
AUTOMATED IDENTIFICATION OF

BREAKING CHANGES IN CONTINUOUS

INTEGRATION SYSTEMS USING

UNDER UNCERTAINTY REASONING

mgr inż. Stanisław Świerc

SILESIAN UNIVERSITY OF TECHNOLOGY

FACULTY OF AUTOMATIC CONTROL, ELECTRONICS

AND COMPUTER SCIENCE

INSTITUTE OF COMPUTER SCIENCE

Supervisor:

Dr hab. inż. Krzysztof Cyran, prof. nzw. w Pol. Śl.

1

1 Introduction
Many software engineering researches have argued for more use

of data and data mining algorithms in Software Engineering [BZ14;

HX10; BZ10]. One of the obvious benefits is the opportunity to

make more informative decisions about the project during its

development phase. However, the data can also be used to enhance

tools used every day by all contributors. In particular, advanced

automation and decision support systems can take the burden of

many manual tasks and let people focus on though-provoking,

creative and more valuable work.

One of the most popular software development practice is

Continuous Integration. It became almost a standard in the

industry worldwide. At its core it encourages developers to

integrate their changes often, even several times a day. Each

change can be considered as integrated only after the product is

successfully rebuilt and it passes a set of predefined tests. In order

to help people follow these guidelines many supporting software

tools have been created. They automate selected steps in the

integration process, which would have to otherwise be performed

by the developers. However, there are some tasks that even today

still have to be done manually.

When integration builds fail they are typically diagnosed by

developers who know the project source code well enough to find

and fix defects. This task is very challenging to automate because

of a few reasons. First, the diagnosis requires good understanding

of the project structure and the technologies it uses. Second, the fix

might involve modifying source code to a level only a human can

handle. There are other strategies for managing broken builds

which do not suffer from these problems, but they have their own

limitations.

Once a project reaches a certain size and the integration builds

start getting long, with compilation phase reaching more than

several hours on modern hardware, CI becomes very challenging

2

to practice. It gets even more problematic if teams are distributed

geographically in different time zones and all require both the CI

system to be available and the project source code to be in a

healthy state. One solution to this problem is to follow a post-

integration verification strategy with backward-fix depicted in the

sequence diagram in Figure 1.

In this scenario Developer commits two changesets c1 and c2. The

first change introduces a defect which causes the integration build

to fail. In response Build Engineer performs diagnosis correctly

finds the culprit. Because the fix requires detailed knowledge about

the project he decides to revert the change with expectation that it

will remove the defect from the source code. The subsequent

integration build succeeds and confirms that this was the right

decision.

Developer Repository CI Server

1. commit

c1

2. commit

c2

3. update

4. build

5. diagnose

c1
6. revert c1

8. build

7. update

Build
Engineer

Build Engineer correctly
returns c1

Build fails due to c1

Build succeeds

Figure 1. Backward fix sequence diagram

3

Depending on the project size the role of Build Engineer can be

assigned to a developer or can be a permanent position.

2 Problem statement
By analyzing different strategies for managing broken builds in

large-scale Continuous Integration systems we identified certain

manual tasks which can be avoided by delegating them to a

dedicated expert system. We recognized that the task of fault

diagnosis described in the previous section can be automated.

Additionally, with backward-fix policy it is possible not only to find

the problem but also make automatic corrections. In this

dissertation we argue that:

It is possible to create an autonomous software agent

capable of diagnosing faults in integration builds and

automatically fixing them by reverting changesets which
have introduced defects to the project source code.

We also state that this thesis can be proved by designing an

autonomous software agent with the listed capabilities, enabling it

in a commercial Continuous Integration system, and showing its

utility in that environment.

The dissertation described an interdisciplinary research on

Software Engineering and Bayesian modelling of reasoning

systems. It starts with detailed description of Continuous

Integration and explains the associated concepts. Then, it switches

to the problem of reasoning under uncertainty and Bayesian

networks as one of the solutions. It contains several significant

contributions: novel design of sample format for storing

information about failures in CI systems, data set collection

procedure and the diagnosis model itself. The effectiveness of the

proposed model is studied on the data set gathered in a real-world,

commercial CI system used daily by hundreds of developers.

