmed with HCO₂H and H₃BO₃ in distilling PhMe, (II) is obtained and when this is warmed with HCl in glycerol, a 75% yield of proflavine (IV) is formed. CO[C₆H₃(NH₂)₂-2:4]₂ is reduced to 2:4:2':4'-tetra-amino-benzhydrol, decomp. 200°, remelts 290°, which is formed when (III) is hydrolysed in 50% aq. COMe₂ with HCl. It is concluded that the dihydrochloride of (anhydro)-2:4:2':4'-tetra-amino-benzhydrol, it is in the concluded that the dihydrochloride of (anhydro)-2:4:2':4'-tetra-amino-benzhydrol, it is in the concluded that the dihydrochloride of (anhydro)-2:4:2':4'-tetra-amino-benzhydrol, it is in the concluded that the dihydrochloride of (anhydro)-2:4:2':4'-tetra-amino-benzhydrol, it is in the concluded that the dihydrochloride of (anhydro)-2:4:2':4'-tetra-amino-benzhydrol, it is in the concluded that the dihydrochloride of (anhydro)-2:4:2':4'-tetra-amino-benzhydrol, it is in the concluded that the dihydrochloride of (anhydro)-2:4:2':4'-tetra-amino-benzhydrol, it is in the concluded that the dihydrochloride of (anhydro)-2:4:2':4'-tetra-amino-benzhydrol, it is in the concluded that the dihydrochloride of (anhydro)-2:4:2':4'-tetra-amino-benzhydrol, it is in the concluded that the dihydrochloride of (anhydro)-2:4:2':4'-tetra-amino-benzhydrol, it is in the concluded that the dihydrochloride of (anhydro)-2:4:2':4'-tetra-amino-benzhydrol, it is in the concluded that the dihydrochloride of (anhydro)-2:4:2':4'-tetra-amino-benzhydrol, it is in the concluded that the dihydrochloride of (anhydro)-2:4:2':4'-tetra-amino-benzhydrol, it is in the concluded that the dihydrochloride of (anhydro)-2:4:2':4'-tetra-amino-benzhydrol, it is in the concluded that the dihydrochloride of (anhydro)-2:4:2':4'-tetra-amino-benzhydrol, it is in the concluded that the dihydrochloride of (anhydro)-2:4:2':4'-tetra-amino-benzhydrol, it is in the concluded that the dihydrochloride of (anhydro)-2:4:2':4'-tetra-amino-benzhydrol, it is in the concluded that the dihydrochloride of (anhydrol)-2:4:2':4'-tetra-amino-benzhydrol, it is in the concluded that the dihydrochloride of (anhydrol)-2:4:4'-tetra-amino-benzhydrol, it is in tetra-aminobenzhydrol is the immediate precursor of (IV). F. R. S. F. R. S. 5-4'-Diphenylyl-5-R-hydantoins and 4: 4'-diphenylylenebis-5:5-R-hydantoins. H. R. Henze and L. M. Long (J. Amer. Chem. Soc., 1941, 63, 1941—1943).—p-C₈H₄Ph·COR and KCN in NH₂Ac at 110° give 71—90% of 5-4'-diphenylyl-5-methyl-, m.p. 295°, -5-ethyl-, m.p. 270—271°, -5-n., m.p. 201·5—202·5°, and -5-iso-propyl-, m.p. 270—271°, -5-n., m.p. 199·5°, and -5-iso-butyl-, m.p. 224—225°, -5-n-, m.p. 195—196·5°, and -5-iso-amyl-, m.p. 232—233°, -5-a-methyl-n-butyl-, m.p. 262°, -5-a-ethyl-n-propyl-, m.p. 249—250°, -5-phenyl-, m.p. 242°, and -5-n-hexyl-, m.p. 185—186·5°, -hydantoin. (p-C₈H₄·COR)₂ gives similarly 53—80% of 4: 4'-diphenylene-bis-5-5-methyl-, m.p. 360°, -ethyl-, m.p. 335°, -n-, m.p. 214°, and -iso-propyl-, m.p. 360°, -n-, m.p. 310°, and -iso-butyl-, m.p. 295°, -n-, m.p. 312°, and -iso-amyl-, m.p. 335°, -n-hexyl-, m.p. 284°, and -phenyl-, m.p. 282°, -hydantoin. M.p. are corr. Hydantoins. I. A. Novelli (Anal. Asoc. Qutm. Argentina, 1941, 29, 83—87).—The following hydantoins, prepared from ketones, KCN, and (NH₄)₂CO₃ (cf. Bucherer and Steiner, A., 1934, 1231), are described: 5:5-o-diphenylene-, decomp. 308—310°, 5:5-o-phenylenetrimethylene-, m.p. 237·5—239·5° (from a-tetralone), 5:5-2'-methyl-5'-isopropylcyclopentamethylene-, m.p. 217—219°, 5-3'-phenanthryl-5-methyl-, m.p. 232—235°, 5-2'-phenanthryl-5-ethyl-, m.p. 315—317°. F. R. G. Synthesis of N-disubstituted 5-phenylethyl-5-aminomethylhydantoins. H. R. Henze and C. B. Holder (J. Amer. Chem. Soc., 1941, 63, 1943—1945).—a-Chloro-δ-phenylbutan-β-ol, m.p. 46—47°, b.p. 112—114°/4 mm., and Cr0₃ give Cl·[CH₂]₂·COPh, m.p. 40—41° (lit. 84—85°), b.p. 110·5—111·5°/5 mm. (2 : 4-dinitrophenylhydrazone, m.p. 147·2—147·7°), which with NHMe₂, HCl and Na₂CO₃ in aq. COMe₂ at <0° or NHR₂ (2 equivs.) in Et₂O or C₀H₆ at 0° gives a-dimethyl-, b.p. 106—107°/3·5 mm. (picrate, m.p. 118—119°), -ethyl-, b.p. 119°/4 mm. (picrate, m.p. 104·5—105·5°, -n-propyl-, b.p. 136—138°/4 mm. (picrate, m.p. 116·5—117·5°), -n-butyl-, b.p. 159—160°/5·5 mm. (picrate, m.p. 99—100°), and -iso-amyl-, b.p. 161—163°/4 mm. (picrate, an oil), -amino-δ-phenylbutan-β-one and a-morpholino-δ-phenylbutan-β-one, m.p. 23—24°, b.p. 180—181°/7 mm. (picrate, m.p. 136·3—137·3°). With KCN and (NH₄)₂CO₃ in 50—65% EtOH at 58—60° these give 5-β-phenylethyl-5-dimethyl-, m.p. 232·3—233·3°, -ethyl-, m.p. 203·3—205·3°, -n-propyl-, m.p. 196·5—197·5°, -n-butyl-, m.p. 161—163°, and -isoamyl-, m.p. 194·7—127·2°, -aminohydantoin. 5-β-Phenylethyl-5-NN-phenylethylamino-, m.p. 176—177·5°, and -5-morpholino-hydantoin, m.p. 222—223°, are also prepared. M.p. are corr. R. S. C. Action of diazomethane on lactones and lignins. E. Y. Action of diazomethane on lactones and lignins. E. Y. Spencer and G. F. Wright (J. Amer. Chem. Soc., 1941, 63, 2017—2020).—The so-called phenolic OH content, determined by CH2N2, is not characteristic of native lignin as it depends on the method of extraction. E.g., bound phenolic OH is present in Et₂O-sol. birch lignin extracted by Ac₂O; CH₂N₂ raises the OMe from 19.7 to 21.9%, but after hydrolysis by 10% alkali from 23.3 to 34% (some xylosazone is obtained after hydrolysis). Further, CH₂N₂ reacts with lactones; e.g., valerolactone gives OH₁[CH₂]₂·CO₂Me, identified as acetate, and coumarin gives Me 3-o-anisylpyrazoline-4-carboxylate, m.p. 94.5° . Lignin probably contains coumarin linkings since the N content is raised from 0 to nearly 1% by treatment with CH_2N_2 . R. S. C. ment with CH2N2. Interaction of organic sulphur compounds with hydrogen peroxide. XXI. Mechanism of desulphurisation of thiopyrine to antipyrine by hydrogen peroxide. II. R. Kitamura and T. Ono (J. Pharm. Soc. Japan, 1941, 61, 17—19; cf. A., 1939, II, 456).—5-Thiopyrine and H₂O₂ (2 mols.) in MeOH give a crude oily dioxide (I), converted by distillation into SO₂ and 1-phenyl-3-methylpyrazole, m.p. 34·5—35·5°, b.p. 143—145°/18 mm., also obtained from 5-chloro-1-phenyl-3-methylpyrazole by P–HI and oxidised by KMnO₄–KOH to 1-phenylpyrazole-3-carboxylic acid. 3-Thiopyrine similarly gives 1-phenyl-5-methylpyrazole, b.p. 140—143°/20 mm., oxidised to 1-phenylpyrazole-5-carboxylic acid. The reaction mechanism is discussed. R. S. C. Reaction between organic sulphur compounds and hydrogen peroxide. XXII. Mechanism of the desulphurisation of thiopyrine (> antipyrine) by hydrogen peroxide. III. Synthesis of tetrabromothiopyrine dioxide and the consideration of the mechanism of desulphurisation. R. Kitamura (J. Pharm. Soc. Japan, 1941, 61, 39—42).