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1 Introduction 
Many software engineering researches have argued for more use 

of data and data mining algorithms in Software Engineering [BZ14; 

HX10; BZ10]. One of the obvious benefits is the opportunity to 

make more informative decisions about the project during its 

development phase. However, the data can also be used to enhance 

tools used every day by all contributors. In particular, advanced 

automation and decision support systems can take the burden of 

many manual tasks and let people focus on though-provoking, 

creative and more valuable work. 

One of the most popular software development practice is 

Continuous Integration. It became almost a standard in the 

industry worldwide. At its core it encourages developers to 

integrate their changes often, even several times a day. Each 

change can be considered as integrated only after the product is 

successfully rebuilt and it passes a set of predefined tests. In order 

to help people follow these guidelines many supporting software 

tools have been created. They automate selected steps in the 

integration process, which would have to otherwise be performed 

by the developers. However, there are some tasks that even today 

still have to be done manually. 

When integration builds fail they are typically diagnosed by 

developers who know the project source code well enough to find 

and fix defects. This task is very challenging to automate because 

of a few reasons. First, the diagnosis requires good understanding 

of the project structure and the technologies it uses. Second, the fix 

might involve modifying source code to a level only a human can 

handle. There are other strategies for managing broken builds 

which do not suffer from these problems, but they have their own 

limitations. 

Once a project reaches a certain size and the integration builds 

start getting long, with compilation phase reaching more than 

several hours on modern hardware, CI becomes very challenging 
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to practice. It gets even more problematic if teams are distributed 

geographically in different time zones and all require both the CI 

system to be available and the project source code to be in a 

healthy state. One solution to this problem is to follow a post-

integration verification strategy with backward-fix depicted in the 

sequence diagram in Figure 1. 

In this scenario Developer commits two changesets c1 and c2. The 

first change introduces a defect which causes the integration build 

to fail. In response Build Engineer performs diagnosis correctly 

finds the culprit. Because the fix requires detailed knowledge about 

the project he decides to revert the change with expectation that it 

will remove the defect from the source code. The subsequent 

integration build succeeds and confirms that this was the right 

decision. 

 

Developer Repository CI Server

1. commit

c1

2. commit

c2

3. update

4. build

5. diagnose

c1
6. revert c1

8. build

7. update

Build 
Engineer

Build Engineer correctly 
returns c1

Build fails due to c1

Build succeeds

 
Figure 1. Backward fix sequence diagram 
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Depending on the project size the role of Build Engineer can be 

assigned to a developer or can be a permanent position. 

2 Problem statement 
By analyzing different strategies for managing broken builds in 

large-scale Continuous Integration systems we identified certain 

manual tasks which can be avoided by delegating them to a 

dedicated expert system. We recognized that the task of fault 

diagnosis described in the previous section can be automated. 

Additionally, with backward-fix policy it is possible not only to find 

the problem but also make automatic corrections. In this 

dissertation we argue that: 

It is possible to create an autonomous software agent 

capable of diagnosing faults in integration builds and 

automatically fixing them by reverting changesets which 
have introduced defects to the project source code. 

We also state that this thesis can be proved by designing an 

autonomous software agent with the listed capabilities, enabling it 

in a commercial Continuous Integration system, and showing its 

utility in that environment. 

The dissertation described an interdisciplinary research on 

Software Engineering and Bayesian modelling of reasoning 

systems. It starts with detailed description of Continuous 

Integration and explains the associated concepts. Then, it switches 

to the problem of reasoning under uncertainty and Bayesian 

networks as one of the solutions. It contains several significant 

contributions: novel design of sample format for storing 

information about failures in CI systems, data set collection 

procedure and the diagnosis model itself. The effectiveness of the 

proposed model is studied on the data set gathered in a real-world, 

commercial CI system used daily by hundreds of developers.   
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3 Reasoning under uncertainty 
When we talk about reasoning in the context of real world 

applications we typically refer to a task where the system has 

access to available information and it has to reach conclusions 

about what might be true and how to act [Rus+95]. When designing 

such system one inevitably has to deal with uncertainty. This is a 

consequence of several factors. We might be uncertain about the 

true state of the system because we cannot make all the necessary 

observations and have to work with partial data.  

