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APPROXIMATION OF SCATTERED DATA BY DYNAMIC NEURAL NETWORKS

Sum m ary. A new method of manipulation of two dimensional scattered data is presented in 
this paper. The scattered input points are ordered by a self-organizing neural network. For this 
purpose the dynamic version of the Kohonen network is used.

A PRO KSYM A C JA  DANYCH RO ZPRO SZO NYCH ZA PO M O C Ą  DYNAM ICZNEJ SIECI K O M Ó REK  
NERW OW YCH

Streszczenie . W  pracy przedstawiono nowy sposób porządkowania dwuwymiarowo 
rozproszonych danych, rozumianych jako zbiór punktów na płaszczyźnie o nieustalonej 
kolejności łączenia. Sposób polega na wykorzystaniu zdolności samoorganizowania się sieci 
komórek nerwowych, w szczególności na dynamicznej wersji tzw. modelu Kohonena.

IN TRO D UC TIO N

The interpolation and the approximation of scattered data are interesting problems of computer 

graphics. By scattered data we mean a set of points without any predefined order. Unfortunately all 

the standard interpolation and approximation methods -  like Hermite interpolation, Bezier curves or 

B-spline - need a sequence of points (for the sake of simplicity the problems will be discussed only in 

two dimensions), hence if we want to apply these methods we have to order the data.

A good survey of the scattered data Interpolation can be found in [1], In this paper a completely 

new approach is given where the self-organizing ability of the neural networks will be used to order 

the points. The Kohonen network [2,3] can be trained by scattered data, that Is the points will form the
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input of the network, while the weights of the network and their connections give us a polygon, the 

vertices of which are the input points. However this process needs a good estimation of the number of 

output neurons in advance, because if this number is too small then some of the input points can be 

out of the result polygon, while if this number is too large, then the processing time will increase. To 

avoid these problems we use the dynamic version of the Kohonen network developed by Fritzke [5,6], 

where the number of output points is growing dynamically through the iterations. During the 

selforganizing proces some input points will be approached enough by the output neurons. To 

decrease the number of Iterations these imputpoints will not be presented to the net in the future 

iterations.

In this way the polygon we obtained can be used as the control polygon of a B-spline curve, so 

finally a standard approximation or interpolation method can be applied for the scattered data.

W e begin our discussion with the short definition of Kohonen’s neural network.

K O H O N E N ’S NEURAL NETW ORK

TO P O L O G Y  A N D TRAINING RULES OF THE KOHONEN NET

The Kohonen net is a two-layered non-supervised learning network. The first layer of neurons is 

called input layer and contains the input neurons which pick up the data. The input neurons are 

entirely interconnected to a second layer, the competitive layer. The weights associated with the 

connections are adjusted during the training. Only one single neuron can be active at a time and this 

neuron represents the cluster which the input data set belongs to. The following figure shows the 

topology of a Kohonen map with two dimensional output layer.
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Figure 1
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The training of the network is figured out by presenting data vectors x to the Input layer of the

network whose connection weights w, of all competitive neurons (/' =  1 m) are initially chosen as

random values. If n is the dimension of the input we choose n input neurons and define a 

Euclidean distance between x and wi with

d,  HI* "  ~ w d)2 •

where xj denotes the /th coordinate of the presented input vector.

The neuron c with the minimum distance is then activated, where dc -  min ( d , ) ( /  -  / , . . . , /7?). The

updating of the weights w# associated to the neurons is only performed within a neighbourhood 

(ieNe(t)) of c, 0  = This neighbourhood Nc(t) is reduced with training time t. This updating

follows the equation

w (j * 1) -  ivjf> + Aw j j1, (/' j  ~ 1 , . . . n )

Aw! ) j n ( f )  ■ (X j  -  W i j  , if neuron i & N c (t)  

j 0 otherwise

where q(f) represents a time-dependent learning rate which is decreasing in time. The term q(Q can

be chosen as the Gaussian function q (f ) = ■ e 2 .

The time dependent neighbourhood A/e(0 can be described as a rectangular areas in the following 

way:

x c -  d (t) < x  < x c + d (t) 

y c -  d ( t ) < y  < y c + d ( t )  

d( t)  = dû ( ^ - j ]j , t e [ 0  T]

After updating the weights wj-a new input is presented and the next iteration starts.

Considering the above description, the Kohonen net has the following important feature:

•  After sufficiently many inputs have been presented the net performs a topological ordering of 

the competitive neurons such that the neighbouring neurons in the layer represent similar
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clusters in multidimensional space. In other words, weights will specify cluster centers that 

sample the input space such that the distribution of the cluster centers approximates the 

distribution of the input data. This is why the Kohonen net can be used for ordering the 

scattered points.

TH E  DYNAM IC KOHONEN NET

Now we discuss how the structure we described above can be extended by the possibility of 

adding and removing new neurons (for a more detailed description see [5,6]). This procedure will let 

us to overcome the restriction the number of output neurons being constant.

