BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A., II.—Organic Chemistry

APRIL, 1942.

I.—ALIPHATIC.

Mechanism and kinetics of substitution at a saturated carbon atom. -See A., 1942, I, 148.

Production of saturated hydrocarbons.—See B., 1942, II, 2.

Dehydrogenation of paraffins and paraffin-olefine mixtures.—See

Chemical reaction by the use of the thermal diffusion apparatus of Chsius and Dickel. I. Thermal polymerisation of methane. K. Hirota (Bull. Chem. Soc. Japan, 1941, 16, 274—278).—The thermal polymerisation of CH₄ to higher hydrocarbons and H₂ is much more effective when carried out in a thermal diffusion column, 42% conversion and 87% of H₂ being obtained. F. J. G.

Effects of a high-voltage discharge on the thermal decomposition of ethane. See A., 1942, I, 151.

Thermal behaviour of n-hexane.—See B., 1942, II, 1.

Action of sulphur on hydrocarbons under high pressure. W. Friedmann (Refiner, 1941, 20, 395—406).—Experimental data obtained by autoclaving S with n-heptane, isooctane (I), or isodecane (II) at 280° are presented. The following general conclusions are reached. (1) The normal hydrocarbons change into branched systems, especially those which, under the directional influence of systems, especially those which, under the directional influence of S, tend to form a five-membered ring with S in the bridge. (2) The branched hydrocarbons give simultaneously thiophanes and sulphides, e.g., Me₂S. (3) Thiophanes react further with S forming (a) thiophens from normal paraffins, with partly dehydrogenated products as intermediates, (b) thiophthen (and probably thiophthanes) from normal paraffins, (c) polythiophanes or thiophane polysulphides from (I), and (d) dithienyls (probably hydrogenated dithienyls as an intermediate product) from (II). R. B. C. dithienyls as an intermediate product) from (II).

Synthesis and properties of hydrocarbons of high mol. wt. J. N. Cosby and L. H. Sutherland (*Refiner*, 1941, 20, 471—480).—Pure hydrocarbons of high mol. wt. are prepared, as a basis for establishing the chemical composition of lubricating oils. Pure intermediates are used, and the general procedure is the Grignard prep. of alcohols, followed by dehydration and hydrogenation, with careful purification at each stage by selective adsorption on SiO₂ gel or distillation. Purity is determined by time-temp. m.p. curve. In all cases, 85—95% of the final distillate has a const. val. for n, and vals. for η , d, heat of vaporisation, and dispersion are also given and their relation to constitution is discussed. The following are prepared: \(\lambda_+\,\text{m.p.}\)
0° b.p. $180^\circ/0.5$ mm. (all b.p. recorded are at 0.5 mm.), \(\lambda_-\,\text{m.p.}\)
13°, b.p. 179° , \(\eta_-\,\text{m.p.}\)
13°, b.p. 179° , \(\eta_-\,\text{m.p.}\)
13°, b.p. 183° ; \(\eta_-\,\text{n-hexyl-}\), m.p. 193° , b.p. 196° , and \(\lambda_-\text{n-octyl-docosane}\), m.p. 8.6°, b.p. 209°; \(\lambda_-\,\text{n-decyl-}\), m.p. 8.7°, b.p. 215°, \(\lambda_-\,\text{a-decahydronaphthyl-}\), glass at -40° , b.p. 222°, \(\lambda_-\,\text{n-amyl-}\), m.p. -91° , b.p. 178°, \(\lambda_-\,\text{(y-amyl)-}\), glass at -40° , b.p. 175°, \(\lambda_-\,\text{cyclo-hexyl-}\), m.p. -7.2° , b.p. 191°; \(\lambda_-\,\text{phenyl-}\lambda_-\text{heneicosane}\), glass at -40° , b.p. 190°; \(\lambda_-\)
b.p. 191°; \(\lambda_-\,\text{phenyl-}\lambda_-\text{heneicosane}\), glass at -40° , b.p. 190°; \(\lambda_-\)
10.2°, b.p. 181°; \(\alpha_-\text{n-heneicosane}\), m.p. 37.6°, b.p. 193°, and \(\alpha_-\text{diphenyl-tetradecane}\), m.p. 17.9°, b.p. 194°; \(\alpha_-\text{a-diphenyl-}\Delta_-\text{ttradecane}\), m.p. 16.3°, b.p. 192°; \(\lambda_-\text{n-octyl-}\Delta_-\text{heptadecane}\), glass at -40° , b.p. 181°; \(\alpha_-\text{cyclohexyl-y-(\beta_-\text{cyclohexyl-thyl})hendecane}\), glass at -40° , b.p. 181°; \(\alpha_-\text{cyclohexyl-y-(\beta_-\text{cyclohexyl-thyl})hendecane}\), glass at -40° , b.p. 195°; \(\lambda_-\text{n-octyl-}\Delta_-\text{heptadecane}\), m.p. 37.6°, b.p. 195°; \(\lambda_-\text{n-octyl-}\Delta_-\text{heptadecane}\), glass at -40° , b.p. 181°; \(\alpha_-\text{cyclohexyl-y-(\beta_-\text{cyclohexyl-thyl}\)hendecane, glass at -40° , b.p. 181°; \(\alpha_-\text{cyclohexyl-y-(\beta_-\text{cyclohexyl-thyl}\)hendecane, glass at -40° , b.p. 195°; \(\lambda_-\text{n-octyl-}\Delta_-\text{heptadecane}\), m.p. 37.6°, b.p. 195°; \(\lambda_-\text{n-octyl-}\Delta_-\text{heptadecane}\), m.p. 37.6°, b.p. 195°; \(\lambda_-\text{nheat of vaporisation, and dispersion are also given and their relation

Activation energy of ionic substitution.—See A., 1942, I, 148.

Mechanism and kinetics of elimination reactions.—See A., 1942,

Mechanism and kinetics of additions to olefinic compounds. G. Williams (Trans. Faraday Soc., 1941, 37, 749-763).—Addition of halogen to a double linking takes place most readily in strongly dissociating solvents, by an ionic mechanism; less readily in dissociations. ing solvents such as AcOH by a mol. two-stage mechanism; and still less readily in non-dissociating solvents by catalytic mechanisms. Preliminary experiments are described in which the bromination of CH₂:CHBr at 300° is shown not to result in homogeneous addition; the effect of high temp. is to suppress surface addition and to promote substitution. 125

D 2 (A., II.)

Reaction product of olefines with sulphuric acid.—See B., 1942, II, 1.

Polymerisation of olefines induced by free radicals.—See A., 1942,

Preparation of palladium and platinum synthetic high polymeride catalysts and relationship between particle size and rate of hydrogenation.—See A., 1942, I, 150.

Mercury-photosensitised reactions of ethylene.—See A., 1942, I, 151.

Photochemistry of isobutene.—See A., 1942, I, 151.

Production of heptene [and other olefines].—See B., 1942, II, 2.

Olefines and diolefines from allylic chlorides. A. L. Henne, H. Chanan, and A. Turk (J. Amer. Chem. Soc., 1941, 63, 3474—3476).

With Mg in Et₂O, CH₂:CH·CHMeCl, b.p. 63°, CHMe:CH·CH₂Cl, Chanan, and A. Turk (*J. Amer. Chem. Soc.*, 1941, 63, 3474—3476).

—With Mg in Et₂O, CH₂;CH·CHMeCl, b.p. 63°, CHMe:CH-CH₂Cl, b.p. 83°, or the crude mixture (*A*) thereof gives (CHMe·CH:CH₂Cl, b.p. 101·8°) 7, 4, or 3%, CHMe:CH·CH₂·CHMe·CH:CH₂Cl, [I) (b.p. 111·0°) 57, 50, or 60%, and (CH₂·CH:CHMe)₂ (II) (b.p. 124·5°) 3%, a little, or 4%, respectively. CH₂:CH·CH₂Cl and (*A*) (1:1) with Mg in Et₂O give CH₂:CH·[CH₂]₂·CH:CHMe (b.p. 93·7°) 34, (I) 21, (CH₂·CH:CH₂)₂ (III) (b.p. 59·4°) 10, CH₂·CH·CHMe·CH₂·CH:CH₂Ch:CH₂ (b.p. 80°) 10, and (II) 1%. With MgBuCl in Et₂O, (*A*) gives CHMe:CH·C₅H₁₁·n (f.p. −94·04°, b.p. 125·2°) 85, CH₂·CH·CHMeBu^α 9, and (I) 6%. CH₂·CH·CH₂Cl with Mg gives (III) 60%, with CH₂:CHMe·CH₂Cl—Mg-Et₂O gives CH₂·CHMe·[CH₂]₂·CH:CH₂ (f.p. −128·88°, b.p. 88·1°) 47, (CH₂·CHMe·CH₂)₂ (IV) (f.p. −75·6°, b.p. 114·3°) 30, and (III) 12%, with n-C₅H₁₁·MgCl gives Δ^α-n-octene (m.p. −102·11°, b.p. 121·6°) 80%, and with iso-C₅H₁₁·MgCl gives Buβ·[CH₂]₂·CH:CH₂ (b.p. 113·19°) 60%. With Mg, CH₂:CHMe·CH₂Cl gives 65% of (IV), and with MgBuCl gives n-C₅H₁₁·MgCl gives Buβ·[CH₂]₂·CH:CH₂ (b.p. 113·19°) 60%. With Mg, CH₂:CHMe·CH₂ (f.p. −90·1°, b.p. 119·3°) and some CMe₂:CHBu^α. Piperylene hydrochloride and MgPrCl give only CHMe·CH-CHMePr^α. Dissocrotyl hydrochloride and MgMeI give CHBu^γ:CHPrβ (b.p. 114°) and CMe₂:CH-CHMePrβ (b.p. 128·4°) (1:5). The following data are also recorded: CHMeEtPr^α, b.p. 92·0°; CHMeEtBu^α, f.p. −120·8°, b.p. 119·1°; (CH₂Prβ)₂, f.p. −91·49°, b.p. 109·3°; CH₂BuβBuγ, b.p. 123·0°; CHMePrβBuβ, b.p. 130·3°; n and d of all the compounds above.

R. S. C.

Prolycopene, a naturally occurring stereoisomeride of lycopene. L. Zechmeister, A. L. Le Rosen, F. W. Went, and L. Pauling (*Proc. Nat. Acad. Sci.*, 1941, 27, 468—474).—The pulp of the tangerine tomato was shaken with MeOH and light petroleum and the latter extract was chromatographed on Ca(OH)₂. The chromatogram showed about 15 layers which included lycopene (I), neolycopene, showed about 15 layers which included lycopene (I), neolycopene, several other isomerides of (I), carotene and its isomerides, and a wide layer containing prolycopene (II), which when re-chromatographed yielded nine layers including (I). When observed spectroscopically, (II) is rapidly converted into (I) with I. The change (II) \rightarrow (I) occurs more slowly in the presence of S or HBr in light petroleum. The stereochemical configuration of (II) is discussed.

Syntheses in the carotenoid series. II. New synthesis of squalene. J. Schmitt (Annalen, 1941, 547, 115—122).—Geraniol is converted by PBr₃ and C₅H₅N in light petroleum into geranyl bromide, b.p. 105—110°/4 mm., which gives Et geranylacetoacetate, b.p. 152—158°/4 mm., hydrolysed by Ba(OH)₂ in aq. EtOH to geranylacetone [ξκ-dimethyl-Δει-undecadien-β-one], b.p. 130—133°/13 mm. This is transformed by Mg and (CH₂·CH₂Br)₂ in Et₂O into squalene, b.p. 225—230°/1·5 mm. (hexachlorides, m.p. 114° and 143°; hexabromides, m.p. 116—118° and 136—138°) (cf. Heilbron et al., A., 1926, 816; Karrer et. al., A., 1931, 333). Similarly, ψ-ionone, Mg, and (CH₂·CH₂Br)₂ in Et₂O yield βξκοτω-hexamethyl-Δβέκμποψψ-tetracosaoctadiene, a pale yellow liquid, b.p. 220—225°/1 mm., which gives intense colour reactions with conc. H₂SO₄ and with SbCl₃ but does not appear to give solid adducts with HCl or HBr. It appears to be dehydrogenated by p-O:C₆H₄·O at ~100° since a quinhydrone is formed. 105-110°/4 mm., which gives Et geranylacetoacetate, b.p. 152quinhydrone is formed.

Fluorinated derivatives of propane. IV. A. L. Henne and F. W. Haeckl (J. Amer. Chem. Soc., 1941, 63, 3476—3478).—The structure of CHCl₂·CClF·CClF₂ (I) is confirmed, but that of other products (A., 1939, II, 491) is corr. Gradually distilling CCl₃·CClF·CClF₂ (I) with SbF₃ (0·5) + Cl₂ (0·05 mol.) gives aaβγ-tetrachloro-aβγγ-tetra-fluoropropane (70%), m.p. -58°, b.p. 112·5—112·6°, also obtained

from (I) by successive fluorination (to CHClF·CClF·CClF₂, b.p. 90°) and chlorination. CCl₂:CF·CCl₃ (prep. from CHCl₂·CCl₇·CCl₃ by NaOH–EtOH) with SbF₃ (1·5 mols.) at 125° gives CCl₂:CF·CF₃ (0·37 mol.) [with CCl₂:CF·CClF₂ (0·27 mol.)], which with Cl₂ in light gives aaβ-tetrachloro-βγγγ-tetrafluoropropane, m.p. 12·1°, b.p. 112·4 = 112·6°. The following corrections (cf. loc. cit.) are made: aaγ-tri-chloro-βγγγ-becomes aβγ-tri-chloro-βγγγ-tetrafluoropropane: aaγ-tri-chloro-βγγγ-tetrafluoropropane: aaβ-tri-chloro-βγγγ-tetrafluoropropane: aaβ-tri-chloro-βγγγ-tetrafluoropropane: aaβ-tri-chloro-βγγγ-tetrafluoropropane: aaβ-tri-chloro-βγγγ-tetrafluoropropane: aaβ-tri-chloro-βγγγ-tetrafluoropropane: aaβ-tri-chloro-βγγγ-tetrafluoropropane. chloro- $\beta\gamma\gamma\gamma\gamma$ - becomes $a\beta\gamma$ -trichloro- $a\beta\gamma\gamma$ -tetrafluoropropane; $aa\beta$ -tetrachloro- $\beta\gamma\gamma\gamma\gamma$ - becomes $aa\beta\gamma$ -tetrachloro- $a\beta\gamma\gamma$ -tetrafluoropropane; aa-dichloro- $\beta\gamma\gamma\gamma$ - becomes? $a\gamma$ -dichloro- $a\beta\gamma\gamma$ -tetrafluoro- Δ^a -propene; aa-dichloro-aβ-dibromo-βγγγ- becomes aγ-dichloro-aβ-dibromo-aβγγtetrafluoropropane.

Synthesis of organic aaa-trifluorides. A. L. Henne, A. M. Whaley, and J. K. Stevenson (J. Amer. Chem. Soc., 1941, 63, 3478—3479).— Replacement of Cl by F occurs rapidly when compounds containing C:C·CCl₃ are heated with SbF₃ (1·5 mols.). CCl₂:CCl·CCl₃ and SbF₃ at 125—140° give aaβ-trichloro-γγγ-trifluoro- (I) (43%), f.p. -114·7°, b.p. 88·3°, aaβy-tetrachloro-γγ-difluoro- (28%), f.p. -103·0°, b.p. 128·0°, and aaβγγ-pentachloro-γfluoro- Δα-propene (13%), b.p. 170·2°: βγ-Dichloro-aaγγ-tetrafluoro-Δα-propene [prep. from CCl₂(CClF₂)₂ by Zn-EtOH], f.p. -121·2°, b.p. 44·7°, and SbF₃ give β-chloro-aaγγγ-pentafluoro-Δα-propene (47%), f.p. -130·4°, b.p. 6·8°, converted by Cl₂ into aaβ-trichloro-aβγγγ-pentafluoropropane (II), f.p. -4:30°, b.p. 72·0°. Cl₂ and (I) give aaaββ-pentachloro-γγγ-trifluoropropane (III), Cl₂ into aa₃-trichioro-a₅γγγ-pentafiluoropropane (II), 1.p. -4·30, 5.p. 72·0°. Cl₂ and (I) give aa₆ββ-pentachloro-γγγ-trifluoropropane (III), f.p. 109·1°, b.p. 153·1°, also obtained from CEtCl₃ by way of CEtF₃. With SbF₃, CPhCl₃ gives CPhF₃ (60%; much decomp.), CHCl. CCl·CCl₃ gives aβ-dichloro-γγγ-trifluoro-Δα-propene, f.p. -109·23°, b.p. 53·7°, CCl₂:CF·CCl₃ gives CCl₂:CF·CF₃, b.p. 46·0° (and thence aaaβ-tetrachloro-βγγγ-tetrafluoropropane, m.p. 12·1°, b.p. 112·4°), and CCl₂:CH·CCl₃ gives CCl₂:CH·CF₃. CEtF₃ gives (III) and thence (II).

Catalytic conversion of olefines into alcohols.—See B., 1942, II, 3.

Catalytic conversion of olefines into alcohols.—See B., 1942, II, 3.

Reactions of (+)- and (-)-γ-methyl-α-ethylallyl alcohol and their derivatives. R. S. Airs, M. P. Balfe, and J. Kenyon (J.C.S., 1942, 18—26).—dl-γ-Methyl-α-ethylallyl H phthalate, m.p. 52—53°, is resolved via the brucine salt, m.p. 168°, into the (+)- and (-)-form (I), m.p. 70.5°, [α]₅₄₆₁ ±15° in CHCl₃, hydrolysed by 5N-NaOH (more dil. NaOH causes racemisation) to the (+)- (II) and (-)-alcohol (III), [α]₅₄₆₁ ±14.24° in CS₂. On reduction (H₂, PtO₂), (II) yields (+)-, b.p. 131—133°, [α]₅₆₉₃ +9.70° in CHCl₃), and the freshly prepared dl-alcohol (IV) yields dl-CHEtPrα-OH, b.p. 132.5—133.5° (H phthalate, m.p. 75—76°); a 2-years-old specimen (V) gives a hexanol, b.p. 131—133°. (IV) gives a p-xenylurethane, m.p. 102°, and (V) a mixture of this (75%) with the p-xenylurethane, m.p. 84—86° of CHEtCH-CHMe-OH (VI). dl-γ-Methyl-α-ethylallyl chloride (SOCl₂), b.p. 123—124° (slight decomp.), is hydrolysed (H₂O, CaCO₃) to a mixture of (IV) and (VI), reduced to dl-CHEtPr-OH (p-xenylurethane, m.p. 132—133°) and dl-CHMeBu-OH (p-xenylurethane, m.p. 91—92°; H phthalate, m.p. 48°). (-)-γ-Methyl-α-ethylallyl chloride [from (II)], α¹⁹₃₄₆₁ -14·75°, is hydrolysed to a hexenol, α²⁰₅₄₆₁ -0·07°, reduced to a hexanol, b.p. 132—137°, α²⁰₅₄₆₁ +0·02° (H phthalate, [α]₅₄₆₁ +0·07° in CHCl₃). (II) and (III) undergo mutarotation at varying rates, increased by a trace of acid. The ratio of [a] to that of the H phthalate shows that (V) has undergone 27% racemisation, and contains 41% of (+)-CHEt-CHEt-OH and 32% of (+)-CHEt-CH-CHMe-OH. It is suggested that this rearrangement is due to a pseudo-cyclic structure of the allylic alcohols, confirmed by parachor vals, of 12 derivatives, including dl-γ-methyl-α-ethylallyl acetale, b.p. 54—56°, and benzoate, b.p. 144—145°. The p-nitrobenzoate has m.p. 35—37°. (I) with boiling MeOH yields Me γ-methyl-α-ethylallyl ether, b.p. 110—112°, α²⁴₂₄₆₁ -0·18°, also obtained, α²⁴₃₄₆₁ +6·88°, from the alcoh

Catalytic dehydrogenation and condensation of aliphatic alcohols. Catalytic dehydrogenation and condensation of aliphatic alconois. II. V. I. Komarewsky and J. R. Coley (J. Amer. Chem. Soc., 1941, 63, 3269—3270).—Conversion of alcohols into ketones by Cr₂O₃ at, usually, 400—425° (cf. A., 1941, II, 158) is extended to n-C₃₋₈, n-C₁₀, and n-C₁₈ alcohols, yields being 27·8—83·2%. EtOH + n-C₈H₁₇·OH and n-C₅H₁₁·OH + n-C₁₀H₂₁·OH give n-C₇H₁₅·COMe (41·7%) and n-C₉H₁₀·COBu^a (27·2%), respectively, with smaller amounts of sym. ketones, except COMe₂ which is never obtained. Aldehydes give similarly better, and aldols still better, yields, confirming the mechanism previously proposed (loc. cit.). At 760 and firming the mechanism previously proposed (loc. cit.). A 760 and 125—135 mm., $n\text{-}C_8\text{H}_{17}\text{-}\text{OH}$ gives 56 and 73·9%, respectively, of ketone. The following are new: aldol-2:4-dinitrophenylhydrazone, m.p. 125·5—126·5°; CO($C_6\text{H}_{13}\text{-}n)_2$, m.p. 39—40°; n-tetradecan- ϵ -ol, m.p. 65·5°. m.p. 28·5°, and -one, m.p. 25·5—26°; n-nonadecan- κ -ol, m.p. 65·5°.

Denatured alcohol containing 1: 3-dioxolan.—See B., 1942, II, 3.

Separation of iso- and n-butyl alcohols from hydrocarbons by azeotropic distillation. R. Negishi and C. Isobe (Bull. Chem. Soc. Japan, 1941, 16, 278—284).—Bu^aOH and Bu^βOH may be separated from hydrocarbons (PhMe or gasoline) by extraction with H2O followed by distillation of the azeotropic mixture. F. J. G.

ACTUAL MARKET Mechanism and kinetics of anionotropic change.—See A., 1942, I.

Structure-property relations of isomeric octanols. G. L. Dorough, H. B. Glass, T. L. Gresham, G. B. Malone, and E. E. Reid (*J. Amer. Chem. Soc.*, 1941, **63**, 3100—3110).—Relations are tabulated between structure of the carefully purified 4 octanols and 18 methylheptanols and their b.p. at 20, 100, 300, and 760 mm., the difference between and their b.p. at 20, 100, 300, and 760 mm., the difference between the b.p. and that of the hydrocarbon, latent heat of vaporisation, d_4^0 , d_4^{25} , the difference between d and that of the hydrocarbon, expansion $(0-25^{\circ}$ and $80-100^{\circ})$, n_2^{25} , m.p., molal heat capacity, solubility in H_2O , η , total surface energy, parachor, Ramsey and Shields const., dielectric const., fluidity, association at 15° , X-ray secondary peak, rate of esterification with AcOH at $136\pm0.5^{\circ}$ (1 and 100-200 hr.) and Ac_2O at $35\pm0.01^{\circ}$ (125 hr.), oxidation by O_2 at 137° (rate and ratio CO_2/CO produced), and toxicity to Lupinus albus, goldfish, newts, and tadpoles. Data include the following; those in parentheses refer to a-naphthylurethanes and 3:5-dinitrobenzoates, respectively. n-Octan-a-, m.p. $-15\cdot0^{\circ}$, b.p. C₃ at 131 (late and fails CO₃/CO produced), and toxicity is Lupinus albus, goldifish, newts, and tadpoles. Data include the following; those in parentheses refer to α-naphthylurethanes and 3:5-dinitrobenzoates, respectively. n-Octan-α-, m.p. —15·0°, bp. 195·0° (m.p. 67·0°, 60·8°), β-, m.p. —31·6°, b.p. 180·0° (an oil; m.p. 32·3°), γ-, m.p. —45·0°, b.p. 173·0° (m.p. 54·0°, 69·4°), and δ-ol, m.p. —40·7°, b.p. 176·3° (m.p. 65·5°, 53·9°). ζ-Methyl-nheptan-α-, m.p. (of glass) —106·0°, b.p. 187·6° (m.p. 68·5°, 53·3°), β-, m.p. (of glass) —105·0°, b.p. 171·8° (an oil; m.p. 34·4°), and γ-γ-ol, m.p. —58·5°, b.p. 158·5° (oils). β-Methyl-n-heptan-α- (from n-C₅H₁₁·CHMe·MgBr and CH₂O), m.p. —112·0°, b.p. 175·4° (an oil; m.p. 50·6°), β-, m.p. —50·4°, b.p. 166·1° (m.p. 57·5°); an oil), γ-, m.p. (of glass) —81·0°, b.p. 166·3° (m.p. 73·0°, 38·5°), and δ-ol, m.p. (of glass) —81·0°, b.p. 166·3° (m.p. 73·0°, 71·7°). ε-Methyl-n-heptan-α- (from CHMeEt-[CH₂]₂·MgBr (I) and [CH₂]₂O), m.p. (of glass) —104·0°, b.p. 186·5° (oils), β- [from (I) and MeCHO), m.p. (of glass) —104·0°, b.p. 186·5° (oils), γ-γ-, m.p. (of glass) —90·0°, b.p. 185·8° (oils), β- [from CHMeBu*-MgBr and MeCHO), m.p. (of glass) —104·0°, b.p. 166·1° (oils), γ-γ-, m.p. (of glass) —80·0°, b.p. 189·4° (m.p. 52·0°; an oil), and -δ-ol (from CHMeEthyBr and (From CHMePr*-CH₂·MgBr and [CH₂]₂O), b.p. 189·7° (oils), β, m.p. (of glass) —120·0°, b.p. 171·7° (oils), γ-γ-, m.p. (of glass) —123·0°, b.p. 150·4° (an oil; m.p. 92·4°), and -δ-ol, m.p. (of glass) —123·0°, b.p. 160·8° (m.p. 90·0°; an oil). n.P. C₅H₁₁·OH, b.p. 187·8°. CHMePr*-OH, b.p. 119·5°. CH₂Buβ-OH, b.p. 130·5°. CHMeEt-CH₂·OH, b.p. 128·0°/752 mm. Buβ-[CH₂]₂·OH, b.p. 187·7/759 mm. CHMePr*-OH, b.p. 119·5°. CH₂Buβ-OH, b.p. 130·5°. CHMeEt-CH₂·OH, b.p. 189·7/760 mm. CHMePr*-CH₂·OH, b.p. 180·7/750 mm. CHMePr*-CH₂·OH, b.p. 117·7° (oils), γ-γ-, m.p. (of glass) —80·0°, b.p. 117·5°. CHMeEters, b.p. 10·13°. Buβ-[CH₂]₂·OH, b.p. 127·70 mm. CHMePr*-CH₂·OH, b.p. 180·6°. M.p. are corr.

β-Methyltetradecan-α-ol. K. Lindblad and E. Stenhagen (J. Amer. Chem. Soc., 1941, 63, 3539—3540).—n- $C_{12}H_{25}$ ·CHMe·CO₂Et, Na, BuOH, and (later) EtOH in light petroleum give β-methyl-n-tetradecan-α-ol (40%), m.p. 32·0—32·2°, b.p. 134°/2 mm. R. S. C.

Amyl nitrite. Determination and decomposition.—See B., 1942, II, 1.

Explosion hazard in the chlorination of alkylisothiocarbamides to prepare alkanesulphonyl chlorides. K. Folkers, A. Russell, and R. W. Bost (J. Amer. Chem. Soc., 1941, 63, 3530—3532).—During the prep. of AlkSO₂Cl from aq. SAlk·C(:NH)·NH₂,HCl by Cl₂, a violent explosion may occur if an excess of Cl₂ is used. NCl₃ is probably formed.

Condensation of sulphoxides with p-toluenesulphonamide and substituted acetamides. D. S. Tarbell and C. Weaver (J. Amer. Chem. Soc., 1941, 63, 2939—2942).—Condensation of p-C₆H₄Me-SO₂·NH₂ (I) with R₂SO in Ac₂O at 100° or boiling P₂O₅-CHCl₃ gives sulphilimines, R₂S→N·SO₂·C₆H₄Me-p, the structure of which is proved by prep. also from R₂S and chloramine-T (Mann et al., J.C.S., 1922, 12I, 1052; Clarke et al., A., 1927, 243). The products are unaffected by alkali, dissolve in cold HCl (? salt-formation), and in hot HCl are hydrolysed to R₂SO and (I). Sulphilimines, R₂S→NR', are similarly obtained by Ac₂O in which R' = CCl₃·CO or CHCl₂·CO, but not if R' = CH₂Cl·CO or Bz. Analogous reactions are discussed. Prep. of [CH₂]₄>S, b.p. 119—120°, from Br-[CH₂]₄·Br and Na₂S in aq. EtOH is modified to give 64% yield. Tetramethylene sulphoxide (II), b.p. 105—107°/12 mm., is obtained by 30% H₂O₃ at 0° or in COMe₃. The following are described: Et₂, 83—85°/12 mm., Me₂, b.p. 85—87°/25 mm., and Ph₂ sulphoxide, b.p. 85—87°/12 mm. suppostate (11), 5.p. 105-107/12 mm, is obtained by 30% 14% at 0° or in COMe₂. The following are described: Et₂, $83-85^\circ/125$ mm., Me₂, b.p. $85-87^\circ/25$ mm., and Ph₂ sulphoxide, b.p. $85-87^\circ/25$ mm.; $[CH_2]_4 > SO_2$, m.p. $10-10\cdot 5^\circ$; diethyl-, m.p. $145-146^\circ$, tetramethylene-, m.p. $134-135^\circ$, and diphenyl- (prep. by P_2O_5 but not Ac_2O), m.p. $108-110^\circ$, -sulphin-p-toluenesulphonylimine; $CCl_3\cdot CO\cdot NH_2$ (prep. by boiling $CCl_3\cdot CO\cdot NH_2$ (prep. by boiling $CCl_3\cdot CO\cdot NH_2$) m.p. $139-141^\circ$; withylene-sulphintrichloroacetylimine, m.p. 116—117°; tetramethylene-, m.p. 149—151°, and diethyl-sulphindichloroacetylimine, m.p. 112—113°. The following condensations failed: , $(OH:[CH_2]_2)_2SO-(I)$; Et_2SO- or $Ph_2SO-CCI_3\cdot CO\cdot NH_2$; Et_2SO- or $[I]_-NH_2Bz-Ac_2O$ (gives PhCN); fluorene-Me₂SO or -(II); 2:7-dinttrofluorene-Me₂SO or -(II). Sulphoxides do not show "CO" properties; e.g., (II) does not react with CH_2N_2 or PhCHO.

Configuration of naturally occurring glycerol esters. H. O. L. Fischer and E. Baer (Schweiz. med. Wschr., 1941, 71, 321—322).— The Na compounds of d(+)- and l(-)-isopropylideneglycerol with ${}_{*}C_{1_{6}}H_{3_{3}}I$ and $C_{1_{8}}H_{2_{7}}I$ in boiling (CH₂·OMe)₂ yielded the 'CMe₂ compounds of a-hexadecyl- and a-octadecyl-glycerol; hydrolysis with AcOH gave the free alcohols, identical with chimyl alcohol (I), mp. 62—63°, and batyl alcohol (II), mp. 71°. The two enantiomorphic forms of synthetic (II) have $[a] \pm 0^{\circ}$. The diacetylated synthetic batyl alcohols had $[a]_{3_{61}}^{3_{61}} \pm 8$ -6° in CHCl₂ (c = 11-2). A condexing product with $[a]_{D} = 14\cdot0^{\circ}$ (in substance); the two 'CMe₂ compounds of the synthetic (II) had $[a]_{0}^{4_{0}} \pm 12\cdot6^{\circ}$ in melted substance. (II) belongs to the d-series, so does selachyl alcohol, as it can be transformed into d-batyl alcohol by catalytic reduction. Natural (I) is dextrorotatory.

A. S.

Preparation of alkane- $\alpha\omega$ -disulphonic acids. S. Zuffanti and R. Hendrickson (J. Amer. Chem. Soc., 1941, 63, 2999—3000).—Ethane- \mathfrak{G} , m.p. 97°, propane- \mathfrak{g} -, b.p. 157°/1-4 mm., n-butane- \mathfrak{a} -, m.p. 84°, n-pentane- \mathfrak{a} -, b.p. 198°/1-7 mm., n-hexane- \mathfrak{a} -, m.p. 78°, and n-decane- \mathfrak{a} -, m.p. 76°, -disulphonic acid are obtained by treating the Nazatls in MeOH with dry HCl and give m- $C_\mathfrak{g}H_\mathfrak{q}Me^*NH_\mathfrak{g}$ salts, m.p. 230°, 222°, 214°, 187°, 158°, and 178°, respectively. R. S. C.

Mechanism and kinetics of carboxylic ester hydrolysis and carboxyl sterification.—See A., 1942, I, 148.