4

3 Reasoning under uncertainty
When we talk about reasoning in the context of real world

applications we typically refer to a task where the system has

access to available information and it has to reach conclusions

about what might be true and how to act [Rus+95]. When designing

such system one inevitably has to deal with uncertainty. This is a

consequence of several factors. We might be uncertain about the

true state of the system because we cannot make all the necessary

observations and have to work with partial data.

Uncertainty is inherent to real world problems and has to be

accounted for. Probability theory provides mathematically

consistent framework to quantify and operate with uncertainty. In

principle probabilistic model assign probability value to each of the

possible state of the system. However, in real world application, the

number of states can be very high and sparse model representation

is necessary to keep it manageable. Probabilistic graphical models

are a general-purpose framework for modelling joint probability

distribution over many random variables [KF09]. One of their

realization are Bayesian networks [Pea88].

One distinctive application of Bayesian network which is very

important in the context of this dissertation is the system fault

diagnosis. It is a separate branch of research and the models used

for this problem are referred to as Bayesian troubleshooters. They

are regular Bayesian networks, but their random variables

correspond directly to: causes or defects, symptoms, resolutions

and other concepts from the specific domain they model.

Initially the research in this area was driven by commercial

companies, which wanted to use this technique to improve

reliability of the services they provide, as well as the software and

products they sell [Loc99, SJK00]. Bayesian troubleshooter showed

their effectiveness in many applications. For this reason, they have

been selected as a modelling technique to build the diagnosis agent

used in this research.

5

4 Data set
In order to teach a probabilistic model, it is necessary to prepare a

data set which represents the analyzed domain. In particular,

parameters of Bayesian networks can be estimated based on the

available a data set consisting of fully or partially observed

instances of the random variables.

Although Continuous Integration systems produce a lot of data

there was no standard data set which could be used in this

research. Therefore, it was necessary to first design a format for

samples which will hold enough information to both train and

evaluate models. Then, design and implement a data collection

procedure which can be integrated with existing CI systems used

in the industry. Finally run it for a sufficiently long period of time

to collect enough samples for the research.

4.1 Format

The structure of the network and consequently the set of random

variables that need to be observed was not known upfront to the

research. Therefore, it was vital to design a data set format which

preserves the relevant source data and makes it possible to

observe variables on demand [KF09]. In the research the following

four categories of data were selected:

• Build configuration: Information about the settings for tools

used in the build.

• Build logs: Text files with reports generated by the tools used

in the build.

• Build trace: Trace file contains the information about all

processes that were spawned and the files they accessed.

• Changes: Collection of new changesets which were committed

in the repository since the last successful integration build.

• Causes: Collection of changesets which were reverted with

relation to the failure.

6

4.2 Collection scenarios

Data samples can be collected in various scenarios depending on

the broken build management policies. Analysis performed as part

of the research revealed that the backward-fix scenario presented

in Figure 1 is the most convenient for data collection. Its main

advantage is that it can be fully automated. Users do not need to

enter the information about the problem into any external systems

because every action they take is tracked in the Version Control

System and can be programmatically accessed from there.

Data set used in this research was collected in this way in an

industrial Continuous Integration system at Microsoft Corporation

in the period from Nov 2012 to Feb 2014. During this time the

system was used by many teams working on thousands of different

projects and using different technologies, but sharing the same

build definition and execution technology.

Although the rate of failed integration builds was very low, the high

number of executions happening every day compensated for it and

made it possible to collect a data set of a size sufficient for the

research. Moreover, thanks to the diversity in projects and types of

integration builds, the samples represent a broad range of

problems to diagnose.

7

5 Diagnosis procedure
With explicit probabilistic modelling it is possible to design a

model to leverage both data set and available expert knowledge.

Additionally, the structure of the network defines clear paths of

reasoning that can be followed to get insights about how the results

were formulated.

Proposed diagnosis procedure uses a Bayesian troubleshooter at

its core, however, there are many other important steps that have

to be performed before the network can be constructed. These

steps are described in the remaining part of this section.