—A study of the behaviour of thiopyrine (I) towards H₂O₂ followed by Br and towards Br alone or in presence of HBr in aq. and non-aq. medium leads to the following conclusions. (I) and its homologues are converted by H₂O₂ into a dioxide (II) and then a trioxide (III) from which dealers in course Documents of the converted by H₂O₂ into a dioxide (III) and then a trioxide (III) from which desulphurisation occurs. Desulphurisation at the greatest rate occurs mainly from (II); little part is played by (III) and the change is rapidly completed. With compounds which react less readily a relatively greater amount of (III) is formed and this consequently has a more pronounced function in the desulphurisation. The first type of action is best shown by 1:2-diphenyl-3-methyl-5-thiopyrazole with the slowest oscillation and the second type by 1:2:3-trimethyl-5-pyrazole with its most rapid oscillation. With this compound the trioxide is the main initial material in desulphurisation and the process is therefore incomplete at room temp. (I), dithio-, di- and 3-thiopyrine resemble one another and are placed between the two extreme classes; nevertheless with these substances desulphurisation takes place mainly from the dioxide and is generally complete. (I) and its hypothetical monoxide are rapidly converted by H. W. H₂O₂ into the dioxide. Oscillation state and reactivity. Constitution of antipyrine and related compounds. IX. Comparison of 1:2-diphenyl-3-methyl-5-thiopyrazole and analogous compounds. X. Products of the reaction of thiopyrine with bromine water. R. Kitamura. XI. Derivatives of antipyrine, R. Kitamura and G. Sunagawa (J. Pharm. Soc. Japan, 1941, 61, 8—12, 12—14, 14—17; cf. A., 1941, II, 304).—IX. Relative rates of desulphurisation by H₂O₂-KOH are 1:2-diphenyl-5-methyl(I) > 1-phenyl-2:3-dimethyl- > 1:2:3-trimethyl-5-thiopyrazole (II). 5-Keto-1:2-diphenyl-3-methylpyrazole (III) and POCl₃ give 5-chloro-1:2-diphenyl-3-methylpyrazole chloride (IV), m.p. 234—237°, converted by KSH into (I), m.p. 185—186°, b.p. 243—244°/0-01 mm., yellow and colourless forms. Aq. Cl₂ converts (I) into the trioxide, decomp. 263—265°, which is better obtained from (IV) by Na₂SO₃, is desulphurised faster than is (I), and is converted by 2N-KOH into (III). (II) also exists in yellow and colourless forms and with neutral H₂O₂ gives the trioxide
(V), decomp. 274—276°, or later 5-keto-1:2:3-trimethylpyrazole (VI), also obtained from (V) by boiling KOH. The first step in desulphurisation of (II) by alkaline H₂O₂ is formation of the dioxide, which is mainly converted into (V) and thence (VI) and to a small extent yields (VI) directly. The results are explained by means of the oscillation theory. X. 5-Keto-1-phenyl-2; 3-dimethylpyrazole absorbs 7—8 Br in H₂O to give the *compound*, NMe·NPhBr C·SBr(OBr)₂, CMe—CH decomp. 112—113° (cf. Komata, J. Chem. Soc. Japan, 1938, 59, 482). In warm H₂O or cold N-Na₂CO₃ or -KOH this gives Br and the trioxide, decomp. ~300°, and yields the Br quantitatively to 0·ln-KOH at 100° in 5 min. or at room temp. in 2 days. XI. Antipyrine and NaOCl (2 mols.) in 2n-NaOH give 4-chloroantipyrine (VII), m.p. 126—127°, and an oil, converted by warm H₂O into (VII) (cf. Leulier, A., 1924, i, 875; Komata, J. Chem. Soc. Japan, 1937, 58, 1305). With POCl₃, (VII) gives 4:5-dichloro-1-phenyl-3-methylpyrazole (VIII), m.p. 54—55°, and the methochloride (IX), decomp. 173—178° [yields (VIII)], thereof. With conc. aq. KSH, (IX) gives 1-phenyl-2:3-dimethyl-5-thiopyrazole, converted by H₂O₂-NaOH into (VIII). Na₂SO₃ and (IX) give 4-chloro-1-phenyl-2:3-dimethyl-5-thiopyrazole trioxide, rapidly converted into (VIII) by H₂O₂-NaOH or boiling KOH. R. S. C. Pyrimidines, CLXXII. Hydrogenolysis of 4-iminobarbituric acid. J. C. Ambelang and T. B. Johnson (J. Amer. Chem. Soc., 1941, 63, 1934—1935; cf. A., 1941, II, 270).—Hydrogenation (PtO₂; ~80°/2·5 atm.; H₂O) of 4-imino- barbituric acid causes fission of the C₍₄₎-N linking (giving uracil), which supports the structure assigned to toxoflavine I. 5:5-Dichloro-2:4-diketo-2-ethoxyhexahydropyrimidine, m.p. 230° (decomp.), is prepared by chlorination in abs. EtOH. R. S. C. Polarisation in heterocyclic rings with aromatic character. XIV. Syntheses of pyrimidine and dipyrimidyl homologues. M. Yanai and T. Naito (J. Pharm. Soc. Japan, 1941, 61, 46—53).—Et hexoylacetoacetate and NH₃ in cold Et₂O yield Et hexoylacetate (I), b.p. 127—130°/20 mm. (Cu compound, m.p. 107°), NH₂Ac, and hexoamide, m.p. 100°. (I), NaOEt, and CS(NH₂)₂ in boiling EtOH yield 6-amyl-2-thiouracil, m.p. 151—153°, transformed by 0·ln-KOH and 3% H₃O₂ at 20° into 6-amyluracil, m.p. 171—173°; this with POCl₃ at 120° affords 2: 4-dichloro-6-amylpyrimidine, b.p. 130—135°/3 mm., which with H₂-Pd-CaCO₃ in MeOH gives 6-amylpyrimidine, b.p. 130—135° (bath)/0·05 mm. (aurichloride, m.p. 110—112°; platinichloride, decomp. 208°). Valeroamidine hydrochloride (corresponding picrate, m.p. 190°) and CH₂Ac-CO₂Et are converted by 10% KOH-EtOH at room temp. into 4-hydroxy-6-methyl-2-n-butylpyrimidine (II), m.p. 120°, transformed by boiling POCl₃ into 4-chloro- (III), b.p. 110—115° (bath)/3 mm., whence are derived 4-amino-6-methyl-2-n-butylpyrimidine, m.p. 97°, and 6-methyl-2-n-butylpyrimidine, b.p. 130—135° (bath)/5 mm. (platinichloride, m.p. 186°). Et valeroylaceto-acetate, b.p. 115—118°/5 mm. (Cu salt, m.p. 55·5°), from Bu°COCl, CH₂Ac-CO₂Et, and Mg turnings in C₆H₆ at 80—85°, is slowly transformed by boiling H₂O into valeroylacetone (Cu salt, m.p. 137°), which condenses with CO(NH₂)₂ and conc. HCl in abs. EtOH to diuramidovaleroylacetone, m.p. 144°, as main product. (III) is converted by Cu-bronze in boiling cumene into 6: 6'-dimethyl-2: 2'-di-n-butyl-4: 4'-di-pyrimidyl, b.p. 180—185° (bath)/0·01 mm. (hydrochloride, m.p. 127°). 4-Chloro-2-benzyl-6-methylpyrimidine and HI (d 1·7) at room temp. and then at 50° yield the 4-I-compound, m.p. 127°). 4-Chloro-2-benzyl-6-methylpyrimidine in cumene, tetrahydronaphthalene, or without solvent into an unidentified compound, C₂₁H₂₀N₄Cl₂, m.p. 226°, and HI transforms it into 4-benzyl-6-methylpyrimidine. (III) and HI yield (II). 2: 4-Dichloro- and HI Pyrazine series. III. Amination of 2:5-dimethylpyrazine. Synthesis of 3-sulphanilamido-2:5-dimethylpyrazine. R. R. Joiner and P. E. Spoerri (J. Amer. Chem. Soc., 1941, 63, 1929—1930; cf. A., 1940, II, 193).—2:5-Dimethylpyrazine and NaNH₂ in NPhMe₂ at 165° give 35% of the 3-NH₂-derivative, m.p. 111—112°, b.p. 119—122°/10 mm. (cf. Tschitschibabin et al., A., 1931, 100), which with p-NHAc·C₆H₄·SO₂Cl in C₅H₅N at <50° gives 3-N⁴-acetylsulphanilamido-, m.p. 238—239°, and thence (6N-HCl; 100°) 3-sulphanilamido-2:5-dimethylpyrazine, m.p. 227—228° (corr.). R. S. C. Synthesis of substances of probable antimalarial action. I. Structure and pharmacological properties. II. Benziminazole compounds with a γ -diethylaminopropyl group. V. A. Izmailski and A. M. Simonov (J. Gen. Chem. Russ., 1940, 10, 1580—1587, 1588—1599).