Catalytic reduction of esters using nickel alone as a catalyst. C. L. Palfray. Behaviour of esters over Raney nickel. P. L. de Benneville, W. R. McClellan, and R. Connor (J. Amer. Chem. Soc., 1941, 63, 3540—3541, 3541—3542).—Concerning priority. R. S. C.

Identification of organic acids by use of p-bromobenzyl-\$\psi\$-thiuron-imm bromide. B. T. Dewey and H. G. Shasky (J. Amer. Chem. Soc., 1941, 63, 3526—3527).—p-Bromobenzyl-\$\psi\$-thiuronium bromide [prep. from \$p\$-C_8H_4Br*:CH_2Br* and CS(NH_2)_2\$ in hot EtOH], m.p. 213°, with the Na or K salt of the acid in hot EtOH gives the formate, m.p. 148°, acetate, m.p. 149°, propionate, m.p. 146°, butyrate, m.p. 148°, n-, m.p. 146°, and iso-valerate, m.p. 148°, hexoate, m.p. 141°, botate, m.p. 147°, octoate, m.p. 145°, a-ethyl-n-butyrate, m.p. 141°, botate, m.p. 142°, palmitate, m.p. 135°, stearate, m.p. 135°, oxalate, m.p. 194°, malonate, m.p. 139°, succinate, m.p. 167°, glutarate, m.p. 194°, chloroacetate, m.p. 154°, trichloroacetate, m.p. 146°, oleate, m.p. 133°, benzoate, m.p. 154°, o., m.p. 163°, m., m.p. 154°, and p-bromo-, m.p. 173°, o-, m.p. 163°, m., m.p. 154°, m., m.p. 152°, and p-iodo-benzoate, m.p. 181°, cinnamate, m.p. 170°, phthalate, m.p. 166°, salicylate, m.p. 168°, o-, m.p. 151°, m., m.p. 151°, and p-toluate, m.p. 165°. The salts are anhydand fairly stable. Depression of the m.p. on admixture is 6—12°. M.p. are corr.

Preparation and properties of acetic acid- d_1 . H. Linschitz, M. E. Hobbs, and P. M. Gross (*J. Amer. Chem. Soc.*, 1941, **63**, 3234).— Ac.O and 99.6% D₂O give AcOD (~99% pure), m.p. $15.66\pm0.05^{\circ}$, R. S. C.

Alcoholysis of polyvinyl acetate.—See A., 1942, I, 150.

Chlorination of propyl trichloroacetates. C. W. Gayler and H. M. Waddle (J. Amer. Chem. Soc., 1941, 63, 3358—3359).—Contrary to Maxwell (Thesis, 1933), CCl₃·CO₂Pr^a (1), b.p. 69°/10 mm., and Cl₂ (1 mol.) in light at 120° give β- (0·30 mol.), b.p. 94°/8 mm., γ-(0·28 mol.), b.p. 107°/8 mm., and (? a)-chloro-n-propyl trichloroacetate (0·28 mol.) (hydrolysed to HCl and a substance (2 : 4-dinitrophenyl-hydrazone, m.p. 162°)]. CCl₃·CO₂Prβ, b.p. 65°/10 mm., gives similarly CMe₂Cl (0·25 mol.), b.p. 72°/8 mm. (with cold aq. KOH rapidly gives COMe₂), and CH₂Cl·CHMe trichloroacetate (0·31 mol.), b.p. 93·5°/8 mm. [hydrolysed by hot (not cold) 25% KOH to (CH₂·OH₂). Cl·[CH₂]₃·OH, b.p. 165° (a-naphthylurethane, m.p. 76·5°), is described.

Dimethylneopentylacetic [ααγγ-tetramethyl-n-valeric] acid, its methyl ester, amide, and anilide. F. C. Whitmore, W. R. Wheeler, J. D. Surmatis (J. Amer. Chem. Soc., 1941, 63, 3237).—Addition of disobutylene hydrochloride and EtBr-Et₂O to Mg-MgEtBr-Et₂O and subsequent treatment with CO₂ gives 34% of CH₂Buγ·CMe₂·CO₂H, m.p. 45°, b.p. 229·6°/732 mm. (Me ester, b.p. 176·2°/732 mm.; amide, m.p. 71°; anilide, m.p. 78°) (cf. A., 1941, II, 345).

Optically active αβ-diglycerides. J. C. Sowden and H. O. L. Fischer (J. Amer. Chem. Soc., 1941, 63, 3244—3248).—d(+)-iso-Propylideneglycerol in boiling Et₂O with, first, Na and then CH₂PhBr or, better, in (CH₂·OMe)₂ with NaC₁₀H, and then CH₂PhBr gives d(+)-isopropylideneglycerol α'-CH₂Ph ether (I)_{*} b.p.

95—97°/0·3 mm., [a]_D +16·8°. The corresponding a'-Me ether, b.p. 45—47°/10 mm., [a]_D +22·5°, is similarly prepared. In boiling N-H₂SO₄, (I) gives l-glyceryl a-CH₂Ph ether (II), b.p. 138—139°/0·3 mm., [a]_D +5·3°, but in boiling 90% AcOH gives another product. With RCOCl in CHCl₃-quinoline at 37°, (II) gives d-glyceryl a-CH₂Ph ether a'β-distearate (III), m.p. 50·5—51°, [a]_D +6·1° in CHCl₃, and -dipalmitate, m.p. 42—42·5°, [a]_D +6·3° in CHCl₃; the a'β-dibutyrate, b.p. 140° (bath)/0·005 mm., [a]_D +15·5°, is obtained in C₅H₅N at 0°. With MeI, CaSO₄, and Ag₂O, (II) gives d-glyceryl a-CH₂Ph a'β-Me₂ ether (IV), b.p. 147—148°/13 mm., [a]_D +4·1°. Hydrogenation (PtO₂; slightly >1 atm.) of (III) in AcOH gives d-aβ-distearin, m.p. 74·5—75°, [a]_D -2·7° in CHCl₃ (acetate, m.p. 56·5—57°, [a]_D ±0° in CHCl₃, of which is obtained therefrom by p-NO₂·C₆H₄·COCl in C₅H₅N and from l-glyceryl a-p-nitrobenzoate by stearyl chloride in quinoline at room temp. d-aβ-Dipalmitin, m.p. 67—67·5°, [a]_D -2·3° in CHCl₃ [p-nitrobenzoate, m.p. 60—60·5°, [a]_D -1·6° (-1·4°) in CHCl₃, and d-aβ-dibutyrin, b.p. 95° (bath)/0·001 mm., [a]_D +0·69° (homogeneous), ±0° in CHCl₄, +1·7° in C₅H₅N, are similarly obtained, but (IV) gives d-glyceryl a-cyclohexylmethyl a'β-Me₂ ether, b.p. 135—138°/14 mm., [a]_D +4·9°.

Isomerisation of nolyene scids and carotenoids

Isomerisation of polyene acids and carotenoids. Preparation of β-elæostearic and β-licanic acid. H. H. Strain (J. Amer. Chem. Soc., 1941, 63, 3448—3452).—The isomerisation of oleic acid (I) and the readier isomerisation of α-elæostearic acid (II) and its esters by various reagents are described. That of (I) by NaNO₂-30% HNO₂ and of (II) or α-licanic acid by a little I in MeOH has preparative val. Dihydroxyxanthophylls are converted by I into more strongly, and then (more I, longer reaction) into less strongly, adsorbed pigments. Absence of OH decreases the ease of isomerisation. Esterification of OH also decreases the ease of change and leads to products which are separable by chromatography only after hydrolysis. Some adsorbents, e.g., synthetic, activated Mg silicate, although neutral in H₂O, change carotenoids into blue substances similar to those obtained by strong acids or very strong bases. Care is thus needed in isolation of naturally occurring pigments, as accompanying acids may cause isomerisation; this may be avoided by adding org. bases, e.g., NPhMe₂, C₅H₅N.

R. S. C.

Electrolytic preparation of ethyl glyoxylate. W. Oroshnik and P. E. Spoerri (J. Amer. Chem. Soc., 1941, 63, 3338—3339).—Electrolytic reduction of Et₂C₂O₄ at, best, Pd-Hg (53% yield) or Hg (50%) cathodes gives OEt·CH(OH)·CO₂Et, converted by P₂O₅ into CHO·CO₂Et. R. S. C.

Condensations. XVI. Acylations and alkylations of sodium enolates of aliphatic esters. Syntheses of αα-disubstituted β-keto-esters and other compounds. B. E. Hudson, jun., and C. R. Hauser (J. Amer. Chem. Soc., 1941, 63, 3156—3162; cf. A., 1941, II, 130). —Prep. (large scale) of CPh₂Cl and NaCPh₃ is described. For condensations using NaCPh₃ it is best to allow it to react completely (disappearance of red colour) or nearly so with the "enolising" compound in, e.g., Et₂O before adding the second reagent. Reactions described below are thus effected. BuβCO₂Et gives BuβCO·CHPrβ·CO₂Et (63%). BuγCO₂Et with PraCO₂Et or PrβCO₂Et gives mixed β-CO-esters owing to the formation (and later condensation) of enolates of the latter esters. PrβCO₂Et with Et₂C₂O₄ gives 61% of CO₂Et·CO·CMe₂·CO₂Et, but with HCO₂Et gives only 16% of HCO·CMe₂·CO₂Et. CHRR·CO₂Et with R'COCl gives 51—74% of R'CO·CRR·CO₂Et, examples being (a) R = R' = Me, R'' = Me, Pra Prβ, and Ph, (b) R = Me, R' = Et, R'' = Et, Buβ, and Ph, and (c) R' = R = Et, R'' = Ph. Et aa-dimethylacetoacetate semicarbazone, m.p. 119°, and Et β-keto-aδ-dimethylacethyl-n-hexoate, b.p. 116—119°/15 mm., are described. PrβCO₂Et and ClCO₂Et gives 75% of CMe₂(CO₂Me)₂. Interaction of EtOAc with RCOCl gives mainly (RCO)₂CH·CO₂Et; thus, with PraCOCl it gives 49% of (PraCO)₂CH·CO₂Et; addition of CH₂Na·CO₂Et to EtCOCl (excess) in Et₂O at 0° gives Et β-keto-β-n-propionyl-n-valerate (39%), b.p. 98—102°/9 mm., and EtCO·CH₂·CO₂Et (15%); CHPrβNa·CO₂Et and ClCO₂Et give Et β-carbethoxy-β-methylglutarate (29%), b.p. 150—152°/15 mm., and CHPrβ(CO₂Et)₂ (13%). PrβCO₂Et with PhNCO gives CO₂Et CMe₂·CO·NHPh (33%) (best method of prep.). Alkylation of EtOAc is impossible owing to condensation, but BuβCO₂Et and PhSO₃Et give CHEtPrβ·CO₂Et (33%), and PrβCO₂Et and CMe₂Br·CO₂Et give CMe₂·CO₂Et)₂ (30%), also obtained (26%) from the enolate by I. PrβCO₂Et with (CH₂)₂O gives aa-dimethyl-γ-butyrolactone (55%)

Introduction of substituted vinyl groups. VIII. Acetoacetic ester series. A. C. Cope and C. M. Hofmann (J. Amer. Chem. Soc., 1941, 63, 3456—3459; cf. A., 1941, II, 161).—Heating RCHO, CH₂Ac·CO₂R', piperidine (I), AcOH, and C₆H₆ with continuous removal of H₂O gives 71—89% of Et α-acetyl- (II), b.p. 118—120°/18 mm, [also obtained by adding (I) in a little MeOH to PraCHO and CH₂Ac·CO₂Et at 5—10° and then keeping at 0°], α-acetyl-δmethyl- (III), b.p. 120—121°/15 mm., and α-acetyl-γ-ethyl-, b.p. 122—123°/11 mm., -Δα-n-hexenoate, Prβ α-acetyl- (IV), b.p. 125—128°/24 mm., and α-acetyl-δ-methyl- (V), b.p. 135—136°/24 mm.,

- Δ^a -n-hexenoate, and Et a-acetyl- γ -ethyl- Δ^a -n-octenoate, b.p. 138—141°/11 mm. NaOEt-EtOH at -5° converts (II) and (III) into the enolates, which with MeI at the b.p. give Et a-methyl-, b.p. 65—66°/13 mm., and aδ-dimethyl- Δ^β -n-hexenoate, b.p. 73—74°/15 mm., respectively. NaOPr β -Pr β OH and then MeI similarly convert (IV) and (V) into Pr^β a-methyl-, b.p. 75—76°/18 mm., and aδ-dimethyl- Δ^β -n-hexenoate, b.p. 89—91°/25 mm., respectively. Failure of the ethylenic linking to migrate is probably due to the rapidity of the alkylation. Alkylation by BuI or PrI gives mixtures, probably because the slower reaction allows migration of the ethylenic linking and partial addition of EtOH to the resulting a β -unsaturated ester. R. S. C.

Production of aliphatic dicarboxylic acids.—See B., 1942, II, 4.

Biological degradation of fatty acids by methyl oxidation. ation and metabolism of deuterodicarboxylic acids. K. Bernhard [with H. Steinhauser and E. Halpern] (Helv. Chim. Acta, 1941, 24, 1412—1425).—Succinic (I), muconic, adipic (II), suberic, azelaic, and sebacic (III) acids are transformed when heated in D₂O containing NaOH into deuterodicarboxylic acids with sufficiently high D content for biological purposes. D enters the a-position in the mol. and is highest in (I), least in (III). D is firmly united and the isotopic conen, is unchanged when the neutralised acids are heated in much H₂O. Conversely Na salts of dicarboxylic acids do not acquire D appreciably in 5 at.-% D₂O. Administration of large amounts of (·CH₂·CO₂NH₄)₂ to a dog is not followed by the appearance of the acid in the urine. After administration of deuterosuccinic acid to rats there is an appreciable accumulation of D in the body liquids, thus giving a further proof of the rapid and complete combustion of the compound. Conversion into fatty acids does not occur and the liver fatty acids of the animals contain little Experiments on dogs and, in one case, on rats show that the [D] of the heavy compounds is unchanged by their passage through the body. (II) is little used by rats and its decomp. in the fatty tissue does not appear to occur. Since the animals received fat and did not appreciably alter in wt. during the experiments a normal fat degradation may be assumed. The diet was also rich in carbohydrates. With help of D therefore it is conclusively shown that the difficultly combustible dicarboxylic acids with 6-10 C are not formed in appreciable amount as intermediate products of normal fat degradation. Verkade's hypothesis that all saturated fatty acids burn through dicarboxylic acids cannot be maintained. Apparently it is mainly the acids with 8—11 C which undergo partial Me oxidation to the corresponding dicarboxylic acids. As long as there is no experimental evidence to the contrary Knoop's theory of β -oxidation is the best representation of the degradation of fats in vivo.

cis-trans isomerisations. I. Mechanism of a catalysed isomerisation of maleic acid to fumaric acid. II. Mechanism of the aminecatalysed isomerisation of diethyl maleate.—See A., 1942, I, 149.

Formation of adipic acid by oxidative degradation of the diamino-carboxylic acid derived from biotin. K. Hofmann, D. B. Melville, and V. du Vigneaud (J. Amer. Chem. Soc., 1941, 63, 3237—3238).—The diamino-acid obtained by degradation of biotin is oxidised by HNO₃ or KMnO₄ to adipic acid. R. S. C.

Preparation of d-tartaric acid.—See B., 1942, II, 4.

Mechanism of addition and condensation reactions of carbonyl compounds.—See A., 1942, I, 149.

Mechanism of the Cannizzaro reaction and some allied processes. J. Weiss (Trans. Faraday Soc., 1941, 37, 782—791).—A mechanism of the Cannizzaro reaction, based on the Haber-Willstätter theory, and supported by experimental evidence, assumes the formation of the radicals RCO and RCH-OH, and involves only electron and H atom transfers for which the energy requirements are fulfilled. The action of alkoxides on aldehydes and the benzoin synthesis are discussed from the same point of view.

F. L. U.

Statistics of intramolecular aldol condensations in unsaturated ketone polymerides.—See A., 1942, I, 147.

Decomposition of ozonides with Raney nickel. N. C. Cook and F. C. Whitmore (J. Amer. Chem. Soc., 1941, 63, 3540).—The ozonides from C_9H_{18} (from $CH_2Bur\cdot CMeEt\cdot OH$) with Raney Ni in pentane give exothermally and later at $155-120^\circ$ 75% of aldehydes + ketones (MeCHO, COMe·CH₂Bur, COEt·CH₂Bur, and traces of CH₂O and BurCHO).

R. S. C.

Synthesis of ketones, COR·CHR₂, from αα-disubstituted β-ketonesters. Extension of the acetoacetic ester type of ketone synthesis. B. E. Hudson, jun., and C. R. Hauser (J. Amer. Chem. Soc., 1941, 63, 3163—3164).—Condensation of CHRR'-CO₂Et with R''COCl by NaCPh₃ and fission of the product by H₂SO₄-AcOH-H₂O or, for more resistent esters, HI-AcOH gives 69—81% of COR''-CHRR'. Buβ CHMeEt ketone, b.p. 165—167°, is described. R. S. C.

Exchange reaction of diacetyl with deuterium oxide.—See A., 1942, I, 147.

Mechanism of elimination reactions. I. Decomposition of quaternary ammonium bases and xanthate esters. P. G. Stevens

and J. H. Richmond (J. Amer. Chem. Soc., 1941, 63, 3132—3136).

—The following results are held to confirm the view that decomp of quaternary NH₄ compounds and xanthates normally proceeds by elimination of a proton from the β-position (or, for xanthates in which no β-H is available, by γ-elimination) (Ingold's E₂ mechanism), but that such elimination is preceded by formation of a linking between the H involved and the anion of quaternary compounds (an "intermol." linking) or the S of xanthates (an intramol. linking). The difference in behaviour between quaternary hydroxides and halides is due to the lower tendency of the halide ion than of OH to form H linkings. Pinacolone and HCO₂NH₄ at 125—175° give CHMeBuγ·NH₂ (66%) [and 5—10% of a sec. amine, b.p. 86° (picrate, m.p. 180°; phenylcarbamide, m.p. 175°], converted by MeI-NaOH into dimethylpinacolylamine (I), b.p. 129—130°/759 mm. (hydriodide, m.p. 260—261°; picrate, m.p. 214°), which with MeI-C₄H₆ gives trimethylpinacolylammonium iodide, m.p. 260°. Transformation into the hydroxide and decomp. thereof at 25—30°/15—20 mm. (later 0·01—0·005 mm.) gives only CH₂:CHBuγ and NMe₃, but at 100—160° 52% of (I) + MeOH is also formed; absence of rearrangement excludes fission by way of a free radical. Formation of methylene-Δ²-cyclobutene from 1:1-dimethyl-2-methylene-pyrrolidinium hydroxide (von Braun et al., A., 1928, 770) by way of CH₂:CCH·[CH]₂·NMe₃}OH probably proceeds by preliminary rearrangement thereof to CH₂:CH·CH·CH·CH₂·NMe₃}OH. OH·[CHMe]₂·O·CS₂Me, which at 200° gives βγ-butylene thiocarbonate, (CHMe·O)₂CS, b.p. 87°/8 mm. [? with some thiolcarbonate, CHMe·O)₂CS, b.p. 87°/8 mm. [? wit

Micro-determination of arginine.—See A., 1942, II, 160.

Methylaspartic acids and their methylation. H. D. Dakin (J. Biol. Chem., 1941, 141, 945—950).—NHBz·CH(CO₂Et)₂ is converted by NaOEt and CHMeBr·CO₂Et in boiling EtOH followed by acid hydrolysis into BzOH and β-methylaspartic [a-amino-β-methyl-succinic] acid (I), m.p. 274—275° (decomp.), the Cu salt of which is freely sol. in H₂O. (I) or a-methylaspartic [a-amino-a-methyl-succinic] acid (II) is converted by Me₂SO₄ and 33% NaOH into ~70% of the theoretical amount of mesaconic acid (III) with (NMe₄)₂SO₄. The betaines of the two acids may be obtained on pptn. with phosphotungstic acid but on decomp. with Ba(OH)₂ are decomposed with formation of additional (III) (~30% of the theoretical amount) and NMe₃. Hydrolysed casein on methylation gives fumaric acid equiv. to 4·7—4·93% of aspartic acid; (III) could not be detected and it is concluded that neither (I) nor (III) is among the NH₂-acids derived from casein.

among the NH₂-acids derived from casein. H. W.

Synthesis of pantothenic acid and [its] derivatives. S. A. Harns, G. A. Boyack, and K. Folkers (J. Amer. Chem. Soc., 1941, 63, 2662—2667).—OH·CH₂·CMe₂·CH(OH)·CO₂Na (I) with Ac₂O-NaOAc gives the acid diacetate, the chloride (SOCl₂) of which with warm NH₂·[CH₂]₂·CO₂Et (II) alone gives Et pantothenate acetate, hygoscopic, but with (II) in warm C₅H₅N gives also some diacetate. With boiling Ac₂O, (II) gives 67% of α-acetoxy-ββ-dimethylbutyrolactone (III), m.p. 44—45°, [a]₂²⁹ —13·1° in 95% EtOH, and 12% of acid diacetate; treatment of the crude product with SOCl₂ gives (III). p-NO₂·C₆H₄·CO₂·CH₂·CMe₂·CO₂H [prep. from (I) and p-NO₂·C₆H₄·COCl in C₅H₅N] and NH₂·[CH₂]₂·CO₂Na (IV) at 100° give pantothenic acid p-introbenzoate (V), m.p. 137—138°, [a]₂²⁹ +4·5° in 95% EtOH. α-Hydroxy-ββ-methylbutyrolactone (VI), antipyrine (VII), and COCl₂ in C₆H₆ with, later, CH₂Ph·O+ and additional (VII) gives the carbobenzyloxy-derivative, m.p. 78°, [a]₂²⁹ +12·3° in 95% EtOH, of the lactone, which with (IV) gives CH₂Ph·O·CO·NH·[CH₂]₂·CO₂H, m.p. 103°, and with (II) at 100° gives the carbobenzyloxy-ester, b.p. 140—150°/4 × 10⁻⁶ mm., of Et pantothenate. NH₃-H₂O or -EtOH converts (VI) into NH₄ αy-dihydroxy-ββ-dimethylbutyrate, m.p. 135—136°, but liquid NH₃ at 25° gives the amide, m.p. 92—94°, [a]₂²⁹ +30·9° in H₂O [αγ-diacetate (VIII), [a]₂²⁵ +6·8° in Et₂O, -0·7° in CHCl₈, -10·3° in H₂O, -3·2° in abs. EtOH, +5·7° in EtOAc, -5·4° in dioxan]. C₅H₁₁·O·NO in AcOH converts (VIII) into the acid diacetate, [a]₂²⁶ -2·6° in MeOH, ±0° in Et₂O, which with SOCl₂ at 100° and then (II)-C₈H₃N gives Et pantothenate diacetate, [a]₂²⁶ +2·4·2° in Et₂O, hydrolysed by 0·5N-Ba(OH)₂ at 25° to pantothenic acid. Et pantothenate, its acetate and (V) are inactive in microbiological tests, but the first two are active in rats and chicks.

Preparation and properties of sodium d-pantothenate. H. C. Parke and E. J. Lawson (J. Amer. Chem. Soc., 1941, 63, 2869–2871).—l- and dl-a-Hydroxy- $\beta\beta$ -dimethyl-y-butyrolactone in boiling aq. Ba(OH)₂ give Ba (+)-, m.p. 213—215°, [a]³⁴ +7·4° in H₂O, and dl-ay-dihydroxy- $\beta\beta$ -dimethylbutyrate, +H₂O, converted by aq. Na₂SO₄ into the (+)- (I), dimorphic, m.p. 166—171° (hygroscopic) and 99—101° (not hygroscopic), [a]²⁹ +8·4° in H₂O, and dl-Na (II)

salts, respectively. In liquid NH₃ the lactones give dl- (III), m.p. 127° , and (+)-ay-dihydroxy- $\beta\beta$ -dimethylbutyramide, m.p. 92— 94° (93— 94°), $[a]_{3}^{34}$ + 30.8° in H₂O, +52° in MeOH (also obtained by NH₃-MeOH at room temp.). Fusion of (II) with β -alanine at 175° (later 150°) (91% yield) or of (III) with the Na salt (IV) of β -alanine at 100° (70% yield) gives Na di-pantothenate. Fusion of (I) with β -alanine at 180° (61% yield) or heating the l-lactone with (IV) in 780H (91% yield) gives Na di-pantothenate m.p. 192, 194° (110). Proof (91% yield) gives Na d-pantothenate, m.p. 122—124°, [α] $_{\rm D}^{25}$ +27.04° in ${\rm H}_{\rm 2}{\rm O}$, which is less hygroscopic than is the Ca salt and more suitable as a vitamin standard. R. S. C.

Crystalline calcium pantothenate. H. Levy, J. Weijlard, and E. T. Stiller (J. Amer. Chem. Soc., 1941, 63, 2846—2847; cf. A., 1940, II, 299).—Prep. of macro-cryst. Ca (+)- and Ca (-)-pantothenate from the micro-cryst. forms is described. W. R. A.

Colorimetric test for methionine.—See A., 1942, II, 160.

Condensation reactions. II. Alkylidene-cyanoacetic and -malonic esters. A. C. Cope, C. M. Hofmann, C. Wyckoff, and E. Hardenbergh (J. Amer. Chem. Soc., 1941, 63, 3452—3456; cf. A., 1938, II, 5).—Heating CN·CH₂·CO₂Et (0·5), COR·CH₂R' (0·55—0·6), NH₄OAc (0·05), AcOH (0·1 mol.), and C₆H₈ with continuous removal of H₂O gives good yields of CH₂R'·CR:C(CN)·CO₂Et. Branching decreases the yield, the reaction failing with pinacolone, camphor, and anthrone. Piperidine acetate (I) and AcOH also effect this condensation but more slowly. AcOH-(I), but not AcOH-NH₄OAc, effects condensation of aldehydes with CH₂(CO₂Et)₂; yields are good (88—92%) with Pr\$CHO or Bu\$CHO, and less good with other aldehydes owing to aldol condensation, but for EtCHO or Pr\$CHO Ac₂O is the best reagent. Hydrogenation (Pd-C; also Pt, Ni, or Cu the best reagent. Hydrogenation (Pd-C; also Pt, Ni, or Cu chromite) of the alkylidene-esters gives 90—97% yields. Condensation of COMe·CH₂Ph with CN·CH₂·CO₂Et by AcOH-(I) gives, as by-product, a little 2-cyano-3-methyl-1-naphthol, m.p. 200—201°, the and of Come Ch₂Fit with CN-Ch₂CO₂Et by ACOH-(1) gives, as by-product, a little 2-cyano-3-methyl-1-naphthol, m.p. 200—201°, the structure of which is proved by oxidation (KMnO₄) to o-C₆H₄(CO₂H)₂, conversion by Zn dust-ZnCl₂-NaCl at 300° into 3:1-C₁₀H₆Me·OH, and by prep. in 47%, yield by heating CH₂Ph·CMe·C(CN)·CO₂Et with NH₂Ac or (I) at 200—220°. Ph·[CH₂]₃·CO₂Et, CH₂Ph·CH·CH·CO₂Et, and o-C₆H₄Me·CMe·C(CN)·CO₂Et are unaffected by heating in NH₄Ac, and Ph·[CH₂]₃·CO₂H gives the amide. The following are described. Et a-cyano-β-methyl-Λ^a-n-pentenoate, b.p. 116—118°/11 mm., -hexenoate, b.p. 138—139°/19 mm., -heptenoate, b.p. 149—150°/19 mm., -octenoate, b.p. 134—145°/11 mm., and nomenoate, b.p. 124—125°/2 mm. Prβ a-cyano-β-methyl-Λ^a-n-hexenoate, b.p. 143—146°/25 mm. CEt₂·C(CN)·CO₂Et, b.p. 116—118°/9 mm. Et a-cyano-β-dimethyl-, b.p. 130—133°/12 mm., β-n-propyl-, b.p. 136—137°/11 mm., -n- and -β-isobutyl-, b.p. 116—118°/3 mm., -Λ^a-n-hexenoate. Et a-cyano-β-n-amyl-Λ^a-n-octenoate, b.p. 138—139°/1 mm. Et a-cyano-β-phenyl-, b.p. 136—137°/2 mm., β-0-tolyl-, b.p. 141—143°/3 mm., and -γ-phenyl-β-methyl-, b.p. 139—140°/1 mm., -Λ^a-n-butenoate. Et a-cyano-β-phenyl-Λ^a-n-pentenoate, b.p. 136—138°/2 mm., -n-hexenoate, b.p. 135—136°/1 mm. Et a-cyano-β-phenyl-Λ^a-n-hexenoate, b.p. 136—138°/1 mm. Et a-cyano-β-phenyl-Λ^a-n-hexenoate, b.p. 136—138°/1 mm. Et a-cyano-β-phenyl-Λ^a-n-hexenoate, b.p. 136—136°/1 mm. Et a-cyano-β-phenyl-Λ^a-n-hexenoate, b.p. 136—138°/1 mm. 139—140°/1 mm., $-\Delta^a$ -n-butenoate. Et α-cyano-β-phenyl- Δ^a -n-pentenoate, b.p. 136—138°/2 mm., -n-hexenoate, b.p. 135—136°/1 mm., and -n-octenoate, b.p. 146—148°/1 mm. Et α-cyano-δ-phenyl-β-methyl-n-pentenoate, b.p. 167—168°/3 mm. Et α-cyano-δ-phenyl-phenylate, m.p. 95—96°, b.p. 195—200°/3 mm. CHR.C(CO₂Et)₂, in which R = Et, b.p. 119—120°/15 mm., Pr^a, b.p. 122—124°/10 mm., Prβ, b.p. 135—137°/27 mm., Buα, b.p. 146—147°/23 mm., and Buβ, b.p. 149—150°/26 mm. Et α-hexylidenemalonate, b.p. 162—164°/27 mm. Et α-carbethoxy-γ-ethyl- Δ^a -n-hexenoate, b.p. 146—148°/21 mm. Et α-cyano-γ-phenylisovalerate, b.p. 140—142°/2 mm. R. S. C.

II.—SUGARS AND GLUCOSIDES.

Preparation of maltose monohydrate by deacetylation of maltose octa-acetate with barium methoxide. W. A. Mitchell (J. Amer. Chem. Soc., 1941, 63, 3534).—Maltose hydrate is best obtained from the control of the contro the octa-acetate by Ba(OMe)2 (prep. described). Its reducing power [K3Fe(CN)6] is recorded.

Formation of "isomaltose" from glucose by reversion. K. Myrbāck (Svensk Kem. Tidskr., 1941, 53, 67—77).—Treatment of glucose with cold conc. HCl gives a mixture of "isomaltose," (I), [a]Hg +110°, and a trisaccharide (II), separable by fractional pptn. with EtOH. Reversion to give up to 65% of (II) occurs if reaction is prolonged, but the amount of (I) present rapidly reaches ~15% and remains const. (I), but not (II), is slowly fermented by yeast. The isomaltose produced by acid hydrolysis of starch is not formed by resemble 1. by reversion, but its identity with (I) cannot be established, as the osazones of both are difficult to purify.

M. H. M. A.

Emulsin, XLV. Glucosides of hydroxy-sulphonic acids and their esters. B. Helferich and H. Schnorr (Annalen, 1941, 547, 201—215).—Hydrolysis of glucosides of $OH_1^*[CH_2]_n$ R by emulsin at p_H 5 is relatively little affected by increase of n from 2 to 4 if R = CI, and n = CI are n = CI. I, or SO_3Et , but, if $R = SO_3H$, there is a great increase in the rate of hydrolysis. Further, for $R = SO_3H$, the glucoside is readily hydrolysed by cold alkali if n=2 but not if n=3 or 4. γ -Chloron-propyl-β-d-glucoside tetra-acetate (prep. from OH·[CH₂]₃·Cl, acetobromoglucose, Ag₂O, and CaSO₄ in CHCl₃ at room temp.),

m.p. 74—75°, [a]₁¹⁹ —2·50° in CHCl₃, with NaOMe-MeOH-CHCl₄ at —15° gives the free glucoside, m.p. 42° after sintering, [a]₁¹⁶ —29·5° in H₂O, and with NaI in dry COMe₂ at 85° gives γ-iodo-n-propyl-β-d-glucoside tetra-acetate, m.p. 61°, [a]₁¹⁷ +3·47° in CHCl₃, and thence (NaOMe-MeOH-CHCl₃ at ~10°) the free glucoside, m.p. 89°, [a]₁¹⁶ —20·0° in H₂O. With aq. Na₂SO₃ at 100°, this gives Na n-propyl-β-d-glucoside-γ-sulphonate, m.p. 226° (corr.), [a]₁¹⁶ —25·8° in H₂O, which with Ac₂O-AcOH-C₅H₅N at 100° gives the Na sulphonate tetra-acetate, +2H₂O, m.p. 213—214° (corr.), [a]₁¹⁶ —22·9° in H₂O, converted by EtOH-COMe₂-H₂SO₄-CHMeN₂ into Et n-propyl-β-d-glucoside-γ-sulphonate tetra-acetate, m.p. 107—108°, [a]₁¹⁷ —13·2° in CHCl₃. NaOMe-MeOH-CHCl₃ at —12° then gives Et n-propyl-β-d-glucoside-γ-sulphonate, m.p. 96°, [a]₁¹⁷ —23·5° in H₂O, stable over NaOH-SiO₂ gel but gradually hydrolysed (SO₃Et gives SO₃H; glucoside linking unaffected) in H₂O. Similar reactions, starting from OH·[CH₂]₄·OH, lead to δ-chloro-, m.p. 55—57°, [a]₁²⁹ —31·4° in H₂O [tetra-acetate, m.p. 104—105° (corr.), [a]₁²⁹ —20·7° in CHCl₃], and δ-iodo-n-butyl-β-d-glucoside, m.p. 89—90°, [a]₁²⁰ —24·8° in H₂O (tetra-acetate, m.p. 86—87°, [a]₂²⁰ —20·2° in CHCl₃), Na₁ +xH₂O, m.p. (anhyd.) 111°, [a]₂²⁰ (anhyd.) —25·8° in H₂O (amorphous tetra-acetate), and Et n-butyl-β-d-glucoside-δ-sulphonate, [a]₁⁹ —24° in H₂O (tetra-acetate, m.p. 83°, [a]₂²⁰ —18·5° in CHCl₃).