5.1 Create a build graph from logs and build trace

In the first step the build graph is built from the information

captured in the build trace file which contains information about

all the Operating System processes that were created in the context

of the integration build and the file access operations they

performed. Although this information is independent from the

solution used to coordinate build tasks, it is convenient to describe

it in terms of GNU Make, which is one of the most popular utility

used in this space [Mec04].

With Make the build specification is described in terms of rules

in a dedicated language and generally saved in a file named

Makefile. A rule consists of three parts: the target, prerequisites, and

the command to perform. A target is a file or a collection of related

files which will be created after successful execution of the

command. The commands correspond to normal shell commands

or scripts. They are executed only when all the prerequisites

expressed in terms of dependent targets are satisfied.

With this terminology it is possible to define a build graph as a

directed acyclic graph where vertices represent the build target

and edges connecting targets with their prerequisites. The edges

are pointing from the prerequisites to targets along with the actual

flow of the build process. Each vertex holds additional information

8

about the commands that were executed to build the target such as

the file system access operation performed and the set of files used

to build it.

5.2 Find the set of leading-failed build targets

When the build graph is complete, it is used to find the set of

leading-failed targets, which are defined as failed targets whose all

upstream dependencies succeeded. The name comes from the fact

that this procedure divides the build graph into two subgraphs.

First, contains all the targets which succeeded, whereas the second

contains failed targets and the targets which succeeded despite

some of their dependencies have failed. The sources of the second

subgraphs are special in a way that they are “leading” all the failed

targets.

The leading-failed targets have an interesting property that their

failure cannot be explained from the structure of the build graph

by a failure of any other target. This property if frequently

exploited by human domain experts, who start diagnosis by

exploring errors of the failed targets with no failed upstream

dependencies, and move down the build graph only when they

seek for extra information to support their hypothesis regarding

the defect. This step was added to the diagnosis model to emulate

this behavior of a human expert.

5.3 Extract information about errors from log files

For every leading-failed target there are most likely some errors in

the execution log thread. They carry a lot of information about the

nature of the problem like the identifier of the tool, its error code

and the name of the source file where the error was detected. This

information has to be extracted and made available in the diagnosis

procedure.

Similarly to the leading-failed targets the first error in the thread

is typically sufficient to identify the defect, while the following

9

errors can be used to increase the confidence of a given hypothesis.

Based on this observation the diagnosis model was designed to

focus on the first error.

5.4 Reduce the set of leading-failed build targets

Each item in the set of leading-failed build targets can potentially

be caused by a distinctive defect in the code base and is inspected

thoroughly. Therefore, whenever it is possible, the set should be

reduced to decrease the problem size which consequently

decreases the diagnosis time and the computational cost required

to perform it.

There are certain scenarios where a single defect can lead to a

large number of leading-failed targets in the build graph. One of the

most common is when a target represents a core library with

reusable functionality that is referenced by many projects and

consequently many build targets depend directly on it. A change to

the library itself which alters its public interface can compile

correctly in isolation but break the downstream targets when

included in an integration build. Such problem is easy to detect

because all the leading-failed targets will be located in the same

part of the build graph.

5.5 Build Bayesian network describing the problem

Once the diagnosis task is scoped to the reduced set of leading-

failed targets a Bayesian network describing the problem can be

constructed. An instance of the network is built from a template

represented as a plate model [KF09]. The structure of the model is

presented in Figure 2. The random variables are divided into five

layers by their type and functionality, and placed on four plates,

three of which are organized in a hierarchical structure while one

is cutting through.

10

θD

Target t

Defect d

Changeset c

Evidence e

D

EC

S

C

EB

Figure 2. Plate model of the Bayesian network used for diagnosis

• θD(d) - prior parameter which controls the probability

distribution of the d defect type.

• EB(t,c,e), EB(t,c,e) - true if the evidence of type e appeared for the

changeset c and the build target t.

• S(t,c,d) - true if symptoms suggest that a changeset c could have

introduced a defect of type d to the component built by target t.

• D(t,c,d) - true if the changeset c introduced a defect of type d to

the build target t.