—I. 3-Amino-4-benzamidoanisole (I), m.p. 200—200-5° (prepared by reduction of the corresponding 3-NO₂-compound), condenses with PhCHO to 3-benzylidenemino-4-benzamidoanisole, m.p. 96—97°. With HNO₂ (I) yields 1-benzoyl-5-methoxy-1:2:3-benztriazole, m.p. 116°. (I) with NEt₂·[CH₂]₃·Cl (II) (2 hr. at 110—115°, then 3 hr. at 130—135°, then 10 hr. at 150—155°) gives 4-benzamido-3-(N-y-diethylaminopropyl)aminoanisole, m.p. 143·5—144°, which had no antimalarial properties. 3-Amino-4-benzenesulphonamidoanisole, m.p. 116·5—117·5°, is prepared by reduction of the corresponding 3-NO₂-compound. Attempts to condense this compound with (II) were unsuccessful. II. 3-Nitro-4-(p-toluenesulphonamidolanisole, and (II) in II. 3-Nitro-4-(p-toluenesulphonamido)anisole and (II) in EtOH, in presence of K₂CO₃ (12 hr. at the b.p.), yield 3-nitro-4-(p-toluenesulphonyl-y-diethylaminopropyl)aminoanisole, m.p. 77-5—78°. This is dissolved in 90% H₂SO₄, and the solution is made neutral with aq. NH₃ after 12 hr., giving 3-nitro-4-(y-diethylaminopropyl)aminoanisole, b.p. 191-5—193-5°/2·5 mm. (picrate, melting at 114—115°, to yield a chromo-isomeride, m.p. 126—127°), reduced by SnCl₂ in HCl to 3-amino-4- (\gamma-diethylaminopropyl)aminoanisole, b.p. 196—198°/4 mm. This with Ac2O in HCl (90 min. at the b.p.) yields 5-methoxy-2-methyl-1-(y-diethylaminopropyl)benziminazole (III), b.p. 184—185°/2 mm. (dipicrate, m.p. 236°). 3-Amino-4-acetamidoanisole (IV) and PhCHO in EtOH yield 3-benzylidene-amino-4-acetamidoanisole, m.p. 128—128·5°. (IV) and 1:2:4-C₆H₃Cl(NO₂)₂ yield 2:4-dinitro-2'-acetamido-5-methoxydiphenylamine, m.p. 263·5°. (IV) condenses with (II) in EtOH (3 hr. at 110—115°, then 13 hr. at 135—140°) to 6-methoxy-2-methyl-1-(y-diethylaminopropyl)benziminazole (V), b.p. 190·5—191·5°/2 mm. [dipicrate, m.p. 218·5—219° (decomp.)]. This with PhCHO (3—4 hr. at 200°) yields 6-methoxy-2-styryl-1-(y-diethylaminopropyl)benziminazole (dihydrochloride, m.p. 234—236°). A solution of (IV) in AcOHHCl, heated at the b.p. for 1 hr., yields 5(6)-methoxy-2-methyl-benziminazole, m.p. 141·5—142·5° (picrate, m.p. 191·5—192·5°), which with (II) (3—4 hr. at 110—115°) gives a mixture of (III) and (V). None of the above-described products have any antimalarial action. Polarisation in heterocyclic rings having aromatic character. XIII. Polarisation in pyrimidine rings. E. Ochiai and M. Yanai (J. Pharm. Soc. Japan, 1940, 60, 192—199; cf. A., 1941, II, 149).—2-Aminopyrimidine and picryl chloride (I) in C_eH_e give 4: 6-dinitropyrimidino-(1': 2'-2: 1)-benziminazole, m.p. 196° (decomp.), whereas 4-aminopyrimidine affords picramide and 4-hydroxypyrimidine. 2-Amino- or 2: 4-diamino-6-methylpyrimidine and (I) give 2-picramido-6-methyl-, m.p. 166—167°, or 2-picramido-4-amino-6-methyl-pyrimidine, m.p. 195—196° [4-acetate (II), m.p. 235°], converted by boiling with PhOH-PhNO₂ into 4: 6-dinitro-6'-methyl-pyrimidine, or 4: 6-dinitro-4'-amino-6'-methyl-pyrimidino-(1': 2'-2: 1)-benz-timinazole, m.p. >330° [acetate, m.p. 323—325°, by acetylation or from (II)], respectively. 6-Methylpyrimidine (III) and NaNH₂-Bu^aBr give 6-amylpyrimidine, b.p. 105—130°/0-01 mm., 135—138°/0-03 mm. (picrate, m.p. 126—128°). (III) and CH₂PhCl-NaNH₂ afford 6-(dibenzylmethyl)pyrimidine, b.p. 105—110°/0-01 mm. (hydrochloride, m.p. 259—260°; aurichloride, m.p. 198—200°), and a compound, C₂₄H₂₂N₄, b.p. 189—190°/0-01 mm., m.p. 120° (picrate, m.p. 153—155°), probably formed from 2 mols. of 6-(β-phenylethyl)pyrimidine. 6-Styrylpyrimidine is hydrogenated (Pd) to 6-(β-phenylethyl)-pyrimidine, m.p. 27—30° (picrate, m.p. 123—125°). 4-Hydroxy-2-benzyl-6-methylpyrimidine and POCl₃ at 120—130° give the corresponding 4-Cl-compound, m.p. 81—83°, converted by Zn-H₂O into 2-benzyl-6-methylpyrimidine, m.p. 36—37°, b.p. 135—140°/5 mm. (picrate, m.p. 126°; hydrochloride, m.p. 175—176°). CH₂Ac·CO·CH₂Ph-CO(NH₂)₂-HCl-EtOH afford 2-hydroxy-6-benzyl-1, m.p. 61—63° [and a substance, C₁₂H₁₂ON₂, +H₂O, m.p. 167—169°, converted by boiling H₂O or aq. EtOH into (III)], and (POCl₃) 2-chloro-6-benzyl-4-methylpyrimidine, m.p. 175—148°; hydrobromide, m.p. 148°; hydrobromide, m.p. 140—145°/4 mm. (picrate, m.p. 148°; hydrobromide, m.p. 151—152°). Quinoline derivatives. VI. D. Das-Gupta and T. N. Ghosh (J. Indian Chem. Soc., 1941, 18, 120—122).— [CO_2Et-CH(CO·NHPh)]_2CO with m- and p-C₆H₄Me·NH₂ at 160—170° yields aa-m-, m.p. 206—207° (which does not condense with aldehydes in AcOH), and -p-tolylcarbamylacetonedicarboxylic acid diantitide, m.p. 222—223°, which could not be converted into C₅H₅N derivatives. 2: 4-Dihydroxy-3-carbethoxy- with NH₂Ph at 170° yields 2: 4-dihydroxy-3-phenylcarbamyl-6-methylpyridine, m.p. 279—280°, converted by conc. H₂SO₄ at 100° into 2: 2'-dihydroxy-6-methylpyridino-3: 4-(3': 4')-quinolinedisulphonic acid (+H₂O), m.p. >300° (picrate, turns brown at 217°, black >300°; Ac derivative uncrystallisable), unaffected by aq. NaOAc or boiling conc. HCl. A. Li. Diquinolyls. VII. Formation of 2:3'-diquinolyl by action of selenium on quinoline. K. Ueda (J. Pharm. Soc. Japan, 1940, 60, 210).—Quinoline with Se at 280—300° yields 2:3'-diquinolyl. A. Li. Disoquinolyls. I. Synthesis of 4:4'-disoquinolyl. K. Ueda (J. Pharm. Soc. Japan, 1940, 60, 210).—4-Bromoisoquinoline with N₂H₄, H₂O in EtOH-KOH in presence of Pd-CaCO₃ yields 4:4'-disoquinolyl, m.p. 149°. A. Lr. Metallic triazine complexes. F. G.
Mann (Nature, 1941, 147, 778—779).—A discussion (cf. A., 1941, II, 93). Hexa- covalent Pd^{II} compounds have been described previously (cf. A., 1929, 678). L. S. T. Chemotherapy of bacterial infections. IV. Synthesis of N'-sulphonamide-substituted heterocyclic derivatives of sulphanilamide. K. Ganapathi (Proc. Indian Acad. Sci., 1941, 13, A, 386—389).—The following compounds have been obtained by standard methods: sulphanilyl-, m.p. 188—189°, acetylsulphanilyl-, m.p. 266°, N⁴-sulphanilylsulphanilyl-, m.p. 143—145° (decomp.), -guanidine; 4-N¹-sulphanilamidouracil; 5-N¹-sulphanilamidobarbituric acid; 2-N¹-sulphanilamidouracil; 5-N¹-sulphanilamidobarbituric acid; 2-N¹-sulphanilamido-, m.p. 190—192°, -1: 3: 4-thiodiazole; 2-N¹-sulphanilamido-, m.p. 240—242°, 2-N¹-sulphanilamido-4-methyl-, m.p. 236—238°, 2-N¹-sulphanilamido-4: 6-dimethyl-, m.p. 235—240°, and 2-N¹-sulphanilamido-4: 6-dimethyl-, m.p. 235—240°, and 2-N¹-sulphanilamido-4: 6: 6-trimethyldihydro-, m.p. 230—232°, -pyrimidine; 7-N¹-sulphanilamidoalloxazine. The group NH₂-C₆H₄-SO₂-NR is essential for therapeutic activity, the degree and range of which are governed by the nature of R present at the sulphonamide radical. Of R tried, only the heterocyclic compounds the ring structures of which are present in products of vital biochemical functions (as vitamins or co-enzymes) yield sulphanilamide derivatives of outstanding val. Apparently some sp. spatial configuration of the whole mol. is essential for intense therapeutic activity. Cobalt compounds of protoporphyrin. H. F. Holden (Austral. J. Exp. Biol., 1941, 19, 89—92).