BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A., II.—Organic Chemistry

MAY, 1942.

I.—ALIPHATIC.

Alkylation of paraffins at low temperatures in the presence of aluminium chloride. H. Pines, A. V. Grosse, and V. N. Ipatieff (J. Amer. Chem. Soc., 1942, 64, 33—36; cf. U.S.P. 2,112,846, B., 1941, II, 31).—CHMe₃ and CH₂:CHEt in presence of AlCl₃ at —35° (apparatus described) yield 60% of C₈H₁₈ and 12% of C₁₂H₂₆. The former are identified by Raman spectra as CHMeEtBu' (a primary reaction product), CH₂PrβBu' and (CH₂Prβ₃) (formed by preliminary isomerisation of n- to iso-C₄H₈), and CHMePrβ₂ (formed by isomerisation of other octanes). CHMe₃ and C₃H₆ give similarly 42% of C₇H₁₆ and 20% of C₁₀H₂₂. The C₇H₁₆ are similarly shown to contain CHMeEtPrβ and some CH₂Prβ₂.

Production of isonaraffins—See B. 1942. II. 46.

Production of isoparaffins.—See B., 1942, II, 46. Photolysis of methyl bromide.—See A., 1942, I, 179.

Chlorination of chloroform to carbon tetrachloride in presence of ferric chloride.—See A., 1942, I, 177.

Separation of olefines from mixtures of hydrocarbons.—See B., 1942, II, 47.

Low-temperature polymerisation of isoolefines.—See B., 1942, II,

Production of hydrocarbons of high mol. wt. [from isobutene] .-See B., 1942, II, 47.

Structure and absorption spectra. III. Normal conjugated dienes. R. B. Woodward (J. Amer. Chem. Soc., 1942, 64, 72—75; cf. A., 1941, II, 195).—Absorption max. of normal conjugated dienes (i.e., those in which the ethylenic linkings are not in one ring) are accurately calc. by adding to λ_{\max} (217 m μ .) for (CH.CH₂)₂ 5 m μ . for each substituent and 5 m μ . for each exocyclic ethylenic linking. The substance previously (Booker *et al.*, A., 1940, I, 27) considered to be $\Delta^{3:8(9)}$ -normenthadiene probably consists mainly of the $\Delta^{-2:4(8)}$ -

Course of autoxidation reactions in polyisoprenes and allied compounds. II. Hydroperoxidic structure and chain scission in lowmolecular polyisoprenes. E. H. Farmer and D. A. Sutton (J.C.S., 1942, 139—148).—Progressive determinations of O₂ intake and 1942, 139—148).—Progressive determinations of O_2 intake and peroxidic O content and measurements of I val. show that in the autoxidation of squalene (I) (in C_6H_6), dihydrofarnesene (II), and dihydromyrcene (III), the primary reaction is the production of a hydroperoxide group, which in (I) and (II) reacts with double linkings giving OH-compounds and (to a small extent) scission products. Low O_2 intake is compatible with advanced oxidation of parts of the mol. Some subsidiary chain scission appears to occur at single linkings. (II) does not undergo any saturation occur at single linkings. (II) does not undergo any saturation during autoxidation. Reduction (Al-Hg + H₂O-Et₂O-EtOH) of the products from (III) yields a mixture containing hydroxy-, b.p. 90—103°/12 mm., and (mainly 1:2)dihydroxy-dihydromyrcene, b.p. (?) 115°/1 mm. (Cf. A., 1942, II, 170.)

Rubber, polyisoprenes, and allied compounds. I. Synthesis of low-molecular polyisoprenes of the rubber and squalene type. E. H. low-molecular polyisoprenes of the rubber and squalene type. E. H. Farmer and D. A. Sutton (J.C.S., 1942, 116—121).—Geranylacetone with MgEtBr in Et₂O yields dihydronerolidol (I), b.p. 137—140°/8 mm., dehydrated (KHSO₄) to dihydrofarnesene, b.p. 129—131°/11 mm. [trihydrochloride (II), m.p. 52°, also obtained from (I) and anhyd. HCl], which with Br in CHCl₃ yields an oil, and with O₃ gives COMe₂ and its peroxide, MeCHO, and AcOH, but no CH₂O, HCO₂H, or COMeEt. Dehydration (KHSO₄) of farnesol, reduction (Na + EtOH) of the product, and treatment with HCl yields a mixture of bisabolene trihydrochloride and (II). (I) with MgBr·[CH₂]₄·MgBr in Et₂O yields dihydroxydihydrosqualene, b.p. 220—235°/1 mm., which with HCl in Et₂O gives a mixture of the three hydrochlorides obtained similarly from squalene. A. LI.

Separation of divinylacetylene and ethinylbutadiene and purification of the latter.—See B., 1942, II, 47.