• C(t,c) - true if the changeset c introduced a defect to the build

target t.

11

5.6 Observe basic evidence

After the Bayesian network is built from the template we can start

adding information about the failure by observing the basic

evidence. It has priority over its complex counterpart because it is

more cost effective.

For every evidence type there is a predicate function that is

responsible for performing all the actions required to determine

the value the variable should be set to. They are expressed with an

imperative code and executed by the diagnosis agent.

5.7 Execute inference procedure

The inference boils down to execution of a set of probabilistic

queries, one per each target and changeset combination. The query

has a form of a posterior probability and it finds likelihood that a

changeset introduced a defect given the observed basic evidence EB

and the vector of prior parameters θD. This task can be formally

defined as:

𝑃(𝐶(𝑡, 𝑐)|𝐸𝐵 , 𝜗𝐷)

5.8 Observe complex evidence

In some situations the basic evidence can be insufficient to find a
strong changeset candidate. Then, it is necessary to start observing
complex evidence. With this additional class of information the
probabilistic query introduced in the previous section can be
updated by including more conditioning random variables:

𝑃(𝐶(𝑡, 𝑐)|𝐸𝐵 , 𝐸𝐶 , 𝜗𝐷)

The process of observing more evidence and updating the

probabilities should continue until there is a changeset candidate

with a high posterior probability that is clearly standing out from

the rest, or the execution time limit is reached, or there is no more

evidence to observed.

12

5.9 Collect results

When the termination condition is reached and the network is

complete in terms of observed evidence the posterior probabilities

of the culprit random variables are calculated once more for each

combination of leading-failed target and changeset, and returned

as the diagnosis result. This format is perfect for a downstream

automation that might act upon the output. It the result needs also

to be presented to users, in order to make it more appealing it can

be grouped by the target and ordered descending by the

probability. That way the most relevant or actionable information

appears at the top.

13

6 Training procedure
The Bayesian network presented in the previous section supports

two basic types of training. Subject matter experts can set the

values of hyperparameters which are combined with the statistics

calculated from the data to form the prior parameters for defect

distributions. One advantage of this approach is that prior

knowledge can be incorporated at the beginning and the model can

be automatically retrained when more samples are collected.

Defects are modelled with Bernoulli’s distributions with prior

parameters coming from Beta distributions. This implies that the

posterior probability of observing new defect D[M +1] conditioned

on the presence of the right symptoms S[M +1] and the previous M

observations D[1],...,D[M] can be described with equation:

𝑃(𝐷[𝑀 + 1]|𝑆[𝑀 + 1], 𝐷[1], … , 𝐷[𝑀]) =
𝛼1 +𝑀[𝐷 = 1, 𝑆 = 1]

𝛼0 + 𝛼1 +𝑀[𝑆 = 1]

This equation combines the hyperparameters of the Beta

distribution α0 and α1 with the counts of certain events recorded in

the training set. Count M[D = 1,S = 1] represents the number of

situations when the defect was observed in the presence of related

symptoms, whereas M[S = 1] is the total number of situations when

the symptoms were observed.

It is interesting to examine the effect of the hyperparameters over

the size of the training set. Initially, when there are very few

samples their values dominate the probability. However, as more

samples are observed and the respective counts grow this effect

diminishes. By selecting the right initial values one can control its

strength with relation to the data.

14

7 Study of the effectiveness
One of the most interesting aspects of the model is how the

diagnosis quality changes with the number of distinctive defect

types random variables included in the Bayesian network. The

expectation was that the quality will improve as more defect types

are supported by the system. Moreover, model is designed to

incorporate the prior expert knowledge, thus, this aspect is also

included in the study.

By looking at how the output of the model can be interpreted one

can identify five main outcomes that have to be taken into

consideration. They depend on the threshold defining minimal

value of probability at which the agent automatically performs an

action on behalf of the user.

Fixed (clean): Real culprit was identified and correctly reverted

from the repository. After this action project state was valid

again and subsequent build succeeded.

Fixed (collateral): Real culprit was identified and correctly

reverted, but there were some innocent changesets above the

threshold which were incorrectly reverted as well. After this

action project state was valid again and subsequent build

succeeded.