To grow the structure an error-value is associated to every output neuron. If a neuron is active in a 

training step, then we increase its error-value by the (Euclidean-) distance of the active neuron and 

the input point. After n training step we can find the output neuron m  with the maximal error-value. 

Now we insert a new neuron between m  and its furthest direct neighbour d. The position of the new 

neuron c will be:

pos (c) = 0.5 (pos (m ) + pos (d ))

and the neuron will be connected with the surrounding neurons. Its error-value will be the average of 

the error-values of its neighbours, while the error-variable of the neighbours will decrease.

To shrink the structure we try to find the neurons which are not active for a long time. If for a 

neuron the number of training steps without being active exceeds a certain limit, then the neuron is 

removed and the connections are modified to rebuild the original structure.

D ESC R IPTIO N  OF THE PROBLEM

Let a set of points (scattered data) be given on the plane. Our purpose is to fit (interpolation or 

approximation) a curve to them. Thus our first task is to determine the order of the points for the 

interpolating or approximating methods.

The Kohonen net is used to order the points for the above methods. It is obvious that this order 

should be adequate in the sense that curves fitted to the points are .well shaped”. In this paper we 

use B-spline curve for approximating the points in the specified order.
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ADA PTIN G  THE KO HO NEN NET TO THIS PROBLEM  

Input vectors:

Let a set {x1 x ^  of two dimensional vectors be given. The vectors x  x  are called input

vectors. The coordinates of these vectors are submitted to the input layer which contains two 

neurons.

O utput m ap and w eights

Let the output vectors o/,..., om be two dimensional vectors with the coordinates (wn, w/2), where 

w j denotes the weights between the output vector i and the yth coordinate of the presented input 

vector. W e use the terms .output vector" and „weights of the output neuron’ Interchangeably. Let the 

output map be one dimensional. (See figure 2).

Xi *2 

Figure 2

The Kohonen net

After initializing the weights the Input vectors are presented sequentially in time.The algorithm 

determines (using the Euclidean distance) which output vector Is the closest to the presented input 

vector. The coordinates i.e. the weights of this output vector and those of the vectors that are In a 

certain neighbourhood of the nearest output vector are updated so that these output vectors move 

closer to the presented Input vector. The degree of the updating depends on the gain term and the 

distance of the output vector and the presented input vector. When the radius (which specifies the 

neighborhood around an output vector) is large, many output vectors tend towards the presented 

input. For this reason, Initially the output vectors move to places where the density of the input 

vectors is large, since more input vectors are presented from this areas.

The radius (i.e. the size of the neighborhood) and the gain term is decreasing in time. The latter 

results in that after enough Iterations the locations of the output vectors does not change significantly
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(if the gain term is almost zero then the change In the weights is negligible).The gain term should 

diminish only when the weights are already close to the input vectors.

The output ox is said to converge to the input x if for Ve > 0 3 to such that for V t > to ox e Nt, (x ’,e), 

where (/ = (k = (f = A net is said to be convergent if for V x  3 ox such that ox

converges to x , where (7 = 1, I), (k = 1 , m).

In the general case the convergence of the Kohonen net has not been proved yet. Kohonen 

proved the convergence only in a very simple case when the output is one dimensional and the inputs 

are the elements of an interval [2].

The probability of the convergence and the number of iterations to the convergence of the net 

depend on:

1)  the initial values of the weights of the output neurons,

2) the method of the presentation of the input vectors,

3) the formulas used to calculate the radius and the gain term,

4) the dynamic characteristic of the Kohonen net.

After reaching a certain level of convergence the input vectors can be ordered according to the 

order of the output vectors that converge to them. The ordered inputs specify a finite sequence of 

segments in the plane.

h Input node (20)
■ Output node (70) t|nPut node (20)

■Output node (70)

In itia liz ing  the w eights

1) The simplest initialization of the weights is setting them to small random values. In this case the 

inputs are far from the outputs.

2) For a better placement of the outputs and for the quicker convergence we can set the weights 

around the centroid of the inputs (we add small random values to the centroid of the inputs).
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3) For input vectors which are bounded in a relatively narrow region and are evenly distributed, the 

following initialization can be better than the two above. W e select the two inputs that are at the 

ends of this region and assign them to the weight of the first and last output vectors (oi and Om) on 

the map. The remaining output vectors are initialized in the previous way or can be placed evenly 

on the line between the first and last output vectors.

The bast way to initialize the weights depends on the particular distribution of the imput vectors. 

Figure 3. shows the case when different initializations are used for the same input points. In the left 

picture the weights were initialized with method 3. while in the right picture method 2. was used.