—The visible and ultraviolet spectra of cobalti- and cobalto-protoporphyrins and their compounds with globin, KCN, and glyoxaline are described. D. M. N. Pyrrole series. V. Reinvestigation of the configuration of hæmin. A. H. Corwin and R. H. Krieble (J. Amer. Chem. Soc., 1941, 63, 1829—1834; cf. A., 1940, II, 193).—Rigid proof is provided of the structure of "natural" deuteroportal the structure of "natural" deuteroportal of the structure phyrin (I) (Fischer et al., A., 1928, 1385), mainly by alternative unambiguous synthesis of intermediates. Et 2: 4-dimethylpyrrole-3: 5-dicarboxylate and aq. KOH at 160° give 95% of 2: 4-dimethylpyrrole (II), b.p. 72°/25 mm., unstable in air. Addition of COEt-CH₂·NH₂·HCl (prep. *in situ* from COEt-CH:N·OH by mossy Sn-SnCl₂-HCl improved) and 1% NaOH (to maintain $p_{\rm H}$ 6) to CO₂Et-C(ONa):CH-CO₂Et in H₂O NaOH (to maintain $p_{\rm H}$ b) to CO₂Et C(ONa).CH-CO₂Et in H₂O at 85° gives 65% of 4-carbethoxy-2: 3-dimethylpyrrole-5-carboxylic acid, m.p. 210° (decomp.), converted as above into 2: 3-dimethylpyrrole (III), b.p. 72°/25 mm., more stable than (II). Passing HCl into (a) 5-formyl-2: 4-dimethylpyrrole (modified prep.; 75% yield), m.p. 91°, and (III), or (b) 5-formyl-2: 3-dimethylpyrrole (IV), m.p. 127·5—128°, and (II) in abs. EtOH gives 95% of the hydrochloride, decomp. 222°, converted (83%) by a little aq. NH₃ into 3: 5: 4': 5'-dipyrrylmethene (V), m.p. 82—83°, unstable. Fischer's m.p. 115° for (V) is erroneous, attempts to repeat his experiments exactly giving, in one ex-82—83°, unstable. Fischer's m.p. 115° for (V) is erroneous, attempts to repeat his experiments exactly giving, in one experiment, only a similar, but mixed, product. HCl, 90% HCO₂H, and (II) in EtOH give under defined conditions 50% of the hydrochloride (VI), red and blue forms, decomp. 226°, converted as above into 3:5:3′:5′-tetramethyldipyrrylmethene (VII), m.p. 116—118°. (III), (IV), and conc. HCl in EtOH give the hydrochloride (80%), decomp. 212°, of 4:5:4′:5′-tetramethyldipyrrylmethene (VIII), m.p. 116°. HCO₂H and (III) give only NH₄Cl. (V), (VIII), and (VIII) give depressions of m.p. when mixed. Addition of Fe powder to deuterohæmin in HCl-AcOH, pptn. of the porphyrin by H₂O, boiling with dry HCl-AcOH, and purification by chromatography gives "natural" deuteroporphyrin Me₂ ester (IX), m.p. 224·5°. Br and (VI) in boiling CCl₄-CHCl₃ give 4:4′-dibromo-3:5:3′:5′-tetramethyldipyrrylmethene hydrobromide (X) (>83%). Prep. of 5:5′-dibromo-4:4′-dimethyldipyrrylmethene-3:3′-dipropionic acid hydrobromide (XI) from 5-carbethoxy-2:4-dimethylpyrrole-3-acrylic acid (hydrogen-5-carbethoxy-2: 4-dimethylpyrrole-3-acrylic acid (hydrogenation: PdCl₂-C; aq. NaOH) by way of the 3-propionic acid, m.p. 153°, the 2-bromomethyl-3-propionic acid, and 5:5′-dicarboxy-4:4′-dimethyldipyrrylmethane-3:3′-dipropionic acid is improved. Heating (\mathbf{X}) , (\mathbf{XI}) , and BzOH at 180—182°, esterification of the product, and chromatography gives deuteroporphyrin XIII Me_2 ester, m.p. 243—243·5° [depression of m.p. with (\mathbf{IX})]. Similarly, but including debromination by hydrogenation (Busch catalyst; C_6H_6), 4:3'-dimensional control of the contr bromo-3:5:4':5'-tetramethyldipyrrylmethene hydrobromide, (XI), and BzOH give deuteroporphyrin IX Me₂ ester, m.p. 223·5—224°, identical with "natural" (IX). R. S. C. Absorption spectra of ms-tetraphenylporphine and its metal complex salts.—See A., 1941, I, 397. Phenolic invert soaps. J. B. Niederl and F. A. Abbruscato (J. Amer. Chem. Soc., 1941, 63, 2024).—Treatment of p-CH₂Buv·CMe₈·C₆H₄·OH with 30% CH₂O and NHR₂ in MeOH at room temp. and then with MeI gives 4-2'-hydroxy-5'-aaγγ-tetramethyl-n-butylbenzylmorpholine, m.p. 44—45° (methiodide, m.p. 176—177·5°), 1-2'-hydroxy-5'-aaγγ-tetramethyl-n-butylbenzylpiperidine, m.p. 92—93° (methiodide, m.p. 162—163·5°), 2-hydroxy-5-aaγγ-tetramethyl-n-butylbenzyldi-ethyl-, m.p. 124—125°, -n-propyl-, m.p. 135—136·6°, and -n-butyl-ammonium iodide, m.p. 132—133°. R. S. C. Synthesis of 3: 5-diamino-4-morpholinopyridine. E. Ochiai and Y. Ito (J. Pharm. Soc. Japan, 1941, 61, 53—54).—4-Hydroxypyridine is converted by fuming HNO₃ and fuming H_2SO_4 at $140-145^\circ$ into 3: 5-dinitro-4-hydroxypyridine, decomp. 325° , transformed by the successive actions of POCl₃ + PCl₅ at 140° and morpholine in boiling abs. EtOH into 3: 5-dinitro-, m.p. $163-164^\circ$, reduced (Pd-C in HCl-MeOH) to 3: 5-diamino-4-morpholinopyridine, m.p. 231° (picrate, m.p. 213° ; Ac_2 derivative, m.p. 216°). H. W. Thiazolines.—See B., 1941, II, 335. Polarisation in heterocyclic rings with aromatic character. XII. Polarisation in the thiazole ring. III. F. Nagasawa (J. Pharm. Soc. Japan, 1940, 60, 219—224).—The activity of the C(4) like that of the C(5) position towards electrophilic reagents is slight; it is increased by the presence of substituents with +M or +E effect at C(5) but not to the extent observed with the activity of C(5). Treatment of 2-amino-5-methylthiazole (I), b.p. 80°/0·01 mm., m.p. 95—96·5°, with H2SO4 + HNO3 causes decomp. without production of NO2-derivatives. Nitration [H2SO4 (d 1·84) + HNO3 (d 1·5)] of 2-acetamido-5-methylthiazole, m.p. 224°, at 0° gives small amounts of a NO2-derivative, m.p. 249° (picrate), and minch resin. The respective thiazoles are converted by fuming H2SO4 (20% SO3) and HNO3 at 160° into 4-mitro-2:5-dimethyl-, m.p. 56·5°, nitro-4-methyl-, m.p. 57·5°, and 5-nitro-2:4-dimethyl-, b.p. 65°/0·07 mm., -thiazole. 2:5-Dimethylthiazole is unaffected by fuming H2SO4 (20% SO3) at 100° or 150° but is transformed by prolonged action of the acid at 200° into 2:5-dimethylthiazole-4-sulphonic acid, decomp. 284° [Ba salt (+1H2O), decomp. 353°], in relatively poor yield. 2-Hydroxy-5-methylthiazole, m.p. 139—141·5°, reacts with fuming H2SO4 (20% SO3) at room temp. 60°, and 100° (best at 60°) giving the non-cryst. 4-sulphonic acid [Ba salt (+1H2O)] but reaction occurs less readily than with the 4-Me compound. (I) and fuming H2SO4 (20% SO3) at 60° or 100°, but not at 1°, afford a monosulphonic acid, decomp. 292° [Ba salt (+1H2O)], which could not be diazotised and is re-converted into (I) by cone. HCl at 135° (picrate, m.p. 153°, perchlorate, m.p. 128°/4 mm., m.p. 36° (picrate, m.p. 153°, perchlorate, m.p. 160° into the -4-sulphonic acid, decomp. 273° (Ba salt). Under similar conditions 2-piperidino-4-methylthiazole (III), b.p. 102—104°/4 mm., m.p. 36° (picrate, m.p. 153°, perchlorate, m.p. 153°); perchlorate, m.p. 153°; berchlorate, m.p. 160° (picrate, m.p. 153°); perchlorate, m.p. 160° (picrate, m.p. 160° (picrate, m.p. 160° (pi Molecular compounds in the sulphonamide series. II. S. Kuroyanagi and H. Kawai (J. Pharm. Soc. Japan, 1940, 60, 183—184).