Bad revert: All the changesets that were reverted were actually

innocent and the real culprit was left in the code base. After

this action project state stayed invalid and subsequent build

failed with the same error.

Bad retry: Diagnosis result incorrectly indicated that the failure

was caused by the system defect and the build should be

retried. However, subsequent build failed with the same error.

Fallback: None of the changesets had sufficiently high probability

rank to be considered as a culprits and the problem was

escalated to a human expert for a manual intervention.

15

When the model is used purely as a decision support system one

might not be interested in the possible outcomes, but instead focus

on the detailed report with a list of candidates ordered by the

probability of having introduced a defect. In this problem one of

the most important quality measure is the position of the real

culprit in the report. Of course it is best when it appears first

because then user can find it immediately.

In order to cover all the relevant aspects of the model the study

was focused on both outcome analysis and culprit position

analysis. It was also divided into two main stages. First, the model

was studied without prior expert knowledge with so called

uninformative priors, which are defined as assignments to the

hyperparameters which maximize the information brought by the

data. Second incorporated expert knowledge gathered from a

survey filled out by people involved in the process of broken build

management. Configuration of all the cases included in the

research was summarized in Table 1.

 Prior expert

knowledge

Defect types count

Case General Specific Total

A false 1 0 1

B false 3 0 3

C false 7 0 7

D false 11 0 11

E false 1 10 11

F false 1 20 21

G false 1 30 31

H false 11 30 41

I true 11 0 11

J true 1 30 31

Table 1. Supported defect types counts in analyzed cases

16

7.1 Baseline analysis

Single general defect type included in case A is example of a

simplest issue, yet the one which can be seen in practice. It is a

failed compilation due to a syntax error, which indicates that the

source code does not adhere to the grammar rules of the

programming language. Each compiler can have its own set of

syntax errors but they are all similar in the sense of the causal

mechanisms and scenarios in which they are created.

With good understanding of all the possible outcome rates we can

present them all in a single area plot in Figure 3. Different

outcomes are represented with grey-scale color scheme where bad

revert intentionally stands out with its black color to represent

most severe mistake. Immediately visible is that the fallback rate

increases almost linearly with the threshold. This increase

becomes stepwise for higher values because there were fewer

samples in a data set which got such high probability ranks.

When the probability threshold is set to zero fixed (collateral)

rate dominates the distribution because for such low value all

changesets are reverted including the real culprits. This of course

is related to high collateral damage which is unacceptable in

practice. From there the rate changes in two phases. Initially it

Figure 3. Outcome rates for baseline model

17

decreases rapidly along with threshold to reach 8% at the point

0.09. Then it changes gently up to the point 0.5 where it drops

down to 0. Similar pattern can be observed in the Precision and

Recall plot in Figure 4.

Figure 4. Precision and recall plots for baseline model

When the model is used as a decision support system position of

real culprits is critical. Its distribution the baseline model is

presented in the histogram in Figure 5. The first bar for project

defects reaches only 15%, which not surprisingly matches the level

of recall for high values of threshold from Figure 4. Second bar is

high as well with the level of 12%. At the third position on the other

hand we can see a drop after which the distribution slowly

decreases to zero at the point beyond the range presented in the

histogram.

Figure 5. Histogram of culprit positions for baseline model

18

7.2 Mixed model

When diagnosis agent fails to correctly identify the culprit then

most likely it is because it does not support defect type which

caused the failure. At any point in time the model can be extended

by adding support for new types. Each such effort consists of

analyzing the causal mechanism of the defect, defining evidence

which is a good indication of the failure and implementing them in

code, add corresponding random variables.

When extending the model one should select the specificity level

for the defect type. If a diagnosis procedure is very specific it will

identify culprits with high confidence, however, the number of

builds for which it will be applicable will be low. General defect

types on the other hand can have supporting evidence in many

builds, but they do not necessarily point at the right changeset or

they might identify multiple equally plausible candidates.