Lignin and related compounds. LIV. Synthesis and properties of glucosides related to lignin. J. H. Fisher, W. L. Hawkins, and H. Hibbert (J. Amer. Chem. Soc., 1941, 63, 3031—3035; cf. A., 1942, II, 42).—The rates of acidic and alkaline hydrolysis of the β-d-xyloside of a-hydroxypropiovanillone, a-hydroxypropiovanillone, and acetovanillone, of acetovanillone β -d-glucoside and β -cellobioside m.p. $239-240^{\circ}$ (decomp.) (hepta-acetate, m.p. $208-209^{\circ}$), of guaiacyl and Ph β -d-xyloside, of Ph and a-hydroxypropioveratrone β -d-glucoside, m.p. indefinite (tetra-acetate, m.p. $133\cdot6-133\cdot8^{\circ}$), are determined. Presence of CO p- to the phenolic OH greatly increases the rate of hydrolysis of the glucoside by acid and the $p_{\rm H}$ of the phenol. Relative stabilities are: glucosides = cellobioside > xyloside. It is concluded that lignin may contain phenolic glucosides.

Genistin (an isoflavone glucoside) and its aglucone, genistein, from soya beans. E. D. Walter (J. Amer. Chem. Soc., 1941, 63, 3273—3276).—Physical properties, colour tests, crystallo-optical data, photomicrographs, and absorption spectra of genistin (I), genistein (isolated from soya beans), and the tri- and hexa-acetate of (I) are recorded. Presence of glucose in (I) is rigidly proved. Another flavone is also present in soya beans.

Synthesis of β - β '-chloroethyl-gentiobioside and -primoveroside acetates. L. P. Miller (J. Amer. Chem. Soc., 1941, 63, 3342—3343). —Acetobromogentiobiose, Cl-[CH₂]₂·OH, Ag₂O, I, and CaSO₄ in —Acetobromogentiobiose, Cl·[CH₂]₂·OH, Ag₂O, I, and CaSO₄ in CHCl₃ at room temp. give β -\$\beta\$-chloroethylgentiobioside hepta-acetate (I), partial melting at 128—129°, complete at 167—168°, [a]_D²⁵—20·2° in CHCl₃. \$\beta\$-\$\beta\$-Chloroethyl-D-glucoside with CPh₃Cl in C₈H₈N at room temp. and then Ac₂O at 0° gives \$\beta\$-\$\beta\$-\$\beta\$-chloroethyl-D-glucoside 6-CPh₃ ether 2:3:4-triacetate (47%), m.p. 158—159°, [a]_D²⁵+30·2° in CHCl₃, and thence (HBr-AcOH at 0°) \$\beta\$-\$\beta\$-chloroethyl-D-glucoside 2:3:4-triacetate (55%), m.p. 120—121°, [a]_D²⁵—17·6° in CHCl₃ (derived tetra-acetate, m.p. 118—119°), which with acetobromo-glucose or -D-xylose, Ag₂O, I, and CaSO₄ in CHCl₄ gives (I) or \$\beta\$-\$\beta\$-chloroethyl-primoveroside hexa-acetate, m.p. 176·5—177·5°, [a]_D²⁷-39·9° in CHCl₃, respectively. M.p. are corr. R. S. C.

Deoxycorticosterone β -glucoside tetra-acetate. W. S. Johnson (J. Amer. Chem. Soc., 1941, 63, 3238—3239).—Small-scale prep. of cholestanol α - and β -glucoside in 35—40 and 52—54% yield, respectively, is announced. Deoxycorticosterone β -glucoside tetra-acetate, m.p. 176—176·5° (corr.), $[\alpha]_D^{23\cdot6}$ +80° in CHCl₃, is obtained by the Helferich method. R. S. C.

Constitution of arabogalactan. I. Components and position of linkage. E. V. White (J. Amer. Chem. Soc., 1941, 63, 2871—2875).

—Extraction of larch sawdust with H₂O at room temp. and pptn. by 95% EtOH gives similar fractions of arabogalactan (I), which is regenerated unchanged (gives furfuraldehyde equiv. to 14% of is regenerated unchanged (gives infruraldenyde equiv. to 14% of arabinose; very slightly reduces Fehling's solution) by hydrolysis of the acetate (20 Ac per 6 galactose + 2 arabinose units). With Mc_2SO_4 -aq. NaOH-N₂ at 25°, (I) gives a Mc_{20} derivative and thence by HCl-MeOH the Mc_{20} ether Mc_7 glucoside and finally Mc α - $+\beta$ -2: 4-dimethyl-d-galactoside (3 mols; separated by insolubility in light petroleum) and a petroleum-solution (4) coninsolubility in light petroleum) and a petroleum-sol. syrup (A) containing Me 2:3:4-tri- (1 mol.) and 2:3:4:6-tetra-methyl-d-galactoside (2 mols.) and Me 2:3:5-trimethyl-l-arabinoside (1 mol.). Identification of the components of (A) is detailed. (I) contains 1:3 and 1:6 O-linkings and a substantial part of the galactose is engaged at $C_{(a)}$ and $C_{(a)}$. (I) has a branched-chain structure, terminated by galactopyranose and arabofuranose units. R. S. C.

Fractionation of waxy and ordinary maize starch. C. G. Caldwell and R. M. Hixon (J. Amer. Chem. Soc., 1941, 63, 2876—2880).—Fractionation of maize starch by electrodialysis and freezing is described. The relative amounts of solvent and involved and inv described. The relative amounts of sol. and insol. products depend entirely on the extent of peptisation. The rate of crystallisation

during ageing is followed by a modification of the Sallinger process. The limit dextrins (prep. by β -amylase described) from the waxy and ordinary starch are very similar. 0.93 and 0.67% of dimethylglucose is obtained by hydrolysis of the methylated starch and limit dextrins, respectively. R. S. C.

Seed mucilages. II. Seed mucilage of Plantago arenaria. W. A. G. Nelson and E. G. V. Percival (J.C.S., 1942, 58-61).— The seed mucilage (I) of P. arenaria contains ash, $5\cdot4\%$ (as sulphate) $(3\cdot3\%)$ after prolonged dialysis), pentosan, 90%, and uronic anhydride, $7\cdot5\%$. Hydrolysis $(H_2C_2O_4)$ yields l-arabinose $9\cdot5\%$, d-galactose 3%, d-xylose $62\cdot5\%$, and an aldobionic acid (12%) composed of d-xylose and d-galacturonic acid. The Ac derivative of (I) contains a sol. fraction, $[a]_1^{17} - 61^{\circ}$ in CHCl₃. Hydrolysis (MeOH-HCl) of methylated (I), $[a]_0^{17} - 104^{\circ}$ in CHCl₃, yields trimethylxylopyranose ~ 30 , 2-methylxylose (anilide, m.p. 140° , $[a]_0^{18} + 240^{\circ}$ in EtOAc) ~ 23 , tetramethylgalactopyranose ~ 4 , and a mixture, $\sim 40\%$, of dimethylxylose with (?) methylated arabinoses. It is suggested that (I) has a basic mol. unit with 9 xylo- and 1 galacto-pyranose end-groups, 10 xylopyranose linking units joined by $1: 2\cdot \beta$ -linkings, 3 arabinose linking units, 8 xylose residues at branching points with free OH groups at $C_{(2)}$, and 2 galacturonic acid residues. A. Lt.

Constitution of starch synthesised in vitro by potato phosphorylase. W. N. Haworth, R. L. Heath, and S. Peat (J.C.S., 1942, 55-58).— The granular starch prepared from glucose 1-phosphate and potato phosphorylase (Hanes, A., 1940, III, 826) with Me₂SO₄ yields a methylated starch, $[a]_{2}^{90} + 203^{\circ}$ in CHCl₃, hydrolysed (MeOH-HCl) to 2:3:6-trimethyl- with >1.5% of tetramethyl-glucose. From these results and measurements of η , a laminated structure is suggested, each unit having 80—90 glucose residues, joined by 1:4-a-linkings.

A. LI.

Fermentability of corn-starch products: relation to starch structure. R. W. Kerr and N. F. Schink (Ind. Eng. Chem., 1941, 33, 1418—1421).—Contrary to the usually accepted ideas, starches are heterogeneous and are not composed of a single type of common mol. At least two fundamentally different chemical configurations must exist in maize starch, and although both are built up from a-glucoside linkings, probably only one is composed of 1:4-glucoside or maltose-type linkings. Attention is drawn to certain facts that support these principles. The total reducing sugar and fermentability of syrups made by the diastatic conversion of maize starch are not increased by acid pretreatment of the starch or by subsequent acid hydrolysis of the syrup.

R. G. W.

Electrodialysis and electrophoresis in starch research. M. Samec [with C. Nučič and V. Pirkmaier] (Kolloid-Z., 1941, 94, 350—358).
—Summary and bibliography. F. L. U.

Hydrocolloidal cellulose and cellulose hydrosols.—See A., 1942, I, 143.

III.—HOMOCYCLIC.

Dicyclohexylidene-2: 2'-sulphone. O. Grummitt and C. Helber (J. Amer. Chem. Soc., 1941, 63, 3236).—Di-Δ¹-cyclohexenyl (I) and a little quinol in liquid SO₂ at 100° give 50% of dicyclohexylidene-2: 2'-sulphone (II), m.p. 76—77°, which at 110—120° regenerates (I) and SO₂.

R. S. C.

Production of aromatic hydrocarbons from mixtures of paraffins and cycloparaffins.—See B., 1942, II, 5.

Fixation of aromatic double bonds. S. Rangaswami and T. R. Seshadri (Proc. Indian Acad. Sci., 1941, 14, A, 547—571).—Review of the literature leads to the conclusion that there is sufficient justification for concluding in favour of fixation of the double linkings in C₆H₆, C₁₀H₈, anthracene (I), phenanthrene (II), hydrindene, tetrahydronaphthalene, fluorene, dibenzfuran, xanthone, and xanthene, and quinoline and isoquinoline. This fixation seems to be of varying degrees, being very weak when chelate rings are the cause of fixation, more prominent when heterocyclic rings are involved, and more or less rigid in polynuclear aromatic structures such as C₁₀H₈, (I), etc. The objection that C₆H₆ and C₁₀H₈ have absolutely plane, symmetrical structures appears to be overcome by

an application of the theory of resonance. For $C_{10}H_8$ three stable valency bond structures can be formulated, as a consequence of which there is consequence of which there is consequence.

siderable difference between the characteristics of the different linkings. Thus the linking between $C_{(1)}$ and $C_{(2)}$ has $\frac{2}{3}$ double bond character whereas that between $C_{(2)}$ and $C_{(3)}$ has only $\frac{1}{3}$ double bond character with the result that the former behaves very much like a double linking whereas the latter has very little such characteristics. The result is a great difference in reactivity giving rise to "fixation." In the cases of (I) and (II) the differences between the linkings are even greater owing to the existence of larger nos. of valency bond structures and it may be expected that the differences between the linkings will be further accentuated by the presence of substituents which can produce powerful electrometric

effects (OH, NH₂, Br, NO₂). Similar explanations can be given of the effect of heterocyclic and chelate rings. This fixation can never be absolutely rigid since the other linkings also have very small but nevertheless appreciable double bond characteristics. When the more reactive positions are protected, the feebler reactivity of the others is exhibited particularly with powerful reagents and under favourable conditions,

H. W.

So-called Dewar formula for benzene. T. S. Patterson (Chem. and Ind., 1942, 54).—Seven formulæ for C_6H_6 were suggested by Dewar (Proc. Roy. Soc. Edin., 1866—1869, 6, 82), and the adoption of one particular formula as the "Dewar formula" is questioned. A. T. P.

Kinetics and mechanism of electrophilic benzene substitution reactions.—See A., 1942, I, 148.

Mechanism of the Friedel-Crafts reaction. F. Fairbrother (Trans. Fayaday Soc., 1941, 37, 763—769).—When cyclohexane solutions of AlBr₃ and EtBr are mixed there is a large increase in the dielectric polarisability, which is not shown if PhBr is used in place of EtBr. This probably indicates the formation of an ion-pair of high dipole moment. This evidence reinforces that afforded by the radioisotopic exchange of halogen atoms between org. and inorg. halogenides (cf. A., 1937, I, 320; 1941, I, 336) in favour of the conversion of the covalent C-halogen bond into an ionic bond, through complex formation with the catalyst.

F. L. U.

Use of amalgamated aluminium as catalyst in the Friedel-Crats reaction. L. I. Diuguid (J. Amer Chem. Soc., 1941, 63, 3527—3529).— C_6H_6 , RCl, and Al-Hg (activated by a little RCl) at room temp. give the following yields of PhR: PhEt 76; PhPra 15·2 + PhBr $^{\beta}$ 52·2 (from PraCl); PhPr $^{\beta}$ 83·3 (from Pr $^{\beta}$ Cl); CPhMeEt 36·6 + PhBua (from BuaCl); CPhMe3 59·9 (from CHMeEtCl) or 74·5% (from BurCl). a- $C_{10}H_7$ -CHMeEt (48%) is similarly obtained from CHMeEtCl. R. S. C.

Vapour-phase nitration of toluene. J. L. Bullock and E. T. Mitchell (J. Amer. Chem. Soc., 1941, 63, 3230—3231).—PhMe-HNO₃-H₂O (1:0·7:1) at 150° gives o- 55·7—55·9, m- 5·0, and p-C₆H₄Me·NO₂ 39·1—39·3%. More HNO₃ (1:1·2:1) or interaction at 250° gives very similar proportions. R. S. C.

Mechanism and kinetics of aromatic side-chain substitution.—See A., 1942, I, 148.

Identification of organic compounds. IV. Chlorosulphonic acid as reagent for identification of alkylbenzenes. E. H. Huntress and J. S. Autenrieth (J. Amer. Chem. Soc., 1941, 63, 3446—3448; cf. A., 1940, II, 242).—Alkylbenzenes are converted by CISO₃H into sulphonyl chlorides, which with (NH₄)₂CO₃ give the sulphonamides. Structures of the monoalkyl-amides are proved by oxidation (KMnO₄) to p-CO₂H·C₆H₄·SO₃H. Sulphones are formed as byproducts as follows: Ph₂SO₂ 27, (p-C₆H₄Me)₂SO₂ 1—10, (p-C₆H₄Et)₂SO₂ 1—6, (p-C₆H₄Pr^β)₂SO₂ 2—3, others 0%. The following are described: PhSO₂·NH₂, m.p. 150—150·5°; p-C₆H₄Me·SO₂·NH₂, m.p. 135·5—136°; p-ethyl-, m.p. 109—110°, p-n-, m.p. 107—108°, and p-iso-propyl-, m.p. 104·5—105·5°, p-n-, m.p. 94·5—95°, p-sec., m.p. 81—82·5°, p-tett.-, m.p. 136—137°, and p-iso-butyl-, m.p. 84—85°, p-n-, m.p. 85·5—86·5°, and p-tert.-amyl-, m.p. 83—84°, p-n-hexyl-, m.p. 85—85·5°, p-n-nonyl-, m.p. 94·5—95°, p-n-undecyl-, m.p. 95·7—96·2°, p-cyclohexyl-, m.p. 160—160·5°, 3·4-, m.p. 143—144°, 2·4-, m.p. 136·5—137°, and 2·5-dimethyl-, m.p. 141·5—142·5°, 2-methyl-5-isopropyl-, m.p. 114·5—115·5°, ? 2·4-diethyl-, m.p. 142·5°, 2-methyl-5-isopropyl-, m.p. 114·5—115·5°, ? 2·4-diethyl-, m.p. 183·5—184°, 2·3·4·6-, m.p. 141·5—142°, and 2·3·5·6-tetramethyl-, m.p. 153—154°, ? 2·4-dimethyl-5-n-propyl-, m.p. 90—93°, ? 2·4-dimethyl-5-isopropyl-, m.p. 135·5—136·5°, and 2·3·5·6-tetramethyl-, m.p. 131—132°, pentamethyl-, m.p. 182—183°, ? 2·4-dimethyl-6-tert-butyl-, m.p. 132—133°, 2·4·6-triethyl-, m.p. 118—118-6°, 2·5-di-tert-butyl-, m.p. 132—133°, 2·4·6-triethyl-, m.p. 118—118-6°, 2·5-di-tert-butyl-, m.p. 132—133°, 2·4·6-triethyl-, m.p. 118—118-6°, 2·5-di-tert-butyl-, m.p. 132—133°, 2·4·6-triethyl-, m.p. 118—118-6°, 2·4-dimethyl-5-isopropyl-, m.p. 155·5—156°, and 2·3·5·6-tetraisopropyl- [prep. from the chloride by NH₃ in light petroleum, not by (NH₄)₂CO₃, m.p. 154·5—155°, -benzenesulphonamide; 2·3·5·6-tetraisopropyl-, m.p. 65—67°, p-cyclohexyl-, m.p. 50—53°, p

Action of aluminium chloride on aromatic hydrocarbons. III. Polyethyl- and tetramethyl-benzenes. (Miss) D. Nightingale and F. Wadsworth (J. Amer. Chem. Soc., 1941, 63, 3514—3517; cf. A., 1940, II, 160).—as- and s-C₆H₃Et₃ are partly converted into one another by AlCl₃ at 70—75°. 1:2:3:4-C₆H₂Et₄ gives a 1:1 mixture of 1:2:3:5- (I) and 1:2:4:5-isomeride. Prehnitene gives 83% of isodurene and 17% of durene. In all cases some higher and lower alkylbenzenes are also formed. C₆HEt₅ and, very readily, C₆Et₆ are dealkylated by AlCl₃. s- or as-C₆H₃Et₃ with EtCl-AlCl₃ at 20—21° gives C₆H₂Et₄ containing mainly (I). R. S. C.

Preparation of the chlorodinitrobenzenes from the corresponding dinitroanilines. L. H. Welsh $(J.\ Amer.\ Chem.\ Soc.,\ 1941,\ 63,\ 3276-3278)$ —Prep. of $2:3:1\cdot$ (I) $(30\%),\ 2:5:1\cdot$ (II) $(12\%),\ and\ 3:4:1\cdot$ (NO₂)₂C₆H₃·NHAc (8-8%) and a dark solid from m-NO₂·C₆H₄·NHAc by HNO₃ (d 1·5) in H₂SO₄ at -5° to 0° , rising to 45° , and hydrolysis of (I) and (II) by conc. H₂SO₄ at 115° are described. The 6 dinitroanilines are converted into C₆H₃Cl(NO₂)₂ in 63—77% yield by NO·SO₃H-H₂SO₄-H₃PO₄ at -2° to 2° and then CuCl-HCl at 10° (later 80°); purification is effected by washing with conc. H₂SO₄ and chromatography (Al₂O₃).

Mechanism and kinetics of reactions involving free radicals.—See A., 1942, I, 147.

Manufacture of styrene derivatives.—See B., 1942, II, 5.

Syntheses in the carotenoid series. I. New preparation of hexatrienes. J. Schmitt (Annalen, 1941, 547, 103—115).—In connexion with the possibility of synthesising β-dihydrocarotene and thence β-carotene, the interaction of the Mg derivative I) of Br·[CH₂]₄·Br with ketones and aldehydes has been investigated. This leads to αζ-diols, readily dehydrated to hexadienes which are easily transformed into hexatrienes. Gradual addition of COPh₂ to a filtered solution of (I) in Et₂O gives aaζζ-tetraphenylhexane-aζ-diol, m.p. 211°, converted by hot glacial AcOH into aaζζ-tetraphenyl-Δ^{e-}hexadiene, m.p. 105°, dehydrogenated by SeO₂ in gently boiling AcOH, by p-O·C₆H₄·O at 180°, or by Se at 300° to aaζζ-tetraphenyl-Δ^{e-}hexatriene, m.p. 205°. Similarly (I) and fluorenone afford hypersparingly sol. aζ-difluorenylhexane-aζ-diol, m.p. 260° (decomp.), converted by PhSO₃H in boiling Ac₂O into aζ-didiphenylene-Δ^{ae-}hexadiene, m.p. 211°, which with SeO₂ in boiling PhOMe-AcOH-H₂O yields aζ-didiphenylene-Δ^{ae-}hexatriene, m.p. 336°. COPhMe and (I) afford βη-diphenyl-noctane-βη-diol, m.p. 160°, transformed by boiling HCO₂H into βη-diphenyl-Δβξ-octadiene, b.p. 158—159°/1·5 mm., and thence by p-O·C₆H₄·O at 170—180° into an isomeric-octadiene, m.p. 64°. (I) and PhCHO give aζ-diphenylhexane-aζ-diol, m.p. 132°.

Preparation of Δ⁸-, Δ⁸⁽¹⁴⁾-, and Δ¹⁴-cholestenes. J. C. Eck and E. W. Hollingsworth (J. Amer. Chem. Soc., 1941, 63, 2986—2990).
—Dehydration of cholestan-7-ol (best prepared from the ketone by Na-C₅H₁₁·OH) by CuSO₄ in boiling xylene containing a little EtCO₂H gives Δ⁸-cholestene (II, m.p. 85—86°, [a]₅¹⁸ +11·2° in CCl₄; in absence of PfCO₂H some Δ⁸⁽¹⁴⁾-cholestene (II), m.p. 53—54°, [a]₅¹⁹ +21·2° in CCl₄, is also formed. (II) is best obtained by shaking (I) with Pd-H₂ in EtOAc. HCl-CHCl₃ at 0° converts (I) or (II) into Δ¹⁴-cholestene (III), m.p. 73—74°, [a]₅¹⁹ +26·6° in CCl₄, and a small amount of a cholestanol, m.p. 119—120°, [a]₅²⁹ +37·1° in CCl₄. The structure of (I) is deduced from oxidation by CrO₃-aq. H₂SO₄-AcOH²C₃H₈ to Δ⁸-cholesten-7-one, m.p. 86·5—87·5°, [a]₅¹⁹ +3·8° in CCl₄ (absorption max. at 251 mµ.) (and a diketone, C₂γH₄₄O₂, m.p. 74—75°, [a]₂²⁹ –53·8° in CCl₄), reduced by Na-C₅H₁₁·OH to cholestan-7-one. Structures of (II) and (III) follow by analogy with other series and are confirmed by relationships of [a]. Hydrogenation of (III) gives cholestane [for (I) and (II) cf. above]. >1 mol. of Br is consumed by (I), (II), or (III) owing to liberation of HBr, but the exact amount depends on the solvent. ~2 mols. of BzO₂H are consumed by (I), (II), or (III).

Formation of an azulene on zinc dust distillation of pyrethrosin. M. S. Schechter and H. L. Haller (J. Amer. Chem. Soc., 1941, 63, 3507—3510).—Pyrethrosin (I) and Zn dust at ~300—550° give 1.5% of pyrethrazulene, a blue oil, possibly CMe CH:C:CMe:CH CH; since its absorption spectrum very closely resembles that of vetivazulene and its s-C₆H₃(NO₂)₃ compound, sinters at 165—166°, m.p. 167—168°, with KMnO₄ yields AcOH as sole acidic product. With PtO₂-H₂ in AcOH, (I) yields tetrahydropyrethrosin, m.p. 231—232°.

Purification of anthracene. O. C. Dermer and J. King (*J. Amer. Chem. Soc.*, 1941, **63**, 3232).—Anthracene is purified by conversion into the (;CH·CO)₂O adduct and regenerated therefrom by sublimation from soda-lime.

R. S. C.

Invert soaps of naphthalene. J. B. Niederl and H. Weingarten (J. Amer. Chem. Soc., 1941, 63, 3534—3535).— $\beta\text{-}C_{10}\text{H}_7\text{·NH}_2$ (I) and $n\text{-}C_{16}\text{H}_{33}\text{Br}$ in hot EtOH give N-cetyl- β -naphthylamine, m.p. 64° (hydrobromide, m.p. 161°), converted by hot MeI-K₂CO₃-EtOH into β -naphthyldimethylcetylammonium iodide, m.p. 106°. BuaBr and (I) in boiling BuOH give oily $\beta\text{-}C_{10}\text{H}_7\text{·NHBu}^a$, converted by boiling Bu^Br into oily $\beta\text{-}C_{10}\text{H}_7\text{·NBu}^a$, which with MeI at room temp. gives β -naphthylmethyldi-n-butylammonium iodide, m.p. 157°. With an excess of Me₂SO₄ at 120°, (I) gives β -naphthylrimethylammonium methosulphate, m.p. 288°. The PhOH coeff. of the quaternary salts is $\Rightarrow 0.2$. R. S. C.

Interaction of betaine with primary aromatic amines, organic disulphides, and sodium sulphite. F. Challenger, P. Taylor, and (in part) B. Taylor (J.C.S., 1942, 48—55).—Betaine (I) (free from hydrochloride) and NH₂Ph (reflux) give NHPh·CO·CH₂·NHPh, new m.p. 111—112° [N-NO-derivative, new m.p. 142—143° (decomp.)], NHPhMe, and NMe₂, but no NH₂, NHMe₂, or NH₂Me. (I) and

p-C₆H₄Me·NH₂ similarly yield p-toluidinoacet-p-toluidide, new m.p. 133—134° [NO-derivative, m.p. 156—159° (decomp.)], and p-C₆H₄Me·NHMe; in some experiments a base, (?) (p-C₆H₄Me·NH·CO·CH₂)₂NMe, m.p. 143—144°, was also obtained. p-NH₂·C₆H₄·OR (R = Me, Et) affords p-anisidinoaceto-p-anisidide, m.p. 131—132° [N-NO-compound, m.p. 155—159° (decomp.) (rapid heating)], or p-phenetidinoaceto-p-phenetidide, m.p. 137—138°, and p-NHMe·C₆H₄·OR. β-C₁₀H₇·NH₂ and (I) at 200—220° yield β-C₁₀H₇·NHMe. (I) and Ph₂S₂ (reflux) afford an oil (contains PhSMe), converted by 3% aq. KMnO₄ at 100° into PhSO₂Me. (Bu°S)₂ yields MeSBu°, and (n-C₆H₁₁·S)₂ affords similarly MeS·C₅H₁₁·n. Oxidation (H₂O₂-AcOH at 100°) of the corresponding pure sulphide gives methyl-n-butyl-, m.p. 29—30°, or -n-amyl-sulphone, m.p. 35—36°, respectively. +NEt₃·CH₂·CO₂⁻ and NH₂Ph (reflux) afford NHPhEt. No apparent reaction is observed with methionine and NH₂Ph and paraformaldehyde (II) at 130—210°. (I) heated with Na₂SO₃ in CO₂ yields Me₂S, but no odour of Me₂Se or Me₂Te is observed when (II) is heated at 270° with Na₂SeO₃ or K₂TeO₃, respectively. Theoretical aspects are discussed.

A. T. P. Restricted rotation in arylamines. II. Preparation and resolution

Restricted rotation in arylamines. II. Preparation and resolution of N-β-carboxypropionyl-N-ethyl-3-bromomesidine and 4-N-β-carboxypropionyl-N-alkylamino-5-alkoxy-1:3-dimethylbenzenes. R. Adams and H. W. Stewart (J. Amer. Chem. Soc., 1941, 63, 2859—2864; cf. A., 1940, II, 339)—Mesidine is obtained from the NO₃-compound by Raney Ni-H₂ at 2—3 atm. Heating 1:3:5:4:5-(c₆+Me₃Br·NH₂ and aq. Et₂SO₄ at ~80° (less well, 95°), conversion into the NO-derivative (A) by HCl-NaNO₂, and reduction thereof by SnCl₂-conc. HCl at 70—75° gives 3-bromo-N-ethylmesidine (N = 1) (I) (49.5%), b.p. 136—137°/4 mm.; the aq. mother-liquors from (A) at room temp. yield 1:3:5:4:2-C₆+Me₃Br·OH, m.p. 84—84·5° [lit. 81° (uncorr.)]. With (CH₂·CO)₂O and a drop of H₃PO₄ in boiling C₆H₈, (I) gives N-β-carboxypropionyl-N-ethyl-3-bromonesidine, m.p. 111·5°, resolved by cinchonidine (not other bases) in EtoAc-MeOH into the d- (cinchonidine salt, m.p. 117—118°, [a] —41°) and 1- (cinchonidine salt, m.p. 112·5—114·5°, [a] —66°) -forms, m.p. 104·5°, [a] ±25°, which in boiling Bu°OH have a half-life ~28 hr. (cf. 9 hr. for the N-Me analogue, loc. cit.). m-5-Xylenol in Et₂O with aq. HNO₃ gives 36% of the 4- (II), m.p. 65—66°, and 25% of the 2-NO₃-compound, m.p. 108·5°. The dry Na salt of (II) with boiling Me₂SO₄-C₆H₆ gives 93·5% of the Me ether, m.p. 44—45°, reduced by Raney Ni-H₂ in 95% EtOH at 100°/135 atm. to 5:1:3:4-0Me-C₆H₃Me₂·NH₂ (III) (98·5%), m.p. 35·5—36·5°, b.p. 120—121°/10 mm. This yields as above 5-methoxy-N-methyl-m-4-xylidine (60·8%), b.p. 61—62°/1·5 mm., the N-β-carboxypropionyl derivative (IV), m.p. 153·5°, of which is resolved to the d- (cinchonidine salt, [a] —46°) -forms, m.p. 162—153°, [a] ±13°, half-life in boiling MeOAc 2·7 hr. Addition of (IV) to fuming HNO₃ at 0° gives in 70% EtOH). With EtBr-H₂O at room temp., (III) gives the N-Et derivative (56·1%), b.p. 61—62°/1·5 mm. (N-β-carboxypropionyl derivative, m.p. 133·5°). The Na derivative of (II) gives, as above 4-mitro-5-etho

N¹-Silver derivatives of sulphanilamide and related compounds. C. E. Braun and J. T. Towle (J. Amer. Chem. Soc., 1941, 63, 3523).
—Addition of aq. AgNO₂ (1 mol.) to the Na derivatives of p-NH₂·C₆H₄·SO₂·NH₂, its N⁴-Ac derivative (prep. of the Na salt by conc. aq. NaOH described), or sulphapyridine give the N¹-Ag salts. R. S. C.

Derivatives of sulphanilamide and cholic acid.—See A., 1942, II, 146.