—M.p. and f.p. curves for combinations of (a) p-NH₂·C₆H₄·SO₂·NH₂(I), p-NH₂·C₆H₄·SO₂·NH·C₆H₄·SO₂·NMe₂·p, or 2-sulphanilamido-pyridine (II), and (b) 5:5-diethylbarbituric acid, dimethylaminoantipyrine (III), or 2-phenylquinoline-4-carboxylic acid (IV) show that only two combinations, viz., (I) (1 mol.) + (IV) (2 mols.), and (II) (1 mol.) + (III) (1 mol.), gave evidence of formation of mol. compounds. Thermal analysis of the systems 2-sulphanilamido-6-methylpyridine and (III) or p-NO₂·C₆H₄·OH (V), and 2-sulphanilamido-4-methylthiazole and (V), shows that no mol. compound is formed. Preparation of γ-diethylaminopropyl derivatives of 1-aminobenzthiazole. K. Tsuda, S. Sakamoto, H. Matsuda, and T. Kanno (J. Pharm. Soc. Japan, 1940, 60, 184—189).—1-Acetamidobenzthiazole (I) (1 mol.) in NaOEt (1 mol.)—EtOH [or the K salt of (I) in EtOH] and Br-[CH₂]₃ NEt₂, HBr (II) (1:3 mols.) in NaOEt (1:3 mols.)—EtOH at 100° (bath) afford 1-N-acetyl-γ-diethylaminopropylaminobenzthiazole, b.p. 185—187° [0:03 mm. (dipicrate, m.p. 158°), hydrolysed by 10% aq. HCl at 100° (bath) to γ-diethylaminopropylaminobenzthiazole, b.p. 200—210° [0:01 mm. [dipicrate, m.p. 197° (or +COMe₂, m.p. 168°); meconate, m.p. 179° (decomp.)], also obtained from 1-chlorobenzthiazole and NH₂-[CH₂]₃ NEt₂ at 100°. 1-Aminobenzthiazole (III) or (I) and (II) at 130° afford 1-imino-2-γ-diethylaminopropyl-1: 2-dihydrobenzthiazole, b.p. 170—180° [0:03 mm. [dipicrate, m.p. 192° (+H₂O); meconate, m.p. 217° (decomp.)] [acetimino-derivative, m.p. 57° (dipicrate, m.p. 145°)]. The following are prepared: 3-methoxy-, m.p. 146° (Ac derivative, m.p. 213°),
and 4-chloro-1-aminobenzthiazole, m.p. 205° (Ac derivative, m.p. 291°); 5-chloro-, m.p. 62° [dipicrate, m.p. 188°; meconate, m.p. 165° (decomp.); Ac derivative, m.p. 107°], 5-ethoxy- [meconate, m.p. 210° (decomp.); Ac derivative, m.p. 196°], 5-amino- [meconate, m.p. 203° (+1·5CγH₄Oγ); Ac derivative, m.p. 96°], 5-amino- [meconate, m.p. 200° [dipicrate, m.p. 170°; meconate (+3H₂O), m.p. 113° (decomp.); Ac derivative, b.p. 230° [0·01 mm. [dipicrate, m.p. 162°]], and 1-γ-diethylaminopropylamino-3-methoxybenzthiazole, b.p. 200°], and 1-γ-diethylaminopropylamino-3-methoxybenzthiazole, b.p. 200°], and 1-γ-diethylaminopropylamino-3-methoxybenzthiazole, b.p. 200° [0·05 mm. [dipicrate, m.p. 143° (decomp.); meconate, m.p. 154—155° (decomp.); Ac derivative, b.p. 210° [0·01 mm. [dipicrate, m.p. 162°]], and 1-γ-diethylaminopropylamino-3-methoxybenzthianobenzthiazole, m.p. 129°; 5-chloro-, b.p. 190—200° [0·05 mm. [dipicrate, m.p. 230° (decomp.)], 3-chloro-, b.p. 200° [0·05 mm. [dipicrate, m.p. 230° (decomp.)], 3-chl 198°; meconate). (III) and O·CH₂·CH·CH₂·NEt₂ yield 1-γ-diethylamino-β-hydroxypropyl)aminobenzthiazole, b.p. 230—250°/0·01 mm. (dipicrate, m.p. 189°), also obtained from 1-chlorobenzthiazole and NH₂·CH₂·CH(OH)·CH₂·NEt₂. 2-Acetamido-4-methylthiazole is converted (K salt-MeI; reflux) into the N-Me derivative, m.p. 110°, or (MeI at 100°) into 2-acetimino-3: 4-dimethylthiazole, m.p. 115° (+H₂O, m.p. 51°). Heterocyclic sulphonamides. U. P. Basu and S. J. Das-Gupta (J. Indian Chem. Soc., 1941, 18, 167—168).—2-Chlorocyclohexanone with CS(NH₂)₂ in boiling EtOH yields 2-amino-3: 4-tetrahydrobenzthiazole (hydrochloride, m.p. 243—244°), which with p-NHAc·C₆H₄·SO₂Cl (I) in C₅H₅N at room temp. yields the Ac derivative, m.p. 180° (indef.), of 2-sulphanilamido-3: 4-tetrahydrobenzthiazole (II), m.p. 150—154° (indef.). 4-Methylthiazole with (I) in EtOAc at room temp. and hydrolysis (5% HCl in 50% EtOH at 100°) of the product yields 2-sulphanilamido-4-methylthiazole (Fosbinder et al., A., 1939, II, 525). (I) and 4-sulphanilamido-1-phenyl-2: 3-dimethyl-5-pyrazolone (Roblin et al., A., 1940, II, 359) show no activity against pneumococcal (type I) infections in white mice. Synthesis of methoxy-γ-diethylaminopropyl derivatives of benzthiazole and benziminazole. E. Ochiai and M. Katada (J. Pharm. Soc. Japan, 1940, 60, 211—216).—2-Amino-5-, m.p. 154° (picrate, decomp. 230—255°) [prepared by treating diazotised 3:4:1-NO₂·C₆H₃(NH₂)·OMe with KČNS and Cu₂(CNS)₂, and reducing (SnCl₂ + HCl) the resulting 3-nitro-4-thiocyanoanisole, m.p. 126°], and -6-methoxy-, m.p. 158° [from p-OMe·C₆H₄·NH·CS·NH₂ (1 mol.) and Br (3 atoms) in CHCl₃ at 50°; cf. Dyson et al., A., 1927, 680; different reaction conditions yield a Br-containing product, decomp. 222°], and 4-amino-6-methoxy-benzthiazole (prepared by the method of Fox et al., A., 1939, II, 524) yield Ac derivatives, m.p. 223° (K salt, decomp. 265°), 226°, and 157—158°, the Na or K salts of which with NEt₂·[CH₂]₃·Br in EtOH yield the Ac derivatives, b.p. —, 195—200° (bath temp.)/0·0 mm. (picrate, decomp. 186°), respectively, of 2-γ-diethylaminopropylamino-5-, b.p. 195—200° (bath temp.)/0·9 mm. (perchlorate, decomp. 244—245°), and -6-methoxy-, b.p. 200—205° (bath temp.)/0·7 mm. (picrate, decomp. 198°; perchlorate, decomp. 193°), and 4-γ-diethylaminopropylamino-6-methoxy-benzthiazole, b.p. 215—220° (bath temp.)/0·8 mm. (picrate, decomp. 141°). 1:3:4-OMe·C₆H₃(NH₂)₂,2HCl with HCO₂H yields 6-methoxy-benziminazole, m.p. 123° [picrate, m.p. 191°; 1-NEt₂·[CH₂]₃ derivative (NEt₂·[CH₂]₃·Br in EtOH–NaOEt), b.p. 195—200° (bath temp.) $/0\cdot2$ mm. (picrate, m.p. 174°)], nitration (room temp.) of which yields 5-nitro-, m.p. 244° (nitrate, decomp. 204°). reduced (Pd) to 5-amino-6-methoxybenziminazole {Ac, m.p. 210°, and $NEt_2\cdot[CH_2]_3$ derivative, b.p. 135—140° (bath temp.)/0·06 mm. (picrate, decomp. 206°)}. A. Li. Sulphanilamides derived from pyridine, quinoline, and thiazole.—See B., 1941, III, 245. Synthesis of heterocyclic derivatives of diaryl sulphones. I. E. Ochiai and T. Takubo (J. Pharm. Soc. Japan, 1941, 61, 6—7).—2-Chloro-4-methylthiazole with p-NO₂·C₆H₄·OH or 2-thiol-4-methylthiazole (I) and Zn in anhyd. C₅H₅N at 120—130° gives p-NO₂·C₆H₄ 4-methyl-2-thiazolyl, m.p. 54°, and di-4-methyl-2-thiazolyl sulphide, b.p. 134—135°/16 mm. (picrate, m.p. 136°), oxidised by 30% H₂O₂ in AcOH at room temp. to the corresponding sulphones, m.p. 171° and 125°, respectively. 2-Chloropyridine and (I) similarly yield 2-pyridyl 4-methyl-2-thiazolyl sulphide, b.p. 166—168°/0-05 mm. (picrate, m.p. 118°), and sulphone, m.p. 121°. R. S. C. 5-Ethinylruban-5-ol and related compounds. G. R. Clemo and E. Hoggarth (I.C.S., 1941, 476-477).—Condensation of 5-ketoruban with C_2H_2 in presence of K in $tert.-C_5H_{11}$ ·OH gives 5-ethinylruban-5-ol, m.p. 213°, which is reduced $(Pt-H_2)$ to 5-ethylruban-5-ol. 5-Keto-6:9-rubanene with C_2H_2 affords a compound, $C_{19}H_{18}ON_2$, m.p. 238°, reduced to the substance obtained by the action of MgEtI on the ketone. Similarly 3-ketoquinuclidine (I) and C_2H_2 yield 3-hydroxy-3-ethinyl-quinuclidine, m.p. 159—160°, reduced to the -3-Et compound, b.p. 98—100°/1 mm. (picrate, m.p. 178°), also formed from MgEtI and (I). Constitution of yohimbine. M. J. S. Dewar and F. E. King (Nature, 1941, 148, 25).