Model can also be extended by adding support for specific defect

types. In comparison to general defects they do not rely on

common properties applicable to many errors such as build graph

locality, but focus on explicit modelling scenarios for specific error

codes. That makes them more focused and once all the necessary

evidences are there the conclusions can be made with higher

confidence.

We will analyze how effectiveness of the model changes as more

defect types are added by looking at results from several runs

described in Table 1. Because we need to compare many run at the

same time the area plot presented in Figure 3 has to be replaced

with a generalized version. Figure 6 shows outcome rates in

stacked bar charts grouped by the value of threshold.

19

Figure 6. Outcome rates for mixed model with both types of defects

Figure 7. Precision and recall plots for mixed model

20

For mixed model H as well as the major models with general

defect types D and specific defect types G The most interesting

pattern that emerges for project defects for fixed (clean) rate is that

it increases for the first three cases to finally drop in H to the level

between cases D and G. It is very clearly visible for probability

threshold 0.65 and its immediate neighborhood. If this rate was the

only measure we care about this would be degradation of quality,

however there are other rates.

Synergy between general and specific defect types is also visible

in Precision and Recall charts in Figure 7. In both facets the curves

for case H lies in between cases D and G. As it turns out combining

defect types leads to a balanced model.

Different pattern emerged in the cumulative distribution of

culprit position in Figure 8. Instead of laying in between the curve

for mixed model outperformed all the other cases. The change from

D to H is much smaller than from A to G because defects overlap in

certain builds. Nevertheless, it is a clear indication that adding

diversity to the set of supported defect types can improve the

overall efficiency.

Figure 8. Cumulative distribution plot of culprit positions for mixed model

21

7.3 Model with prior expert knowledge

The analysis so far was focused on the model trained with

uninformative priors to highlight the ability of the model to train

from the data set. However, in practice there is available prior

expert knowledge which in theory can be leveraged to further

improve the accuracy of the agent. Current section explores this

process by looking into what happens when the feedback from

human experts is included in the model.

In this study we will do a comparison of two pairs of selected

models., each with different properties. First are D and I models

which support only general defect types. Then, G and J which, on

the other hand, support primary specific defects. For each pair one

model uses non-informative while the other has priors set by

experts as introduced in Table 1.

Outcome rates for the analyzed models were summarized in

Figure 9 with bar plots introduced in the previous section. It is

clear that the pairwise difference strongly depends on the defect

type. For models D and I there is hardly any difference in rates

calculated for project defects for all the values of probability

threshold, while the model was able to better diagnose external

issues.

Figure 9. Outcome rates for model with prior expert knowledge

22

In the second pair the difference is clearly visible everywhere,

however, in contrast to what one could expect adding expert

knowledge made the model worse in the sense of proposed quality

measures. There is a significant drop in fixed (clean) and other

rates, where agent takes an action while fallback rate increases.

Different patterns seen for two pairs can be explained by going

back to Section 6. General defect types have typically good

coverage in the data set. They have a lot of samples which can be

used to calculate parameters of probability distributions and their

priors become unimportant. Specific defect types, on the contrary,

they can be supported only by few samples and their distribution

gets dominated by prior probabilities provided by experts.

This also explains why there appears to be drop in quality for case

J. Because prior expert knowledge, by its very nature, is supposed

to come from observations made before the data set collection

process started, when it is included in the model it can lead to

decrease in performance measured against the same data set or its

subsets (cross-validation). However, what we are really interested

in is the good performance on the new samples which have not

been included in the data set so the initial warning signs for

outcome rates does not undermine the whole principle.

In the absence of strong evidence showing that prior expert

knowledge is valuable to the model we cannot reject a null

hypothesis sating that it has no positive effects. However, during

the research we came across examples of defect types which

gained a lot from manually set priors. Defect created for

C# Compiler error CS0003 (NoMemory), is one of them. With only

two supporting samples and non-informative priors its probability

would have been set to approximately 0.75. Of course such error

almost certainly indicates a problem in the system, thus its

probability should be approaching 1. The only way to enforce that

in the model is by setting its prior based on opinions of human

experts.