Identification of alcohols in aqueous solution. W. N. Lipscomb and R. H. Baker (J. Amer. Chem. Soc., 1942, 64, 179—180).— Aliphatic alcohols are isolated from aq. solution as 3:5-dinitrobenzoates by shaking with the acid chloride, aq. NaOAc, NaOH, and C_8H_8 -light petroleum at 0°. R. S. C.

Vapour-phase partial oxidation of ethyl alcohol.—See A., 1942, I, 161

iso- and n-Butyl alcohols from carbide.—See B., 1942, II, 45.

Oxychlorides of silicon and corresponding ethyl esters.—See A., 1942, I, 152.

Purification of glycols.—See B., 1942, II, 48.

Chain structure of linear polyesters. Trimethylene glycol series.— See A., 1942, I, 136.

(A) Structure of $(a\gamma\delta\zeta-)$ dibenzylidenedulcitol. (B) $(\beta\gamma)$ benzylidenedulcitol. (C) Second $\beta\gamma\delta\epsilon$ -dibenzylidenedulcitol. benzylidenedulcitol. (c) Second pyos-dibenzylidenedulcitol. (v) 1. Haskins, R. M. Hann, and C. S. Hudson (J. Amer. Chem. Soc., 1942, 64, 132—136, 136—137, 137—140).—(A) Fischer's dibenzylidenedulcitol (I) (modified prep.; A., 1894, 395) is proved to be the $\alpha\gamma\delta\zeta$ -compound. Pb(OAc)₄-AcOH attacks (I) very slowly. With Ac₂O-C₅H₅N or RCOCl-C₅H₅N, (I) gives the $\beta\varepsilon$ -diacetate, decomp. 265° -dichloroacetate, decomp. 228—229°, -dibenzoate (II), decomp. 265°, -aichtoracetate, decomp. 228—229°, -aichtoracetate, decomp. 285°, and -di-p-toluenesulphonate (III), m.p. 215° (decomp.). With Ac_2O -AcOH-(drop) H_2SO_4 , (II) gives dulcitol $\beta\epsilon$ -dibenzoate $\alpha\gamma\delta\xi$ -tetra-acetate, m.p. 157—158°. In boiling C_5H_5N , (III) is unchanged and $\beta\gamma\delta\epsilon$ -diisopropylidenedulcitol $\alpha\zeta$ -di-p-toluenesulphonate (IV) gives a $(C_5H_5N)_2$ compound, m.p. 199—200°. NaI-Ac $_2O$ has no effect on (III) but converts (IV) into the $\alpha\zeta$ -di-iodide. has no effect on (III) but converts (IV) into the $a\zeta$ -di-iodide. In boiling aq. N-HCl-dioxan, (II) gives dulcitol $a\zeta$ -dibenzoate (V) (15), dl-galactitol $a\delta$ -dibenzoate (29%), and a syrup (56%). With Na and then CH₂PhCl in boiling dioxan, (I) gives the $\beta\varepsilon$ -(CH₂Ph)₂ ether (VI), decomp. 246—250°, hydrolysed by boiling aq. N-HCl-dioxan to dulcitol $\beta\varepsilon$ -(CH₂Ph)₂ ether, m.p. 168—169°, which consumes 1 HIO₄, giving no CH₂O, and consumes 1 Pb(OAc)₄, giving dl-glyceraldehyde β -CH₂Ph ether (semicarbazone, m.p. 132—134°). (VI) is accompanied by some β -CH₂Ph ether, m.p. 164—165° (ζ -acetate m.p. 204—206°) acetate, m.p. 204-206°)

acetate, m.p. 204—206°).

(B) Passage of HCl into (V) and PhCHO gives βγδε-dibenzylidene-dulcitol a'_t-dibenzoate (VII), m.p. 119—120°, converted by Ac_O-AcOH-H₂SO₄ into dulcitol βγδε-tetra-acetate a'_t-dibenzoate (VIII) and by NaOMe-MeOH-CHCl₃ at 5° into 2:3:4:5-dibenzylidene-dulcitol (IX), m.p. 149—150°, the a'_t-diacetate (X), m.p. 168—169°, of which (prep. by Ac_O-C₅H₅N) is also obtained from dulcitol a'_t-diacetate by HCl-PhCHO.

(c) PhCHO, (V), and ZnCl₂ (pure) at 23—25° (not 60°) give only 17% of (VII) and 67% of a (? stereo) isomeride (XI), m.p. 147—148°. PhCHO-ZnCl₂ converts (XI) into (VII), and Ac_O-AcOH-H₂SO₄ gives (VIII). With NaOMe-MeOH-CHCl₃ at 5°, (XI) gives a βγδε-dibenzylidenedulcitol (XII), m.p. 173—174° [a'_t-diacetate, m.p. 167—168°, converted into (X) by PhCHO-ZnCl₂ at 60°]. (VII) and (XII) give a'_t-(CPh₃)₂ ethers, m.p. 184—186° and 240—242°, and (XII) give $\alpha\zeta$ -(CPh₃)₂ ethers, m.p. 184—186° and 240—242°, and $\alpha\zeta$ -di-p-toluenesulphonates, m.p. 167—168° and 175—176°, and thence (NaI-Ac₂O) $\alpha\zeta$ -di-todides, m.p. 127—128° and 162—163°, respectively. M.p. (all papers) are corr.