Chemotherapeutic studies; preparation of substituted sulphonamides. C. Marchant, C. C. Lucas, and L. McClelland (Canad. J. Res., 1942, 20, B, 5—16).—p-Acetamidobenzenesulphonamides, p-NHAc·C₆H₄·SO₂·NHR, are obtained by warming equimol. quantities of the reactants with COMe₂ containing C₆H₅N or by melting an intimate mixture of the acid chloride (1 mol.) and amine (2 mols.). NH₂-compounds are obtained by catalytic reduction of NO₂-compounds and CO₂Et-compounds by esterifying (HCl + EtOH) the requisite acids. Ac is removed by hydrolysis with boiling acid or alkali. Sulphanilamides, p-NH₂·C₆H₄·SO₂·NHR, are thus obtained (the m.p. of the N⁴-Ac derivatives are recorded in parentheses) in which R = p-, m.p. 165° (258°), m-, m.p. 169° (244°), and o-, m.p. 179° (200°) -NO₂·C₆H₄·; 3:6-, m.p. 199° (266·5°), and 3:4-, m.p. 189° (239°), -NO₂·C₆H₃Me·; 6:3-, m.p. 188° (261·5°) (decomp.)], and 4:2-, m.p. 117° (175°), -OMe·C₆H₃(NO₂)·; p-, m.p. 138° (235°), m-, m.p. 177°, and o-, m.p. 208°, -NH₂·C₆H₄·; 3:6-, m.p. 208·5°, and 3:4-, m.p. 185°, -NH₂·C₆H₃Me·; 6:3-, m.p. 232°, and 4:2-, m.p. 195°, -OMe·C₆H₃(NH₂)·; p-, m.p. 190° (208°), m-, m.p. 133·5° (205°),

and o-, m.p. 155·5° (244·5°), -C₈H₄Me; p-, m.p. 194° (200°), m-, m.p. 163·5° (193°), and o-, m.p. 199° (212°), -OMe·C₆H₄; p-, m.p. 197°, m-, m.p. 196° (274°), and o-, m.p. 226° (233°), -CO₂H·C₈H₄; p-, m.p. 230°, m-, m.p. 105°, and o-, m.p. 165·5°, -CO₂Et·C₆H₄; p-, m.p. 231° (236·5°), and 2:4-, m.p. 149° (214·5°), -C₆H₃Me₂; 2:5-OMe·C₆H₃Me·, m.p. 161° (206°); 2:5-C₆H₃MePr^β, m.p. 150·5° (160·5°); p-C₆H₄Br, m.p. 211° (254·5°); p-C₆H₄Bz, m.p. 181·5° (218·5°); p-C₆H₄Br, m.p. 178° (208°); OEt·C₁Cl₂]₂·, m.p. 100° (150°); p-AsO₃H₂·C₆H₄·, m.p. — [275° (decomp.)]. Disulphanilyl-p-phenylenediamine, m.p. 263° (decomp.) [Ac₂ derivative, m.p. 316·5° (decomp.)], -m-toluylenediamine, m.p. 229° (Ac₂ derivative, m.p. 278°), and -benzidine, m.p. 290° (Ac₂ derivative, m.p. 288°), are described. M.p. are corr. H. W.

4-Amino-4'-di- β -hydroxyethylamino-2'-methylazobenzene. G. Shulman (J. Amer. Chem. Soc., 1941, 63, 3236—3237).—Coupling of m-C₆H₄Me·N([CH₂]₂·OH)₂ [prep. from m-C₆H₄Me·NH₂ by (CH₂)₂O at >1 atm.) with p-NO₂·C₆H₄·N₂Cl in HCl-NaOAc and reduction of the product by 10% cryst. Na₂S at 90° gives 4-amino-4'-di- β -hydroxyethylamino-2'-methylazobenzene, orange, m.p. 149°, whence blue to black dyes are obtained by diazotisation and further coupling.

Decomposition of arylazo-β-naphthylamines by sodium nitrite and glacial acetic acid. H. H. Hodgson and C. K. Foster (J.C.S., 1942, 30—33).—Many arylazo-β-naphthylamines are converted by NaNO₂—AcOH at 70°, then at room temp., into the unstable diazonium acetates, which are then decomposed to the corresponding arylazo-β-naphthyl acetates. These may be partly or wholly hydrolysed by the H₂O formed in the reaction to the naphthols as with, e.g., o-NO₂·C₆H₄·N₂·C₁₀H₈·NH₂·β. The following are new: m-, m.p. 85°, and p-fluoro-, m.p. 120°, m-chloro-, m.p. 160°, 2:5-dichloro-, m.p. 168°, p-iodo-, m.p. 170°, 4-brono-3-nitro-, m.p. 190°, 3-nitro-4-methyl-, m.p. 199°, 4-chloro-2-nitro-, m.p. 255°, 4-bromo-2-nitro-, m.p. 259°, and 3:5-dinitro-2-hydroxy-benzeneazo-β-naphthylamine, m.p. 274°; 4-, m.p. 214°, and 5-nitro-1-naphthaleneazo-β-naphthyl-amine, m.p. 121°; benzeneazo-β-naphthyl acetate, m.p. 117°; p-fluoro-, m.p. 130°, m-, m.p. 81°, and p-chloro-, m.p. 134°, p-bromo-, m.p. 136°, m-nitro-, m.p. 162°, 2-nitro-4-, m.p. 133°, and 3-nitro-4-methyl-, m.p. 157°, 4-chloro-2-nitro-, m.p. 163—164°, 4-bromo-2-, m.p. 160°, and -3-nitro-, m.p. 167°, 3:5-dinitro-2-hydroxy-, m.p. 184°, and p-carboxy-benzeneazo-β-naphthyl acetate, m.p. 206°; 4-, m.p. 155°, and 5-nitronaphthaleneazo-β-naphthyl acetate, m.p. 206°; 4-, m.p. 155°, and 5-nitronaphthaleneazo-β-naphthyl acetate, m.p. 180°.

Preparation of aromatic sulphuric esters. J. Feigenbaum and C. A. Neuberg (J. Amer. Chem. Soc., 1941, 63, 3529—3530).—

ArKSO₄ is best (90%; no distillation) obtained by adding, first, CISO₃H in the cold and then 50% aq. KOH to ArOH in NPhMe₂. For some phenols C₄H₆N is preferable to NPhMe₂. R. S. C.

Preparation and properties of three isomeric n-hexylcresols and their chlorinated derivatives. P. P. T. Sah and H. H. Anderson (J. Amer. Chem. Soc., 1941, 63, 3164—3167).—o-, m-, and p-Cresol with SO₂Cl₂ at room temp. (later warm) give 5-chloro-o- (~84%), m.p. 48—49°, b.p. 220—225°, 6-chloro-m- (~84%), m.p. 66°, b.p. 234—236°, and 3-chloro-p-cresol (77%), b.p. 195—197°. o-, b.p. 263—264°, m-, b.p. 280—283°, and p-tolyl, b.p. 268—270°, 5-chloro-o-, b.p. 280—283°, 6-chloro-m-, b.p. 286—288°, and 3-chloro-p-tolyl, b.p. 283—285°, n-hexoate (all prepared in 75—85% yield by n-C₈H₁₁·COCl in boiling CCl₄) with AlCl₃ at 140° give 3-n-hexoyl-o-(50·5%), b.p. 131—132°/1 mm., 4-n-hexoyl-m- (85%), b.p. 135—133°/2 mm., 5-chloro-3-n-hexoyl-o- (60%), b.p. 149—151°/1 mm., 6-chloro-4-n-hexoyl-m- (62%), b.p. 152—154°/1 mm., and 3-chloro-5-n-hexoyl-p- (62%), b.p. 152—154°/1 mm., and 3-chloro-5-n-hexoyl-p- (62%), b.p. 152—133°/1 mm., 3-n-hexyl-p- (70%), b.p. 134—135°/1 mm., 5-chloro-3-n-hexyl-o- (90%), b.p. 130—131°/1 mm., 4-n-hexyl-m- (90%), b.p. 132—133°/1 mm., 3-n-hexyl-p- (70%), b.p. 134—135°/1 mm., 5-chloro-3-n-hexyl-o- (90%), b.p. 140—142°/2 mm., 6-chloro-4-n-hexyl-m- (80%), m.p. 27—29°, b.p. 150—152°/1 mm., and 3-chloro-5-n-hexyl-p- (75%), b.p. 137—139°/1 mm., -cresol. The isomeric n-C₆H₁₃·C₆H₄·OH are converted into the appropriate Cl-derivatives by SO₂Cl₂-CCl₄ in 60—65% yield. Chlorination reduces the toxicity of the n-hexylcresols to mice.

Synthesis of amyl- and hexylcr-nanhthal

R. S. C. Jang (J. Amer. Chem. Soc., 1941, 63, 3155—3156).—a-C₁₀H₁₇·OH, RCO₂H, and ZnCl₂ give 2-n-, m.p. 75·5—76·5°, b.p. 160—168°/5 mm. (oxime, m.p. 115—117°; semicarbazone, m.p. 163—165°), and 2-iso-valeryl-, m.p. 65—66·5°, b.p. 150—155°/2 mm. (oxime, m.p. 149—151°; semicarbazone, m.p. 213—215°), and 2-n-hexoyl-, m.p. 62—63°, b.p. 180—186°/5 mm. (oxime, m.p. 97—99°; semicarbazone, m.p. 183—184°), reduced (Clemmensen) to 2-n-, m.p. 45—46·5°, b.p. 130—135°/5 mm., and 2-n-hexyl-, m.p. 45—46·5°, b.p. 130—135°/5 mm., and 2-n-hexyl-, m.p. 42—43°, b.p. 155—165°/3 mm., -1-naphthol, respectively.

Exchange reactions of 4-nitro-1-naphthyl methyl and ethyl ether with sodium ethoxide and methoxide, respectively, and the reduction of certain 1-nitronaphthalene derivatives. H. H. Hodgson and J. Habeshaw (J.C.S., 1942, 45—47).—1:2-, 1:4-, or 2:1-C₁₀H₆Cl·NO₂ and 25% KOH-MeOH at 55° afford 2:1- 4:1- or 1:2-

NO₂·C₁₀H₆·OH, respectively, in ~90% yield, whereas replacement of Cl in o- or p-C₆H₄Cl·NO₂ requires reaction under pressure, $4:1\text{-NO}_2\cdot\text{C}_{10}\text{H}_8\cdot\text{OMe}$ (I) in NaOEt-EtOH at 65° yields $4:1\text{-NO}_2\cdot\text{C}_{10}\text{H}_6\cdot\text{OEt}$ (II), reconverted by NaOMe-MeOH at 65° into (I). The use of NaOPr in similar experiments yielded amorphous substances. The mechanism of the exchange is discussed. $4:1\text{-}\text{C}_{10}\text{H}_6\text{Cl·NO}_2$ or (I) and Zn-EtOH yield 4:4'-dichloro-, m.p. 262– 263° , or 4:4'-dimethoxy-1:1'-azonaphthalene, m.p. 105– 107° , respectively. Conditions are established for the reduction of (I) and (II) to the amines.

Carboxylic acid derivatives of 4:4'-diaminodiphenylsulphone, W. H. Gray and B. C. Platt (J.C.S., 1942, 42—45).—4:4'-Diaminodiphenylsulphone (I) and Et₂C₂O₄ yield 4:4'-biscarbethoxyformamidodiphenylsulphone, m.p. 257°, converted by hot 2·5%, aq. NaOH (6 min.) into 4-amido-4'-carboxyformamido-, froths at 195°, or by hot 0·5% KOH-EtOH (15 min.) into 4:4'-biscarboxyformamido-diphenylsulphone, froths at 188° to a solid, m.p. ~275°. (I) and CO₂H·CH₂·COCl (modified prep.) in dioxan at 65° yield 4:4'-biscarboxyacetamidodiphenylsulphone, +H₂O, froths at 183° and loses CO₂ to give the 4:4'-(NHAC)₂-compound. (I) and (CH₂·CO)₂O at 170° or 225° afford 4:4'-bis-β-carboxypropionamido-, m.p. 227° (converted into the imide), or 4:4'-bis-succinimido-diphenylsulphone, m.p. 343°, respectively. δ-Carbethoxyvaleryl or η-carbomethoxyoctoyl chloride and (I) in COMe₂-CaCO₃ (reflux) yield 4:4'-bis-δ-carbethoxyvalerimido-, m.p. 139°, or 4:4'-bis-η-carbomethoxyoctamido-diphenylsulphone, m.p. 122° (free acid, m.p. 134°), respectively. (I) (1 mol.) and ο-C₆H₄(CO)₂O (1 mol.) at 200°, or in C₅H₅N at 100° (bath), give 4-amino-4'-phthalimidodiphenylsulphone (II), m.p. 256—258°, also obtained from ο-CO₂H·C₆H₄·CO₂Me with or without ZnCl₂; 2 mols. of ο-C₆H₄(CO)₂O in C₅H₅N give the 4:4'-bisphthalimido-compound (III), m.p. 310°, also obtained from Me H or Et₂ phthalate. (II)-5% aq. NaOH at 100°, or (III)-0.5% KOH-EtOH, yield 4-amino-4'-o-carboxybenzamido-diphenylsulphone, m.p. 182° (decomp.) [heat → (III)], respectively. Camphoric anhydride and (I)-c₆H₅N (reflux) yield the 4:4'-biscamphorimido-compound (I)-65H₅N (reflux) yield t

Detoxication. XI. Identification of pyrocatechol-4-sulphonamide as a metabolic product of p-hydroxybenzenesulphonamide in the rabbit. Synthesis of derivatives of pyrocatecholsulphonamide. R. T. Williams (Biochem. J., 1941, 35, 1169—1174; cf. A., 1942, III, 334).—1:2:4-(OH)₂C₆H₃·SO₃H [from o-C₆H₄(OH)₂ and conc. H₂SO₄ at 0°] with Ac₂O in C₅H₅N, followed by PCl₅ on the resulting C₆H₅N salt, yields 1:2-diacetoxybenzene-4-sulphonyl chloride, m.p. 116°, which with aq. NH₃, then dil. HCl, gives pyrocatechol-4-sulphonamide (I) (a resin), and with NH₂Ar in EtOAc yields the Ac₂ derivatives, m.p. 127—128°, 153°, and 131°, respectively, of pyrocatechol-4-sulphonanilide, m.p. 225° (decomp.), -m-chloroanilide, m.p. 177°, and -β-naphthylamide, m.p. 218° (decomp.). With Me₂SO₄, p-OH-C₄H₄·SO₂·NH₂ (II) yields anisole-p-sulphonalmidelylamide, m.p. 75. When the urine of rabbits fed with (II) is hydrolysed (HCl), extracted with Et₂O, the extracts acetylated, and the H₂O-sol. Ac derivatives hydrolysed and methylated (Me₂SO₄) it yields veratrole-4-sulphonalmide, m.p. 112°, also obtained (m.p. 113° and 115°, respectively) by methylating (I) or veratrole-4-sulphonamide.

Reactions of hydrazoic acid. I. L. H. Briggs, G. C. de Ath, and (in part) S. R. Ellis (J.C.S., 1942, 61—63).—CHPh:CH·COMe and N₃H-CHCl₃-H₃SO₄ at 0°, rising to 60°, afford CHPh:CH·CO·NHMe, whereas CH₂Ph·CH₂·COMe (2:4-dinitro-phenylhydrazone, m.p. 131—132°) at 0° similarly yields CH₂Ph·CH₂·NHAc. CH₂Ph·CHMe·COMe (2:4-dinitrophenylhydrazone, m.p. 81°) gives acet-β-phenylisopropylamide. CH₂Ph·CH(CO₂H)₂ and N₃H-CHCl₃-dioxan-H₂SO₄ at 40° afford dl-phenylalanine in 16% yield. Podocarpic acid gives an amine, C₁₆H₂₃ON [sulphate, m.p. 279° (decomp.)], in good yield; thus there is little steric hindrance in the Schmidt reaction. Esters also react; e.g., MeOBz or EtOBz and N₃H in CHCl₃- or C₆H₆-H₂SO₄ give ~25% of NH₂Ph. o-, m-, or p-Toluic acid (at 40—45°) gives yields of 46, 70, or 24%, respectively, of the corresponding toluidines. Stearic acid (in C₆H₈ at 40°) affords n-C₁₇H₃₅·NH₂. N₃Me decomposes similarly to N₃H, but ketones and acids are unaffected during the reaction.

Potassium a-naphthylisopropyl. R. D. Kleene (J. Amer. Chem. Soc., 1941, 63, 3539).— α -C₁₀H₇·CMe₂·OH, NaNH₂, and MeI in dioxan give the Me ether, b.p. $100-101^{\circ}/3$ mm., which with Na-K in Et₂O-N₂ gives α -C₁₀H₇·CMe₂K, converted by CO₂ into α -1-naphthylisobutyric acid (32%), m.p. $121-122^{\circ}$. R. S. C.

Factors which greatly increase the activity of the phenolic hydroxyl group of l-tyrosine. D. E. Bowman (J. Biol. Chem., 1941, 141, 877—887).—The rate at which l-tyrosine (I) reacts with I, KMnO4, or AgNO4 is usually very slow but may be greatly increased by the presence of a PO4" buffer, small increases in $p_{\rm H}$ greatly intensifying the reaction. In the presence of PO4" further marked acceleration results from a moderate increase of temp. until the reaction becomes

instantaneous. This reducing action of (I) may be attributed to the phenolic OH. It appears that the normal physiological state should provide the conditions necessary to support the increased activity of this group. This may explain why this group is capable of playing such a dominant rôle in the physiological action of various protein catalysts.

H. W.

Derivatives of 1-phenylcycloalkane-1-carboxylic acids. R. D. Kleene (J. Amer. Chem. Soc., 1941, 63, 3538—3539).—1-Phenylcyclobutane-1-carboxyl-amide, m.p. 75—76°, -anilide, m.p. 96—96·2°, -p-toluidide, m.p. 129—131°, and -o-bromoanilide, m.p. 82—83°, 1-phenylcyclopentane-1-carboxyl-anilide, m.p. 98—99°, -p-toluidide, m.p. 146—146°, and -o-bromoanilide, m.p. 75—76°, 1-phenylcyclohexane-1-carboxyl-anilide, m.p. 75—76°, 1-phenylcyclohexane-1-carboxyl-anilide, m.p. 85—86°, -p-toluidide, m.p. 165—166°, and -o-bromoanilide, m.p. 167—169°, are prepared from the respective acid chlorides.

R. S. C.

Synthesis and characterisation of tert.-naphthenic acids. B. Shive, W. W. Crouch, and H. L. Lochte (J. Amer. Chem. Soc., 1941, 63, 2979—2984).—dl-Camphor (cf. Forster, J.C.S., 1896, 69, 36, who used l-camphor) and Br at 100° give dl-aa-dibromocamphor, m.p. 54—55°, oxidised by HNO3 (d 1·6) to dl-dibromocampholide, m.p. 138—139°, converted by Zn dust in boiling NH3-EtOH-H2O into dl-bromocamphorenic acid, m.p. 180—181°, which with Na-Hg in boiling H2O gives dl-camphorenic acid, m.p. 165—166°. H2-PtO2 in AcOH then gives dl-dihydrocamphorenic [1:2:2-trimethylcyclohexane-1-carboxylic] acid (I), m.p. 179—180° (amide, m.p. 164—165°). Et 2-isopropylcyclohexanecarboxylate (crude), b.p. 92—95°/10 mm., hydrolysed by conc. HCl at 140—150° to the acid (II), m.p. 104—105° (anilide, m.p. 101—102°): Et 2-isopropylcyclopentanone-2-carboxylate, b.p. 248—249°/750 mm., with boiling MgMeI-Et₂O, LiMe-Et₂O, or Mg-MeI-C₆H₆ gives a mixture, whence dehydration by boiling (1 atm.) with KHSO4 gives Et 2-methyl-1-isopropyl-A²-cyclopentenecarboxylate, b.p. 221—222°/753 mm., which by hydrogenation and hydrolysis as above yields 2-methyl-1-isopropylcyclopentanone and CMe₂Br-CO₂Et in Et₂O to Mg in much Et₂O gives Et a-hydroxy-a-2-methylcyclopentylisobutyrate, b.p. 122—123°/12 mm., converted as above into Et a-2-methyl-1-cyclopentylisobutyrate, b.p. 224—225°/753 mm., and a-2-methylcyclopentylisobutyrate, b.p. 256—257°/743 mm. (Et ester, b.p. 225—226°/750 mm.; anilide, m.p. 102—103°). (I), (II), (III), and IV) differ from an acid, C₁₀H₁₈O₂, obtained from Californian petroleum (Shive et al.), by degradation of a base therein (Roberts et al.), and ? from Iranian petroleum (Kennedy, B., 1940, 9).

Synthesis of 3:5-diethylbenzoic acid. H. R. Snyder, R. R. Adams, and A. V. McIntosh, jun. (J. Amer. Chem. Soc., 1941, 63, 3280—3282).—20·5% of 3:5:1-C₆H₃Me₂·CO₂H is obtained from s-C₆H₃Et₂·CO₂H (I), m.p. 130° (lit. 133°) (Me ester, b.p. 110—112°/3·5 mm.), with 5-ethylisophthalic acid (5:3%), m.p. 265—266°, and 5-aceto-3-ethylbenzoic acid, m.p. 156—157° (Me ester, m.p. 77—78°). PhBr, EtBr (2 mols.), and AlCl₃ give p-C₆H₄Br₂ and s-C₆H₃Et₃. 2:4:1-C₆H₃Et₂·NH₂, b.p. 142·5°/33 mm. (prep. from 2:4:1-C₆H₃Et₂·NO₂, b.p. 112—114°/3·8 mm. by Raney Ni-H₂ in EtOH at 40—60°/1000—2000 lb.; 80—90% yield), with Br-AcOH-MeOH at <15° gives 6-bromo-2:4-diethylaniline (55%; ~40% in large-scale runs), b.p. 100—105°/1·5 mm., the diazonium salt from which with H₂PO₂ gives 5-bromo-1:3-diethylbenzene (70%), b.p. 115—119°/17 mm. Prep. of (I) therefrom by Grignard reactions is unsatisfactory, but CuCN in boiling C₆H₃N (bath: 235—240°) gives 3:5-diethylbenzonitrile (67%), b.p. 147·5—149°/29 mm., whence NaOH in boiling aq. (CH₂·OH)₂ gives 85% of (I). R. S. C.

Cleavage of the alkyl-oxygen bond in the hydrolysis of esters. tert.-Butyl 2: 4:6-trimethylbenzoate. S. G. Cohen and A. Schneider (I.Amer. Chem. Soc., 1941, 63, 3382-3388).—Cleavage of the O-alkyl linking of esters occurs during methanolysis or acid hydrolysis of tert.-alkyl esters. Bu?OBz in boiling MeOH (4 days) gives MeOBu² (60.7%) and BzOH (22.6%) with MeOBz (61.9%; produced from the liberated BzOH and MeOH); the MeOBu² is a direct product, not being formed from Bu²OH and MeOH in presence of BzOH [or (II); cf. below]. With NaOMe (0.1 mol.) in boiling, anhyd. MeOH, Bu²OBz gives MeOBz (71.6%) and Bu²OH (81.7%) and no MeOBu². Bu²OBz gives MeOBz (71.6%) and Bu²OH (81.7%) and no MeOBu². Bu²Oz (4:6-trimethylbenzoate (I) (prepared in 79% yield from the acid chloride and Bu²OH in C_5H_5N , but not from the Ag salt and Bu²Cl), b.p. 142° /13 mm., in boiling MeOH (7 days) gives MeOBu² (12.5%) and 2:4:6: $1-C_6H_2Me_3$ ·CO₂H (II) (6:1%) with 82.5% of unchanged (I), but is unaffected by NaOMe-MeOH. Similar cleavage of the O-alkyl linking occurs with esters of primary or sec. alcohols and strong acids $(e.g., Me_2SO_4)$, as evidenced by alcoholysis to ROR'. Alkaline hydrolysis occurs by addition of OH- to give an intermediate OH·CR(:O-)·OR'. Acid hydrolysis (including alcoholysis) occurs by addition of H+ to give HO+:CR·OR' \rightleftharpoons OH·CR+:OR'. In (I) the C but not the O is sterically hindered; thus, (I) is almost quantitatively converted into (II) by 39.5% HCl-MeOH at 0° or boiling 18% HCl, but boiling 20% NaOH is ineffective. Related results are shown by ROAc: alkaline

hydrolysis decreases as R changes from Me to Bu $^{\nu}$, but acid hydrolysis passes through a min. and that of Bu $^{\nu}$ OAc is \sim 15% faster than that of MeOAc. R. S. C.

Resonance and the hindered carbonyl-Grignard reaction. I. R. T. Arnold, H. Bank, and R. W. Liggett (J. Amer. Chem. Soc., 1941, 63, 3444—3446).—Interaction of 2:4:6:1-C₆H₂Me₃·COMe with MgRX proceeds by formation of [C. H. Mg. (-C. H. H.) - O. MgX]t and thence of

with MgRX proceeds by formation of C₆H₂Me₃(=CH₂-H)=O-MgX]⁺, and thence of C₆H₂Me₃·C(:CH₃)·O·MgX + H⁺ [gives RH]. If the COMe is replaced by CO·OR, in which R is a resonating alkyl group, the R may be ejected in the same way as the H above. Thus, alkyl isodurylate (prep. from the Na salt and CH₂·CH·CH₂Br at 130—160°), b.p. 115—117°/1 mm., with MgPhBr [or o-C₆H₄Me·MgBr] in Et₂O gives CH₂Ph·CH·CH₂ [I) (67—70%) [or o-C₆H₄Me·CH₂·CH·CH₂] and 2:4:6:1-C₆H₂Me₂·CO₂H (II) (95%). This reaction occurs only when the normal reaction is hindered; thus, alkyl aa-dimethyl-n-propionate, b.p. 55—56°/36 mm., with MgPhBr gives CPh₂Bu·OH and CH₂·CH·CH₂·OBz gives CPh₃·OH (86%) and a little (I). One o-Me has little effect, for alkyl o-loluate, b.p. 148°/45 mm., gives o-C₆H₄Me·CPh₂·OH (68%) and an irresolvable mixture. 84% of (II) is obtained by adding 2:4:6:1-C₆H₂Me₃·MgBr in Et₂O to Et₂O through which CO₂ is passed, yields being lower by normal methods. CH₂Ph β-isodurylate (prep. from the Na salt and CH₂PhBr in boiling PhMe), b.p. 175—180°/6—8 mm., is also not cleaved by MgPhBr in Et₂O.

R. S. C.

Structure of cantharidin and the synthesis of deoxycantharidin, R. B. Woodward and R. B. Loftfield (J. Amer. Chem. Soc., 1941, 63, 3167—3171).—Formulation of cantharidin (I) as 3:6-epoxy-cis-1:2-dimethylcyclohexane-1:2-dicarboxylic anhydride (A., 1929, 192) is confirmed by synthesis of deoxycantharidin (II). Condensation of (;CMe·CO)₂O (III) and (CH₂·CH)₂ in C₆H₆ at 190—205° (not at lower temp.) (72 hr.) and hydrolysis of the product by 10% aq. NaOH gives cis-1:2-dimethyl-\(\Delta^4\)-cyclohexene-1:2-dicarboxylic acid (IV), m.p. 202·4° (decomp.), converted by boiling AcCl into the anhydride (V), m.p. 99·2—99·6° [1:1 additive compound, m.p. 64—65°, with (III)], hydrogenated (PtO₂; EtOAc) to cis-1:2-dimethyl-cyclohexane-1:2-dicarboxylic anhydride, m.p. 129—129·2° [= (II), prep. of which (m.p. 126—128·5°) from (I) is described]. In boiling H₂O, (II) gives deoxycantharidinic acid, but the reverse transformation is also facile and occurs in H₂O, going to completion if the very volatile (II) can sublime-away. With CHBr·CH₂·CMe·CO₂H Br-AcOH (IV) gives the bromo-lactone (VI), CH—CH₂·CMe m.p. 198·5—199°. With Br-CHCl₃, (V) — CO (VI), gives a 4:5-dibromide, m.p. 179—180°, and 4-bromo-cis-1:2-dimethyl-\(\Delta^4\)-cyclohexene-1:2-dicarboxylic anhydride, m.p. 89—90° (indifferent to hot AgNO₃—1:2-dicarboxylic anhydride, m.p. 89—90°

4-bromo-cis-1:2-dimethyl- Δ^4 -cyclohexene-1:2-dicarboxylic anhydride, m.p. 89—90° (indifferent to hot AgNO₃-EtOH). The evidence now available indicates that in (I) the O-and anhydride rings are probably on the same side of the cyclohexane ring (exo-structure). R. S. C.

Isomerisation of naphthalyl chloride. H. E. French and J. E. Kircher (J. Amer. Chem. Soc., 1941, 63, 3270—3272).—1: 8-C₁₀H₆(COCl)₂ (I) reacts partly in the cyclic form in the Friedel-Crafts reaction (cf. Mason, A., 1925, i, 33, 34). With AlCl₃ and C₆H₆ (1 mol.) it gives 50—60% of 1: 8-COPh·C₁₀H₆·CO₂H (II), but in one experiment yielded only 13% of (II) and ~40% of a compound, m.p. 235—236°, insol. in alkali. With AlCl₃ and an excess of C₆H₆, (I) gives (II) (45%), αα-diphenyl-1: 8-naphthalide (20%) m.p. 202—203° (corr.) (adds one MgMeI; no active H), and substances, m.p. 226—228° (corr.) (7%) and 238—239° (corr.) (3%). Results with PhMe are similar (cf. loc. cit.). The structure of p-C₆H₄Me·CO·C₁₀H₆·CO₂H-1: 8 is established by decarboxylation to p-C₆H₄Me·CO·C₁₀H₇-α and that of αα-di-p-tolyl-1: 8-naphthalide (yield ~80%), m.p. 235—236° (corr.), by addition of one MgMeI and absence of active H. The naphthalides are also prepared from 1: 8-C₁₀H₆(CO)₂O and LiAr. R. S. C.

Synthesis of condensed ring systems. V. Dianhydride of a steradiene-6:7:11:12-tetracarboxylic acid. L. W. Butz and L. M. Joshel. VI. Dianhydrides of a tetradecahydrochrysene-1:2:7:8-tetracarboxylic acid and a homologue with an angular methyl group. L. M. Joshel, L. W. Butz, and J. Feldman (J. Amer. Chem. Soc., 1941, 63, 3344—3347, 3348—3349)—V. \(\Delta^1\)-cyclo-Pentenyl-\(\Delta^1\)-cyclo-kexenylacetylene and (iCH-CO)_2O at 100—150° (not 70°) give 15—17% (in one experiment, 25%) of \(\Delta^8(14)^{19}\)-steradiene-6:7:11:12-tetracarboxylic anhydride (I), m.p. 252—255° (vac.), 243—249° (air), or (+dioxan) 246—250°, with \(\times 40\)% of amorphous alkali-sol, material. The C-skeleton of (I) is proved by conversion by Diane (1) and the conversion by Diane (1) and Diane (1)

H₂C C C CH₂
H₂C C C CH₂
H₂C C CH₂
CH₂CH—CO

246—250°, with ~40% of amorphous alkali-sol. material. The C-skeleton of (I) is proved by conversion by Pd-C or Pd-C-Ca(OH)₂ at 260—340° and later 340—390° into 1:2-trimethylenephenanthrene. Boiling EtOH converts (I) into the 11-carbethoxy-12-carboxy-6:7-dicarboxylia anhydride (or an isomeride) (53%), m.p. 223—230° (gas) [at 250° gives (I)], and a Et_steradiene-6:7:11:12-tetracarboxylate

(8%), m.p. 234—238°. With N-KOH at room temp., (I) gives the

tetracarboxylic acid, m.p. 231—232° (decomp.), m.p. (+dioxan) 213—214° (decomp.) [Me_4 ester (II), m.p. 117·5—120·5°; absorbs Br]. Hydrogenation of (I) gives mixtures, but that (PtO₂; AcOH) of (II) gives Me_4 $\Delta^{8(9)}$ -sterene-6·7·11·12-tetracarboxylate (III), m.p. (from MeOH) 165·4—166°, resolidifies, remelts at 168—174°, or (from COMe₂-MeOH) 164·5—170°. The following absorption max. and ε , respectively, in EtOH are recorded: (I) 2560 a., 19,000; 1:2:2a:3:4:5:6:7:8:8a:9:10:11:12-tetradecahydrochrysene-1:2:7:8- (IV; see below) 2570 a., 23,500, the derived 2amethylletradecahydrochrysene-1:2:7:8- (V; see below) 2540 a., 24,000, and 1:5-dimethylhexahydronaphthalene-3:4:7:8-2470 a., 22,000, -tetracarboxylic anhydride; (II) 2560 a., 22,000; (III) A., 22,000, -tetracarboxylic anhydride; (II) 2560 A., 22,000; (III)

A., 22,000, -terracarboxyne annyuride, (12) 200 at 150° give <-2200 A., 5000.

VI. Di-Δ¹-cyclohexenylacetylene and (:CH·CO)₂O at 150° give the dianhydride (IV) (see above) (27%; 19% pure), m.p. 251—254° (vac.). Δ¹-cycloHexenyl-2′-methyl-Δ¹′-cyclohexenylacetylene gives similarly 1-9% of (V), m.p. 278—280° (vac.). Pd-C converts (IV) at 280—350° or (V) at 250—330° into chrysene and [from (IV)] a small amount of the lactone, m.p. 271·8—272·4°, of 2-hydroxymethylchrysene-1-carboxylic acid. M.p. are corr. R. S. C.