Uncertainty is inherent to real world problems and has to be 

accounted for. Probability theory provides mathematically 

consistent framework to quantify and operate with uncertainty. In 

principle probabilistic model assign probability value to each of the 

possible state of the system. However, in real world application, the 

number of states can be very high and sparse model representation 

is necessary to keep it manageable. Probabilistic graphical models 

are a general-purpose framework for modelling joint probability 

distribution over many random variables [KF09]. One of their 

realization are Bayesian networks [Pea88]. 

One distinctive application of Bayesian network which is very 

important in the context of this dissertation is the system fault 

diagnosis. It is a separate branch of research and the models used 

for this problem are referred to as Bayesian troubleshooters. They 

are regular Bayesian networks, but their random variables 

correspond directly to: causes or defects, symptoms, resolutions 

and other concepts from the specific domain they model. 

Initially the research in this area was driven by commercial 

companies, which wanted to use this technique to improve 

reliability of the services they provide, as well as the software and 

products they sell [Loc99, SJK00]. Bayesian troubleshooter showed 

their effectiveness in many applications. For this reason, they have 

been selected as a modelling technique to build the diagnosis agent 

used in this research. 
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4 Data set 
In order to teach a probabilistic model, it is necessary to prepare a 

data set which represents the analyzed domain. In particular, 

parameters of Bayesian networks can be estimated based on the 

available a data set consisting of fully or partially observed 

instances of the random variables. 

Although Continuous Integration systems produce a lot of data 

there was no standard data set which could be used in this 

research. Therefore, it was necessary to first design a format for 

samples which will hold enough information to both train and 

evaluate models. Then, design and implement a data collection 

procedure which can be integrated with existing CI systems used 

in the industry. Finally run it for a sufficiently long period of time 

to collect enough samples for the research. 

4.1 Format 

The structure of the network and consequently the set of random 

variables that need to be observed was not known upfront to the 

research. Therefore, it was vital to design a data set format which 

preserves the relevant source data and makes it possible to 

observe variables on demand [KF09].  In the research the following 

four categories of data were selected: 

• Build configuration: Information about the settings for tools 

used in the build. 

• Build logs: Text files with reports generated by the tools used 

in the build. 

• Build trace: Trace file contains the information about all 

processes that were spawned and the files they accessed. 

• Changes: Collection of new changesets which were committed 

in the repository since the last successful integration build. 

• Causes: Collection of changesets which were reverted with 

relation to the failure. 

  



6 
 

4.2 Collection scenarios 

Data samples can be collected in various scenarios depending on 

the broken build management policies.  Analysis performed as part 

of the research revealed that the backward-fix scenario presented 

in Figure 1 is the most convenient for data collection. Its main 

advantage is that it can be fully automated. Users do not need to 

enter the information about the problem into any external systems 

because every action they take is tracked in the Version Control 

System and can be programmatically accessed from there. 

Data set used in this research was collected in this way in an 

industrial Continuous Integration system at Microsoft Corporation 

in the period from Nov 2012 to Feb 2014. During this time the 

system was used by many teams working on thousands of different 

projects and using different technologies, but sharing the same 

build definition and execution technology.  

Although the rate of failed integration builds was very low, the high 

number of executions happening every day compensated for it and 

made it possible to collect a data set of a size sufficient for the 

research. Moreover, thanks to the diversity in projects and types of 

integration builds, the samples represent a broad range of 

problems to diagnose. 

  



7 
 

5 Diagnosis procedure 
With explicit probabilistic modelling it is possible to design a 

model to leverage both data set and available expert knowledge. 

Additionally, the structure of the network defines clear paths of 

reasoning that can be followed to get insights about how the results 

were formulated. 