Use of Bunte salts in synthesis. III. Preparation of aliphatic disulphides. H. E. Westlake, jun., and G. Dougherty (J. Amer. Chem. Soc., 1942, 64, 149—150; cf. A., 1941, II, 184).—NaRS₂O₃ (prep. in situ) with I or H_2O_2 in aq. EtOH give R_2S_2 , yields being $R = Bu^a$ 57, 56, n-heptyl (b.p. 143—147°/5 mm.) 66, 65, n-octyl (b.p. 178—183°/5 mm.) 69, 52, n-dodecyl 35, ~70, and n-octadecyl 49%, —, respectively.

Aliphatic sulphinic acids. I. Analysis and identification. P. Allen, jun. (J. Org. Chem., 1942, 7, 23—30).—Mg alkanesulphinates, (RSO₂)₂Mg,2H₂O (R = Me to $C_{16}H_{33}$ inclusive), are obtained from the requisite Grignard reagent and SO₂. They are insol. in EtOH; the lower members are sparingly sol. in hot H_2O but the higher the lower members are sparingly sol. in hot H₂O but the higher ones are insol. They are very readily electrified by friction. They are stable in H₂O at room temp. for several days but are quickly oxidised when heated. The Na salts are obtained from the Mg compounds and Na₂CO₃ or NaOH or by neutralising the free sulphinic acid with Na₂CO₃. Owing to their ready oxidisability, they could not be obtained quite pure. Dry Na and Mg salts are stable in air. Titration of the salts with oxidising agents in acid medium leads to only ~80—90% of the theoretical vals. In alkaline solution they can be accurately titrated potentiometrically with KMnO₄ or Ca(OCI)₃. Another convenient method is to add an excess of Ca(OCI)2. Another convenient method is to add an excess of KMnO₄ to the alkaline solution followed by sufficient As₂O₃ to react with the MnO₂ and extra KMnO₄; the solution is acidified and, after disappearance of the MnO₂, is titrated with KMnO₄ to the colorimetric or potentiometric end-point. In neutral solution potentiometric titration gives results almost but not quite so good as those obtained in alkaline solution. The higher Mg salts require a preliminary digestion (40—60 min.) with dil. NaOH without or with an insufficiency of KMnO₄, after which the mixture is titrated hot to the potentiometric end-point. The Na salts are transformed by (CH₂Br)₂ in boiling EtOH into aβ-dialkylsulphonylethanes, (n-R·SO₂·CH₂·)₂, in which R = Me, m.p. 190°, Et, m.p. 136—137°, Pr^a, m.p. 159·3—160·3°, Bu^a, m.p. 179·2—180·2, amyl, m.p. 183·7—184·2°, hexyl, m.p. 177·5—178·5°, hetyl, m.p. 176—177·5°, octyl, m.p. 179·2—173·5°, nonyl, m.p. 175·5—173·5°, decyl, m.p. 169·9—170·9°, undecyl, m.p. 168·3—169·3°, dodecyl, m.p. 165·8—166·8°, tridecyl, m.p. 163·4—164·1°, tetradecyl, m.p. 150·9—161·9°, pentadecyl, m.p. 158·7—159·9°, hexadecyl, m.p. 154·6—155·8°. The requisite Na sulphinate and EtI in boiling EtOH afford Et undecyl, m.p. 76·5—77·5°, dodecyl, m.p. 75·0—76·0°, and hexadecyl, m.p. 77·0—79·0°, sulphone.

Manufacture of aliphatic acids and their anhydrides.—See B., 1942, II, 48.

Production of esters.—See B., 1942, II, 49.

Manufacture of β -chloropropionic acid.—See B., 1942, II, 49.

Hexoic acid esters.—See B., 1942, II, 49.