Detoxication. XII. Metabolism of vanillin and vanillic acid in the rabbit. Identification of glucurovanillin and structure of glucurothe rabbit. Identification of glucurovanillin and structure of glucurovanillic acid. [Colour reaction for p-hydroxy- and p-methoxy-benz-aldehyde.] H. G. Sammons and R. T. Williams (Biochem. J., 1941, 35, 1175—1189; cf. A., 1942, III, 334).—In the urine of rabbits fed on vanillin (I) or vanillic acid (II), (I) is determined (after hydrolysis) as 2:4-dinitrophenylhydrazone, free (II) by OMe (Zeisel), and glucurovanillin as the \$\textit{\textit{B-naphthylhydrazone}\$, m.p. 179°, [al_p^2] \$^{-78-9^{\circ}}\$ in MeOH, or 2:4-dinitrophenylhydrazone, decomp. 200° (shrinking at 150°), [al_p^2] \$^{-68-2^{\circ}}\$ in dioxan, hydrolysed to (I). (II) is unaffected by dil. HCl under the conditions used for hydrolysing urine. Methylation (Me_2SO_4) of the crude Ba salt of glucurovanillic acid (III) from the urine yields veratric acid, its Me ester, and 2:3:4-Methylation (Me₂SO₄) of the crude Ba sait of glucurovanilitie acid (III) from the urine yields veratric acid, its Me ester, and 2:3:4-trimethyl-o-methoxy-p-carbomethoxy-phenyl- β -d-glucuronide Me ester, m.p. 137°, [a]₁₃²³ -86·05° in CHCl₃, hydrolysed (MeOH-HCl) to Me 2:3:4-trimethyl- $\alpha\beta$ -methylglucuronide. (III) is therefore a β -pyranuronoside. ρ -OH- and ρ -OMe-aldehydes in urine give an immediate red colour with naphthoresorcinol and conc. HCl in the

Normal and abnormal alkylation of 2-methylcyclopentyl methyl ketone. G. Wash, B. Shive, and H. L. Lochte (J. Amer. Chem. Soc., 1941, 63, 2975—2979).—1-Benzoyl-2-methylcyclopentane (I) (prep. from cyclohexane by, successively, AcCl-AlCl₃, NaOBr, SOCl₂, and C₆H₆-AlCl₃), b.p. 281°, with NaNH₂ and RI in boiling C₆H₈ gives 1-benzoyl-1: 2-dimethylcyclopentane (49%), b.p. 288° (oxime, m.p. 161—162°), 1-benzoyl-2-methyl-1-ethyl- (56%), b.p. 304° (oxime, m.p. 115—116°), -1-n-propyl- (27%), b.p. 312° (no oxime or semicarbazone), and -1-isopropyl- (26%), b.p. 315°, -cyclopentane. The 1-Me and 1-Et derivatives with NaNH₂ and a little C₆H₈ or xylene, respectively, at room temp. give 1: 2-dimethyl-, m.p. 98·5—99·5°, and 2-methyl-1-ethyl-cyclopentane-1-carboxylamide, m.p. 84·5— 89.5°, and 2-methyl-1-ethyl-cyclopentane-1-carboxylamide, m.p. 84.5–85.5°, respectively, but the 1-Pr compounds are unaffected. The latter with O₃ give poor yields of 2-methyl-1-n- (anilide, m.p. 141— 142°) and -1-iso-propylcyclopentane-1-carboxylic acid (anilide, m.p. 115-116°). 2-Methylcyclopentanecarboxylanilide has m.p. 107-108°. In xylene at 110-140° C-alkylation is replaced by (a) formation of 2-methylcyclopentanecarboxylamide and N-alkylation thereof and (b) formation of enol O-ethers. In boiling PhMe all three reactions occur. 2-Methylcyclopropanecarboxyl-ethyl-, m.p. 86—87°, and -isopropyl-amide, m.p. 87—88°, are thus obtained and are also prepared from the acid chloride. 2-a-isoPropoxy-, -npropoxy-, and -ethoxy-benzylidene-1-methylcyclopentane are obtained as oils and identified by ozonolysis.

Comparison of metallic chlorides as catalysts for the Friedel-Crafts ketone synthesis. O. C. Dermer, D. M. Wilson, F. M. Johnson, and V. H. Dermer (J. Amer. Chem. Soc., 1941, 63, 2881—2883). —Relative efficiencies for prep. of p-C₆H₄Me·COMe from PhMe and AcCl under optimum conditions are AlCl₃ > SbCl₅ > FeCl₃ > TeCl₂ > SnCl₄ > TiCl₄ > TeCl₄ > BiCl₃ > ZnCl₂. 28 other salts have no catalytic power at the b.p. of PhMe. In many cases >1 mol. of catalyst is required for max. yields, e.g., 3 mols. of TiCl4. Yields often decrease after too long contact, e.g., with SbCl₅ and AlCl₃ activated by HCl (not pure AlCl₃). PbCl₄ has slight catalytic effect but causes mainly chlorination; this is also the main reaction if SbCl₅ is added first to the PhMe and the yield of ketone is then 2% as against a max. possible ~67%.

Lignin and related compounds. LV. Synthesis and properties of β -hydroxypropioveratrone. LVI. Stability of lignin building units B-hydroxypropioveratrone. LVI. Stability of lignin building units and ethanol-lignin fractions towards ethanolic hydrogen chloride. K. A. West, W. L. Hawkins, and H. Hibbert. LX. Hydrogenation of maple ethanolysis products. I. L. M. Cooke, J. L. McCarthy, and H. Hibbert (J. Amer. Chem. Soc., 1941, 63, 3035—3038, 3038—3041, 3052—3056; cf. A., 1942, II, 42).—LV. 3:4:1-(OMe)₂C₄H₃·CO·[CH₂]₂·Cl (I) with Ag₂O in boiling H₂O gives β-hydroxypropioveratrone (II) (50%), m.p. 83—84°, converted by 4% KOH-MeOH at room temp. (20% yield) or boiling 2% HCl-MeOH (75% yield) into β-methoxy- (III), m.p. 70—71°, by boiling 2% HCl-EtOH into β-ethoxy- (IV) (96%), m.p. 50—51° (cf. A., 1939, II, 172), and by AcCl in C₅H₅N-C₆H₆ at 0° (90% yield) into β-acetoxy-propioveratrone (V), m.p. 100—101°. With KOAc-AcOH at 100°, (I) gives 70% of (V), which with ~3% KOH-MeOH or -EtOH at room temp. gives (III) (90%) or (IV) (10%), respectively, and with Na₂CO₃ in aq. dioxan at room temp. gives aβ-epoxypropioveratrone (60%), m.p. 93—94° (2:4-dinitrophenylhydrazone, m.p. 182—183°) [not reconvertible into (V)]. 72% H₂SO₄ at room temp. converts (II) into a lignin-like material. Conversion of (II) into (IV) under the conditions of ethanolysis of lignin renders it improbable that substances such as (II) occur as free lignin-building units in wood. substances such as (II) occur as free lignin-building units in wood.

LVI. Under the conditions of ethanolysis of lignin (boiling 2% HCl-EtOH-CO₂), α-hydroxy- or α-acetoxy-propiovanillone or -propiosyringone is converted into the corresponding α-OEt-ketone but the derived diketones are substantially unaffected. Admixture of OH-ketone and diketone does not affect the result. In all cases some resinification occurs, the amount increasing with rise in concn. of the ketone and being greater in the syringone than in the vanillone series. Interconversion of OH-ketone and diketone during ethanolysis of lignin is thus excluded and these two types must have different origins. Three maple EtOH-lignins are converted by boiling 2% HCl-EtOH into low-boiling oils and products of increased complexity (n), the extent of the conversion decreasing as the complexity of the lignin increases. Thus, the very complex polymerisedcondensation products formed during ethanolysis of wood may be derived from less complex polymerides or from monomeric com-

pounds initially present.

LX. With H₂-Cu chromite in dioxan at 250°/3000 lb., 4:3:1-OH·C₆H₃(OMe)·CO·CHMe·OEt gives 4-n-propylcyclohexanol (VI) and much H₂O with small amounts of MeOH and EtOH. Reaction proceeds by hydrogenolysis of OMe (and OEt) to OH + CH4 (and C2H6), hydrogenolysis of the new OH, and reduction of CO to CH2. That the yield of (VI) is only 78% may be due to hydrogenolysis of C·C linkings. The 4-n-propyleyelohexane-1: 2-diol obtained by hydrogenolysis of MeOH-lignin from aspen (Harris et al., A., 1938, II, 332) may be derived from syringyl components. Hydrogenation, II, 332) may be derived from syringyl components. Hydrogenation, as above, of 4- γ -hydroxy-n-propylcyclohexanol (VII) gives \sim 60% of (VI), so that the amount of γ -OH-compounds existing in lignin may exceed the small figure indicated by the yield of (VII) obtained from lignin (Harris et al., loc, cit.). (VII) is identified by oxidation (improved to give 50% yield) to β -4-ketocyclohexylpropionic acid, m.p. 62— 64° (semicarbazone, m.p. 201— 202°). p-OMe·C₆H₄·[CH₂]₂·CO₂Et and HI at 95° give p-OH·C₆H₄·[CH₂]₂·CO₂H (93%), m.p. 127— 128° , the Et ester of which is hydrogenated (Raney Ni; EtOH; 210° /200 atm.) to Et β -4-hydroxycyclohexylpropionate b. p. 114° /0-6 mm.

propionate, b.p. 114°/0.6 mm.

cis-trans Isomerides derived from 3: 3-diphenyl-1-hydrindone. Synthesis of 3:3-diphenylhydrindene and its derivatives. P. E. Gagnon and L. P. Charette (Canad. J. Res., 1941, 19, B, 275—290).

—3:3-Diphenyl-1-hydrindone with ArCHO in MeOH-KOH gives —3: 3-Diphenyl-1-hydrindone with ArCHO in MeOH-KOH gives the trans-isomeride only, which is converted into the cis-isomeride by boiling AcOH, with the exception of o-OEt·C₆H₄·CHO, where the cis-compound is obtained. The following are described: trans-3: 3-diphenyl-2-o-methyl-, m.p. 190° (cis-compound, m.p. 176°), -m-methyl-, m.p. 175° (cis-compound, m.p. 104°), -o-methoxy-, m.p. 216° (cis-compound, m.p. 182°), -p-methoxy-, m.p. 163° (cis-compound, m.p. 183°), -o-ethoxy-, m.p. 161° (cis-compound, m.p. 153°), -o-chloro-, m.p. 197° (cis-compound, m.p. 151°), and -p-chloro-benzylidene-1-hydrindone, m.p. 201° (cis-compound, m.p. 176°). Reduction (Clemmensen) then affords 3:3-diphenyl-2-o-, m.p. 132°, and -m-methyl-, m.p. 149°, -o-, m.p. 176°, and -p-methoxy-, m.p. 178°, -o-ethoxy-, m.p. 170°, and -o-, m.p. 160°, and -p-chloro-benzyl-hydrindene, m.p. 156°. 3:3-Diphenyl-2-benzylhydrindene has m.p. 179°.

F. R. S.

Acylation of the di-enolate of aδ-dimesitylbutane-aδ-dione. R. E Lutz, W. G. Reveley, and V. R. Mattox (J. Amer. Chem. Soc., 1941, 63, 3171-3174).-trans-aδ-Dimesityl-Δβ-butene-aδ-dione (I) with H₂-PtO₂ in Ac₂O containing ZnCl₂ and HCl gives αδ-diacetoxy-αδ-dimesityl-Δαγ-butadiene, dimorphic, m.p. 172° and 162·5° (unaffected by light in I-CHCl₃), which with MgMeI shows 0·18 active H, adds 3.3 MgMeI, and gives αδ-dimesityl-n-butane-αδ-dione (II). The cis-isomeride of (I) resists hydrogenation, but gives under the above conditions 70—75% of 3-acetoxy-2:5-dimesitylfuran. Direct acylation of (II) failed, but with MgMeI (MgPhBr) in Et₂O-N₂ (II) gives the dienolate, converted by AcCl into MgI·O·CX:CH·CH(COMe)·COX (X = mesityl), which spontaneously yields 3-mesityl-5-mesityl-2-methylfuran (III), m.p. 204°, and a little ? β-acetyl-α-acetoxy-αδ-di-mesityl-Δα-buten-δ-one (IV), m.p. 193°. In boiling 0·1N-NaOH-EtOH, (IV) gives the enol, m.p. 109—110° (red FeCl₃ colour), of β-acetyl-αδ-dimesitylbutane-αδ-dione, converted by Ac₂O-H₂SO₄ (drop) into (III). (III) is oxidised by HNO₃ to an enol, whence it is regenerated by Zn dust in boiling AcOH. The dienolate of (II) with B₂Cl₂C H -isoanyl ether gives dibengates m. p. 186:5° with BzCl-C₈H₈-isoamyl ether gives dibenzoates, m.p. 186:55 [hydrolysed to (II) by alkali] and 181° (hydrolysis leads to resins), respectively. O-Acetylation of (II) does not occur. R. S. C.

Acylation of the di-enolate of β-phenyl-αδ-dimesitylbutane-αδ-dione. R. E. Lutz and W. G. Reveley (J. Amer. Chem. Soc., 1941,

63, 3175—3178).—MgPhBr and (:CH·COMes)₂ (Mes = mesityl here and below) give a dienolate (I), MgBr·O·CMes:CH·CPh:CMes·O·MgBr, also formed from COMes·CH₂·CHPh·COMes and MgMeI. (I) is obtained similarly, but lest well, from MgPhBr and (cHBr·COMes)₂. With Action Et O. N. lest well, from MgPhBr and (cHBr·COMes)₃.

obtained similarly, but less well, from MgPhBr and (CHBr-COMes)₂. With AcCl in Et₂O-N₂ at $>0^\circ$, (I) gives $β\gamma$ -diacetyl-β-phenyl-αδ-dimesityl-n-butane-αδ-dione enol acetate (II), OAc-CMe:C(COMes)·CPhAc·COMes or OAc-CMes:CAc-CPhAc-COMes, m.p. 182°. With MgMeI at 100°, (II) gives 1 CH₄; in HCl-AcOH, (II) gives $β\gamma$ -diacetyl-β-phenyl-αδ-dimesityl-n-butan-αδ-dione enol (III), m.p. 181·5° (with MgMeI gives 1 CH₄), converted by Ac_2 O containing a little H₂SO₄ at room temp. into a compound, $Ca_2Ha_2O_6$, m.p. 214·5°, and not acetylated by any reagents. Boiling NaOH-EtOH causes C-deacetylation of (II) or (III), yielding 3-mesitoyl-4-bhenyl-causes C-deacetylation of (III) or (IIII), yielding 3-mesitoyl-4-bhenyl-causes causes C-deacetylation of (II) or (III), yielding 3-mesityl-4-phenyl-5-mesityl-2-methylfuran (IV), m.p. 113° (proof of structure: following abstract). Aq. 25% NaOH and (II) give (IV) and (probably) β -hydroxy- γ -phenyl-a δ -dimesityl- $\Delta\beta$ -butene-a δ -dione, m.p. 162.5°. R.S.C

R. S. C.

1: 4-Addition of magnesium methyl iodide to an αδ-unsaturated ketone system involving the ethylenic linking of a 2-aroylfuran, and ring-cleavage of the resulting vinyl allyl ether system. R. E. Lutz and W. G. Reveley (J. Amer. Chem. Soc., 1941, 63, 3178—3180).—
3-Mesitoyl-4-phenyl-5-mesityl-2-methylfuran with MgMeI-Et₂O at room temp. (20 min.) and later in boiling Prβ₂O-N₂ gives the dienolate (I), MgI·O·CMes:CPh·CBuv·CMes·O·MgI (Mes = mesityl), hydrolysed to β-phenyl-αδ-dimesityl-γ-tert.-butyl-n-butane-αδ-dione (II), m.p. 164·5°. Longer interaction in Et₂O alone gives, after hydrolysis, a compound, decomp. 125°, m.p. 176° (vac.). (II) is also obtained from COMes·CH:CBuv·COMes (III) and MgPhBr, but COMes·CH:CPh·COMes and MgBuvCl give only COMes·CH₂-CHPh·COMes. With MgMeI, (II) generates 1 CH₄ rapidly at room temp. and a second slowly at 100°. Treatment of (I) with 1- or Br-EtOH at −10° to 0° gives β-phenyl-αδ-dimesityl-γ-tert.-butyl-Δβ-butene-αδ-dione, m.p. 183°, which is also obtained from (III) by MgPhBr followed by EtOH-Br at −10° and with H₂-PtO₂ in EtOH-piperidine gives (II). R. S. C.

H2-PtO2 in EtOH-piperidine gives (II).

Stereochemistry of the enols and dienols of αδ-dimesityl-β-tert-butylbutane-αδ-dione. Proof of 1:4-reduction of an α-bromoketone. R. E. Lutz and W. G. Reveley (J. Amer. Chem. Soc., 1941, 63, 3180—3189).—Structures assigned below (discussed in detail) are proved by the reactions described. Isomeric monoenols are differentiated by letters a or b, and the position of the OH in the C₄-chain by numerals 1-4 (= $a-\delta$), e.g., a_1 , b_4 , etc. Dienols are differentiated as A, B, etc., the structure and position of the individual OH being added (when known) in parentheses, e.g., A (a_4); when both OH can be described, the A etc. may be omitted. Thus, the α - and δ -monoenolates-A and -B of $\alpha\beta\delta$ -trimesitylbutane- $\alpha\delta$ -dione the a- and δ -monoenolates-A and -B of $a\beta\delta$ -trimesitylbutane- $a\delta$ -dione (A., 1940, II, 178) become respectively a_1 , a_4 , b_1 , and b_4 , and the dienolates-A and -B become A (a_1a_4) and B (b_1a_4), respectively. 3-Mesitoyl-5-mesityl-2-methylfuran and MgMeI (6 mols.) in boiling Et₂O-Pr β_2 O-N₂ give the dienolate-A (a_4) (I; Mes = mesityl, here and below), hydrolysed by dil. HCl to $a\delta$ -dimesityl- β -tert.-butyl-butane- $a\gamma$ -dione enol- a_4 [- Δ^{γ} -buten- δ -ol-a-one] (II; X = H), m.p. 197° (vac.). (CH-COMes)₂ (III) and MgBu^{\gamma}Cl (5 mols.) at room temp. to -10° give a mixture of dienol and monoenolate- a_4 [(II), X =

Mes·C·O·MgI
(I.) H·C·C·Bu^γ
Mes·C·O·MgI H·C·CHBuγ·COMes Mes·C·OX

(II), X = H, and unaffected by CH2N2 or FeCl3, yields 1 CH4 MgCl]. (II), X = H, and unaffected by CH₂N₂ or FeCl₃, yields l CH₄ with MgMeI at room temp. and is then regenerated by hydroysis, and is converted by hot 2% KOH-MeOH into aδ-dimesityl-β-tert.butylbutane-aδ-dione (IV), m.p. 112° (with MgMeI liberates l CH₄ rapidly and a second slowly). With Br-EtOH, (II), X = MgI, at -10° gives γ-bromo-aδ-dimesityl-β-tert.-butylbutane-aδ-dione (V), decomp. 100—125°, which is stable to NaOAc-EtOH, is converted by MgMeI or MgMeBr at 0° into (II), X = MgHal and thence X = H, by Zn dust-AcOH-EtOH-H₂O into (IV), by NaHSO₃-EtOH-H₂O or H₂-PtO₂ into (II), X = H, by boiling KI-HCl-EtOH (14 hr.) into 2:5-dimesityl-3-tert.-butylfuran (VI), m.p. 132°, by boiling Ac₂O-containing a little H₂SO, into 4-bromo-2:5-diby boiling Ac₂O-containing a little H₂SO₄ into 4-bromo-2:5-dimesityl-3-tert.-butylfuran, m.p. 189° [also obtained from (VI) by Br-CHCl₃], and by boiling KOH-EtOH into αδ-dimesityl-β-tert.butyl-Δβ-butene-αδ-dione (VII), m.p. 115° [reduced to (VI) by Zn dust in AcOH]. (VI) is also obtained from (IV) by boiling HCl-AcOH. The dienolate-B (a_4) (VIII) is obtained from (II), X =

MgI·O·C·Mes H·C·C·Bu^{\gamma} MgI·O·C·Mes MgX·O·C·Mes H·C·C·Bu^γ Mes·C·O·MgX H·C·CHBuγ·COMes MgHal·O·C·Mes (VIII.)

MgHal, by MgMeI or MgMeBr, and characterised by alkaline hydrolysis to (IV), oxidation by I to (VII), and acid hydrolysis to (VI). The monoenolate- b_4 (? IX) is obtained from (IV) by MgMeHal and is reconverted into (IV) by hydrolysis. With MgMeI in boiling $\Pr_{\beta}O$, (IX) gives the dienolate-C (b_4) (X), which in I-EtOH gives (VII) and (VI), and with H_2O_2 , KOH-EtOH, or aq. HCl gives (IV).

Grignard reactions probably proceed by way of complexes, CCCR MgX or [from (V)] MgRX, which determine the steric course of the reactions. R. S. C.

R. S. C.

Reaction between cyclic β-diketones and Grignard reagents. 1:3-Diketo-2:2-dimethylhydrindene. T. A. Geissman and V. Tulagin (J. Amer. Chem. Soc., 1941, 63, 3352—3356).—1:3-Diketo-2:2-dimethylhydrindene (1 mol.) with 0.25 mol. of MgPhBr in C₆H₆—Et₂O gives 75% of 1-hydroxy-3-keto-1-phenyl- (1), m.p. 141—142°, and with 3 mols. of MgPhBr gives 86% of 1:3-dihydroxy-1:3-diphenyl- (II), m.p. 141—142° [mixed with (I), 115—125°], -2:2-dimethylhydrindene; equimol. proportions give approx. equal amounts of (I) and (II). The structures of (I) and (II) are proved by oxidation by K₂Cr₂O₂-AcOH to ο-COPh·C₆H₄·CO₂H and by HNO₂ to ο-C₆H₄(COPh)₂, respectively. With HCl-ROH, (I) gives 3-keto-1-methoxy- (III), m.p. 160—162°, and 3-keto-1-ethoxy-, m.p. 135—136° -1-phenyl-2:2-dimethylhydrindene. MgPhBr in C₆H₆ converts (III) into the Me₂ ether (IV), m.p. 171·0—171·3° (lit. 172—174°), of (II). With MeOH—HCl, (II) or (IV) gives a Cl-compound, m.p. 172—174° (decomp.), which in boiling MeOH gives 1:3-epoxy-1:3-diphenyl-2:2-dimethylhydrindene (V), m.p. 70°. With HCl-CaCl₂ in C₆H₆, (II) gives 1:3-dichloro-1:3-diphenyl-2:2-dimethylhydrindene, m.p. 177—178°, converted into (V) by boiling MeOH. Attempts to effect cleavage of (I) by MgPhBr (to give o-COPr^β-C₆H₄·CPh₂·OH) failed. The mechanism of cleavage is held diketones by Grignard reagents is discussed; such cleavage is held diketones by Grignard reagents is discussed; such cleavage is held

C:O MgX. to necessitate formation of an intermediate, C

Preparation of 2-methyl-3-n-hexadecyl-1: 4-naphthaquinone. Tishler and N. L. Wendler (J. Amer. Chem. Soc., 1941, 63, 3235--2-Methyl-5: 6:7:8-tetrahydronaphthalene, C₁₅H₃₁·COCl, 3236).—2-Methyl-5: 6: 7: 8-tetrahydronaphthalene, C₁₅H₃₁-COCl, and AlCl₃ in CS₂ give 3-n-hexadecoyl-2-methyl-, m.p. 53—55°, reduced (Clemmensen) to 2-methyl-3-n-hexadecyl-5: 6: 7: 8-tetrahydronaphthalene, m.p. 45°. S at 205—220° then gives 2-methyl-3-n-hexadecylnaphthalene, m.p. 38—40°, oxidised by CrO₃-AcOH at room temp. and later 60° to 2-methyl-3-n-hexadecyl-1: 4-naphthaquinone, m.p. 98—98:5° (quinol diacetate, m.p. 78—79°). The curative dose (vitamin-K; chicks; 18 hr.) is 0·2—0·3 mg. R. S. C.

Preparation and properties of phthiocol inner complexes. B. P. Geyer [with G. McP. Smith] (J. Amer. Chem. Soc., 1941, 63, 3071—3075).—2-Hydroxy-3-methyl-1: 4-naphthaquinone (I) and a metal salt in MeOH or aq. MeOH give chelated Co^{II} , Cu^{II} , Fe^{II} , Mg, Mn^{II} , Ni^{II} , UO_2 , Zn, and Fe^{III} derivatives (A), some of which separate +MeOH (lost at 150°). The ppts. always contain free (I) which is removed by sublimation. (A) are highly coloured, stable up to 200°, insol. in H_2O , Et_2O , $COMe_2$, n- C_3H_{11} ·COMe, or PhCl, somewhat sol. in MeOH, Bu OH, or PhNO₂, decomposed by HCl, NaOH, or dissolution in dioxan. The colour depends on the chelation but the exact position of the absorption max. (recorded) depends on the exact position of the absorption max. (recorded) depends on the Catalytic activity for the luminescence of luminol is evinced by (A) in the relative order, $Co \gg Cu > Fe^{II} > Fe^{III} > Ni > Mn$, the other derivatives being inactive. Details of this effect are studied mainly with the very active Co derivative. EtOH increases the effect but shortens its duration. An inorg, salt of the metal has no catalytic effect and extinguishes the light due to the organo-metallic R. S. C. complex.

IV.—STEROLS AND STEROID SAPOGENINS.

Preparation of Δ^8 -, $\Delta^{8(14)}$ -, and Δ^{14} -cholestenes.—See A., 1942, II,

Derivatives of sulphanilamide and cholic acid. G. A. D. Haslewood (Biochem. J., 1941, 35, 1307—1310).—Triformylcholyl chloride and p-NH₂·C₆H₄·SO₂·NH₂-C₅H₅N at 100° (1 hr.) yield N-phenylcholamide-p-sulphonamide, m.p. 244—246° (decomp.). Cholylhydrazine (I) and p-NHAc·C₆H₄·SO₂Cl (II)-C₅H₅N at 40° afford a product (III), decomp. >180° (softens ~160°), hydrolysed by boiling 2N-NaOH to (probably) ascholyl 8-p-aminober sensylthomylhydraxing 2N-NaOH to (probably) a-cholyl-β-p-aminobenzenesulphonylhydrazine (IV), m.p. ~150°, decomp. >200°. (I), (III), or (IV) and boiling aq. NaOH give cholic acid, oxidised by CrO₃-AcOH to dehydrocholic acid, also obtained by oxidation of (III) or (IV). NHBz·NH₂ and (II) in C₅H₅N yield a-benzoyl-β-p-acetamido-, m.p. 219—220° (decomp.), and thence (aq. NaOH) -amino-benzenesulphonylhydrazine, m.p. 190—192° (decomp.).

A. T. P.

Preparation of unsaturated steroids from steryl sulphates. A. E. Sobel and M. J. Rosen (J. Amer. Chem. Soc., 1941, 63, 3536—3537). —K-cholesteryl sulphate (I) with RONa–ROH (R = n-C₆H₁₃·CHMe) at the b.p. (177°) gives 88% of pure $\Delta^{3:5}$ -cholestadiene, m.p. 79·5—80°, [α] $_{20}^{20}$ —123·2° in CCl₄. In absence of a solvent, (I) at 160° or 180° gives impure cholesterylene. With NaOBu^{α}-Bu^{α}OH at 120°, (I) gives the mixed salt, Na(C₂₇H₄₅)SO₄,2K(C₂₇H₄₅)SO₄, m.p. 174—178° (decomp.). With RONa–ROH (R = n-C₆H₁₃·CHMe) at 169°, K cholestanyl sulphate gives the salt, Na(C₂₇H₄₇)SO₄, K(C₂₇H₄₇)SO₄,

m.p. 234° (decomp.). In absence of NaOAlk hydrolysis is the main reaction. R. S. C.

147

Deoxycorticosterone β -glucoside tetra-acetate.—See A., 1942, II, 134.

Molecular rearrangement of 17-hydroxypregnane compounds. H. E. Stavely (J. Amer. Chem. Soc., 1941, 63, 3127—3131).—When 17-acetylenyl- Δ^5 -androstene-3: 17-diol is condensed with NH₂Ph in aq. HgCl₂ (A., 1940, II, 180), some of the anil is rearranged and resists hydrolysis (even after purification); however, interaction in C_6H_6 -H₂O at 60° gives mainly Δ^5 -pregnene-3: 17-diol-20-one (I), m.p. 174—176°, $[a]_D^{124} - 65\cdot 5^\circ$ in CHCl₃. Hydrogenation (PtO₂; EtOH) of (I) gives allopregnane-3: 17a: 20-triol (diacetate, m.p. 166—171°) (with HIO₄ gives, inter alia, isoandrosterone). KOHEOH converts (I) into Δ^5 -D-homoandrostene-3: 17a-diol-17-one (II). Activated (i.e., alkaline) Al_2O_3 similarly isomerises (I) in

 C_0H_0 , but gives a diol (III), m.p. $180-182^\circ$, $[a]_D^{24}-104^\circ$ in CHCl₃ (acetate, m.p. $174-176^\circ$, $[a]_D^{25}-98^\circ$ in CHCl₃), isomeric at $C_{(17a)}$ with (II). Oxidation of (I) by boiling Al(OPr $^\beta$)₃-cyclohexanone-PhMe and chromatography (Al₂O₃) of the product gives Δ^4 -D-homo-androsten-17a-ol-3: 17-dione $[C_{(17a)}$ as in (III)], m.p. 180° , $[a]_D^{25}+60^\circ$ in CHCl₃ (dioxime, m.p. 255°), stable to boiling 5% KOH-MeOH, which is also obtained from (III) by Al(OPr $^\beta$)₃-(?)cyclohexanone. Hydrogenation (PtO₂) of (III) in EtOH gives D-homo-androstane-3: 17: 17a-triol (IV), m.p. $259-261^\circ$ (mono-, sinters at 185° , mp. 190° , and tri-acetate, m.p. $247-250^\circ$), or in AcOH a triol (V), m.p. $272-274^\circ$, isomeric with (IV) only at $C_{(17)}$. Hydrogenation of (II) in EtOH gives similarly a triol (VI), m.p. $256-258^\circ$ [di-, m.p. $220-222^\circ$, and tri-acetate, m.p. 227° ; isomeric with (IV)

at C₍₁₇₀), or in AcOH a triol (VII), m.p. 280—282°, 298° (Fisher–Johns apparatus) (lit. 304°) [isomeric with (V) at C₍₁₇₀)]. HIO₄ oxidises (IV) in aq. MeOH to the keto-aldehyde (VIII), m.p. 150—152° (oxime, m.p. 188—191°, ? of an aldol condensation product; semicarbazone, m.p. 187°), which in boiling 5% KOH–MeOH gives a substance, m.p. 181—187°. HIO₄ does not affect (VI). CrO₃ oxidises (V) or (VII) to the same acid, C₂₁H₃₂O₄, m.p. 214—216°, 222—225° (Fisher–Johns apparatus) a±0° (Me ester, m.p. 103—105°) (Ruzicka et al., A., 1939, II, 327). R. S. C.

V.—TERPENES AND TRITERPENOID SAPOGENINS.

Complete syntheses of pinocamphone, pinonic acid, and α-pinene. G. Komppa, A. Klami, and A. M. Kuvaja (Annalen, 1941, 547, 185—194).—Successive treatments of verbanone (I) with Na and I in Et₂O give a dark brown oil, transformed by NaOH-EtOH into a product which does not afford a cryst. semicarbazone. Gradual addition of Br to (I) in CHCl₃ gives impure dl-bromoverbanone, b.p. 100—115°/3 mm., which regenerates (I) when boiled with KOH-EtOH. OBr' and (I) do not give a Br-compound. dl-Chloroverbanone, obtained by passing Cl₂ through a solution of (I) in CHCl₃ containing CaCO₃, is converted by NaOEt into (I) and by NaOBu into a liquid of ill-defined b.p. from which a semicarbazone could not be obtained; when boiled with NPhMe₂ or treated with Zn dust it regenerates (I). Oximinoverbanone is reduced (H₂-PtO₂-EtOH) to dl-aminoverbanol, m.p. 124° [hydrochloride (II), m.p. 253°; platinichloride, m.p. 255° (decomp.); Ac derivative, m.p. (anhyd.) 110—114°]; reduction with Zn dust and AcOH gives much less satisfactory results. Treatment of (II) with PCl₅ gives a stereo-isomeric amine, m.p. 111—114° (hydrochloride, m.p. 261°). l-Verbanone, [a]_D —36·34° (the substance is optically non-homogeneous), is converted by NaNH₂ in Et₂O followed by CO₂ into verbanone-carboxylic acid (III), m.p. 101—102° (decomp.), which loses CO₂ when preserved or, more rapidly, when warmed, and a cryst. compound, C₁₀H₁₁O₃N, m.p. 170—172°. With NH₂·CO·NH·NH₂ (III)

affords verbanonesemicarbazone. Reduction of (III) at a K-Hg cathode gives verbanolcarbaxylic acid, m.p. 144—145°. This loses H₂O when heated with Ac₂O, giving d-δ-pinenecarbaxylic acid, m.p. 123°, [a]_D +10·56° in CHCl₃, converted by SOCl₂ into the chloride (IV), b.p. 112—115°/7 mm., and thence (NH₃) into the amide, m.p. 142°. Activated NaNH₂ in PhMe at 90° and finally at 130° followed by conc. HCl transforms (IV) into l-pinocamphone (V), b.p. 212—214°, [a]_D -11·12° (semicarbazone, m.p. 226—228°). (V) is oxidised by aq. KMnO₄ to dl-pinonic acid (VI), m.p. 103° (semicarbazone, m.p. 203—204°). The transformation of (V) and (VI) into a-pinene has been described by Ruzicka et al. (A., 1921, i, 36, 796; 1924, i, 755).