Proposed diagnosis procedure uses a Bayesian troubleshooter at 

its core, however, there are many other important steps that have 

to be performed before the network can be constructed. These 

steps are described in the remaining part of this section. 

5.1 Create a build graph from logs and build trace 

In the first step the build graph is built from the information 

captured in the build trace file which contains information about 

all the Operating System processes that were created in the context 

of the integration build and the file access operations they 

performed. Although this information is independent from the 

solution used to coordinate build tasks, it is convenient to describe 

it in terms of GNU Make, which is one of the most popular utility 

used in this space [Mec04]. 

With Make the build specification is described in terms of rules 

in a dedicated language and generally saved in a file named 

Makefile. A rule consists of three parts: the target, prerequisites, and 

the command to perform. A target is a file or a collection of related 

files which will be created after successful execution of the 

command. The commands correspond to normal shell commands 

or scripts. They are executed only when all the prerequisites 

expressed in terms of dependent targets are satisfied. 

With this terminology it is possible to define a build graph as a 

directed acyclic graph where vertices represent the build target 

and edges connecting targets with their prerequisites. The edges 

are pointing from the prerequisites to targets along with the actual 

flow of the build process. Each vertex holds additional information 
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about the commands that were executed to build the target such as 

the file system access operation performed and the set of files used 

to build it. 

5.2 Find the set of leading-failed build targets 

When the build graph is complete, it is used to find the set of 

leading-failed targets, which are defined as failed targets whose all 

upstream dependencies succeeded. The name comes from the fact 

that this procedure divides the build graph into two subgraphs. 

First, contains all the targets which succeeded, whereas the second 

contains failed targets and the targets which succeeded despite 

some of their dependencies have failed. The sources of the second 

subgraphs are special in a way that they are “leading” all the failed 

targets. 

The leading-failed targets have an interesting property that their 

failure cannot be explained from the structure of the build graph 

by a failure of any other target. This property if frequently 

exploited by human domain experts, who start diagnosis by 

exploring errors of the failed targets with no failed upstream 

dependencies, and move down the build graph only when they 

seek for extra information to support their hypothesis regarding 

the defect. This step was added to the diagnosis model to emulate 

this behavior of a human expert. 

5.3 Extract information about errors from log files 

For every leading-failed target there are most likely some errors in 

the execution log thread. They carry a lot of information about the 

nature of the problem like the identifier of the tool, its error code 

and the name of the source file where the error was detected. This 

information has to be extracted and made available in the diagnosis 

procedure. 

Similarly to the leading-failed targets the first error in the thread 

is typically sufficient to identify the defect, while the following 
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errors can be used to increase the confidence of a given hypothesis. 

Based on this observation the diagnosis model was designed to 

focus on the first error. 

5.4 Reduce the set of leading-failed build targets 

Each item in the set of leading-failed build targets can potentially 

be caused by a distinctive defect in the code base and is inspected 

thoroughly. Therefore, whenever it is possible, the set should be 

reduced to decrease the problem size which consequently 

decreases the diagnosis time and the computational cost required 

to perform it. 

There are certain scenarios where a single defect can lead to a 

large number of leading-failed targets in the build graph. One of the 

most common is when a target represents a core library with 

reusable functionality that is referenced by many projects and 

consequently many build targets depend directly on it. A change to 

the library itself which alters its public interface can compile 

correctly in isolation but break the downstream targets when 

included in an integration build. Such problem is easy to detect 

because all the leading-failed targets will be located in the same 

part of the build graph. 

5.5 Build Bayesian network describing the problem 

Once the diagnosis task is scoped to the reduced set of leading-

failed targets a Bayesian network describing the problem can be 

constructed. An instance of the network is built from a template 

represented as a plate model [KF09]. The structure of the model is 

presented in Figure 2. The random variables are divided into five 

layers by their type and functionality, and placed on four plates, 

three of which are organized in a hierarchical structure while one 

is cutting through. 
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Figure 2. Plate model of the Bayesian network used for diagnosis 

 

• θD(d) - prior parameter which controls the probability 

distribution of the d defect type. 