—Distillation of yohimbic acid with Cu and CuO instead of alkali improves Hahn's prep. of yohimbol (A., 1928, 432). The identity observed between the H₂SO₄ colour transformations of this carboxyl-free sec. alcohol and of yohimbine invalidates the evidence which places the CO₂Me at C₍₁₎ (A., 1941, II, 176). The structure now proposed has CO₂Me at C₍₁₆₎ and OH at C₍₁₉₎. Azo compounds of morphine. I. A. C. Roy (J. Indian Chem. Soc., 1941, 18, 29—32).—When morphine is coupled with ArN₂Cl to give azo dyes, the pharmacological activity is modified but not destroyed. Azo dyes thus prepared are benzene-, m.p. 175° (decomp.) (cryst.); p-methyl-, m.p. 210° (decomp.) (amorphous), 2: 4-dimethyl- (this and the following do not melt at 300° and are amorphous), p-chloro-, 2: 4: 6-tribromo-, p-hydroxy-, o-methoxy-, and o-, m-, and p-nitrobenzene-azomorphine; a-naphthaleneazomorphine; diphenyl-4: 4'-bisazomorphine. A. T. P. Alkaloids of Rauwolfia canescens (Linn.). I. (Miss) A. Mookerjee (J. Indian Chem. Soc., 1941, 18, 33—39).—The air-dried leaves of R. canescens are extracted with EtOH (+0.1% AcOH) at room temp., the extract is conc., added to H₂O, extracted with Et₂O, and the aq. solution made alkaline with NH₃ and extracted with Et₂O, and the alkaloid pptd. as the oxalate, m.p. 245—246° (decomp.) (+2H₂O, lost at 125—130° over P₂O₅), which is decomposed by aq. NH₃ to "rauwolscine" (I), C₂₁H₂₆O₃N₂, m.p. 231—232° (decomp.), [a]³⁰₉₀—40° in EtOH (contains CO₂Me) [hydrochloride, m.p. 278—280° (decomp.), [a]³⁰₉₀+74° in H₂O; nitrate, m.p. 257—258° (decomp.); sulphate, m.p. 256—257° (decomp.); platinichloride, m.p. 255—257° (decomp.); picrate, m.p. 208° (decomp.) (+2EtOH)], which with conc. NH₃ at room temp. in a closed vessel affords rauwolscinic acid, m.p. 262—264° (decomp.) [+H₂O, lost at 120—125° (P₂O₅)], reconverted into (I) by HCl-MeOH. (I) shows similar colour reactions to those of yohimbine, with which it is not identical. Some photomicrographs are shown. Alkalaia and a Alkaloids of Stemona tuberosa, Loureiro. III. Tuberostemonine. H. Kondo, K. Suzuki, and M. Satomi (J. Pharm. Soc. Japan, 1940, 60, 149—157; cf. A., 1940, II, 237).— Tuberostemonine (I) in MeOH or 2N-HCl is slowly hydrogenated in presence of a very large proportion of PtO₂ to hydrotuberostemonine (II), m.p. 133° (hydrochloride, m.p. 281°); the "isomeride," m.p. 118—120° (cf. Schild, A., 1936, 350), is separated chromatographically into (I) and (II). After treatment with Ag₂O (II) does not give Ehrlich's reaction for pyrrole; it does not react with MeI although it behaves as a weak base towards mineral acid. Tuberostemonine methohydroxide passes at 145°/vac. into hydroxy-N-methyluberostemonine (III), C₂₃H₃₇O₅N, m.p. 123—125° (perchlorate, m.p. 217°), which is stable at 130°/vac. Like its Ac derivative, decomp. 213°, (III) does not react with MeI in MeOH. (III) does not appear to yield an oxime. Me₂SO₄ transforms (III) at 120° into an amorphous substance characterised as the perchlorate, C₂₃H₃₅O₅N,HClO₄, m.p. 210°, with a small proportion of a cryst. material, C₂₃H₃₇O₅N,Me₂SO₄, m.p. 245°. (III) and CNBr in C₆H₆ at room temp. yield an adduct, C₂₃H₃₇O₅N,CNBr, m.p. 232° (decomp.), which is not affected by boiling 2N-KOH-EtOH or by 20°/₂ H₂SO₄ at 120°. (III) is dehalogenated by Ag₂O and then transformed by 30°/₂ H₂SO₄ or HCl into the anhydro-base, C₂₄H₃₆O₅N₂, m.p. 210°, which with 30°/₂ HCl at 100° gives the chlorocyanide, C₂₄H₃₅O₄N₂Cl, m.p. 160°. Hydrolysis of (I) by 0.5N-KOH-EtOH and treatment of the neutralised solution with CH₂N₂ leads only to the re-formation of (I). Similarly successive treatment of (I) with KOH-EtOH, Me₂SO₄, and KI gives only tuberostemonine methiodide, m.p. 236—238°, also obtained from K tuberostemonate and MeI. (I) does not appear to be changed by Na and EtOH but is converted by Na and boiling iso-C₅H₁₁OH into an amorphous base. (I) does not react with solid KOH and iso-C₅H₁₁OH at 100—200°. H. W. ## VI.—ORGANO-METALLIC COMPOUNDS. Asymmetrical analogues of cacodyl oxide. G. Kamai and V. M. Zoroastrova (J. Gen. Chem. Russ., 1940, 10, 1568—1572).—AsEtI₂ and Pr^βBr with 5N-NaOH in 55% EtOH yield ethylisopropyliodoarsine, b.p. 87—88°/13 mm. Benzylethyliodoarsine, b.p. 169—170°/15 mm., is prepared similarly from AsEtI₂ and CH₂PhBr. AsRR'I and 10N-NaOH at room temp. yield oxides of the type (AsRR')₂O (R = Me, R' = Et, R' = Pr^β, b.p. 130—132°/17 mm.; R = Me, R' = Ph, b.p. 202—203°/15—16 mm.; R = Et, R' = Ph, b.p. 189°/5 mm.; R = Et, R' = CH₂Ph, b.p. 174—175°/16 mm.; R = Ph, R' = p-tolyl). (AsPhMe)₂O is oxidised by atm. O₂ to phenylmethylarsinic acid, m.p. 178—179°, which with CH₂Cl·CO₂Na yields phenylmethyloxarsylacetic
acid, converted by H₂S into phenylmethylthioarsylacetic acid [phenyl(carboxymethyl)methylarsine sulphide], m.p. 132—133°. Steric hindrance in Grignard reaction. I. Reaction of magnesium mesityl bromide with ethyl formate and acetate. I. I. Lapkin, V. S. Schklaev, and T. I. Schklaeva (J. Gen. Chem. Russ., 1940, 10, 1449—1452).—Mg mesityl bromide (I) and HCO₂Et in Et₂O react with difficulty at the b.p., yielding mesitol and dimesitylmethane. (I) does not react with EtOAc in Et₂O; in PhMe it reacts only very slowly (30 hr. at the b.p.), yielding mesityl acetate and aa-dimesitylethyl acetate. Chemotherapy of bacterial infections. II. Chemistry of some organo-selenium compounds related to sulphanilamides. P. L. N. Rao (J. Indian Chem. Soc., 1941, 18, 1—6; cf. A., 1940, II, 274).—p-NHAc·C₆H₄·SeCN (1 part) refluxed with 2·5n-KOH-EtOH (5 parts for 6 hr. or 1·7 parts for ½ hr.) gives p-amino- (II), m.p. 76—78°, or -acetamido-selenophenol (III), m.p. 160—165°, respectively. (I]—(NH₄)₂S yield (III) and (p-NHAc·C₆H₄)₂Se. (III) is oxidised (dil. H₂O₂) to di-p-acetamidophenyl diselenide, m.p. 204—206° (softens from 180—182°), and (II) (prepared as above but not isolated) is oxidised by atm. O₂ or H₂O₂ to (p-NH₂·C₆H₄)₂Se₂ [sulphate, m.p. 210—215° (decomp.); Bz₂ derivative (IV), m.p. 265—267° (decomp.); di-hexoyl, m.p. 175—177°, and -valeroyl derivative, m.p. 172—173°]. p-NO₂·C₆H₄·SeO₂H, neutralised with NH₃, is oxidised by aq. KMnO₄ to K 4-nitrophenylselenonate (anhyd. or +H₂O, gradually lost at room temp.). (IV) and HNO₃ (d 1·4) at -6° to -3° afford 4-benzamidophenylselenonate. Ag 4-acetamidophenylselenonate is prepared in an analogous manner. p-NO₂·C₆H₄·SeCN, p-C₆H₄Br·NO₂, and aq. K₂·CO₃-EtOH (refluxed for 2 days) yield (p-NO₂·C₆H₄)₂Se (V), new m.p. 175°, reduced to 4: 4'-diaminodiphenyl selenide, m.p. 115—117°, which is also obtained by hydrolysis of the corresponding Ac₂ derivative. p-C₆H₄Br·NO₂ and Na₂Se-Se-EtOH give (p-NO₂·C₆H₄)₂Se₂ and (V) (cf. Baker et al., A., 1930, 1302). (I) and Br-CHCl₃ afford 4-acetamidophenylselenotribromide, m.p. 130—132° (decomp.) (softens at 100°), which loses 2 Br in vac. (1 week) to give the -selenobromide (boiling H₂O yields a substance, m.p. 168—169°). p-NO₂·C₆H₄·SeO₂K and PCl₅ afford p-NO₂·C₆H₄·SeCl, converted by ice-H₂O or aq. NH₃ into (p-NO₂·C₆H₄)₂Se₂ and p-NO₂·C₆H₄·SeO₂H. A. T. P. # VII.