Camphor, borneol, and allied substances. S. Yamada (Bull. Chem. Soc. Japan, 1941, 16, 239—251).—Catalytic oxidation of borneol (I) using one type of reduced Cu catalyst at 400° for 2 hr., or reduced Ni at 300°, affords 96 or 90% of camphor (II), respectively; isoborneol (III) yields similarly, 86 or 89% of (II), respectively. Catalytic (reduced Ni) reduction and rearrangement of (I), (II), and (III) at high temp. and pressures are studied; (II) is determined by semicarbazone process, and (I) and (III) are calc. from vals. of [a]p. (II) at 140—160°/80 atm. (initial pressure) yields almost equal amounts of (I) and (III); (I) at 170—190°/71 atm. gives only 1% of (III), and (III) at 130—150°/53 atm. yields 84% of (I), with traces of (II). Other experiments are carried out in presence of EtOH, AcOH, C₅H₅N, or cyclohexane. aa'-Dimethylcamphor (IV) and Na-EtOH give dimethylborneol (V), m.p. 57°, [a]p²⁶ +50·72° in EtOH (phenylurethane, m.p. 112—113°; p-nitrobenzoate, m.p. 115—115·8°, [a]p²⁵ +50·94° in EtOH; phthalate, m.p. 177—178°, [a]p³ +16·32° in EtOH; Mg phthalate, m.p. 175—176·2°), and dimethylisoborneol (VI), m.p. 47—49°, [a]p⁶ +36·47° in EtOH [phenylurethane, m.p. 116—117°; p-nitrobenzoate, m.p. 114·5—115°, [a]p⁶ +24·9° in EtOH; phthalate, m.p. 173—174° (formed at 110—115°)]. (IV) is also reduced by H₂-reduced Ni in presence or absence of AcOH and EtOH, at 220—230°/60 atm., and the amounts of (V) and (VI) are ascertained; at 280°, some dehydration occurs.

Sapogenins. XII. Position of the carboxyl group in certain triterpene acids. P. Bilham, G. A. R. Kon, and W. C. J. Ross (J.C.S., 1942, 35—42).—Reduction (Clemmensen) of either Me β -boswellenonate or Me β -boswellenedionate gives Me β -boswellanate, m.p. 166—167°, [a]p +131·3° in CHCl₃, which could not be saponified. Similar reduction of the Me ester of dihydrobetulonic acid (I) affords Me dihydrobetulanate, m.p. 166—167°, saponified in very small yield to dihydrobetulanic acid, m.p. 293°, more conveniently prepared by reduction of (I). The abnormal behaviour of unimol. films of hedraganic acid is not attributable to collapse. Measurements on derivatives of β -boswellic, ursolic, and betulic acid, in which there are no polar groups apart from CO₂H, support the conclusion that in these compounds also the polar group is attached to a terminal ring. The constitution of these triterpenes is discussed.

F. R. S.

VI.—HETEROCYCLIC.

Benzcyclooctatetraenes. II. Action of acetic anhydride on δ-benzylidenelævulic acids. W. S. Rapson and R. G. Shuttleworth (J.C.S., 1942, 33—35).—δ-Benzylidenelævulic acid and Ac₂O give 2-keto-5-styryl-2: 3-dihydrofuran (I), m.p. 95·5° (cf. Sen and Roy, A., 1930, 1181), which is reduced (Pd-SrCO₃-H₂) to 2-keto-5-β-phenylethyltetrahydrofuran, b.p. 173—175°/7 mm. With the appropriate BzCl derivative (I) affords Bz₂, m.p. 177·5—178·5° (lit. 160°), di-o-chloro-, m.p. 159·5—160°, and di-o-iodo-benzoyl derivatives, m.p. 192—193°. In the OMe series, the following are described: 2-keto-5-p-methoxystyryl-2: 3-dihydrofuran, m.p. 115—115·5° (lit. 78°) (Bz₂ derivative, m.p. 170—171°), and 2-keto-5-β-p-methoxy-phenylethyltetrahydrofuran, b.p. 195—200°/5 mm. F. R. S.

Mechanism of oxidative fission of the furan nucleus. Furans with steric hindrance by one 2-aryl group. R. E. Lutz and W. P. Boyer (J. Amer. Chem. Soc., 1941, 63, 3189—3192).—trans-COMes-CH.CH-CO₂H (Mes = mesityl) [prep. from s-C₆H₃Me₃, (CH-CO)₂O, and AlCl₃ in (CHCl₂)₂; 62·5% yield], m.p. 134—137°, with PCl₅ and then AlCl₃ in C₆H₆ gives trans-COMes-CH:CH-COPh (38—48%), m.p. 60—61°, which does not give the cis-isomeride in light, absorbs >1 H₂ (Raney Ni) and after absorption of 1 H₂ gives compounds, m.p. 202·5—203·5° and [? a-phenyl-δ-mesityl-butan-a(or δ)-ol-δ(or a)-one], m.p. 86—87°, and with Na₂S₂O₄ in boiling 70% EtOH gives a-phenyl-δ-mesitylbutane-aδ-dione, m.p. 52—53°. With warm SnCl₂-conc. HCl-AcOH this gives 2-phenyl-5-mesitylluran, m.p. 30·5—31°, whence only oils are obtained by HNO₃-AcOH. p-C₆H₄Br·CO·CH:CH·COCl, m.p. 100—102°, with s-C₆H₃Me₃-AlCl₃-(CHCl₂)₂ gives trans-a-p-bromophenyl-δ-mesityl-Δβ-butene-aδ-dione (79%), m.p. 96—97°, converted by Sunlight in C₆H₆ into the cis-isomeride (I), m.p. 77·5—78°, reduced by Na₂S₂O₄-70% EtOH to a-p-bromophenyl-δ-mesitylbutane-aδ-dione (II), m.p. 99·5—100°, and reduced and cyclised by SnCl₂-conc. HCl-AcOH to 2-p-bromophenyl-5-mesitylfuran (III), m.p. 84° (or, in a preheated bath, 78°, resolidifies, remelts at 84°) [obtained also similarly from (II)]. HNO₃-EtCO₂H at −12° to −3° oxidises (III) to (I). 3-Mesitoyl-4-

phenyl-5-mesityl-2-methylfuran (IV) is oxidised by HNO3-AcOH at 40 —45° (cf. A., 1942, II, 144) to γ-mesitoyl-β-phenyl-α-mesityl- 40 -heneral-al-dione, m.p. 133·5—134·5°, which is converted by acid into intractable products, by boiling 5% NaOH-EtOH into another substance, and by Na₂S₂O₄-70% EtOH, H₂-Raney Ni-EtOH, or SnCl₂ into (IV). These and previous results indicate that HNO₃oxidation proceeds by the steps

Condensation of allylic alcohols with hydroxyquinones. Fieser and M. D. Gates, jun. (J. Amer. Chem. Soc., 1941, 63, 2948—2953).—2:5:1:4-(OMe)₂C₆H₂(OH)₂ [not 1:2:4:5-C₆H₂(OH)₄] and phytol (I) with anhyd. H₂C₂O₄ in dioxan-N₂ at 78° give a mixture, whence 2-methoxy-5-phytyl-p-benzoquinone, an orange oil mixture, whence 2-methoxy-5-phytyt-p-tenzoquinone, an orange on, is isolated by chromatography (light petroleum; $MgSO_4$) etc. This gives a pale yellow oily quinol diacetate and is formed by elimination of H_2O and MeOH from the primary product. 2:1:3:4- $C_{10}H_4Me(OH)_3$ (II), (I), and $H_2C_2O_4$ in dioxan at 93° or 81° give similarly vitamin- K_1 , identified as quinol diacetate, but the yield is < that from 2:1:4- $C_{10}H_4Me(OH)_2$ and a mixture is thus probably formed. CHPh:CH- CH_2OH and (II) give similarly the knowledge of the company of the second of the company of 3-cinnamyl-2-methyl-1: 4-naphthaquinone. Reduction of isonaphthazarin (prep. described; 27% yield) by Na₂S₂O₄ to the quinol and then condensation as above at 91° with (I), farnesol, or quinol and then condensation as above at 91° with (I), farnesol, or geraniol (III) gives 2-hydroxy-3-phytyl- (IV), m.p. 56·5—57·7° (quinol triacetate, an oil), -3-farnesyl- (V), an oil (oily quinol diacetate), and -3-geranyl- (VI), m.p. 110—111·5° (quinol triacetate, m.p. 111—112·8°), -1: 4-naphthazarin, isolation being tedious. The antihemorrhagic activity of (IV) is very great (effective chick dose ~50 μg.) and that of (VI) considerable. The structure of (V) is proved by its absorption spectrum [max. at 2520 (log E 4·26), 2800 (log E 4·19), and 3310 A. (log E 3·41) in EtOH], which very closely resembles those of lapachol, (II), and lomatiol. Cold, conc. H₂SO₄ cyclises (IV), (V), and (VI) to products of β-lapachone type, giving colourless NaHSO₃ derivatives: thus are obtained "β-phytolapachone" (VII), a red oil (nearly colourless chone," m.p. 232—234° [probably cyclised beyond the stage of (VIII)],

chone; m.p. 232—234° [probably cyclised beyond the stage of (VII)], and partly hydrated, impure "β-farnesolapachone." 1:4:5:8-C₁₀H₄(OH)₄ with (I) or (III) and H₂C₂O₄ as above at 91° give 2-phytyl- (VIII) and 2-geranyl-naphthazarin (IX), crimson oils. Et₂O extracts the Na salts of (IV), (VIII), and (IX) completely, mostly, and partly, respectively, from H₂O. M.p. are corr.

Dibenzfuran derivatives.—See B., 1942, II, 57.

Formation of partly acetylated flavone, flavanone, anthraquinone, and similar compounds. V. Simokoriyama (Bull. Chem. Soc. Japan, 1941, 16, 284—291).—The following derivatives are prepared from the respective OH-compound with Ac.O (5—10 mols.) and 2—3 drops of C₈H₈N: phloroglucinaldehyde 2:4-diacetate, m.p. 93—94°; gallacetophenone 3:4-diacetate, m.p. 78—81°; isosakuranetin 7-acetate, m.p. 173—175°, and 5:7-diacetate, m.p. 138—140° (formed in 5 or 30 min., respectively); hesperitin 7:3'-diacetate, m.p. 103—105°; chrysin 7-acetate, m.p. 160—165°; apigenin 7:4'-diacetate, m.p. 192—193°; acacetin 7-acetate, m.p. 203—208°; baicalein 6:7-diacetate, m.p. 194°; wogonin 7-acetate, m.p. 159—161°; kampferol 3:7:4'-triacetate, m.p. 177°; quevcetin 3:7:3':4'-tetra-acetate, m.p. 160—162°; myricetin 3:7:3':4':5'-penta-acetate, m.p. 189—190°; purpurin 2:4-diacetate, m.p. 175—178°. A. T. P. Formation of partly acetylated flavone, flavanone, anthraquinone,

Action of sulphur on hydrocarbons under high pressure.—See A., 1942, II, 125.

Thionaphthen derivatives.—See B., 1942, II, 56.

aβ-Unsaturated amino-ketones. V. Interaction of pyrrolidine and tetrahydroquinoline with bromine derivatives of benzylideneacetoand tetrahydroquinoline with bromine derivatives of benzylideneacetophenone. N. H. Cromwell (J. Amer. Chem. Soc., 1941, 63, 2984—2986; cf. A., 1941, II, 271).—CHPh:CBr-COPh and pyrrolidine (I) (not pyrrole) in light petroleum at -10° give a-bromo-a-pyrrolidino-β-phenylpropiophenone (II), m.p. 106—107° (decomp.; instantaneous), converted by NaOE-EtOH under reflux into a-pyrrolidino-β-phenylacrylophenone (III), m.p. 96—98°. CHPhBr-CHBr-COPh with (I) gives aβ-dipyrrolidino-β-phenylpropiophenone, m.p. 122—123° (hydrolysed slowly in cold 95% EtOH to PhCHO and some CH₂Ph-CO-COPh), and some (III). Tetrahydroquinoline with (II), z-bromo-g-morpholinos or -g-niperidino-β-phenylpropiophenone (0.5) ch₂-ra-CO-COPn), and some (III). Tetrahydroquinoine with (II), a-bromo-a-morpholino- or -a-piperidino-β-phenylpropiophenone (0·5 mol.) in EtOH at room temp. gives α-pyrrolidino-, m.p. 148—149° (decomp.), a-morpholino-, m.p. 153—154°, and α-piperidino-, m.p. 166—167° (hydrolysed by 15% H₂SO₄ at 100° to PhCHO and ω-piperidinoacetophenone), -β-tetrahydroquinolino-β-phenylpropiophenome

Reactions of anils. V. Reversibility of the reaction with acid anhydrides. H. R. Snyder and J. C. Robinson, jun. (J. Amer. Chem. Soc., 1941, 63, 3279—3280; cf. A., 1940, II, 87).—Maleanilic

acid (I) and CHPra:CEt·CHO (II) at 100° give 60-70% of 2-phenyl-5:7-diethyl-2-aza[2:3:1]dicyclo-Δ⁶-octen-3-one-8-carboxylic acid (III), m.p. 143—144°, also obtained (loc. cit.) less well from (CH·CO)₂O and CHPr^a:CEt·CH:NPh. The 5:7-Me₂ analogue, m.p. 157—158°, of (III) is similarly prepared by both methods. It m.p. 157—158°, of (III) is similarly prepared by both methods. It is, degraded by conc. NaOH to 3:5:1-C₆H₃Me₂·CO₂H. PhNCO decreases the yield of (III) from (I) and (II) but formation of (III) in its presence shows that free H₂O is not an essential intermediate in the reaction. (CH·CO)₂NPh does not condense with (II) and (I) does not react with (CH₂:CMe)₂. R. S. C.

Heterocyclic derivatives related to sulphanilamide. I. Quinoline analogue of sulphanilamide and [its] derivatives. H. Urist and G. L. Jenkins (J. Amer. Chem. Soc., 1941, 63, 2943—2944).—Di-5-nitro-8-quinolyl disulphide, m.p. 250—252° (decomp.), and conc. HNO₃ at 100° give 5-nitroquinoline-8-sulphonic acid (I), m.p. >211° (decomp.) (Na and benzylisothiocarbamide salt, m.p. 216·5—217·5°), the amide, m.p. 186—187°, of which is reduced by Fe powder in 50% AcOH to 5-aminoquinoline-8-sulphonamide, m.p. 261—265·5° (decomp.). The chloride, m.p. 104—106°, of (I) with 2-aminopyridine or -thiazole in dry C₅H₅N at 0° gives 5-nitroquinoline-8-sulphon-2'-pyridyl-, m.p. 249—250° (decomp.), and -2'-thiazyl-amide, m.p. 260—261° (decomp.), respectively. M.p. are corr. R. S. C.

Syntheses in the quinoline series. II. Derivatives of 4-methylquinoline. Their structure. III. Nitration of 2-chloro-4-methylquinoline. Preparation of 8-dialkylaminoalkylamino-2-hydroxy-4-methylquinolines. O. H. Johnson and C. S. Hamilton (J. Amer. Chem. Soc., 1941, 63, 2864—2867, 2867—2869; cf. A., 1938, II, 464).—II. 8-Nitro-4-methylquinoline (I) (modified prep.) and Raney Ni-H₂ in EtOH at 75°/45 lb. give 8-amino-4-methylquinoline, m.p. 84°, the diazonium chloride from which with Cu powder in boiling 84°, the diazonium chloride from which with Cu powder in boiling aq. HCl gives 8-chloro-4-methylquinoline (20%), m.p. 107°, obtained (54% yield) also from 2:8-dichloro-4-methylquinoline by Sn-HCl at 80°. With SeO₂ in boiling EtOH, (I) gives 53% of 8-nitro-quinoline-4-aldehyde, converted by EtNO₂ and a little NHEt₂ in abs. EtOH at room temp. into 8-nitro-4-β-nitro-α-hydroxy-n-propylquinoline (80%), m.p. 180—190° (decomp.; varies with the rate of heating), which with Raney Ni-H₂ in MeOH at 40 lb. gives 4-amino-4-β-amino-α-hydroxy-n-propylquinoline (51%), m.p. 82—84°. Quinoline-4-aldehyde reacts normally with MgMeI in Et₂O, giving α-4-quinolylethyl alcohol (II) (55%), m.p. 125° (picrate, m.p. 181°), which is unaffected by HCO₂H at 150°, is reduced to 4-ethylquinoline at higher temp., and is unaffected by 48% HBr at 100°. SOCl₂ converts (II) in boiling Et₂O into 4-α-chloroethylquinoline (III) (picrate, m.p. 180°), which resists the effect of alkali. 2-Hydroxy-

at higher temp., and is unaffected by 48% HBr at 100°. SOCI2 converts (II) in boiling Et2O into 4-a-chloroethylquinoline (III) (picrate, m.p. 180°), which resists the effect of alkali. 2-Hydroxy-4-bromomethylquinoline with boiling NaOMe-MeOH gives 2-hydroxy-4-methoxy- (78%), m.p. 171° (converted by POCI2 at 130° into 2-chloro-4-methoxy-methylquinoline, m.p. 64°), with boiling NH2Ph gives 2-hydroxy-4-anilino-, amorphous, m.p. 238—240°, and with p-OMe-CeH4NH2 in boiling n-CsH11. OH gives 2-hydroxy-4-p-anisidino-, m.p. 206—207°, -methylquinoline. The abnormal properties of (II) and (III) may be due to existence in "methylene" forms.

III. 2-Chloro-4-methylquinoline and H2SO4-HNO3 (d 1.5) at -5° and later room temp. give 2-chloro-8- (IV) (63%), m.p. 135°, and -6-nitro-4-methylquinoline (V) (12%), m.p. 212—213° (lit. 207°), the structure of which is proved by conversion into known compounds and by synthesis of (V) from 6-nitro-2-hydroxy-4-methylquinoline by boiling POCI3. With Raney Ni-H2 in MeOH-dioxan at 50°, (IV) and (V) give 2-chloro-8- (VI), m.p. 102°, and -6-amino-4-methylquinoline, m.p. 154°, respectively. 8-Chloro-2-hydroxy-4-methylquinoline (prep. in 12% yield from CH2Ac-CO·NH·C6H4Cl-o and H2SO4 at 65—70°, later 90°), m.p. 212° (lit. 230°), with POCI3 at 135° gives 60% of 2:8-dichloro-4-methylquinoline, m.p. 105° (lit. 87—88°), also obtained in 20% yield from (VI) by a diazo-reaction. Boiling 80% AcOH hydrolyses (IV) to 8-nitro-2-hydroxy-4-methylquinoline (92%), m.p. 196°, reduced by Raney Ni-H2 in COMe2 to 8-amino-2-hydroxy-4-methylquinoline, m.p. 300° (Ac derivative, m.p. 252°). With NaOH, MnO2, and a little Co2O3 in boiling MeOH, (IV) gives 8-nitro-, m.p. 119°, reduced to 8-amino-2-methoxy-4-methylquinoline (VII), m.p. 96° which is also obtained from (VI) by boiling NaOMe-MeOH Condensation of (VII) with Br-(CH2)x-NH2, HBr (x = 2 or 3) and NaOAc in boiling EtOH, followed by hydrolysis by boiling 20% HCl gives 8-β-diethylamino-2-hydroxy-4-methylquinoline, m.p. 116°. Quinoline-4-aldehyde hydrate and (VII) ethyl-, m.p. 140°, and 8-y-diethylamino-n-propyl-amino-2-hydroxy-4-methylquinoline, m.p. 115°. Quinoline-4-aldehyde hydrate and (VII) in boiling abs. EtOH give 8-4'-quinolylmethyleneamino-2-methoxy-4-methylquinoline, m.p. 144°. R. S. C.

Acid amides as hypnoties. IV. Barbituric acids. F. F. Blicke and M. F. Zienty (J. Amer. Chem. Soc., 1941, 63, 2991—2993; cf. A., 1942, II, 77).—The following are prepared. OPh·[CH₂]₂·CH(CO₂Et)₂, b.p. 215—218°/30 mm. CH₂Ph·CEt(CO₂Et)₂, b.p. 198—203°/32 mm. Et₂ β-phenylethylethyl-, b.p. 222—223°/45 mm., -n-, b.p. 220—225°/25 mm., and -iso-butyl-, b.p. 158—163°/2 mm., -a-phenylethyl-, b.p. 270—275°/58 mm., -malonate. OEt·[CH₂]₂·O·[CH₂]₂·CEt(CO₂Et)₂, b.p. 138—140°/2 mm. CH₂Ph·C(CH₂·OMe)(CO₂Et)₂, b.p. 189—192°/14 mm. Et₂β-phenylethyl-methoxymethyl-, b.p. 195—200°/18 mm., -ethoxymethyl-, b.p. 215—218°/23 mm., and -γ-phenoxy-n-propyl-, b.p.

A., II.—vi, HI

298—300°/38 mm., -malonate. Et₂ phenyl-ethoxymethyl-, b.p.
184—187°/14 mm., -butoxymethyl-, b.p. 195—200°/15 mm., -βmethoxyethyl-, b.p. 160—165°/6 mm., and -β-ethoxyethyl-, b.p.
190—193°/14 mm., -malonate. Et₂β-phenoxyethylethoxymalonate,
b.p. 225—230°/29 mm. 5-Benzyl- (C), new m.p. 211—212°, 5-a(C), m.p. 207—208°, and 5-β-phenylethyl-, m.p. 168°, 5-γ-phenyln-propyl-, new m.p. 129—130°, 5-δ-phenyl-n-butyl-, m.p. 140—141°,
5-ζ-phenyl-n-hexyl-, m.p. 94—95°, 5-β-cyclohexylethyl-, m.p. 170—
171°, 5-cinnamyl- (I), m.p. 94—95°, 5-methoxymethyl-, new m.p.
185—186°, 5-β-benzyloxyethyl-, m.p. 163—164°, 5-β-phenoxyethyl(C), new m.p. 185—186°, and 5-γ-phenoxy-n-propyl- (II), m.p. 123—
124°, -5-ethylbarbituric acid. 5-β-Phenylethyl-5-n-, m.p. 99—100°,
and -iso-propyl-, m.p. 191—192°, -altyl- (C), m.p. 151—153°, -n-,
m.p. 150—151°, -iso-, m.p. 193—194°, and -sec.-butyl-, m.p. 163—
164°, -β'-cyclohexylethyl-, m.p. 163—164°, -β'-cyclohexylethyl-, m.p.
166—167°, -a'-phenylethyl- (C), m.p. 241—242°, -methoxymethyl-,
m.p. 175—176°, -eihoxymethyl-, m.p. 180—181°, -β'-methoxyethyl(C), m.p. 164—165°, -β'-ethoxymethyl-, m.p. 190—211°, and -γpropoxy-n-propyl-, m.p. 124—125°, -barbituric acid. 5-Phenyl-5ethoxymethyl-, m.p. 230—231°, -butoxymethyl-, m.p. 182—183°, -βmethoxyethyl-, m.p. 210—211°, and -β-ethoxyethyl-, m.p. 196—197°,
-barbituric acid. 5-Benzyl-5-methoxy-n-propyl-, m.p. 143—144°,
-barbituric acid. 5-Ethyl-5-β'-methoxy- (C), m.p. 179—180°, -β-cyclohexylethyl-, m.p. 196—197°, and -γ-phenoxy-n-propyl-, m.p. 143—144°,
-barbituric acid. 5-Ethyl-5-β'-methoxy- (C), m.p. 179—180°, -β-cyclohexylethyl-, m.p. 196—197°, and -γ-phenoxy-n-propyl-, m.p. 143—144°,
-barbituric acid. 5-Ethyl-5-β'-methoxy- (C), m.p. 179—180°, -β-cyclohexylethoxyethoxy-, m.p. 96—97°, and -β-β'-butoxyethoxy-, m.p. 83—
84°, -ethylbarbituric acid. Hypnotic properties of the acids are
recorded. The most promising are (I), (II), and (III), which induce
very quiet sleep. Compounds marked (C) are convulsant.

R. S. C.

Barbitur

R. S. C.

Barbiturates containing large radicals. G. S. Skinner and A. P. Stuart (J. Amer. Chem. Soc., 1941, 63, 2993—2994).—Addition of RBr (1) in CH₂(CO₂Et)₂ (1) to CHNa(CO₂Et)₂ (1 mol.) in EtOH gives ~85% of Et₂ n-do-, b.p. 170—172°/2 mm., n-hexa-, b.p. 195—200°/1 mm., and n-octa-decylmalonate, b.p. 200—205°/1 mm., converted (method: A., 1937, II, 134) into a-carbethoxy-a-n-dodecyl-, m.p. 43·5°, b.p. 192—194°/? mm., -hexadecyl-, m.p. 49°, b.p. 225—230°/0·3 mm., and -octadecyl-, m.p. 55—56°, b.p. 233—238°/0·4 mm., -γ-butyrolactone, which, when added with CO(NH₂)₂ to NaOEt-EtOH at 10—15° and then gradually heated to 70°, give 81—83% of 5-β-hydroxyethyl-5-n-dodecyl-, m.p. 145°, -hexadecyl-, m.p. 147°, and -octadecyl-, m.p. 150°, -barbituric acid. Treatment with CHCl₃-70% HBr at 50—60° gives 5-β-bromoethyl-5-n-dodecyl-, m.p. 101·5°, -hexadecyl-, m.p. 102·5°, and -octadecyl-, m.p. 104·5°, -barbituric acid. Hot vapours of the lactones explode in air. R. S. C.

Pyrimidines. CLXXV. p-Sulphamylanilinopyrimidines. G. de Sütö-Nagy and T. B. Johnson (J. Amer. Chem. Soc., 1941, 63, 3234—3235).—p-NH₂·C₆H₄·SO₂·NH₂ and the appropriate halogenopyrimidine in EtOH give 2:6-di-p-sulphamylanilino-pyrimidine, m.p. 280—282°, and -4-methylpyrimidine, m.p. 218—220°, 6-p-sulphamylanilino-2-, m.p. 239—240°, and 2-p-sulphamylanilino-4-, m.p. 237—239° aminopyrimidine 239°, -aminopyrimidine.

antino-2-, m.p. 239—240°, and 2-p-sulphamylantino-4-, m.p. 237—239°, -aminopyrimidine.

R. S. C.

Sulphonamido-derivatives of pyrimidines. J. M. Sprague, L. W. Kissinger, and R. M. Lincoln (J. Amer. Chem. Soc., 1941, 63, 3028—3030).—M.p. in parentheses below are, successively, those of the N-p-NH₂°C₆H₄·SO₂ and N-p-NHAc°C₆H₄·SO₂ derivatives (prep. as usual) and are in italics if new. COMe°C₆H₁₃-n, HCO₂Et, and Na in Et₂O give n-C₄H₁₃·CO·CHNa·CHO, which with guanidine carbonate (I) in dry EtOH gives 11% of 2-amino-4-n-hexylpyrimidine (II), m.p. 93—94° (206—207°, 214—215°). COMePra, COMe₂, COPhMe, and cyclohexanone give similarly 2-amino-4-n-propyl- (III) (217—218°, 253·5—254°), -4-methyl- (230—231°, 245—246°), -4-phenyl- (268—269°, 274—275°), and -4:5-tetrahydrobenz-pyrimidine (252—253°, 255—256°). n-C₆H₁₃·CO·CH₂·CO₂Pra and (I) in dry EtOH at 130—150° give 2-amino-6-hydroxy-4-n-hexylpyrimidine, m.p. 199°, converted by POCl₃ at 100° into 6-chloro-2-amino-4-n-hexylpyrimidine, m.p. 61—62·5°, which with H₂-Pd-C in EtOH gives (II), thus confirming the structure thereof. n-C₆H₁₁·CHAc·CO₂Et and (I) at 140—160° give 6-hydroxy-2-amino-4-methyl-5-n-amylpyrimidine, m.p. 151·5—153°, and 2-amino-, m.p. 135—136° (215—216°, 182—183°), -4-methyl-5-n-amylpyrimidine. CHEtAc·CO₂Et gives similarly 2-amino-6-hydroxy-, m.p. 288—289°, 6-chloro-2-amino-, m.p. 156—157°, and 2-amino-, m.p. 166—167·5°, -5-ethylpyrimidine, thus proving the structure of (III). CHBua(CO₂Et)₂ gives similarly 2-amino-5-methylpyrimidine. CHMe(CO₂Et)₂ gives similarly 2-amino-5-methylpyrimidine, m.p. 89—90°, 4-amino-2-ethoxy-9-methylpyrimidine, m.p. 89—90°, 4-amino-2-ethoxy-9-methylpyrimidine, m.p. 170—171°, and 2-amino-, m.p. 127—128° (205—206°, 241—242°), -5-n-butylpyrimidine, m.p. 89—90°, 4-amino-2-ethoxy-9-methylpyrimidine, m.p. 109—110° (186—187°, 200—201°), are obtained from the Cl-compounds by NaOEt-EtOH. The following are also described, m.p. in parentheses being those of the N4'-Ac derivatives: 2-sulp derivatives: 2-sulphanilamidopyrimidine, m.p. 251-252° (254-

255°); 2-sulphanilamido-4: 6-dimethyl-, m.p. 175·5—176·5° (240—241·5°), -6-ethoxy-4-methyl-, m.p. 151—152° (244·5—245°), and -6-hydroxy-4-methyl-, m.p. 253·5—254°, -pyrimidine; 5-bromo-2-sulphanilamido-4-methyl-, m.p. 231—232° (261—262°), 4-sulphanilamido-2-ethylthiol-6-methyl-, m.p. 188—189° (208—209°), 2-p-nitrobenzenesulphonamido-4-methyl-, m.p. 230—231°, and 4-p-nitrobenzenesulphonamido-2-ethoxy-, m.p. 202°, -pyrimidine. The abovenamed sulphonamides are pharmacologically highly active.

Syntheses in the pyrazine series. IV. 2-Sulphanilamidopyrazine. J. W. Sausville and P. E. Spoerri (J. Amer. Chem. Soc., 1941, 63, 3153—3154; cf. A., 1940, II, 193).—The prep. of pyrazine-2:3-dicarboxylic acid, m.p. $(+2H_2O)$ 186° (decomp.), (anhyd.) 190° (decomp.) (first dissociation const. $1.7\pm0.4\times10^{-3}$), from quinoxaline is improved (66.8% yield). The 2-carboxylic acid has a first dissociation const. $1.2\pm0.3\times10^{-3}$. In boiling COMe₂-C₅H₅N 2-aminopyrazine and p-NHAc·C₆H₄·SO₂Cl give 2-N⁴-acetylsulphanilamido-(43%), m.p. 240—242°, and thence (hot 6N-HCl) 2-sulphanilamido-pyrazine (58%), m.p. 251—251-5°. R. S. C.

Indazole derivatives.—See B., 1942, II, 131.

Mechanism and kinetics of ring closure.—See A., 1942, I, 148. Triazines.—See B., 1942, II, 55.

Ammeline derivatives.—See B., 1942, II, 55.

Wing pigment of the butterfly. Methylation and mol. wt. of leucopterin. H. Wieland and P. Decker (Annalen, 1941, 547, 180—184; cf. A., 1933, 1310).—Leucopterin (I) is not attacked by CH₂N₂ in anhyd. Et₂O but addition of about 10% of aq. MeOH causes vigorous evolution of N₂ and production of a- (anhyd. and semi-hydrate), m.p. >300°, and β-, m.p. >300°, -trimethyl-leucopterin. Determinations of the mol. wt. of these substances in freezing PhOH show that (I) is NH·CO·C·NH·CO. Under similar conditions deiminoleucopterin gives an Me. derivative m.p. 230°, ditions deiminoleucopterin gives an Me. derivative m.p. 230°.

ditions deiminoleucopterin gives an Me_4 derivative, m.p. 230°. Passage of Cl₂ through (I) suspended in H₂O at 60—70° (cf. loc. cit.) yields oxalylguanidine, decomp. 245—260° according to the rate of heating in sealed tubes, m.p. >300° in open tubes, hydrolysed by cautious treatment with 2n-NaOH to $H_2C_2O_4$ and guanidine.