• EB(t,c,e), EB(t,c,e) - true if the evidence of type e appeared for the 

changeset c and the build target t. 

• S(t,c,d) - true if symptoms suggest that a changeset c could have 

introduced a defect of type d to the component built by target t. 

• D(t,c,d) - true if the changeset c introduced a defect of type d to 

the build target t. 

• C(t,c) - true if the changeset c introduced a defect to the build 

target t. 
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5.6 Observe basic evidence 

After the Bayesian network is built from the template we can start 

adding information about the failure by observing the basic 

evidence. It has priority over its complex counterpart because it is 

more cost effective. 

For every evidence type there is a predicate function that is 

responsible for performing all the actions required to determine 

the value the variable should be set to. They are expressed with an 

imperative code and executed by the diagnosis agent. 

5.7 Execute inference procedure 

The inference boils down to execution of a set of probabilistic 

queries, one per each target and changeset combination. The query 

has a form of a posterior probability and it finds likelihood that a 

changeset introduced a defect given the observed basic evidence EB 

and the vector of prior parameters θD. This task can be formally 

defined as: 

𝑃(𝐶(𝑡, 𝑐)|𝐸𝐵 , 𝜗𝐷) 

5.8 Observe complex evidence 

In some situations the basic evidence can be insufficient to find a 
strong changeset candidate. Then, it is necessary to start observing 
complex evidence. With this additional class of information the 
probabilistic query introduced in the previous section can be 
updated by including more conditioning random variables: 

𝑃(𝐶(𝑡, 𝑐)|𝐸𝐵 , 𝐸𝐶 , 𝜗𝐷) 

The process of observing more evidence and updating the 

probabilities should continue until there is a changeset candidate 

with a high posterior probability that is clearly standing out from 

the rest, or the execution time limit is reached, or there is no more 

evidence to observed. 
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5.9 Collect results 

When the termination condition is reached and the network is 

complete in terms of observed evidence the posterior probabilities 

of the culprit random variables are calculated once more for each 

combination of leading-failed target and changeset, and returned 

as the diagnosis result. This format is perfect for a downstream 

automation that might act upon the output. It the result needs also 

to be presented to users, in order to make it more appealing it can 

be grouped by the target and ordered descending by the 

probability. That way the most relevant or actionable information 

appears at the top. 
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6 Training procedure 
The Bayesian network presented in the previous section supports 

two basic types of training. Subject matter experts can set the 

values of hyperparameters which are combined with the statistics 

calculated from the data to form the prior parameters for defect 

distributions. One advantage of this approach is that prior 

knowledge can be incorporated at the beginning and the model can 

be automatically retrained when more samples are collected. 

Defects are modelled with Bernoulli’s distributions with prior 

parameters coming from Beta distributions. This implies that the 

posterior probability of observing new defect D[M +1] conditioned 

on the presence of the right symptoms S[M +1] and the previous M 

observations D[1],...,D[M] can be described with equation: 

𝑃(𝐷[𝑀 + 1]|𝑆[𝑀 + 1], 𝐷[1], … , 𝐷[𝑀]) =
𝛼1 +𝑀[𝐷 = 1, 𝑆 = 1]

𝛼0 + 𝛼1 +𝑀[𝑆 = 1]
 

This equation combines the hyperparameters of the Beta 

distribution α0 and α1 with the counts of certain events recorded in 

the training set. Count M[D = 1,S = 1] represents the number of 

situations when the defect was observed in the presence of related 

symptoms, whereas M[S = 1] is the total number of situations when 

the symptoms were observed. 

It is interesting to examine the effect of the hyperparameters over 

the size of the training set. Initially, when there are very few 

samples their values dominate the probability. However, as more 

samples are observed and the respective counts grow this effect 

diminishes. By selecting the right initial values one can control its 

strength with relation to the data. 
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7 Study of the effectiveness 
One of the most interesting aspects of the model is how the 

diagnosis quality changes with the number of distinctive defect 

types random variables included in the Bayesian network. The 

expectation was that the quality will improve as more defect types 

are supported by the system. Moreover, model is designed to 

incorporate the prior expert knowledge, thus, this aspect is also 

included in the study. 