—PROTEINS. Molecular structure of protein fibres. D. J. Lloyd (J. Soc. Dyers and Col., 1941, 57, 281—287).—Proteins are classified into silk fibroin, myosin–keratin, and collagen types. Their general properties are discussed, special emphasis being laid on the sorption of $\rm H_2O$ and swelling. C. S. W. Nature of the intramolecular fold in α -keratin and α -myosin. W. T. Astbury and F. O. Bell (*Nature*, 1941, 147, 696—699).—A basis for an intramol. fold in α -keratin and α -myosin is proposed, illustrated, and discussed. L. S. T. Action of formaldehyde on gluten [gelatin?]. A. S. Schpitalski, E. A. Emelianova, and S. B. Faerman (J. Appl. Chem. Russ., 1940, 13, 1642—1648).—The effect of aq. CH₂O on aq. gelatin (I) varies according to the concn. of (I). When this is low the η increases, and gelation is prevented, whilst when it is high the opposite effects are produced. However, the dimensions of the (I) mols. appear to increase in all cases. CH₂O has little effect on hydrolysed (I). R. T. Formation of humins during acid hydrolysis of proteins. V. A. Kaschirskich (J. Gen. Chem. Russ., 1940, 10, 1495—1500).—Insol. residues formed during hydrolysis of proteins (caseinogen) or NH_2 -acids (glycine, alanine, crystine, glutamic acid, tyrosine, tryptophan) in presence of carbohydrates (glucose, fructose, lactose, galactose, arabinose, cellulose) by means of 20% HCl are supposed to originate from condensation of reactive furan compounds derived from the carbohydrates with NH_2 -acids, or with each other, to yield nitrogenous or N-free humins, respectively. R. T. Acyl and sulphonyl derivatives of proteins.—See B., 1941, II, 324. Humin formation during protein hydrolysis.—See A., 1941, III, 948. Carrier weights of conjugated proteins. E. E. Broda and C. F. Goodeve (*Nature*, 1941, 148, 200—201).—Carrier wts., *i.e.*, the no. of g. of protein carrying 1 g.-equiv. of prosthetic group, are tabulated for numerous conjugated proteins. The data show that the Svedberg unit is the lower limit of the carrier wts., and that all sufficiently well-defined compounds have carrier wts. close to simple multiples of the unit. LST J. L. D. ## VIII.-ANALYSIS. Distilling column head.—See A., 1941, I, 391. Continuous water remover.—See A., 1941, I, 392. Simultaneous micro-determination of elements in organic compounds containing alkali. H. Agematsu (J. Pharm. Soc. Japan, 1940, 60, 233—235).—C and H are determined essentially according to Pregl. Na compounds (3—5 mg.) are weighed into a Pt boat and covered with 2—3 times the amount of dry Cr₂O₃. With K salts 1—2 mg. of Cr₂O₃ suffices and an excess must be carefully avoided. The boat is heated gently with a moving burner until the contents are melted and then very strongly after carbonisation is complete. The residue is treated with H₂O and unchanged Cr₂O₃ is removed by an asbestos filter. CrO₄" is determined in the filtrate gravimetrically as PbCrO₄ or iodometrically. N can be determined simultaneously. With explosive substances an addition of CuO is necessary. The process is not applicable in the presence of halogen or S because the metals produce very stable alkali halides and sulphates. H. W. Micro-determination of nitrogen by oxidative digestion. C. N. B. Rao, M. V. L. Rao, and M. S. Ramaswamy (Current Sci., 1941, 10, 261—262).—An aq. suspension (1 c.c.) of the material is treated with conc. H₂SO₄ and HgO (~50 mg.) and to the boiling solution 100% chromic acid (0·2—0·3 c.c.) is added. After 5 min. the solution is diluted with H₂O (5—10 c.c.), decolorised with Na₂SO₃, and boiled after adding Zn dust (~10—20 mg.). The NH₃ is distilled from the solution which has been rendered alkaline and determined titrimetrically (colorimetrically when the NH₃ content is <10 µg.). Adaptation of the micro-Kjeldahl method to determination of nitrogen in organic compounds containing nitro- and azogroups. R. V. Bhat $(Proc.\ Indian\ Acad.\ Sci.,\ 1941,\ A.\ 13,\ 269-272).$ —A no. of NO_2 - $[e.g.,\ p-NO_2\cdot C_6H_4\cdot NH_2,\ 3:5:1-C_6H_3(NO_2)_2\cdot CO_2H$, etc.] and azo-compounds $[e.g.,\ azo-dyes$ from Naphtol AS derivatives and diazotised Fast Red bases) are analysed correctly for N by the micro-Kjeldahl method, using pure cotton cellulose as reducing agent; the substance is heated with H_2SO_4 $(d\ 1.84)$, K_2SO_4 , and bleached cotton for $\frac{1}{2}$ hr., $CuSO_4$ and H_2SeO_3 are then added, and heating is continued $(1-1\frac{1}{2}$ hr.), NH_3 being determined as usual. Details are given of the method, which is useful in estimating dyes on the fibre. Determination of sulphur in organic compounds. Oxidation of sulphur of cystine and methionine, combination of Parr oxygen bomb and acidimetric benzidine method, and determination of small amounts of sulphur present as concontaminant in organic materials. T. P. Callan and G. Toennies (Ind. Eng. Chem. [Anal.], 1941, 13, 450—455).— A process for the oxidation of org. S compounds by $\mathrm{KMnO_4}$ — NaOH prior to S determination is described. Methionine gives no $\mathrm{SO_4}^{\prime\prime}$ by this procedure, and other wet oxidation processes give variable and incomplete vals. A procedure is detailed in which the substance is burned in a bomb in compressed $\mathrm{O_2}$, and the $\mathrm{SO_4}^{\prime\prime}$ is determined acidimetrically as benzidine sulphate. The presence of Hg and NaCl, within certain limits, does not interfere in this method, which is accurate to a few hundredths %. J. D. R. Micro-determination of sulphur. Modified bomb method. J. F. Alicino (Ind. Eng. Chem. [Anal.], 1941, 13, 506).—A modification of the Elek—Hill method (A., 1933, 1063) is described. The $\mathrm{Na}_2\mathrm{O}_2$ in the fusion mixture is decreased to 0.35 g., and 0.06 g. of KClO_3 is substituted for the sucrose + KNO_3 . This reduction in quantity of the fusion mixture permits filtration of the BaSO_4 by filter-stick, minimises contamination of the BaSO_4 by co-pptn. and adsorption of salts, and eliminates the need for using reagents of special purity. Analyses of typical org. substances show the accuracy of the method. L. S. T. Determination of iodine in organic compounds with the calorimetric bomb. I, II. B. Longo (Atti R. Accad. Sci. Torino [Cl. Sci. fis. mat. nat.], 1938, 73, I, 428—430, 431—433; Chem. Zentr., 1938, ii, 3843).