Synthesis of methylated fatty acids. A. K. Schneider and M. A. Spielman (J. Biol. Chem., 1941, 142, 345—354).—cycloHexanone and n-C₁₂H₂₅·MgBr afford 1-dodecyl-\(^1\)-cyclohexene (43\%) yield), b.p. 140—143\(^1\)-i.5 mm., oxidised by CrO₃-aq. AcOH to \(\text{e}\)-ketostearic acid (43\%) yield), m.p. 86·5—87\(^{\text{o}}\), reduced (Clemmensen) to stearic acid. n-C₁₂H₂₅·MgBr-ZnCl₂-Et₂O and COCl·[CH₂]₈·CO₂Et in C₆H₈ (in N₂) yield \(^1\)-ketodocosanoic acid, m.p. 91·5\(^0\) (62\(^0\)) yield), converted by Zn-Hg in EtOH nearly saturated with HCl into n-docosanoic acid, m.p. 79—80·5\(^0\) (85\(^0\)) yield). Similarly prepared are \(^1\)-ketotetracosanoic acid, m.p. 94—94·5\(^0\), and n-tetracosanoic acid, m.p. 82·5—83·5\(^0\). CHMe(CO₂Et)₂-NaOBu\(^0\)-n-C₁₆H₃₃I afford the Et₂ ester and thence the dicarboxylic acid, decarboxylated at 150—180\(^0\)/10 mm. to \(^0\)-methylstearic acid, new m.p. 54·5\(^0\) (amide, m.p. 104·5\(^0\)). Similarly prepared are \(^0\)-methyl-eicosanoic acid, m.p. 61·5—62\(^0\) (amide, m.p. 108\(^0\)), -docosanoic acid, m.p. 67—67·5\(^0\) (amide, m.p. 113\(^0\)). Et \(^1\)-ketoundecoate, b.p. 153—154\(^0\)/6 mm., and \(^0\)-tetracosanoic acid, m.p. 113\(^0\). Et \(^1\)-ketoundecoate, b.p. 153—154\(^0\)/6 mm., and \(^0\)-(14H₂₉\)MgBr-Et₂O (in N₂) at 25\(^0\) afford, through the resulting ester, a carboxylic acid, dehydrated at 180—210\(^0\) (+ a trace of 1) and then hydrogenated (Pt, or Raney Ni at 175\(^0\)/160 atm., in EtOH) and hydrolysed, to give \(^1\)-methyl-docosanoic acid, m.p. 54—55\(^0\) (amide, m.p. 78—79·5\(^0\)); \(^1\)-methyl-docosanoic acid, m.p. 54—55\(^0\) (amide, m.p. 78—78·5\(^0\)), and \(^1\)-kexacosanoic acid, m.p. 54—55\(^0\) (amide,

Long-chain acids. III. Bisnoroleic acid. P. C. Mitter and P. N. Bagchi (J. Indian Chem. Soc., 1941, 18, 461—464; cf. A., 1940, II, 203).—Me oleate and MgMeI give aa-dimethyl-Δ'-octadecena-ol, b.p. 167—172°/3 mm., converted by successive treatments with Br-AcOH, CrO₃-AcOH, Zn-AcOH, and MeOH-H₂SO₄ into Me Δ^η-heptadecenoate (Me noroleate), bp. 159—165°/6 mm., which with MgMeI yields aa-dimethyl-Δ⁰-heptadecen-α-ol, b.p. 160—164°/4 mm., and thence, by successive stages as above, Me Δ⁵-hexadecenoate (Me bisnoroleate), b.p. 150—155°/6 mm. (low yield).

A. T. P.

Preparation of a-hydroxycarboxylic acids.—See B., 1942, II, 49.

Influence of halides on oxidation of ascorbic acid.—See A., 1942, III, 329.

Photochemical oxidation of chloral sensitised by bromine.—See A., 1942, I, 179.

Production of unsaturated aliphatic aldehydes.—See B., 1942, II, 50.

Syntheses in the carotenoid series. V. Preparation of higher aliphatic polyenealdehydes. J. Schmitt and A. Obermeit (Annalen, 1941, 547, 285—292).—Self-condensation of crotonaldehyde (I) by piperidine acetate in 70% EtOH [whereby OEt is not introduced (cf. lit.)] at room temp. gives dodecapentaenal (II), m.p. 165°. Sorbaldehyde and (I) give tetradecahexaenal, m.p. 192°, converted into palmitic acid by way of Me·[CH:CH]₆·CH:C(CO₂H)₂ and Me·[CH:CH]₇·CO₂H. In 70% EtOH, (I) and (II) give hexadecaheptaenal, m.p. 216—217°, but in C₆H₆ some eicosanonaenal salso formed.

R. S. C.

Preparation of glyceraldehyde a-methyl ether.—See B., 1942, II, 50.

Photolysis of keten in presence of hydrogen and methane.—See A., 1942, I, 179.

Manufacture of unsaturated ketones and ketonic resins.—See B.,

Thermal decomposition of acetone catalysed by iodine.—See A., 1942, I, 176.