By looking at how the output of the model can be interpreted one 

can identify five main outcomes that have to be taken into 

consideration. They depend on the threshold defining minimal 

value of probability at which the agent automatically performs an 

action on behalf of the user. 

Fixed (clean): Real culprit was identified and correctly reverted 

from the repository. After this action project state was valid 

again and subsequent build succeeded. 

Fixed (collateral): Real culprit was identified and correctly 

reverted, but there were some innocent changesets above the 

threshold which were incorrectly reverted as well. After this 

action project state was valid again and subsequent build 

succeeded. 

Bad revert: All the changesets that were reverted were actually 

innocent and the real culprit was left in the code base. After 

this action project state stayed invalid and subsequent build 

failed with the same error. 

Bad retry: Diagnosis result incorrectly indicated that the failure 

was caused by the system defect and the build should be 

retried. However, subsequent build failed with the same error. 

Fallback: None of the changesets had sufficiently high probability 

rank to be considered as a culprits and the problem was 

escalated to a human expert for a manual intervention. 
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When the model is used purely as a decision support system one 

might not be interested in the possible outcomes, but instead focus 

on the detailed report with a list of candidates ordered by the 

probability of having introduced a defect. In this problem one of 

the most important quality measure is the position of the real 

culprit in the report. Of course it is best when it appears first 

because then user can find it immediately.  

In order to cover all the relevant aspects of the model the study 

was focused on both outcome analysis and culprit position 

analysis. It was also divided into two main stages. First, the model 

was studied without prior expert knowledge with so called 

uninformative priors, which are defined as assignments to the 

hyperparameters which maximize the information brought by the 

data. Second incorporated expert knowledge gathered from a 

survey filled out by people involved in the process of broken build 

management. Configuration of all the cases included in the 

research was summarized in Table 1. 

 

 Prior expert 

knowledge 

Defect types count 

Case General Specific Total 

A false 1 0 1 

B false 3 0 3 

C false 7 0 7 

D false 11 0 11 

E false 1 10 11 

F false 1 20 21 

G false 1 30 31 

H false 11 30 41 

I true 11 0 11 

J true 1 30 31 

Table 1. Supported defect types counts in analyzed cases 
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7.1 Baseline analysis 

Single general defect type included in case A is example of a 

simplest issue, yet the one which can be seen in practice. It is a 

failed compilation due to a syntax error, which indicates that the 

source code does not adhere to the grammar rules of the 

programming language. Each compiler can have its own set of 

syntax errors but they are all similar in the sense of the causal 

mechanisms and scenarios in which they are created. 

With good understanding of all the possible outcome rates we can 

present them all in a single area plot in Figure 3. Different 

outcomes are represented with grey-scale color scheme where bad 

revert intentionally stands out with its black color to represent 

most severe mistake. Immediately visible is that the fallback rate 

increases almost linearly with the threshold. This increase 

becomes stepwise for higher values because there were fewer 

samples in a data set which got such high probability ranks. 

When the probability threshold is set to zero fixed (collateral) 

rate dominates the distribution because for such low value all 

changesets are reverted including the real culprits. This of course 

is related to high collateral damage which is unacceptable in 

practice. From there the rate changes in two phases. Initially it 

Figure 3. Outcome rates for baseline model 
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decreases rapidly along with threshold to reach 8% at the point 

0.09. Then it changes gently up to the point 0.5 where it drops 

down to 0. Similar pattern can be observed in the Precision and 

Recall plot in Figure 4. 

 
Figure 4. Precision and recall plots for baseline model 

When the model is used as a decision support system position of 

real culprits is critical. Its distribution the baseline model is 

presented in the histogram in Figure 5. The first bar for project 

defects reaches only 15%, which not surprisingly matches the level 

of recall for high values of threshold from Figure 4. Second bar is 

high as well with the level of 12%. At the third position on the other 

hand we can see a drop after which the distribution slowly 

decreases to zero at the point beyond the range presented in the 

histogram. 