The presentation o f the input vectors

Only the input vectors for which there is no output vector that converged to them are submitted to 

the input layer of the net. The presentation of the input vectors should be carried out according to 

figure 4. In spite of the value 3 of the radius the neighbours of the best matching unit (which is the 

closest of the presented input) are its direct neighbours. The output neurons are connected by lines. If 

we consider six output vectors neighbours of the best matching unit then the converged outputs will 

be moved towards the presented input. Hence the approached inputs can be unapproached again. To 

avoid this problem the neighbours of the best matching unit should not be converged outputs and 

outputs beyond converged outputs.

radius = 3

Figure 4
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The radius and the gain term

The convergence and the rate of the convergence are influenced by these two factors. Both terms 

should be decreasing in time. To achieve convergence, the radius has to decrease to zero, otherwise 

the presented input would attract outputs converging to other inputs.

At the same time the gain term has to decrease in time, otherwise the presented input would 

attract the outputs which are near to other inputs but relatively far from the presented one (closer to 

another inputs) and are in the actual neighbourhood. It should be noted that if the gain term  

decreases rapidly compared to the radius (before the outputs are close enough to the inputs) then the 

gain term is too small to move the outputs to the presented input (i.e. position of the outputs is not 

changed virtually). Thus the gain term should decrease so that it remains large enough to have the 

outputs reach the inputs when the radius diminishes to zero.

in our program the Gaussian function is used for the gain term and for the radius in the following 

way:

The num ber o f ou tput vectors

in the case of the original version of the Kohonen network the number of output vectors should be 

at least 4 times the number of input vectors. This number is based on experiments. It is obvious that 

we need at least as many output vectors as input vectors but this number is usually not enough. In the 

following figure the number of input and output vectors is the same, but one of the outputs is 

captured between two other output vectors on the left side, therefore only one output remains for two 

inputs on the right side.

gain(t) -  -¡=L=
V  2 - j i

, e  (1,2-108 «1300 _ 9-107 )
m

r a d i u s ( t )  = y -
otherwise

r a d i u s (  t -1 )  < y

* Input node (7)
• Output node (7)

Figure 5
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In the case of dynamic neural network the above state canont cause problem because in this 

situation sooner or later an extra neuron will be inserted. Initially the number of the output neurons is 

the same as the number of the input vectors. At the convergence of the net the number of the output 

vectors much less than in the above case.

Run results

The above mentioned formulas were found after several runs.These formulas are purely 

experimental. The table below shows the run results of different versions of the selforganizing net. 

The first column contains the number of input vectors. Three cases are shown here: the original case 

where the original Kohonen net is used, the dynamic Kohonen net and the dynamic Kohonen net with 

the input presentation we mentioned above. The columns of iteration show the average number of 

iterations that were needed for stable convergence. The columns of number of outputs represent the 

number of output neurons of the net at the convergence. W e accepted the state of the net to be a 

stable converging state if the radius was small enough and every Input vector had at least one output 

vector in its neighbourhood of radius 0.1. In the original case there were two cases from the 30 runs 

when the net did not converge, so the probability of the convergence of the net is about 0.9S. In the 

dynamic cases the net always converged. W e run the program 10 times for each line in the table.

The original case The dynamic version The dynamic version with 
special input presentation

Input
vectors

Iterations Number of 
outputs

Iterations Number of 
outputs

Iterations Number of 
outputs

10 1344 40 1112 19 1025 17

20 2332 80 1787 30 1447 28

30 2595 120 1978 47 1789 45

The following figures show the ordering of the input vectors and the approxinating B-spline. There 

are 20 input vectors.

FUTURE W ORK

W e plan to generalize the method to three dimensional input points using the Kohonen net. In this 

case the output map is two dimensional (a grid) and the input vectors and the weights are three 

dimensional. W hen the net converges, the grid approximates the input points and an interpolating or 

approximating surface can be fitted to the input points.
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S treszczenie

W  pracy zaprezentowano nowe podejście do problemu uporządkowania danych rozproszonych, 

których modelem geometrycznym jest zbiór punktów płaszczyzny o nieustalonej kolejności łączenia. 

W  celu określenia odpowiedniego uporządkowania posłużono się modelem samoorganizującej się 

sieci komórek nerwowych Kohonena. Aby zmniejszyć liczbę powtórzeń zastosowano dynamiczną 

wersję tej sieci. Zmienność liczby elementów sieci w tej wersji pozwala na doskonalsze jej dopasowa­

nie do poszczególnych faz procesu samoorganizacji. Przedstawiono zmodyfikowaną metodę 

określenia wag początkowych i sposób prezentacji sygnałów wejściowych oraz tworzenia sąsiedztwa. 

Przytoczono odnośne wzory obliczeniowe. Załączono rezultaty symulacji komputerowej.

Po zakończeniu procesu porządkowania stosuje się standardowe metody aproksymacji i 

Interpolacji. W  przedstawionym w pracy przykładzie dokonano aproksymacji za pomocą krzywej typu 

B-spline.