Structure of vinyl polymerides. XII. Polymeride of methyl isopropenyl ketone. C. S. Marvel, E. H. Riddle, and J. O. Corner (J. Amer. Chem. Soc., 1942, 64, 92—94; cf. A., 1941, II, 83).—CH2:CMe·COMe (I) in ultra-violet light or with Bz₂O₂ at 25° gives polymerides, mol. wt. (II)

Me Me Me Me I1,200 and ~36,000, respectively; at 60° in COMe₂ it gives

polymerides, mol. wt. (II) 11,200 and $\sim 36,000$, respectively; at 60° in COMe₂ it gives a polymeride, mol. wt. ~ 6000 , or without a solvent $\sim 12,000$ (cf. Staudinger *et al.*, A., 1936, 1336). The products are obtained solid by adding the COMe₂ solution to H_2O (<100 c.c. per g. of polymeride). The

head-to-tail structure, [·CH₂·CMeAc·]_n, of (II) is proved by pyrolysis at 270—300° or 360° to H₂O and a COMe₂-sol. *polymeride* (III) {and a little (I) and COMe·CHMe·[CH₂]₂·CO·CMe·CH₂} with loss of 63% of

the O, random ring-closure requiring loss of 68.8%. This structure is confirmed by hydrogenation (Raney Ni; dioxan; 175°/2000 lb.) to the compound (IV) (86.47% ring-closure), m.p. 195—205°; the structure of (IV) is in turn proved by analysis of the acetate and chloroacetate, (prep. in C_5H_5N). R. S. C.

Structure and absorption spectra. IV. $\alpha\beta$ -Unsaturated ketones. R. B. Woodward (J. Amer. Chem. Soc., 1942, 64, 76—77; cf. A., 1942, II, 161).—In calculating absorption max. of $\alpha\beta$ -, $\beta\beta$ -, or $\alpha\beta\beta$ -substituted $\alpha\beta$ -unsaturated ketones, each substituent contributes 11 m μ . (not 15) and each exocyclic ethylenic linking an additional 5 m μ . The ketones, m.p. 94° and 37°, obtained from di- Δ 1-cyclohexenylacetylene by HCO₂H are probably 3-pentamethylene- Δ 3(α 7) and Δ 7-hexahydroindone, respectively. R. S. C.

Cyclic methyleneimines. IV. Hydrolysis of quaternary compounds. Preparation of secondary amines. J. Graymore (J.C.S., 1942, 29—30).—NN'N'-Trimethyltrimethylenetriamine (I) with PhSO₂Cl in Et₂O yields bis(benzenesulphonmethylamidomethyl)methylamine, m.p. 122—123°, hydrolysed (dil. HCl or NaOH) to CH₂O, NH₂Me, PhSO₂·NHMe, and an unstable product (II), C₉H₂₂N₄Cl₂,4CH₂O, m.p. 118—120° (decomp.), hydrolysed to CH₂O and NH₂Me only. (I) with p-C₆H₄Me·SO₂·Ol yields (II), p-C₆H₄Me·SO₂·NHMe, and methylenebis-p-toluenesulphonmethylamide, m.p. 117—118°, hydrolysed to CH₂O and p-C₆H₄Me·SO₂·NHMe. The mechanism of the reaction is discussed.

4-Co-ordinated mercuric salts with diamines.—See A., 1942, I, 180.

Amino-derivatives of pentaerythritol. II. Thermal decomposition of the tetrahydrochlorides of tetrakismethylaminomethylmethane and tetrakisdimethylaminomethylmethane. G. M. Gibson, J. Harley-Mason, A. Litherland, and F. G. Mann. III. Formation and thermal decomposition of some quaternary salts of tetrakisdimethylaminomethylmethane. G. M. Gibson and F. G. Mann (J.C.S., 1942, 163—175, 175—181; cf. A., 1938, II, 474).—II. The tetrahydrochloride, m.p. 264° (decomp.), of tetrakismethylaminomethylmethane {dihydrate, b.p. 245—248°; tetrahydrobromide [monohydrate, m.p. 266° (decomp.)]; (PhSO₂)₄ derivative, m.p. 239°) at 275° yields a mixture containing the dihydrochloride, m.p. 262—263°, of ay-bismethylaminopropane (+H₂O), b.p. 141—144° (dipicrate, m.p. 193—194°) (synthesised from Br·[CH₂]₃·Br and aq. EtOH-NH₂Me at 120—130°). Tetrakisaminomethyl— (+4H₂O), m.p. 100—100·5° with Me₂SO₄ yields tetrakisdimethylaminomethyl-methane (I), b.p. 248—249°/769 mm. [also prepared from C(CH₂Br)₄ and NHMe₂ in EtOH at 170°], the tetrahydrochloride (+3H₂O) of which when heated at 232—233° evolves H₂O and CH₂O, giving a mixture containing NH₂Me, NHMe₂, and NMe₃ hydrochlorides, and the dihydrochloride (II), m.p. 260° (decomp.) (unaffected by boiling dil. HCl), of a tertamine (III), C₈H₁₈N₂, b.p. 150—154° (dihydrobromide, m.p. 243° (darkening); dihydriodide, m.p. 203—205° (previous softening); dipicrate, 185·5—187·5°; bis-d-a-bromocamphor-m-sulphonate (which could not be resolved), m.p. 170—176°, [M]₁₀¹⁰ +556° in H₂O; dimethochloride (+H₂O) (W), m.p. 184—196° (efferty, resolidifying and remelting at 200°); diaurichloride, m.p. 237—238·5° (decomp.); platinichloride, m.p. 263° (slight softening), [M]₁₀¹⁰ +101° in H₂O; dibenzyliodide, m.p. 266° (decomp.); dimetho-d-camphoromate (which could not be resolved), m.p. 168—169°; dibenzylpicrate, m.p. 199—201°]. (II) in cyclohexane is slowly hydrogenated (PtO₂), rapidly after addition of AcOH. (III) in H₂O, or (IV) in MeOH, is completely hy