—I. A modification of Garelli and Saladini's method for Cl and Br (cf. A., 1932, 1149) is extended to I. The KIO₃ formed in the bomb is reduced with N_2H_4 and the I determined by Volhard's method. II. In presence of Cl or Br the solution from the bomb is II. In presence of Cl or Br the solution from the bomb is treated with N_2H_4 and the halogens are determined in separate portions by Volhard's method, and by Gooch's method after treatment with HNO_2 . A. J. E. W. Determination of reactive hydrogen by Grignard's reagents in an atmosphere of carbon dioxide. A. P. Terentiev and K. D. Schtscherbakova (J. Gen. Chem. Russ., 1940, 10, 2041—2046).—The reactive H content of org. compounds is derived from the vol. of $\mathrm{CH_4}$ evolved when the compound reacts with MgMeI in $\mathrm{Et_2O}$ in absence of atm. $\mathrm{O_2}$. Apparatus for this method is described. R. T. Determination and detection of dienes with conjugated ethylenic linkings. I. V. I. Esafov. II. V. I. Esafov and A. V. Schpadi (J. Appl. Chem. Russ., 1941, 14, 140—147, 148—150).—I. Kaufmann's iodometric method (A., 1937, II, 47) is not applicable to dienes with conjugated double linkings, owing to secondary polymerisation reactions.
MacIlhiney's reaction is recommended for detection of dienes. II. Non-conjugated polyenes react with Br in CCl₄ in the same way as olefines. With conjugated dienes considerable evolution of HBr takes place; this reaction is sp. for such dienes, and can serve for their identification in mixtures with other hydrocarbons. R. T. Determination of ammonia and carbamide by modification of the Conway diffusion method.—See A., 1941, I, 426. Gasometric determination of amino-acids.—See A., 1941, III, 947. Micro-chemical reaction for detection of celandine.—See A., 1941, III, 819. # INDEX OF AUTHORS' NAMES, A., II. NOVEMBER, 1941. ABBRUSCATO, F. A., 339. Adams, M. H., 314. Adams, R., 331. Agematsu, H., 343. Albert, A., 333. Albert, A., 333. Alicino, J. F., 344. Alimchandani, R. L., 330. Ambelang, J. C., 335. Amundsen, L. H., 319. Asano, M., 312, 325, 326. Ashizawa, C., 332. Astbury, W. T., 343. Azatian, V. D., 312. BAER, E., 311. Ballentine, R., 329. Barry, V. C., 313. Basu, U. P., 340. Behrens, O. K., 317. Bell, F. O., 343. Bhat, R. V., 344. Bilham, P., 328. Bobrański, B., 332. Bower, R. S., 329. Braun, A. D., 313. Briggs, L. H., 320. Briusova, L. J., 327. Broda, E. E., 343. Buevskoi, A., 316. CAIN, C. K., 331. Callan, T. P., 344. Campbell, W. P., 329. Carroll, M. F., 310. Chakravorty, P. N., 329. Chapman, N. B., 326. Chitrik, S. N., 310, 319. Chmelevski, V. I., 322. Clemo, G. R., 341. Cook, A. H., 323. Corwin, A. H., 338. Das-Gupta, D., 337. Das-Gupta, S. I., 333, 340. Delektorskaja, N. M., 327. Deliwala, C. V., 332. Dewar, M. J. S., 341. Dewing, T., 319. Dhar, M. L., 309. Domnin, N. A., 318. Downer, J., 323. Du Vigneaud, V., 317. EKER, I. M., 332. Emelianova, E. A., 343. Esafov, V. I., 310, 344. FAERMAN, S. B., 343. Fearon, W. R., 326. Fischer, H. O. L., 311, 333. Fisher, E., 329. Ganapathi, K., 338. Gavankar, (Miss) K. D., 322. Ghosh, T. N., 337. Gilagow, A. R., jun., 309. Goebel, W. F., 314. Goodeve, C. F., 343. Goto, K., 313, 321. Green, S. J., 309. Grosheintz, J. M., 333. Guliakov, V. M., 310. Gwan, Y. S., 317. Hase, Z., 325, 326. Hathaway, (Miss) M., 329. Hatt, H. H., 324. Henze, H. R., 332, 334. Hirwe, N. W., 322. Hodgson, H. H., 319. Hoggarth, E., 341. Holder, C. B., 334. Horii, Z., 331. Hughes, E. D., 309, 319. IKEDA, T., 332. Ingold, C. K., 309, 319. Inouye, Y., 312. Isbell, H. S., 313. Ismailski, V. A., 336. Ito, Y., 339. JELINEK, C., 331. Johnson, T. B., 335. Joiner, R. R., 336. Kamai, G., 342. Kameda, Y., 312. Kanno, T., 340. Kargopoltzeva, V. V., 310. Kaschirskich, V. A., 343. Katada, M., 340. Kawaguchi, R., 328. Kawai, H., 339. Kim, K. W., 328. King, F. E., 341. King, L. E., 324. Kitamura, R., 334, 335. Kon, G. A. R., 328. Kondo, H., 341. Koniova, R. K., 313. Kozlov, V. V., 320. Krieble, R. H., 338. Kriuk, I. F., 333. Kulakova, A. P., 310. Kulkarni, D. R., 330. Kuna, M., 311, 316. Kuroyanagi, S., 339. Kuwada, S., 320, 321, 327. Kuzmina, T., 312. Lapkin, I. I., 342. Larsson, E., 312. Levene, P. A., 311, 318, 316. Lloyd, D. J., 343. Loewe, S., 331. Long, I. M., 332. Longo, B., 344. MAIR, B. J., 309. Malentacchi, L. A., 319. Malintacchi, L. A., 319. Malinovski, M. S., 317. Mandour, A. M. M., 309. Mann, F. G., 337. Maslov, N. J., 311. Mastropaolo, F. R., 318. Matsuda, H., 340. Melnikov, N. N., 323. Melnikova, E. P., 317. Miller, G. M., 317. Mohler, H., 311. Mokerjee, (Miss) A., 341. Mondal, K. L., 317. Morgana, M., 329. NAGASAWA, F., 339. Naito, T., 336. Nakaoki, T., 330. Naruse, T., 312. Nash, A. W., 309. Naumova, Z. K., 317. Neogi, P., 317. Nicholson, D. E., 319. Nickerson, R. F., 315. Nicderl, J. B., 339. Nikitin, E. K., 329. Nikitin, Z., 322. Nisizawa, K., 314. Nitta, T., 321. Осніаї, Е., 337, 339, 340, 341. Ohno, S., 328. Ōno, T., 334. Patil, B. U., 322. Petrov, A. D., 312. Pigman, W. W., 313. Pilgrim, A., 324. Ramaswamy, M. S., 343. Rao, C. N. B., 343. Rao, C. N. B., 343. Rao, M. V. L., 343. Rao, P. L. N., 342. Rao, P. S., 314. Rapson, W. S., 318. Ravitsch, G., 312. Razmislov, G. V., 310. Reeves, R. E., 314. Riegel, E. R., 329. Robinson, (Sir) R., 324. Rokitzkaja, M. S., 323. Rosenheim, O., 321. Rossini, F. D., 309. Roy, A. C., 341. Rozum, J. S., 321. Rudakov, G. A., 327. Rushentzeva, A. K., 327. Sakamoto, S., 340. Sakurai, Y., 322. Sasagawa, Y., 320. Satomi, M., 341. Saunders, B. C., 326. Schklaev, V. S., 342. Schklaeva, T. I., 342. Schpadi, A. V., 344. Schischerbakova, K. D., 344. Schtscherbakova, K. D., 344. Schtumeiko, A. K., 323. Seshadri, T. R., 330. Shah, N. M., 330, 332. Shah, N. M., 330, 332. Shaw, F. H., 321. Shistido, H., 321. Shittleworth, R. G., 318. Sidorova, N. G., 318. Sidorova, N. G., 318. Simonov, A. M., 320, 336. Slobodski, A. G., 322. Smith, C. M., 331. Smith, S., 319. Sokov, P. G., 332. Spencer, E. Y., 334. Spoerri, P. E., 336. Stepanenko, B. N., 313. Stepanov, A. V., 313. Stepanov, B. I., 320. Stephenson, (Miss) E. F. M., 324. Stodola, F. H., 310. Starnes, C. F., 332. Sumpter, W. C., 334. Sunagawa, G., 335. Suzuki, K., 341. Tadros, W., 319. Takahashi, H., 326. Takeda, K., 327. Takubo, T., 341. Terentiev, A. P., 344. Titani, T., 313, 318. Toennies, G., 344. Toporov, N. D., 310. Tschelincev, V. V., 329. Tsuchiya, Y., 316. Tsuda, K., 340. Tsuzuki, Y., 315. Tyson, F. T., 333. Tzukervanik, I. P., 318. UEDA, K., 337. Ugriumov, P. G., 320. Urazovski, S. S., 321. Urushibara, Y., 321, 322. Uyeo, S., 332. Vanscheidt, A. A., 317. Venkateswarlu, V., 330. Volnova, V., 312. WATANABE, A., 317. Waung, L. C., 315. Webb, F. R., 309. Werner, A. E. A., 317. West, T. F., 327. Wilson, (Miss) J. M., 320. Wolf, H., 331. Woolf, L. I., 309. Wright, G. F., 334. YAMAGUTI, K., 325. Yanai, M., 336, 337. Yosida, T., 318. Yosiki, S., 321. Yukawa, H., 312. ZAPPI, E. V., 318. Zoroastrova, V. M., 342.