23

8 Conclusions
In this dissertation we proposed a novel improvement to existing

Continuous Integration systems which removes the burden of

selected manual tasks by introducing an autonomous software

agent capable of diagnosing faults in integration builds and

automatically fixing them by reverting changesets which

introduced defects in the project source code. We confirmed its

utility by training and evaluating it on the data set collected over

the period of 16 months in a commercial CI system used at

Microsoft Corporation by many different teams.

After analysis of several modern CI systems used in practice we

discovered that they do not preserve enough information to build

a robust data set for statistical learning applications in fault

diagnosis. Whenever an integration build fails users care primary

about quickly resolving the issue and less about documenting the

circumstances and the root cause. We argued that in order to

improve in this space it is necessary to preserve information about

the build configuration, execution, failure, new changes in the

project’s source code and resolution steps. We designed a new

format for data samples which can compactly store all this

information.

The main contribution of this dissertation is defining clear

analogy between the problem of finding changesets which

introduced defects in the source code and well understood task of

fault diagnosis. This opened an opportunity to use a state of the art

modelling techniques of building systems for reasoning under

uncertainty. The proposed expert system is based on a Bayesian

troubleshooter and can answer probability queries about the

posterior probability that a changeset had introduced a defect,

conditioned on the observed evidence from the completed

integration build. By framing the problem in this way we were able

to design the agent to take actions based on the probability ranks

and made this process easy to control by introducing a probability

24

threshold under which the agent will refrain from reverting

changes automatically. When the agent does not act upon results it

can pass them to human experts and effectively work as a decision

support system.

We studied the effectiveness of the proposed model on the data

gathered in a real-world, commercial Continuous Integration

system. We focused on answering questions regarding what

happens when the Bayesian network grows in terms of the number

of distinctive defect types it supports, and how inclusion of prior

expert knowledge changes the quality measures.

We showed that for the best results the model should support

both general and specific defect types. Only this combination led to

high rate of correctly fixed problem and kept the rate of mistakes

made by the model at reasonably low levels. In the best observed

case the model was capable of successfully handle 50% of all failed

integration builds, made mistakes for 7% and left the rest for

manual intervention.

The proposed solution fits perfectly to large-scale Continuous

Integration systems and large projects where it takes up to several

hours to execute the compilation phase, the rate at which new

changesets are checked in is high and there are many people

working on the same product possibly from locations distributed

geographically in different time zones. In such environments build

break management strategy is critical to make the system

successful and shortening the time it takes to diagnose issues can

improve productivity of everyone working on the project.

25

Bibliography

[BZ14] A. Begel and T. Zimmermann. “Analyze This! 145

Questions for Data Scientists in Software Engineering”.

In: Proceedings of the 36th International Conference on

Software Engineering. Hyderabad, India, 2014.

[HX10] A. E. Hassan and T. Xie. “Software intelligence: the future

of mining software engineering data”. In: Proceedings of

the FSE/SDP workshop on Future of software engineering

research. ACM. 2010, pp. 161–166.

[BZ10] R. Buse and T. Zimmermann. “Analytics for software

development”. In: Proceedings of the FSE/SDP workshop

on Future of software engineering research. ACM. 2010,

pp. 77–80.

[Rus+95] S. J. Russell et al. Artificial intelligence: a modern

approach. Prentice hall Englewood Cliffs, 1995.

[KF09] D. Kollar and N. Friedman. Probabilistic graphical

models: principles and techniques. The MIT Press, 2009.

[Pea88] J. Pearl. Probabilistic reasoning in intelligent systems: net-

works of plausible inference. Morgan Kaufmann, 1988.

[Loc99] J. Locked. “Microsoft bayesian networks: Basics of

knowledge engineering”. In: Kindred Communications

Troubleshooter Team Microsoft Support Technology 12

(1999).

[SJK00] C. Skaanning, F. V. Jensen, and U. Kjærulff. “Printer

troubleshooting using Bayesian networks”. In:

Intelligent Problem Solving. Methodologies and

Approaches. Springer, 2000, pp. 367–380.

[Mec04] R. Mecklenburg. Managing projects with GNU make.

O’Reilly Media, Inc., 2004.