detected in the product. (III) with aq. Br gives only a perbromide (?), but (II) with Br in CHCl₃ yields the dihydrobromide of (II). CHMe(CH₃Br)₂ with EtOH-NHMe₂ at 130° yields ay-bisdimethylamino-β-methylpropane, b.p. 151—152° (dihydrochloride, m.p. 233—234°; dibenzylpicrate, m.p. 169—171°), the dimethiodide, m.p. 268°, of which could not be reduced catalytically. OH-CH(CH₂Cl)₂ with EtOH-NHMe₂ at 115—120° yields ay-bisdimethylaminoiso-propyl alcohol, b.p. 80—82°/17 mm. (dimethiodide, decomp. 250°), which could not be oxidised to the ketone. CO(CH₂Cl)₂ with MgMeBr yields ay-dichloro-β-methylisopropyl alcohol, b.p. 71—72°/18 mm., which with β-C₁₀H.; ONa gives β-hydroxy-β-methylrimethylene-ay-bis-2-naphthyl ether, m.p. 151—152°, and with EtOH-NHMe₂ at 115—125° yields ay-bisdimethylamino-β-methylisopropyl alcohol, b.p. 80—81°/20 mm. [dihydrochloride, m.p. 250°) (efferv.); dipicade, m.p. 172—173°; dimethiodide, m.p. 176—177° (monohydrate, m.p. 105—110°)]. This could not be dehydrated, but with SOCl₂ in CHCl₃ yields β-chloro-ay-bisdimethylamino-β-methylpropane, b.p. 81°/15 mm. (dipicrate, m.p. 155—156°). HCl could not be eliminated from this, which with EtOH-KOH yields ay-bisdimethylamino-β-thoxy-β-methylpropane, b.p. 91—92°/15 mm. [dimethiodide, m.p. 140—150° (efferv., previous softening)], but its dimethiodide, m.p. 140—150° (efferv., previous softening)], but its dimethiodide, m.p. 140—150° (efferv., previous softening)], but its dimethiodide, m.p. 245—246° (decomp.), with MeOH-KOH (1 mol.) affords ay-bistrimethylammonium-β-methylpropenylene di-iodide (VI), m.p. 203—204° [corresponding dimethopicrate, (VII), m.p. 245—246° (decomp.)] Excess of MeOH-KOH yields NMe₃,HI and a compound giving a 2:4-dimitrophenylhydrazone, m.p. 174—177°. (VI) is hydrogenated (PtO₂) quantitatively to NMe₃,HI and CHMe₃. Oxidation (alkaline KMmO₄) of (VI) yields H₂C₂O₄, also obtained (91%) from AcCO₂H. When boiled with H₂O-Ag₂O₂(IV) or (V) yields a solution containing the ion (+NMe₃-CH:C

III. Boiling EtI and (I) yield the diethiodide, m.p. 128°, decomp. by heat into the monohydrated dihydriodide of the Me₈ base. (I) and allyl iodide give the monoallyliodide, m.p. 145—146° (decomp.) and 207° after re-solidification (monohydriodide, m.p. 157—158°), converted by MeI into the monoallyliodide monomethiodide, m.p. 114—115° (decomp.), which appears to afford the tetramethiodide, m.p. >350°, of (I) when heated. In Et₂O (I) and CH₂PhI give the dibenzyliodide monohydrate, m.p. 128—129° (decomp.), and monobenzyliodide, m.p. 146—147° and 190—196° after re-solidifying (hydriodide, m.p. 170°). The monobenzyliodide allyliodide has m.p. 145—146° (decomp.), Under other conditions the reaction of the base with CH₂PhI causes rupture of the amine mol. with the formation of NMe₂I(CH₂Ph)₂ and the dibenzyliodide of the "pyro" base. The thermal decomp. of these products has been studied.