Chlorophyll. CV. Chlorination and nitration reaction of porphyrins and chlorins. H. Fischer and W. Klendauer (Annalen, 1941, 547, 123—139).—Gradual addition of 3% H₂O₂ to a solution of pyrroporphyrin in AcOH saturated with HCl gives tetrachloropyrroporphyrin (dihydrochloride), also obtained by use of conc. HNO₃ in place of H₂O₂; a slight excess of acid causes total decomp. The salt is transformed by Cu(OAc)₂ in boiling MeOH into the Cu salt of trichloropyrroporphyrin, m.p. >300°. Reaction with CuCN leads to ill-defined products. Treatment of byrroporphyrin Me ester leads to ill-defined products. Treatment of pyrroporphyrin Me ester hæmin with HCl and $\rm H_2O_2$ leads to a mono- and a di-chloropyrroporphyrin Me ester. Attempts to replace Cl by OH by AgOH, NaOH, etc. lead invariably to pyrroporphyrin, indicating that Cl is probably attached to tert. C. Cl₁- and Cl₂-compounds of other porphyrins are obtained by chlorination of the corresponding hæmins, the yield depending greatly on the solubility of the latter in AcOH. It is best to use fresh solutions and to moderate the temp. Protracted action leads to extensive oxidation and decomp. Deuterohæmin yields a well-defined chlorodeuteroporphyrin ester, m.p. 215°; there is spectroscopic evidence of a Cl₂-compound. Nitrophylloporphyrin (I) is brominated in AcOH at 50° to 6-bromonitrophylloporphyrin ester, m.p. 211°, identical with the product obtained by treatment of 6-bromophylloporphyrin with cold HNO₃. The successive action of cone. HNO₃ at room temp. and CH₂N₂ on pyrroporphyrin leads to nitrophyroporphyrin. Me ester m.p. 209°: pyrroporphyrin leads to nitropyrroporphyrin Me ester, m.p. 209°; the corresponding hæmin has m.p. >300°. Spectroscopic comparison of these compounds with (I) shows that NO₂ in (I) is not carried by y-Me. Deuteroporphyrin can be nitrated at room temp. and the product is isolated as nitrodeuteroporphyrin Me ester, m.p. 163°. Mesoporphyrin requires somewhat more vigorous treatment for its mesoporphyrin requires somewhat more vigorous treatment for its conversion into nitromesoporphyrin Me_2 ester, m.p. 165° ; it does not give a rhodin under the influence of conc. H_2SO_4 -oleum. Unexpectedly rhodoporphyrin is transformed by NaNO₂ and AcOH at room temp, followed by CH_2N_2 into nitrorhodoporphyrin Me_2 ester, m.p. 192° after softening at 285° (complex Cu salt, m.p. 220°), which could not be converted catalytically into the corresponding NH_2 -derivative. Nitrosation of phæoporphyrin a_5 Me_2 ester appears to yield an NO-compound, hydrolysed by the HCl (used in fractionation) to phæoporphyrin a_5 oxime: this is spontaneously fractionation) to phæoporphyrin a, oxime; this is spontaneously hydrolysed under the experimental conditions so that pheoporphyrin a_7 Me₃ ester is isolated after the treatment with CH₂N₂. Mesochlorin e_6 and conc. HNO₂ yield essentially chloroporphyrin e_5 . Under milder conditions (NaNO₂-AcOH) the main product appears to be dihydroxymesochlorin e_6 , m.p. 115°. H. W. to be dihydroxymesochlorin e, m.p. 115°.

Phthalocyanines.—See B., 1942, II, 58.

Oxazolines.—See B., 1942, II, 129.

2-Sulphanilamidothiazoline. G. W. Raiziss and LeR. W. Clemence (J. Amer. Chem. Soc., 1941, 63, 3124—3126).—Cl·[CH₂]₂·NH₂,HCl

(prep. in 99% yield from the OH-amine in CHCl₃ by HCl gas and later SOCl₂) or Br-[CH₂]₂·NH₂, HBr with KCNS gives 2-amino- Δ^2 -thiazoline (70%), m.p. 80—82°, which with 1 or 2 mols. of p-NHAc·C₆H₁·SO₂Cl in C₅H₅N-COMe₂ at <60° gives 2-N⁴-acetylsulphanilmido-3-N⁴acetylsulphanilamidothiazolidine, m.p. (+H₂O) 164—165° (gas) or (anhyd.) 205—206°. This is hydrolysed by boiling 10% aq. HCl to 2-sulphanilamidothiazoline [sulphathiazoline] [I) (~50%), shrinks at 207°, m.p. 209—210° (N⁴-Ac derivative, m.p. 256—258°), 2-sulphanilimido-3-sulphanylthiazolidine, m.p. 259—261° (lit. 265°), and 2-keto-3-sulphanylthiazolidine, m.p. 206—208°. The effect of (I) against types II and III Preumococcus is equal to that of sulphanylthiazolidine, m.p. 206—208°. against types II and III Pneumococcus is equal to that of sulphathiazole but is greater against Staphylococcus aureus.

Preparation of 2-amino-4-alkylthiazoles from esters of substituted 2-amino-4-thiazylacetic acids. W. M. Ziegler (J. Amer. Chem. Soc., 1941, 63, 2946—2948).—Addition of Br to CHRAc·CO₂Et at < 20° 1941, 63, 2946—2948).—Addition of Br to CHRAc·CO₂Et at <20° (subsequent manipulation at >35—40°) gives CH₂Br·CO·CHR·CO₂Et, oils, which with CS(NH₂)₂ (slightly >1 mol.) and H₂O at 0° give £t a-2-amino-4-thiazyl-n-butyrate (I) (42%), m.p. 104—105°, -n-hexoate (II) (33%), m.p. 79—80·5°, and -n-octoate (III) (45%), m.p. 100—101°. Hydrolysis of (III) by NaOH in hot 95% EtOH gives very rapidly the free acid (IV), m.p. ~125° (decomp.), obtained (70%) by acidification of the alkaline solution at 0° but converted by dil. HCl at 50—60° into 2-amino-4-n-heptylthiazole (V) (85%), b.p. 55—56·5°. 2-Amino-4-n-propyl- (VI) (78%), m.p. 27—27·5°, and -n-amyl-thiazole (VII) (68%), m.p. 45—46°, are similarly obtained from (I) and (II), respectively. p-NHAc·C₂H₄·SO₂Cl does not react with (I), (II), or (III) in COMe₂, C₃H₃N at 100°, or quinaldine at 175°, with (IV) in NaOH gives (V), but with (V), (VI), or (VII) gives 2-p-acetamidobenzenesulphonamido-4-n-heptyl-, m.p. 166— 167°, -n-propyl-, m.p. 182—183°, and -n-amyl-thiazole, m.p. 163—166°. M.p. are corr. (VII) gives 2-p-acetamidobenzenesulphonamido-4-n-heptyl-, m.p. 166-

Thiazoles. XXIV. Exchange reactions between 6-nitro-5-alkoxy-benzthiazoles and alcohols. H. H. Fox and M. T. Bogert (J. Amer. Chem. Soc., 1941, 63, 2996—2999; cf. A., 1939, II, 524).—6-Nitro-5-methoxybenzthiazole (I) with KOH-ROH gives 6-nitro-5-ethoxy-(II), m.p. 156°, -n-, m.p. 130—131°, and -iso-propoxy-, m.p. 123·5—124°, -n-butoxy-, m.p. 126—127°, -β-phenylethoxy-, m.p. 117·5—118°, -β-hydroxyethoxy-, m.p. 194—195°, and -cyclohexyloxy-, m.p. 114—115°, and -cyclohexyloxy-, m.p. 114°, and -cyclohexyloxy-, and -cyclohexyloxy-, m.p. 114°, and -cyclohexyloxy-, and -cyclohexylo 115°, -benzthiazole. Similarly, 6-nitro-5-methoxy-1-phenyl- gives 6-nitro-5-ethoxy-1-phenyl-benzthiazole, m.p. 158—159°. The re-6-nitro-5-ethoxy-1-phenyl-benzthiazole, m.p. 158-159°. The reaction is reversible, for (II) with KOH-MeOH regenerates (I). action is reversible, for (II) with KOH-MeOH regelerates (I). NH₂·[CH₂]₂·OH requires no KOH, for with (I) alone at 100° it gives 6-nitro-5-β-aminoethoxybenzthiazole, m.p. 206°. With boiling 10% aq. NaOH, (I) or (II) gives 6-nitro-5-hydroxybenzthiazole, m.p. 156—157° (K salt), which could not be alkylated. The lability of the Falkoxyl is due to the vic. NO₂, since 4-nitro-5-methoxybenzthiazole [prep. from 2:4:1-NO₂·C₆H₃(NH₂)·OMe], m.p. 184—184·5°, underdoes similar reactions, whereas the 3-NO₂-compound is converted into the disulphide, [2:3:5:1-NH₂·C₆H₂(NO₂)(OMe)·S]₂, by rupture of this thickels ring. M.P. are corrections. ture of the thiazole ring. M.p. are corr.

5-2'-Thienyl-5-ethylbarbituric acid. F. F. Blicke and M. F. Zienty (J. Amer. Chem. Soc., 1941, 63, 2945—2946).—Mg 2-thienyl bromide and solid CO₂ in Et₂O-C₆H₆ give thiophen-2-carboxylic acid and thence (SOCl₂) the acid chloride, which with CH₂N₂ gives 2-thienyl CHN₂ ketone, m.p. 67—68°, converted by Ag₂O-EtOH into Et. 2 thioxylacottet (D. (689)) b. p. 124, 1298°, 168°. acid and thence (SOC12) the acid chiefflow, converted by Ag₂O-EtOH 2-thienyl CHN₂ ketone, m.p. 67—68°, converted by Ag₂O-EtOH into Et 2-thienylacetate (I) (68%), b.p. 124—129°/26 mm. [corresponding Me ester, b.p. 115—118°/23 mm., and acid (II), m.p. 75—76°]. 2-Thienylmethyl chloride and NaCN in EtOH-H₂O give 2-thienylacetonitrile (60%), b.p. 115—120°/22 mm., hydrolysed by KOH-aq. EtOH to (II). Condensation of (I) with Et₂C₂O₄ by NaOEt-EtOH at 55° and heating the product with glass powder at 155—160°/20 mm. gives 38% of Et₂ 2-thienylmalonate, b.p. 145—148°/5 mm., which with NaOEt-EtBr-EtOH gives Et₂ 2-thienylethylmalonate (III) (64%), b.p. 148—150°/5 mm. Condensation of CO(NH₂)₂ and (III) by Mg(OMe)₂-MeOH gives 5-2'-thienyl5-ethylbarbituric acid (58%), m.p. 179—180°, which (as Na salt; rats) has min. lethal and hypnotic doses 200 and 100 mg. per kg. (calc. as acid), respectively.

Thiazole dyes.—See B., 1942, II, 58.

Colour and constitution. II. Absorptions of related vinylene-homologous series. L. G. S. Brooker, F. L. White, G. H. Keyes, C. P. Smyth, and P. F. Oesper. III. Absorption of 2-p-dimethylaminostyrylquinoline and its salts. Effect on absorption of a benzene ring in the chromophoric chain of dyes. IV. Absorption of phenolblue. L. G. S. Brooker and R. H. Sprague (J. Amer. Chem. Soc., 1941, 63, 3192—3203, 3203—3213, 3214—3215; cf. A., 1940, II, 292).—Figures in parentheses below are λ , followed by $\log \epsilon \times 10^4$, of the principal absorption max. in MeOH (unless otherwise stated). "Difference" is used for the difference (in A.) between λ of this max. for X·[CH.CH], Y and λ of the max. for X·[CH.CH], Y. λ of the absorption max. of an unsymmetrical substance, λ·Z·Y, less the mean λ of the absorption max. of the symmetrical substances, X·Z·X and Y·Z·Y, is termed the "deviation" (expressed

in A.). μ are dipole moments \times 10⁸. M.p. are corr.

II. For a series, $X \cdot [CH:CH]_n \cdot Y$, in which neither X nor Y carries an ionic charge, the "difference" (cf. above) is usually <500 A.

and decreases as the series is ascended; thus, λ of the absorption max. increases relatively slowly and blue colours are rare. When X or Y carries an ionic charge, the difference is ~1000 A. even for larger vals. of n and ascent of the series thus soon leads to deep colours. E.g., for cations (I),

(a) $o - C_6 H_4 < S_{N+E} + C - [CH:CH]_n \cdot NHPh \rightleftharpoons$

(b) o-C₆H₄ C:[CH·CH]_n:N+HPh, the difference is ~1000 for n = 0-4. For cations (II),

(a) $o\text{-}C_6H_4 < S_{N+E+} > C\text{-}[CH:CH]_n \cdot NAcPh \rightleftharpoons$

(b) $o-C_6H_4$ $\sim NEt$ $\sim C:[CH-CH]_n:N^+AcPh$, the difference is 620 (n=2—1) and 350 for n=3—2), intermediate between the two abovenamed types; this is due to the wide difference in basicity of the two N, rendering (IIa) much more stable than (IIb), so that resonance is decreased (i.e., the compound is less degenerate). For (I; n=2), the "deviation" (cf. above) is very small, indicating a degree of resonance approx. equal to that of the symmetrical dyes, i.e., very high. For (I) (n=0) or I, the deviation is larger, but not abnormally large. Results for deviations in the series o-C6H4 CH2 CH2 C [CH:CH], NHPh (III) are similar. The lower degeneracy of (II) compared with (I) accounts for (II) being always less deeply coloured than (I) for equal n. Treatment of salts corresponding to (I) with alkali gives (IV),

(a) o-C₆H₄ NEt C:[CH·CH]_n:NPh ⇌ (b) $o-C_6H_4 < S_{N+Et} > C \cdot [CH:CH]_n \cdot N-Ph$. NHPh is not very acidic, so that (IVb) is unstable and degeneracy is low; thus, (IV) are far less deeply coloured than their salts (I). In agreement with these views, deviations for (IV) (n=0-3) are successively 920, 540, and 370. The existence of (IVb) is confirmed by μ greatly exceeding the calc. vals. and by conversion at 100° by p-C₆H₄Me·SO₃Me etc. into salts (V), o-C. H4 S C. [CH:CH] NPhMe I-, the position of the Me in which is proved by synthesis of the tri-iodide corresponding with (V) (n=3) from NPhMe·CH[:CH-CH:], NPhMe)Cl (4490 A.; 8·1) and 1-methylbenzthiazole ethiodide in boiling Ac₂O. In accordance with theory, (i) absorptions of (\mathbf{V}) closely resemble those of (\mathbf{I}), except that max. are at slightly shorter λ (reason obscure), and deviation is very small, (ii) cations (\mathbf{VI}), o- $C_8H_4 < N+Et > C\cdot [CH:CH]_n \cdot N < (CH_2)_5$, are highly degenerate, differ-

ences (n = 0 - 3) being ~ 1000 and absorptions closely resembling those of (V), and (iii) the cation (VII),

o-C₆H₄<N+Et>C·[CH:CH]₂·NMe₂, is highly degenerate, absorption resembling that of (VI) (n = 2) and the deviation being very small. Degeneracy leads to stabilisation by resonance and consequently Degeneracy leads to stabilisation by resonance and consequently lower reactivity; thus, (II) reacts much faster than the more degenerate (V) or (VI) with 2-methylbenzthiazole ethiodide in boiling C_δH_δN or with 3-phenylrhodanine in boiling abs. EtOH-NEt₃, and (II) reacts faster than (V) with (VI) (elimination of piperidine). The following are prepared. 1-Phenylthiolbenzthiazole [from 1-chlorobenzthiazole (1 mol.), PhSH (2), and NEt₃ (2 mols.) at 100°], b.p. 183—187°/3 mm. [ethiodide (VIII), m.p. 167—168° (decomp.)]. 1-Ethylthiolbenzthiazole ethiodide, m.p. 115—117° (decomp.)]. 1-Anilino- (I) (n = 0) [from (VIII) by NH₂Ph (2 mols.) in boiling EtOH or, better, from 1-anilinobenzthiazole by EtI], cream-coloured, m.p. 197—198° (decomp.) (2985 A., 1·4), 1-β-anilinovinyl- (I) (n = 1) [from (II) (n = 1) and NH₂Ph in boiling EtOH), buff, m.p. 265—266° (decomp.) (4140 A., 5·5), 1-δ-anilino-Δαγ-butadienyl- (similarly prepared) (I) (n = 2), brown, m.p. 250—252° (decomp.) (5160 A., 10·7), and 1-ζ-anilino-Δαγ-hexatrienyl- (I) (n = 3), m.p. 161—163° (decomp.) (6125 A., 7·6), -benzthiazole ethiodide (IX) and NH:CH·NPh₂ in boiling Ac₂O or from (I) (n = 1) by Ac₂O-C₅H₅N],

(victoring) (0125 A., 70), relaximatoric ethiodide. Trib-Accidation vinyl- (II) (n=1) [from 1-methylbenzthiazole ethiodide (IX) and NH:CH·NPh₂ in boiling Ac₂O or from (I) (n=1) by Ac₂O-C₈H₅N], almost colourless, m.p. 231—233° (decomp.) (3640 A., 1·0), 1-δ-acetanilido- $\Delta^{\alpha\gamma}$ -butadienyl- (II) (n=2) [from (IX) and NHPh-CH:CH·CH·NPh,HCl in boiling Ac₂O or (I) (n=2)], brownish, m.p. 233—234° (decomp.) (4260 A., 3·5) (slowly hydrolysed in MeOH), and 1-ζ-acetanilido- $\Delta^{\alpha\gamma\epsilon}$ -hexatrienyl- (II) (n=3) [from (VIII) and CH₂(CH₂·CO·NHPh,HCl)₂ in boiling Ac₂O]. reddishbrown, m.p. 203—205° (decomp.) (4610 A., 4·4), -benzthiazoline ethiodide. 1-Anilo-2-ethyl-, colourless, m.p. 64—65° [3020 A., 1·1; μ 2·37±0·03 (calc. 1·6±0·6)], 2-ethyl-1-β-aniloethylidene-, amber (blue reflex), m.p. 98—99° (decomp.) [3940 A., 3·8; μ 4·17±0·12 (calc. 2·0±0·6)], 2-ethyl-1-δ-anilo- $\Delta^{\beta\epsilon}$ -hexadienylidene-, brown, m.p. 109—110° (decomp.) [4480 A., 5·9; μ 5·32±0·10 (calc. 2·0±0·6)], 2-ethyl-1-ζ-anilo- $\Delta^{\beta\epsilon}$ -hexadienylidene-, brown, m.p. 117—119° (decomp.) (4850 A., 6·8), -benzthiazoline (IV) (n=0-3), prepared from the appropriate (I) by NaOH-COMe₂-H₂O. 1-N-Methylanilino- (V) (n=0), colourless, m.p. 194—195° (2930 A., 1·3), and 1-δ-methylanilino- $\Delta^{\alpha\gamma}$ -butadienyl- (V) (n=2), orange-brown (green reflex), m.p. 236—238° (decomp.) (4965 A., 10·7)

[corresponding tri-iodide, green, m.p. 194—196° (decomp.)], -benz-thiazole ethoperchlorate. 1-β-Methylanilinovinyl-, yellow, m.p. 213—214° (decomp.) (4000 A., 4·6), and 1-ζ-methylanilino-Λαγ-hexatrienyl-, blue, m.p. 157—158° (decomp.) (5975 A., 13·3), -benzthiazole ethiodide (V). 1-Piperidinobenzthiazole ethoperchlorate (VI) (n = 0), colourless, m.p. 129—130° (2950 A., 0·8). 1-β-Piperidinovinyl-, cream, m.p. 274—277° (decomp.) (3880 A., 5·1), 1-δ-piperidino-Λαγ-buta-dienyl-, red, m.p. 205—207° (decomp.) (4830 A., 14·2), and 1-ζ-piperidino-Λαγ-hexatrienyl-, blue, m.p. 172—175° (decomp.) (5840 A., 21·8), -benzthiazole ethiodide (VI) (n = 1—3), prepared from (II) by piperidine in boiling EtOH. 2-β-Anilinovinyl- (prep. from quinaldine ethiodide and NH:CH·NPh₂ at 180°), amber, m.p. 282—285° (decomp.) (4430 A., 5·1), and 2-δ-anilino-Λαγ-butadienyl- (prepared similarly by NHPh-CH-CH-CH:NPh,HCl-Ac₂O and later NH₂Ph-EtOH), brown (blue reflex), m.p. 238—240° (decomp.) (5280 A., 9·5) [Ac derivative, m.p. 231—234° (decomp.)], -quinoline ethiodide (III) (n = 1—2). 1-δ-Dimethylamino-Λαγ-butadienylthiazole ethiodide (VI) [prep. as for (VI)], red, m.p. 244—246° (decomp.) (4820 A., CH₂

13·4). 3-Phenyl-5-β-2'-ethyl-1'-benzthiazolinylidenevinylrhodanine, m.p. 283—285° (decomp.).

o-C₆H₄ $\stackrel{S}{NEt}$ C:CH·[CH:CH]_n·C $\stackrel{S}{N+Et}$ C₆H₄-o}I⁻, n=0 (4230 A., 8-45) and 1 (5575 A., 14-8). {NHPh-CH[:CH:CH:]_nNPh}X, n=1 (3825 A., 5-0) and 2 (4850 A., 6-5). (X), n=0 (5235 A., 7-6) and 1 (6040 A., 19-4). NMe₂·[CH:CH]₂·CH:NMe₂}ClO₄ (4130 A., 4-8).

111. The yellow colour of 2-p-dimethylaminostyrylquinoline (XIa) (3960 A., 4·02) is due to resonance with the form (XIb). Its red methiodide (Rupe et al., A., 1936, 83) (5520 A., 5·78; in MeNO₂

$$\begin{array}{c} \text{CH}_2 \\ \text{CH}_2 \\ \text{C:CH:CH:Ce}_{\text{H}_4}\text{:}\text{hMe}_2 \end{array} & \begin{array}{c} \text{CH}_2 \\ \text{C:CH:CH:Ce}_{\text{e}}\text{H}_4\text{:}\text{hMe}_{\text{3}}\text{-}p} \end{array} \\ \text{CH}_2 \\ \text{C:CH:CH:CH:Ce}_{\text{H}_4}\text{:}\text{hMe}_{\text{2}}\text{-}p} \end{array} & \begin{array}{c} \text{CH}_2 \\ \text{C:CH:CH:Ce}_{\text{e}}\text{H}_4\text{:}\text{hMe}_{\text{3}}\text{-}p} \end{array} \\ \text{CH}_2 \\ \text{C:CH:CH:Ce}_{\text{e}}\text{H}_4\text{:}\text{hMe}_{\text{2}}\text{-}p} \end{array} & \begin{array}{c} \text{CH}_2 \\ \text{C:CH:CH:Ce}_{\text{e}}\text{H}_4\text{:}\text{hMe}_{\text{2}}\text{-}p} \end{array} \\ \text{NMe} \\ \text{I} & (\text{XII}_4.) \\ \text{CH}_2 \\ \text{C:CH:CH:Ce}_{\text{H}_4} \end{array} & \begin{array}{c} \text{CH}_2 \\ \text{CH}_2 \\ \text{C:CH:CH:Ce}_{\text{2}}\text{-}p} \end{array} \\ \text{CH}_2 \\ \text{C:CH}_2 \\ \text{C:CH:CH:CH:Ce}_{\text{1}}\text{-}p} \end{array} & \begin{array}{c} \text{CH}_2 \\ \text{CH}_2 \\ \text{C:CH:CH:Ce}_{\text{1}}\text{-}p} \end{array} \\ \text{CH}_2 \\ \text{C:CH:CH:Ce}_{\text{1}}\text{-}p} \end{array} & \begin{array}{c} \text{CH}_2 \\ \text{CH}_2 \\ \text{C:CH:Ch:Ce}_{\text{1}}\text{-}p} \end{array} \\ \text{NMe} \\ \text{CXIV.) I } \\ \text{I} & (\text{XII}_4.) \end{array}$$

5260 A., 5.9) owes its colour to the resonance (XII; $a \rightleftharpoons b$), and the isomeride (XIII) is colourless because resonance is impossible. However, the deviation of (XII) is very high (825 A.). This is not due to difference in basicity of the N, for the symmetrical analogues (XIV) (6040 A., 18.5; in MeNO₂ 6070 A., 13.3) and [p-NMe₂·C₆H₄·CH;C₆H₄;N+Me₂]X (XV) (in MeNO₂ 6100 A., 13.1) are blue and have very similar adsorption. Nor is it due to the aminoalkylidene side-chain, for (XVI) shows no deviation. It is due to the stability of (XIIa) being enhanced by the Kekulé forms of the C₆H₆ ring. This effect is not shown with (XV) as the resonance forms are equiv., but is operative in a homologue of (XII) [difference from (XI) 150 and from (XII) 360 A.] and in the benzthiazole series. The very slight degeneracy of (XI) is due to three causes: the C₆H₆ effect, the instability of >N- in the quinoline nucleus of (XIb), and the dipole nature of (XI) [μ 3·12 (calc. 2·6)]. The effect of a C₆H₆ ring on resonance is elaborated also for Michler's ketone, phenol-blue, auramine, and malachite-green. The aldehydic character of p-NMe₂·C₆H₄·[CH;CH]_n·CHO and non-aldehydic character of p-NMe₂·C₆H₄·[CH;CH]_n·CHO and non-aldehydic character of the effect on the deviation produced by a change in chemical structure is greater the more degenerate is the compound undergoing change, is postulated and illustrated. Among cyanine dyes in general substitution of 2-quinolyl by 1-benzthiazolyl lessens the colour. This substitution has no effect on very low deviation of the highly degenerate 2 : 2'-carbocyanines, but has an effect on the less degenerate (XII). For (XI) and its benzthiazole analogue, the lower basicity of benzthiazole renders the (XIb) form more stable and thus reverses the usual effect, deepening the colour; further, replacement of quinoline in (XI) by the much less basic 1 : 2-dimethylindole actually leads to a negative deviation (-95 A.; interpretation of the negative sign); but for the

of the nuclei is without effect and the deviation is negligible. The following are prepared by methods generally similar to those given above. 2-δ-Anilino-, brown (blue reflex), m.p. 231—232° (decomp.) (5285 A., 9-50), 2-δ-N-methylanilino-, dark, m.p. 205—207° (5150 A., 9-9), and 2-δ-dimethylanilino-, black (bluish reflex), m.p. 260—261° (decomp.), -Λ°2-buladienylquinoline methiodide (XVI). 2-δ-Anilo-Δβ-butenylidene-1-methyl-1: 2-dihydroquinoline, m.p. 101—102°. 2-δ-p-Dimethylamino-Δ°2-butadienylquinoline (from quinaldine and p-NMe₂·C₆H₄·CH·CH·CHO in conc. HCl at 100°), orange, m.p. 182—184° (decomp.) (4110 A., 4-0) [methiodide, green, m.p. 262—264° (decomp.) (5580 A., 4-9)]. 2-p-Dimethylaminostyrylbenzthiazole, yellow, m.p. 206—208° (decomp.) [4000 A., 2·81; μ 3·59 (calc. 2·2)] [ethiodide (5240 A., 6·5; in MeNO₂ 5280 A., 6·3)]. 1'-Methyl-3-n-propyl- (prep. from quinaldine metho-p-toluenesulphonate and 1-β-acetanilidovinylbenzthiazole n-propiodide in boiling C₅H₅N), m.p. 255—257° (decomp.) (5790 A.), and 3:1'-diethyl- (prep. similarly using 1-β-N-methyl- or 2-β-piperidino-vinylbenzthiazole ethiodide), green, m.p. 276—277° (decomp.) (5780 A., 13·6), and 3:3'-diethyl-(in MeNO₂ 5565 A., 13·1) -thia-2-carbocyanine iodide. 3-p-Dimethylaminobenzylidene-2-methylindolenine methoperchlorate, m.p. 183—185° (decomp.) (in MeNO₂ 5530 A., 4·35). NPhR·(CH:CH)₂·CH:NPhR}x, in which R = H (4850 A., 6·5) or Me (4490 A., 8·1). 3-1':2'-Dimethylindolenylmethylene-2-methylindolenine methodide (in MeNO₂ 4900 A., 5·3)

Me (4490 A., 8·1). 3-1 : 2-Dimethylindolenylmethylene-2-methylindolenine methiodide (in MeNO₂ 4900 A., 5·3).

IV. Phenol-blue owes its colour to resonance, (a) p-NMe₂·C₆H₄·N·C₆H₄·O-p \rightleftharpoons (b) p-N+Me₂·C₆H₄·N·C₆H₄·O-p, and has very high μ (5·80 \pm 0·17 in C₆H₅; calc. 2·4 \pm 0·5). The stability of (b) and thus the depth of colour is greatly dependent on the dielectric const. (ϵ) of the solvent; absorption max. are: in cyclohexane (ϵ 2) (reddish-violet solution) 5520, in COMe₂ (ϵ 21) 5820, in MeOH (ϵ 31) 6120, and in H₂O (ϵ 80) (deep blue solution) 6680 A. This effect is not shown by the symmetrical

This effect is not shown by the symmetrical p-NMe₂·C₆H₄·N·C

VII.—ALKALOIDS.

Calabash curare. III. H. Wieland, H. J. Pistor, and K. Bähr. IV. H. Wieland, K. Bähr, and B. Witkop (Annalen, 1941, 547, 140—155, 156—179; cf. A., 1938, II, 463).—III. The calabash contents are made into a stiff paste with H₂O and extracted with MeOH. The dried extract is dissolved in H₂O and the solution is completely pptd. with Reinecke acid. The dried ppt. is dissolved in 10 parts of COMe₂, the insol. brown matter is centrifuged, and the clear solution treated with 5 vols. of hot H₂O. The process is repeated until ~65% of the original material has been reprocess is repeated until \sim 65% of the original material has been removed. The pptd. reineckates are fractionated chromatographically (Al2O3) and the individual fractions are converted into hydrochlorides by successive treatments with Ag₂SO₄ and BaCl₂. Dissolution of C-curarine I hydrochloride (I) in conc. HCl leads to an intensely violet solution the colour of which is completely discharged by sufficient dilution with H2O. A distinct colour results with 20% HCl. (I) is chemically unchanged after several hr. but gradually undergoes decomp. The nature of the halochromism remains unexplained. (I) if moistened with Et2O and then dried in a vac. at room temp, has the composition G20H23ON2Cl, but after remaining in a vac. at room temp. until const. in wt. it is C20H21N2Cl. It remains uncertain whether H₂O of crystallisation is present since although the anhyd. salt acquires H₂O when recrystallised the corresponding hydriodide retains its complete H₂O content at 150°/ vac. At 100° only a small proportion of the Cl in (I) remains in vac. At 100 only a small proportion of the CI in (1) remains in ionic union, the greater part becoming attached firmly to C. The colour reactions of (I) are described. (I) is transformed by KOH-MeOH at 150° into the ether base (II), $C_{40}H_{42}ON_4$, m.p. 184°, thus indicating the possible presence of a quinoline or isoquinoline ring in (I). (II) affords a methiodide, m.p. 300°, which does not lend itself to the Hofmann degradation. At 200°, (II) passes into an isomeric base, m.p. >300° after darkening at ~280°. Hydrogenation of (II) by Na and boiling C_*H_{11} OH yields the H_* -base (III). ation of (II) by Na and boiling C₅H₁₁. OH yields the H₄-base (III), C₄₀H₄₆ON₄, m.p. 105—110° (decomp.) (methiodide), also obtained similarly from (I), whereas in AcOH containing PtO₂ the product is an octahydride, m.p. (indef.) 90—95° after softening at 80° (noncryst. methiodide), also obtained similarly from (II). (I) is immediately converted by Br-H₂O (1 mol.) into C-bromocurarine I hydrochloride, characterised by its great toxicity and converted by Ag₂O-Ba(OH)₂ into the brominated ether base, C₄₀H₄₀ON₄Br₂, which is pharmacologically inactive. (I) is transformed by HNO₂ (d 1·2) into C-nitrocurarine I nitrate, which is 20 times as toxic as the initial curare base. C-Curarine II is most conveniently purified through the picrate, m.p. 203—204° (corresponding perchlorate and platini-chloride). The hydrochloride is readily brominated and nitrated. The monosubstituted derivatives are much more toxic than the parent base but a (NO2)2-base is less active. C-Curarine III is best purified through the cryst. anthraquinonesulphonate, decomp. 308—310°, which is converted into the hydrochloride, decomp. 270—274°, [a]²⁰—936·9° in H₂O (corresponding picrate, m.p. 189°). This can also be obtained directly. It has no pharmacological activity. The pptd. reineckates (see above) contain the whole of the biologically active material. The mother-liquors yield curine, m.p. 212° (monohydrate and anhyd.), [a]20 -328° in C5H5N, identical with

that described by Boehm.