 
Figure 5. Histogram of culprit positions for baseline model 
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7.2 Mixed model 

When diagnosis agent fails to correctly identify the culprit then 

most likely it is because it does not support defect type which 

caused the failure. At any point in time the model can be extended 

by adding support for new types. Each such effort consists of 

analyzing the causal mechanism of the defect, defining evidence 

which is a good indication of the failure and implementing them in 

code, add corresponding random variables. 

When extending the model one should select the specificity level 

for the defect type. If a diagnosis procedure is very specific it will 

identify culprits with high confidence, however, the number of 

builds for which it will be applicable will be low. General defect 

types on the other hand can have supporting evidence in many 

builds, but they do not necessarily point at the right changeset or 

they might identify multiple equally plausible candidates.  

Model can also be extended by adding support for specific defect 

types. In comparison to general defects they do not rely on 

common properties applicable to many errors such as build graph 

locality, but focus on explicit modelling scenarios for specific error 

codes. That makes them more focused and once all the necessary 

evidences are there the conclusions can be made with higher 

confidence. 

We will analyze how effectiveness of the model changes as more 

defect types are added by looking at results from several runs 

described in Table 1. Because we need to compare many run at the 

same time the area plot presented in Figure 3 has to be replaced 

with a generalized version. Figure 6 shows outcome rates in 

stacked bar charts grouped by the value of threshold. 
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Figure 6. Outcome rates for mixed model with both types of defects 

 

 
Figure 7. Precision and recall plots for mixed model 
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For mixed model H as well as the major models with general 

defect types D and specific defect types G The most interesting 

pattern that emerges for project defects for fixed (clean) rate is that 

it increases for the first three cases to finally drop in H to the level 

between cases D and G. It is very clearly visible for probability 

threshold 0.65 and its immediate neighborhood. If this rate was the 

only measure we care about this would be degradation of quality, 

however there are other rates. 

Synergy between general and specific defect types is also visible 

in Precision and Recall charts in Figure 7. In both facets the curves 

for case H lies in between cases D and G. As it turns out combining 

defect types leads to a balanced model. 

Different pattern emerged in the cumulative distribution of 

culprit position in Figure 8. Instead of laying in between the curve 

for mixed model outperformed all the other cases. The change from 

D to H is much smaller than from A to G because defects overlap in 

certain builds. Nevertheless, it is a clear indication that adding 

diversity to the set of supported defect types can improve the 

overall efficiency. 

 

 

 

 
Figure 8. Cumulative distribution plot of culprit positions for mixed model 
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7.3 Model with prior expert knowledge 

The analysis so far was focused on the model trained with 

uninformative priors to highlight the ability of the model to train 

from the data set. However, in practice there is available prior 

expert knowledge which in theory can be leveraged to further 

improve the accuracy of the agent. Current section explores this 

process by looking into what happens when the feedback from 

human experts is included in the model. 

In this study we will do a comparison of two pairs of selected 

models., each with different properties. First are D and I models 

which support only general defect types. Then, G and J which, on 

the other hand, support primary specific defects. For each pair one 

model uses non-informative while the other has priors set by 

experts as introduced in Table 1. 

Outcome rates for the analyzed models were summarized in 

Figure 9 with bar plots introduced in the previous section. It is 

clear that the pairwise difference strongly depends on the defect 

type. For models D and I there is hardly any difference in rates 

calculated for project defects for all the values of probability 

threshold, while the model was able to better diagnose external 

issues. 

 
Figure 9. Outcome rates for model with prior expert knowledge 
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In the second pair the difference is clearly visible everywhere, 

however, in contrast to what one could expect adding expert 

knowledge made the model worse in the sense of proposed quality 

measures. There is a significant drop in fixed (clean) and other 

rates, where agent takes an action while fallback rate increases. 