H. W. structure of sphingosine. H. E. Carter, F. J. Glick, W. P. Norris, and G. E. Phillips (J. Biol. Chem., 1941, 142, 449—450).—Sphingosine is n-C₁₃H₂₇·CH·CH·CH·CH(OH)·CH(NH₂)·CH₂·OH (cf. Klenk et al., A., 1931, 829). Sphingosine sulphate and BzCl-aq. NaOH-Et₂O give the N-Bz derivative, reduced (PtO₂) to N-benzoyldihydrosphingosine (I), converted by BzCl-C₃H₃N into the Bz₃ derivative, m.p. 144—146° [hydrolysed by hot aq. alkali to (I)]. Since (I) is not oxidised by HIO₄, it is probably an ay-glycol, not an aβ derivative (loc. cit.); (I), however, readily affords a cyclic acetal with PhCHO-ZnCl₂, a reaction characteristic of either an aβ- or ay-glycol.

Quantitative investigation of amino-acids and peptides. VIII. Solubility and specific rotations of l(-)-leucine at 25°. M. P. Stoddard and M. S. Dunn (J. Biol. Chem., 1941, 142, 329—343).—l(-)-Leucine (I) of high purity is prepared by decomp. of the recryst. monohydrochloride, obtained from natural leucine, with aq. NH₃ at $p_{\rm H}$ 7. Solubility of (I) is $2\cdot 19\pm 0\cdot 01$ g. per 100 g. H₂O at $25\cdot 1\pm 0\cdot 03^\circ$, and $[a]_{\rm D}^{25}$ is $+15\cdot 20\pm 0\cdot 04^\circ$ in 6n-Hcl, or $-10\cdot 57\pm 0\cdot 04^\circ$ in H₂O; ash, H₂O, Cl, NH₃, Fe^{III}, Fe^{III}, and PO₄ content are negligible ($<0\cdot 004\%$), methionine content is $\sim 0\cdot 1\%$, and NH₂-acids other than (I), $\sim 0\cdot 5\%$.

Manufacture of acetonitrile.—See B., 1942, II, 52.

II.—SUGARS AND GLUCOSIDES.

β-Form of the Cori ester (d-glucopyranose 1-phosphate). M. L. Wolfrom, C. S. Smith, D. E. Fletcher, and A. E. Brown (J. Amer.

Chem. Soc., 1942, 64, 23—26).—(CH₂Ph)₂ β -d-glucopyranose tetracetate 1-phosphate (prep. described; 73% yield; cf. Zervas, A., 1939, II, 360) with H₂-PdO in abs. EtOH etc. gives β -d-glucopyranose dibrucine 1-phosphate (I), m.p. (+10H₂O) 160—165° (decomp.; sinters at 120—122°) and (anhyd.) 162—166° (decomp.), [a] $^{28}_{592.5}$ (+10H₂O) -20° in H₂O. The isomeric α -salt (II) has m.p. (+8H₂O) 173—178° (sinters at 165°) and (anhyd.) 182—184° (decomp.), [a] $^{26}_{592.5}$ (+8H₂O) $+0.5^{\circ}$ in H₂O. The rotatory dispersions of (I) and (II) are described. Hydrolysis of (I) by N-HCl at 33° is faster than that of (II). Derivation of cellulose from β - and of starch and glycogen from α -d-glucopyranose 1-phosphate makes it probable that the former exists in nature. R. S. C.

Polymorphism of d-galactose diethylmercaptal penta-acetate. L. H. Welsh and G. L. Keenan (J. Amer. Chem. Soc., 1942, 64, 183—186).—This substance exists in forms of initial m.p. 76.5—77°, 80.5—81°, and 90.5—91°. Photomicrographs are given.

Structure of N^4 -d-glucosidosulphanilamide. C. E. Braun, J. L. Towle, and S. H. Nichols, jun. (J. Org. Chem., 1942, 7, 19—22).—Cautious addition of β -acetobromo-d-glucose (I) in anhyd. CHCl₃ to a well-stirred mixture of p-NH₂·C₈H₄·SO₂·NH₂ (II), Ag₂O, and CaSO₄ in anhyd. dioxan gives d-glucosidosulphanilamide tetra-acetate, m.p. 191°, [a]¹⁹ – 78·4° in anhyd. C₈H₅N, -62·6° in CHCl₄, deacetylated to N^4 -d-glucosidosulphanilamide (III), m.p. 204° when very slowly heated, [a]²³ –119·6° in H₂O, [a]³⁴ +29·7° in 0·1N-HCl, identical with the product of Kuhn and Birkofer (A., 1938, II, 173). The conclusion that the glucose residue is attached to N^4 in (III) depends on the fact that it, when compared directly with (II) and p-NH₂·C₆H₄·SO₂·NHAc, fails to yield a picrate, a picramide, a substituted thiocarbamide with α -C₁₀H₇·NC, and fails to give a positive reaction with Ehrlich's reagent. Its mode of synthesis from (I) appears to justify the conclusion that (III) is a β -glucoside. On an equal wt. basis (III) is only about half as active against streptococci as (II) and is not less toxic. Even if the difference in mol. wts. is considered (III) is still slightly less active than (II). However, the greater solubility of (III) in H₂O may be advantageous.