IV. Application of the modified method of isolation (see above) to calabashes from Urbana and Caracas leads to the isolation of C-dihydrotoxiferin I hydrochloride (IV), $C_{20}H_{23}N_2Cl$, $[a]_{20}^{20}-610\cdot6^\circ$ in EtOH, -605° in EtOH- H_2O (1:1), which has a more rapid and less prolonged physiological action than (I), from which it also less prolonged physiological action than (1), from which it also differs in the absence of halochromism; the corresponding sulphate, hydrobromide, darkens above 260° , and picrate $(+H_2O)$, m.p. $183-185^{\circ}$, are described. C-isoDihydrotoxiferin I is present in many calabashes with C-curarine I, which it completely resembles in activity; the hydrochloride, $(2_0H_{23}N_2Cl,3H_2O)$, $[a]_{20}^{20} - 566^{\circ}$ in H_2O , which gives a red-brown colour with conc. HNO_3 and does not with the lockromism with conc. HClexhibit halochromism with conc. HCl, the perchlorate, and picrate, decomp. 242° after softening at 200°, are described. It yields a NO₂-compound. C-Toxiferin II hydrochloride, [a]_D²⁰ +72·1° in H₂O [corresponding picrate, m.p. 215° (decomp.) when rapidly heated], is obtained from calabashes from Urbana and Caracas. If the picrate is decomposed in the usual manner with HCl, the product is the much less physiologically active toxiferin IIa hydrochloride (V), decomp. 275° after becoming brown at 250°, [a]_D²⁰ +66·3° in (V), decomp. 275° after becoming brown at 250°, $[a]_{15}^{15}$ +66·3° in H_{2} O; the corresponding picrate has m.p. 210° (decomp.). Contact with $Al_{2}O_{3}$ transforms this hydrochloride into toxiferin IIb hydrochloride (VI), slow carbonisation at >260° after becoming brown at 240°, $[a]_{20}^{20}$ +78·4° in H_{2} O [corresponding picrate, m.p. 215° (decomp.)], which has lower pharmacological activity. The isolation of (I) from the mother-liquors of (IV) is described. Toxiferin I hydrochloride, $[a]_{20}^{20}$ -610° in H_{2} O, activity 0·5 μ g. per frog (corresponding picrate, m.p. 270° after darkening), which gives a brownishgreen, non-characteristic colour with conc. HNO₃ and does not show halochromism with conc. HCl. toxiferin II bicrate. m.p. 216° show halochromism with conc. HCl, toxiferin II picrate, m.p. 216°, (V), and (VI) are also derived from Strychnos toxifera. The alkaloids from the latter source are therefore present in the calabashes of arrow poison but the residues from the aq. extract of the plant are pharmacologically less active than the prepared poison. Apparently the latter material is obtained from a great variety of plants.

Solanum alkaloids. I. Alkaloid from the fruit of S. aviculare. R. C. Bell and L. H. Briggs. II. Solasonine. L. H. Briggs, R. P. Newbold, and N. E. Stage. III. Alkaloids from S. auriculatum. R. C. Bell, L. H. Briggs, and J. J. Carroll. IV. Glycosidic moiety of solauricine. L. H. Briggs and J. J. Carroll (J.C.S., 1942, 1—2, 3—12, 12—16, 17—18).—I. The alkaloid, previously regarded as

purapurine, is solasonine (I).

II. Analyses support formulæ $C_{45}H_{73}O_{16}N$ for (I) (from S. sodomæum) and $C_{27}H_{43}O_{2}N$ for solasodine (II), and lead to the formulation of (I) as a trisaccharide containing rhamnose, galactose, and glucose units with one mol. of (II) (cf. Oddo et al., A., 1936, 488). (II) contains the steroid nucleus and has one OH in a cis-position II) contains the steroid nucleus and has one OH in a cis-position at $C_{(3)}$ and a double bond at $C_{(5)}$ – $C_{(4)}$. It forms an Ac derivative sol. in acids, give dihydrosolasodine, m.p. $208\cdot 5$ – $210\cdot 5^{\circ}$, $[\alpha]_D^{25}$ – $63\cdot 5^{\circ}$ in CHCl₃, on catalytic hydrogenation (Pd–C), and with Br–CHCl₃ or Br–AcOH followed by crystallisation from H_2O –EtOH–COMe₂–HBr gives a hydrobromide, C_2 ; $H_{43}O_2$ NBr,HBr, m.p. 302° (decomp.). Dehydration with HCl–EtOH affords $\Delta^{3:5}$ -solasodiene, which is hydrogenated (PtO₂– H_2) to hexahydrosolasodiene (dihydrochanosolasodan), m.p. 184– 186° , $[\alpha]^{25}$ – 18° in CHCl₃, formed by saturation of the normal double bonds and further by opening up of the heterocyclic rings. Similar hydrogenation of (II) gives tetrahydrosolasodine (dihydrochanosolasodanol). HNO₂ and (II) yield a solasodine (dihydrochanosolasodanol). HNO₂ and (II) yield a quaternary nitrite, m.p. 260·5—262·5° (decomp.), the "azosolasodine" of Oddo. MeI or EtI with (II) gives the hydriodide, and not the methiodide and ethiodide as suggested previously. The colour reactions of (II) and related compounds are given. Formula (I) is suggested for solasonine.

$$C_{6}H_{11}O_{4}\cdot O\cdot C_{6}H_{10}O_{4}\cdot O\cdot C_{6}H_{10}O_{4}\cdot O$$

$$HO$$

$$Me$$

$$HO$$

$$Me$$

III. Alcoholic extraction of the dried berries gives a glycoalkaloid, solauricine (III), $C_{45}H_{73}O_{16}N$, m.p. $269\cdot5-270^{\circ}$ (decomp.), hydrolysed to a mixture of sugars and solauricidine (IV), $C_{27}H_{43}O_{2}N$, m.p. $220-223^{\circ}$, $[a]_{20}^{25}-89\cdot8^{\circ}$ in MeOH [hydrochloride (+2H₂O), $[a]_{20}^{25}-68\cdot2^{\circ}$ in MeOH; sulphate (+0·5H₂O); hydriodide; picrate (+H₂O); and nitrite]. Evidence is adduced that (IV) is neither idential with experimental control of the identical with nor a dimorphic form of (II) but is extremely closely related to it physically and chemically; no structural differences have yet been found. From the juice of the green berries, a product, m.p. 269—270° (decomp.), has been isolated, which is hydrolysed to a mixture consisting mainly of (II) with some (IV). Both the latter bases occur in dimorphic forms, the respective pairs being indistinguishable.

IV. The glycosidic moiety of (III) consists of glucose, rhamnose,

and galactose.

Sinomenine. XLVII. (+)-Dihydrocodeine and (+)-dihydro-morphine from sinomenine. K. Goto and T. Arai (Annalen, 1941, morphine from smolledmes. R. Osto and I. Mai (Amatea, 1341, 547, 194—200).—(+)-Dihydrocodeinone (demethoxydihydrosinomeneine) is hydrogenated at room temp. in C_5H_5N containing PtO₂ to (+)-dihydrocodeine (I) (+2H₂O), m.p. 87—88°, (anhyd.) m.p. 110°, [a]₃° +146·4° in EtOH (methiodide, m.p. 257°, [a]₃° +80·1° in H₂O). Admixture of (I) with an equal quantity of its (—)-isomeride gives dl-dihydrocodeine, m.p. 105°, [a]₃° ±0° (methiodide, m.p. 257°). (I) is demethylated by boiling HI (d 1·7) to (+)-dihydromorphine, m.p. 159°, [a]₃° +151·5° in EtOH (hydrocide, m.p. 285°, [a]₂° +87·9° in H₂O; methiodide, m.p. 245°, [a]₃° +74·9° in H₂O). Similarly, (—)-dihydrocodeine gives (—)-dihydromorphine, m.p. 159°, [a]₃° -149·7° in EtOH (hydriodide, m.p. 285°, [a]₂° -85·8° in H₂O; methiodide, m.p. 245°, [a]₃° -75·1° in H₂O). dl-Dihydromorphine has m.p. 154° (hydriodide, m.p. 261°; methiodide, m.p. 267°). (I) and PCl₅ afford (+)-dihydrocohlorocodide (II), m.p. 173°, [a]₂° +177·2° in CHCl₃ (methiodide, m.p. 248°, [a]₁° +114·8° in EtOH). dl-Dihydrochlorocodide has m.p. 146°, [a]₃° ±0° (methiodide, m.p. 253°). Na in MeOH at 140° converts (II) into (+)-deoxycodeine C, m.p. 103°, [a]₂° +179·6° in MeOH (methiodide, m.p. 238°, [a]₁° 177·8° in EtOH (methiodide, m.p. 240°, [a]₁° 100° (methiodide, m.p. 253°) in EtOH (methiodide, m.p. 240°, [a]₁° 100° (methiodide, m.p. 253°). dl-Deoxycodeine C, m.p. 85°, [a]₂° ±0°, and its methiodide, m.p. 218°, are described. 547, 194-200).-(+)-Dihydrocodeinone (demethoxydihydrosinoare described.

VIII.—ORGANO-METALLIC COMPOUNDS.

Sulphophenylarsinic acids and their derivatives. V. 4'-Sulphoand 4'-sulphamyl-diphenyl-4-arsinic acids. J. F. Oneto and E. L. Way (J. Amer. Chem. Soc., 1941, 63, 3068—3070; cf. A., 1941, II, 178).—p-C₆H₄Ph·AsO₃H₂ (prep. from the amine by the Scheller reaction or as by-product in the prep. of AsPhO₃H₂ by the "Bart" reaction), m.p. >360° (derived di-iodoarsine, m.p. 109—110°), with reaction), m.p. >360° (derived di-lodoarsine, m.p. 109—110°), with 96% H₂SO₄ at 110—120° gives 4'-sulphodiphenyl-4-arsinic acid (I), anhyd. and +H₂O (Ba salt), or with ClSO₃H at <20° and later 100° gives 4'-SO₂Cl-C₆H₄·C₆H₄·AsO₃H₃-4 (II). In boiling H₂O, (II) gives (I), and with boiling 10% aq. NH₃ gives NH₄ H 4'-sulphamyl-diphenyl-4-arsinate and thence 4'-sulphamyldiphenyl-4-arsinic acid (III). The Na salt of (I) with 50% aq. HI and AcOH at room temp. gives Na 4-di-iodoarsinodiphenyl-4'-sulphonate, decomp. when heated, and thence by 10% aq. NH₃ the derived arsine oxide Na salt. In 50% HI and AcOH at 75—80°, (III) gives 4'-sulphamyl-diphenyl-4-di-iodoarsine, m.p. >200°, and thence the arsine oxide. Structures are proved by conversion of (I) by 50% HI at 100° into p-C₈H₂Ph·SO₃H, identified by conversion of its Cu salt by PCl, into the acid chloride.

IX.—PROTEINS.

New method of fractionation of proteins by electrophoresis convection. J. G. Kirkwood (J. Chem. Physics, 1941, 9, 878—879).—Fractionation of proteins electrophoretically is suggested and the theory of the method is outlined. Preliminary investigations with mixtures of ovalbumin and hæmoglobin indicated significant separ-W. R. A.

Partial acid hydrolysis of proteins, with reference to mode of linkage of basic amino-acids. A. H. Gordon, A. J. P. Martin, and R. L. M. Synge (Biochem. J., 1941, 35, 1369—1387).—Wool, edestin, and gelatin are partly hydrolysed by digestion with 10n-HCl at 37° for 139—192 hr., and the products are submitted to electrodialysis. A large proportion of the basic NH₂-acids have thus been isolated as dipeptides, in the case of arginine 80—92%. About $\frac{1}{3}$ of the residues are liberated as free NH₂-acids, so that basic NH₃acids are more resistant. Cystine in edestin is set completely free. The bearing of the results on protein structure is discussed.

Chemistry of insect cuticle. I. Anthropod cuticles and characterisation of their proteins.—See A., 1942, III, 247.

Supposed occurrence of hydroxyglutamic acid in milk-proteins.— See A., 1942, III, 315.

Methylaspartic acids and their methylation.—See A., 1942, II, 132.

X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES.

Lignin and related compounds .- LV, LVI, LX .- See A., 1942, II,

Lignin and related compounds. LVII. Mechanism of the ethanolysis reaction. LYIII. Mechanism of the ethanolysis of maple wood at high temperatures. W. B. Hewson, J. L. McCarthy, and H. Hibat high temperatures. W. B. Hewson, J. L. McCartny, and H. Hibbert. LXI. Hydrogenation of ethanolysis fractions from maple wood. II. L. M. Cooke, J. L. McCarthy, and H. Hibbert. LXII. High pressure hydrogenation of wood using copper chromite catalysts. I. H. P. Godard, J. L. McCarthy, and H. Hibbert. LXIII. Hydrogenation of wood. II. J. R. Bower, jun., J. L. McCarthy, and H. Hibbert (J. Amer. Chem. Soc., 1941, 63, 3041—3045, 3045—3048, 3056—3061, 3061—3066, 3066—3068; cf. A., 1942, II, 42).— LVII. Grinding maple wood before or during ethanolysis does not increase above the usual 30% the amount of H2O-sol., distillable oil (A) obtained. Repeated treatment of the wood for short periods with small amounts of HCl-EtOH removes nearly all the lignin. The EtOH-sol. lignin produced by ethanolysis is partly converted by HCl-EtOH into a less sol. lignin. Ethanolysis of lignin thus

consists of depolymerisation and subsequent partial polymerisation.

LVIII. Dry EtOH at 150°, 165°, 180°, or 200° extracts the lignin from maple wood only slowly. Addition of small amounts of NaOH or HCl very greatly accelerates the extraction at these temp. as well as at 78°. 1:1 aq. EtOH extracts much more than dry EtOH. wen as at 78. 1.1 aq. EtOH extracts much more than dry EtOH. H₂O at 165° is ineffective, but 2% aq. NaOH is very effective. The yields of (A) are less at high than at low temp. Thus, the EtOH-sol. unimol. compounds do not exist in lignin as such but rather combined with each other (e.g., as ethers) and possibly also with carbohydrates. Fission of these aggregates is due to H' or OH', the effect of H₂O being to increase the ionisation of EtOH etc., increase of the content of the increase of temp, and presence of an appropriate solvent facilitating the process. Formation of EtOH-sol. and -insol. lignins is subsequent to this fission.

LXI. H₂-Cu chromite converts the main maple EtOH-lignin fraction in dioxan at 250°/3400 lb. into H₂O 13·6, MeOH 5·0, EtOH 8·7, 4-n-propylcyclo-hexanol (I) 8·1, and -hexane-1: 2-diol 1·9, γ-4-hydroxycyclohexylpropan-a-ol (II) 3·3, a H₂O-insol. compound (III), b.p. 130—132°/1 mm., 2·1, and high-boiling resins 29·5%. Difference in the yield of (II) from that obtained from aspen MeOH-lignin (Harris et al., A., 1938, II, 332) indicates a possible difference in the yield of (III) from that obtained from aspen MeOH-lignin (Harris et al., A., 1938, II, 332) indicates a possible difference in structure. Similar experiments with other fractions indicate that ease of fission to propylphenol units increases with increasing solubility of the fraction. Probably these units are linked by C·O·C in the easily split and by C·C linkings (polymerisation) in the diffi-cultly split portions. The C·O·C linkings may be of acetal type.

LXII. H₂-Cu chromite converts spruce or maple wood in dioxan at 280°/3500 lb. entirely into colourless liquid products, including (I) 19.5 and (II) 5.8% (calc. on Klason lignin). The recovery of propylphenol units is calc. to be 36%.

LXIII. Maple wood holocellulose is hydrogenated (Cu chromite)

Comparison of the results with those of the preat 280°/3500 lb. ceding paper indicates that (I), (II), and (III) are derived from the lignin and that a fraction, b.p. 70—125°/20 mm., is derived from the protolignin. R. S. C.

XI.—ANALYSIS.

New form of chromatogram employing two liquid phases. I. Theory of chromatography. II. Application to micro-determination of higher monoamino-acids in proteins.—See A., 1942, I, 160.

Sample carrier for organic liquids.—See A., 1942, I, 159.

Disposal of acid fumes [in micro-Kjeldahl digestions].—See A., 1942, I, 159.

Micro-gasometric determination of nitrogen.—See A., 1942, III, 360.

Determination of total sulphur in organic liquids, using a semi-micro-method. E. B. Lisle (J.S.C.I., 1942, 61, 20).—The Scompound is oxidised to SO2 by passing the vapour of the compound mixed with O₂ or air over red-hot Pt gauze. The SO₂ is passed over filter-paper impregnated with Ni(OH)₂, which is converted into black Ni, the depth of colour being of amount of SO2 present.

Improved semimicro-determination of sulphur in organic materials. Peroxide-carbon fusion followed by a titration using tetrahydroxy-[benzo]quinone indicator. J. F. Mahoney and J. H. Michell (Ind. Eng. Chem. [Anal.], 1942, 14, 97—98).—The S compound is fused with Na₂O₂-sugar C, and the fused mass dissolved in 12N-HCl, neutralised with aq. 16N-NH₃, an indicator of tetrahydroxybenzoquinone-AgNO₃ added, and the mixture titrated with BaCl₂. 0.5-5 mg. of S can be determined rapidly and accurately.

Determination of mercury in organic compounds. Iodometric procedure based on the method of Rupp. H. A. Sloviter, W. M. McNabb, and E. C. Wagner (Ind. Eng. Chem. [Anal.], 1941, 13, 890—893).—The sample is digested with K2S2O8-H2SO4 and the HgSO4 produced is treated with KBr-KBrO4, followed by aq. KI and aq. NaOH. The Hg is now pptd. with aq. N2H4 in presence of Na₂CO₃-MgSO₄, and the Hg collected and dissolved in known excess of KBr-KBrO₃, KI added, and the excess of I titrated with Na₂S₂O₃. The high results obtained by Rupp's method, in which CH₂O is the reducing agent, are probably due to reduction of some I by HCO₂H produced from CH₂O during pptn. of Hg or by Cannizzaro reaction.

Colour reaction for sulphurous acid, the thiol group, and formaldehyde. A. Steigmann (J.S.C.I., 1942, 61, 18—19).—The dye resulting from the action of CH₂O on fuchsin-H₂SO₃ is much more resistant towards strong mineral acids than are plain fuchsin solutions, which are almost decolorised by conc. H₂SO₄. Addition of aq. CH₂O to such a discoloured solution produces but little change;

further addition of traces of aq. SO_2 develops an intense pink-violet colour. A diluted fuchsin solution containing much H_2SO_4 and some CH2O is therefore a delicate and simple reagent for H2SO3. Thio-acids can be used in place of H2SO3; the new reagent is therefore useful also for the detection of thio-acids. Decolorised fuchsin- $\rm H_2SO_4$ solution, with $\rm SH \cdot CH_2 \cdot CO_2H$ instead of $\rm H_2SO_3$, is furthermore a selective $\rm CH_2O$ reagent. The new reagents may be used in conjunction with Feigl's I-azide reagent for SH in mercaptans and thio-acids.

Identification of organic acids by use of p-bromobenzyl- ψ -thiuronium bromide.—See A., 1942, II, 129.

Determination of citric acid in pure solutions and in milk by the pentabromoacetone method. E. F. Deysner and G. E. Hoem (Ind. Eng. Chem. [Anal.], 1942, 12, 4—7; cf. Lampitt and Rooke, B., 1936, 1229).—Citric acid (I) is determined by oxidation with KMnO₄ in presence of KBr, which converts (I) into CBr₃·CO·CHBr, (II) the converted of the co (II), the former method being modified by using an excess of KMnO, to ensure complete oxidation. Data are presented on the solubility of (II) in H₂O, with consequent loss by washing, and on loss in wt. of (II) by drying. No abs. method of determining (I) can be prescribed, and the method must be standardised for each material analysed.

Determination of citric acid.—See A., 1942, III, 360.

New and highly specified colorimetric test for methionine. T. E. McCarthy and M. X. Sullivan (J. Biol. Chem., 1941, 141, 871--To 5 c.c. of the solution under examination are added successively 1 c.c. of 14·58·NaOH, 1 c.c. of 1% glycine (I), and 0·3 c.c. of 10% aq. Na nitroprusside with mixing after each addition. The mixture is heated at 35—40° for 5—10 min., cooled in ice-water for 2 min., and treated with shaking with 5 c.c. of HCl-H₃PO₄ mixture (9 vols. of conc. HCl + 1 vol. of 85% H₃PO₄). Shaking is continued for 1 mm., after which the solution is cooled in H2O at room temp. for 5—10 min. and the colour is matched against a standard solution of methionine (II) similarly treated. The use of conc. NaOH + (I) inhibits the colour due to histidine and HCl + H₃PO₄ gives a clearer colour than HCl alone. The reaction is highly sp. for (II) and is negative for all other NH2-acids found in the acid hydrolysates of protein. Methionine sulphoxide is negative, as are homocystine, cystine, and cysteine, but glycylmethionine is positive. If the solution is kept cold at the time of addition of the acid no colour reaction is given by tryptophan even if present in considerable amount. The application of the test to the determination of the content of (II) in casein and edestin is described.

Determination of choline. Photometric modification of Beattie's method. M. H. Thornton and F. K. Broome (*Ind. Eng. Chem. [Anal.*], 1942, **14**, 39—41).—The solution of choline (**I**) is pptd. with NH₄[Cr(NH₃)₂(CNS)₄] and the ppt. dissolved in COMe₂. The concn. NH₄[Cr(NH₃)₂(CNS)₄] and the ppt. dissolved in COMe₂. The concn. of the salt of (I) in the solution is determined photocolorimetrically. Concns. of (I) of 0.3—6.5 mg. per c.c. can be determined with a max. J. D. R. error of 2%.

Micro-determination of arginine. J. B. Dubnoff (J. Biol. Chem., 1941, 141, 711—716).—For complete separation of glycocyamine (I) and arginine (II) the salt concn. of the solution should be > 0.5%. If neither compound is present in amount >2 mg.-%, the salt concn. may be as high as 1%. Urine is usually diluted 5–10 times with $\rm H_2O$. Blood filtrates may be prepared by deproteinising according to Folin and Wu or by heat-coagulation at pH 6 after 1:10 dilution with H_2O . Tissue extracts are diluted to contain 1 g. of fresh tissue in 40 ml. of suspension. The p_H is adjusted to 6:0 and the suspension immersed in boiling H_2O for 10 min., cooled, and filtered. Analyses are carried out on the filtrates. 5 ml. of the solution to be analysed are passed through the permutit column and the small amount of (I) remaining in the column is removed with 5 ml. of 0.3% NaCl. The combined filtrates contain all the (I). (II) is eluted by passing 10 ml. of 3% NaCl through the column. A 2-ml. portion is cooled in ice and treated with 0.5 ml. of the ice-cold C₁₀H₇·OH-CO(NH₂)₂ solution; after 2 min. 0.2 ml. of ice-cold NaOBr solution is added. The colour is obsultaneously developed to the colour of the colour is contained to the colour of the oped in a series of standards containing 0, 0.25, 0.5, 1.0, and 2.0 mg.-% of (II). After 20 min. the development of colour is complete and remains stable for 2 hr. at 0°. The tubes are shaken for a few sec. to remove excess of gas, warmed to room temp., and the intensity of the colour is measured in a spectrophotometer or colorimeter with light of $\sim 0.525 \,\mu$. (yellow-green).

Determination of adenine. G. H. Hitchings and C. H. Fiske (J. Biol. Chem., 1941, 141, 827—835).—Adenine and, under certain conditions, guanine can be determined by pptn. with Na picrate and titration of the ppts. with standard NaOH. H. W.

Chlorosulphonic and as reagent for identification of alkylbenzenes. -See A., 1942, II, 136.

Photo-electric determination of nicotinic acid.—See A., 1942, III,

Determination of adenosine-5'-phosphoric acid and its homologues. —See A., 1942, III, 183.

INDEX OF AUTHORS' NAMES, A., II.

APRIL, 1942.

ADAMS, R., 138. Adams, R. R., 141. Airs, R. S., 127. Anderson, H. H., 139. Arai, T., 158. Arnold, R. T., 142. Autenrieth, J. S., 136.

Bahr, K., 156.
Baer, E., 129.
Balfe, M. P., 127.
Bank, H., 142.
Bell, R. C., 157.
Bemhard, K., 131.
Bilham, P., 148.
Bilcke, F. F., 150, 153.
Bogert, M. T., 153.
Bost, R. W., 128.
Bower, J. R., jun., 158.
Bowman, D. E., 140.
Boyack, G. A., 132.
Boyer, W. P., 148.
Briggs, L. H., 140, 157.
Brooker, L. G. S., 153.
Broome, F. K., 160.
Bullock, J. L., 136.
Butz, L. W., 142. BAHR, K., 156.

Caldwell, C. G., 134.
Carroll, J. J., 157.
Challenger, F., 137.
Chanan, H., 126.
Charette, L. P., 144.
Chi, Y. F., 139.
Clemence, LeR. W., 152.
Cohen, S. G., 141.
Coley, J. R., 127.
Connor, R., 129.
Cook, N. C., 131.
Cooke, L. M., 143, 158.
Cope, A. C., 130, 133.
Cosby, J. N., 125.
Cromwell, N. H., 149.
Crouch, W. W., 141. Crouch, W. W., 141.

DAKIN, H. D., 132. De Ath, G. C., 140. De Benneville, P. L., 129. De Benneville, P. I., 129
Decker, P., 152.
Dermer, C. C., 137, 143.
Dermer, V. H., 143.
De Stife-Nagy, G., 151.
Dewey, B. T., 129.
Deysner, E. F., 160.
Diuguid, L. I., 136.
Derough, G. L., 128.
Dubnoff, J. B., 160.
Du Vigneaud, V., 131.

Еск, J. C., 137. Ellis, S. R., 140.

Fairbrother, F., 136. Feigenbaum, J., 139. Feldman, J., 142. Fieser, L. F., 149. Fischer, H., 152. Fischer, H. O. L., 129. Fisher, J. H., 134. Fiske, C. H., 160. Folkers, K., 128, 132. Foster, C. K., 139. Fox, H. H., 153. French, H. E., 142. Friedmann, W., 125.

Gagnon, P. E., 144.
Gates, M. D., jun., 149.
Gayler, C. W., 129.
Geissman, T. A., 146.
Geyer, B. P., 146.
Glass, H. B., 128.
Godard, H. P., 158.
Gorto, K., 158.
Graveley, W. G., 145.
Gray, W. H., 140.
Gross, P. M., 129.
Grummitt, O., 135.

Grummitt, Ó., 135.

Habeshaw, J., 139.
Haeckl, F. W., 126.
Haller, H. L., 137.
Halpern, E., 131.
Hamilton, C. S., 150.
Hardenbergh, E., 133.
Harris, S. A., 132.
Haslewood, G. A. D., 146.
Hauser, C. R., 130, 131.
Hawkins, W. L., 134, 143.
Haworth, W. N., 135.
Heath, R. L., 135.
Helber, C., 135.
Helferich, B., 133.
Hendrickson, R., 129.
Henne, A. L., 126, 127.
Hewson, W. B., 138.
Hibbert, H., 134, 143, 158.
Hibtort, H., 134, 143, 158.
Hitchings, G. H., 160.
Hixon, R. M., 134.
Hobbs, M. E., 129.
Hodgson, H. H., 139.
Heem, G. E., 160.
Hofmann, C. M., 130, 133.
Hofmann, C. M., 130, 133.
Hofmann, C. M., 130, 133.
Hollingsworth, E. W., 137.
Hudson, B. E., jun., 130, 131.

Huntress, E. H., 136.

ISOBE, C., 127.

Jang, C. T., 139. Jenkins, G. L., 150. Johnson, F. M., 143. Johnson, O. H., 150. Johnson, W. S., 134. Joshel, L. M., 142.

Kenyon, J., 127. Kerr, R. W., 135. Keyes, G. H., 153. King, J., 137. Kircher, J. E., 142. Kirkwood, J. G., 158. Kissinger, L. W., 151. Klami, A., 147. Kleende, R. D., 140, 141. Klendauer, W., 152. Komarewsky, V. I., 127. Komppa, G., 147. Kon, G. A. R., 148. Kuvaja, A. M., 147.

Lawson, E. J., 132. Le Rosen, A. L., 126. Levy, H., 133. Liggett, R. W., 142. Lincoln, R. M., 151. Lindblad, K., 128. Linschitz, H., 129. Lisle, E. B., 159. Lochte, H. L., 141, 143. Lotfield, R. B., 142. Lucas, C. C., 138. Lutz, R. E., 144, 145, 148.

Lutz, R. E., 144, 149, 148.

McCarthy, J. L., 143, 158.
McCarthy, T. E., 160.
McClelland, L., 138.
McIntosh, A. V., jun., 141.
McNabb, W. M., 159.
Malone, J. F., 159.
Malone, G. B., 128.
Marchant, C., 138.
Martin, A. J. P., 158
Mattox, V. R., 144.
Mclville, D. B., 131.
Michell, J. H., 159.
Miller, L. P., 134.
Mitchell, E. T., 136.
Mitchell, W. A., 133.
Myrbäck, K., 133.

Negishi, R., 127. Nelson, W. A. G., 135.

Neuberg, C. A., 139. Newbold, R. P., 157. Niederl, J. B., 137. Nightingale, (Miss) D., 136. Nucič, C., 135.

OESPER, P. F., 153. Oneto, J. F., 158. Oroshnik, W., 130.

Palfray, C. I., 129.
Parke, H. C., 132.
Patterson, T. S., 136.
Pauling, L., 126.
Peat, S., 135.
Percival, E. G. V., 135.
Pirkmaier, V., 135.
Pistor, H. J., 156.
Platt, B. C., 140.

RAIZISS, G. W., 152. Rangaswami, S., 135. Rapson, W. S., 148. Reid, E. E., 128. Reveley, W. G., 144, 145. Richmond, J. H., 131. Robinson, J. C., jun., 149. Rosen, M. J., 146. Ross, W. C. J., 148. Russell, A., 128.

Russell, A., 128.

SAH, P. P. T., 139.
Samec, M., 136.
Sammons, H. G., 143.
Sausville, J. W., 152.
Schechter, M. S., 135.
Schnik, N. F., 135.
Schmitt, J., 126, 137.
Schnik, N. F., 135.
Schmitt, J., 126, 137.
Schneider, A., 141.
Schnoor, H., 133.
Seshadri, T. R., 135.
Shasky, H. G., 129.
Shive, B., 141, 143.
Shulman, G., 139.
Shuttleworth, R. G., 149.
Skinner, G. S., 151.
Sloviter, H. A., 159.
Smith, G. McP., 146.
Smyth, C. P., 153.
Snyder, H. R., 141, 149.
Sobel, A. E., 146.
Sowden, J. C., 129.
Spoerri, P. E., 130, 152.
Sprague, J. M., 151.
Sprague, R. H., 153.
Stage, N. E., 157.
Stavely, H. E., 146.
Stenhagen, E., 128.

Steinhauser, H., 131.
Stevens, P. G., 131.
Stevenson, J. K., 127.
Stewart, H. W., 138.
Steigmann, A., 159.
Stiller, E. T., 133.
Strain, H. H., 130.
Stuart, A. P., 151.
Sullivan, M. X., 160.
Surnatis, J. D., 129.
Sutherland, L. H., 125.
Synge, R. L. M., 158.

TARBELL, D. S., 128. Taylor, B., 137. Taylor, P., 137. Thornton, M. H., 160. Tishler, M., 146. Towle, J. T., 138. Tulagin, V., 146. Turk, A., 126.

URIST, H., 150.

WADDLE, H. M., 129.
Wadsworth, F., 136.
Wagner, E. C., 159.
Walter, E. D., 134.
Wash, G., 143.
Way, E. L., 158.
Weaver, C., 128.
Weijlard, J., 133.
Weigarten, H., 137.
Weiss, J., 131.
Welsh, L. H., 137.
Wendler, N. L., 146.
Went, F. W., 126.
West, K. A., 143.
Whaley, A. M., 127.
Wheeler, W. R., 129.
White, F. L., 153.
Whitmore, F. C., 129, 131,
Wieland, H., 152, 156.
Williams, G., 125.
Williams, G., 125.
Williams, R. T., 140, 143.
Wilson, D. M., 143.
Wikop, B., 156.
Woodward, R. B., 142.
Wyckoff, C., 133. WADDLE, H. M., 129.

YAMADA, S., 148.

ZECHMEISTER, U., 126. Ziegler, W. M., 153. Zienty, M. F., 150, 153. Zuffanti, S., 129.