Different patterns seen for two pairs can be explained by going 

back to Section 6. General defect types have typically good 

coverage in the data set. They have a lot of samples which can be 

used to calculate parameters of probability distributions and their 

priors become unimportant. Specific defect types, on the contrary, 

they can be supported only by few samples and their distribution 

gets dominated by prior probabilities provided by experts. 

This also explains why there appears to be drop in quality for case 

J. Because prior expert knowledge, by its very nature, is supposed 

to come from observations made before the data set collection 

process started, when it is included in the model it can lead to 

decrease in performance measured against the same data set or its 

subsets (cross-validation). However, what we are really interested 

in is the good performance on the new samples which have not 

been included in the data set so the initial warning signs for 

outcome rates does not undermine the whole principle. 

In the absence of strong evidence showing that prior expert 

knowledge is valuable to the model we cannot reject a null 

hypothesis sating that it has no positive effects. However, during 

the research we came across examples of defect types which 

gained a lot from manually set priors. Defect created for 

C# Compiler error CS0003 (NoMemory), is one of them. With only 

two supporting samples and non-informative priors its probability 

would have been set to approximately 0.75. Of course such error 

almost certainly indicates a problem in the system, thus its 

probability should be approaching 1. The only way to enforce that 

in the model is by setting its prior based on opinions of human 

experts. 
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8 Conclusions 
In this dissertation we proposed a novel improvement to existing 

Continuous Integration systems which removes the burden of 

selected manual tasks by introducing an autonomous software 

agent capable of diagnosing faults in integration builds and 

automatically fixing them by reverting changesets which 

introduced defects in the project source code. We confirmed its 

utility by training and evaluating it on the data set collected over 

the period of 16 months in a commercial CI system used at 

Microsoft Corporation by many different teams. 

After analysis of several modern CI systems used in practice we 

discovered that they do not preserve enough information to build 

a robust data set for statistical learning applications in fault 

diagnosis. Whenever an integration build fails users care primary 

about quickly resolving the issue and less about documenting the 

circumstances and the root cause. We argued that in order to 

improve in this space it is necessary to preserve information about 

the build configuration, execution, failure, new changes in the 

project’s source code and resolution steps. We designed a new 

format for data samples which can compactly store all this 

information. 

The main contribution of this dissertation is defining clear 

analogy between the problem of finding changesets which 

introduced defects in the source code and well understood task of 

fault diagnosis. This opened an opportunity to use a state of the art 

modelling techniques of building systems for reasoning under 

uncertainty. The proposed expert system is based on a Bayesian 

troubleshooter and can answer probability queries about the 

posterior probability that a changeset had introduced a defect, 

conditioned on the observed evidence from the completed 

integration build. By framing the problem in this way we were able 

to design the agent to take actions based on the probability ranks 

and made this process easy to control by introducing a probability 
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threshold under which the agent will refrain from reverting 

changes automatically. When the agent does not act upon results it 

can pass them to human experts and effectively work as a decision 

support system. 

We studied the effectiveness of the proposed model on the data 

gathered in a real-world, commercial Continuous Integration 

system. We focused on answering questions regarding what 

happens when the Bayesian network grows in terms of the number 

of distinctive defect types it supports, and how inclusion of prior 

expert knowledge changes the quality measures. 

We showed that for the best results the model should support 

both general and specific defect types. Only this combination led to 

high rate of correctly fixed problem and kept the rate of mistakes 

made by the model at reasonably low levels. In the best observed 

case the model was capable of successfully handle 50% of all failed 

integration builds, made mistakes for 7% and left the rest for 

manual intervention. 

The proposed solution fits perfectly to large-scale Continuous 

Integration systems and large projects where it takes up to several 

hours to execute the compilation phase, the rate at which new 

changesets are checked in is high and there are many people 

working on the same product possibly from locations distributed 

geographically in different time zones. In such environments build 

break management strategy is critical to make the system 

successful and shortening the time it takes to diagnose issues can 

improve productivity of everyone working on the project. 
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