Acetate, m.p. 172·5—173°, of a pentahydroxychalkone hexoside from Coreopsis gigantea.—See A., 1942, III, 360.

Recent progress in the chemistry of pectic materials and plant gums. E. L. Hirst (J.C.S., 1942, 70—78).—A review. A. Lr.

X-Ray and electron microscope studies of the processes in the grinding of cellulose. K. Hess, H. Kiessig, and J. Gundermann (Z. physikal. Chem., 1941, B, 49, 64—82).—Changes in state of cellulose (I) fibres by mechanical destruction have been studied. The distribution to primary fibrils of 100—750 A. thickness has been demonstrated. X-Ray investigations have shown that the lattice-ordered state of the fibrils disappears but reappears on treatment with H₂O not as (I) but as hydrated (I). A diminution in viscosity on grinding is attributed to processes which occur inside the primary fibrils. On continued grinding the primary fibrils become curled and matted together in clumps without any discernible fracture of the fibrils. The changes in properties of the product arise not only from surface enlargement but also from changes of state occurring inside the primary fibrils.

W. R. A.

Oxidation of cellulose by nitrogen dioxide. E. C. Yackel and W. O. Kenyon (J. Amer. Chem. Soc., 1942, 64, 121—127).—Keeping cotton in N₂O₄ or circulating N₂O₄ over it gives oxidised cellulose, which is fluffy, white, non-friable, and has high affinity for basic dyes. If the CO₂H is >15%, the product is indistinguishable from the starting material. If the CO₂H is <15%, some surface hardening and shrinkage occurs. If the CO₂H is >13%, the products are sol. in 2% aq. NaOH, dil. aq. NH₃, Na₂CO₃, warm aq. C₃H₅N, or aq. quaternary NH₄ hydroxides; products containing <13% of CO₂H swell but do not dissolve. Insol. salts are obtained, e.g., the Ba salt, from the hydroxide or by displacement of AcOH from acetates. CO₂H is best determined by a modification of the CO₂-evolution method used for uronic acids; displacement of AcOH from aq. Ca(OAc)₂ gives lower results for highly oxidised products, probably owing to incomplete penetration of the reagent or adsorption of AcOH. Interaction with N₂O₄ is at first rapid, but later much slower. Correlation of the ratio of reactants with composition of the product is good.

R. S. C.

Properties of cellulose oxidised by nitrogen dioxide. I. C. C. Unwin and W. O. Kenyon (J. Amer. Chem. Soc., 1942, 64, 127—131).—Oxidation of cotton by N₂O₄ (see preceding abstract) gives oxidised cellulose (I) containing, after sufficiently long interaction, ~25% of CO₂H. Determination of CO₂H by (a) dissolution in warm aq. C₅H₅N and later addition of 0·5N-NaOH and (b) dissolution in aq. C₈H₅N-0·5N-NaOH, followed in both cases by backtitration, is described. Method (a) gives low results, similar to those of the Ca(OAc)₂ method; method (b) gives results similar to those of the CO₂-evolution method, which is considered best of all, Cu no., determined by the Forest Products Laboratory method, increases to 71·0; the Knecht-Thompson method gives much lower results; reduction of Cu salts is considered to be entirely due to fission of uronic acid units to give CHO during digestion with the

reagents. Acetates are best analysed by a distillation method. Yields of furfuraldehyde are $\sim\!60\%$, comparable with those from alginic and pectic acid. CO₂H and acylable OH account for all the original OH. It is concluded that oxidation by N₂O₄ attacks primary OH without affecting sec. OH and in fully oxidised material \sim 10 M or converted into CO H. all CH2. OH are converted into CO2H.

New microchemical reaction for cellulose. E. E. Post and J. D. Laudermilk (Stain Tech., 1942, 17, 21—24).—3 drops of 2% I in 5% KI, diluted with 9 vols. of H₂O containing 0.28% of glycerol, are applied with a glass rod, left for 30 sec., and blotted dry. I drop of saturated aq. LiCl is added, and the prep. covered and examined. The blue colour reaction for cellulose develops within E. E. H.

Relation between the method of preparation, distribution of substituents, and solubility in water or alkali of methyl and ethyl ethers of cellulose. J. F. Mahoney and C. B. Purves (J. Amer. Chem. Soc., 1942, 64, 15—19).—Five $\rm H_2O$ - or alkali-sol. methyland ethylcelluloses are partly esterified with $\rm p\text{-}C_6H_4Me\text{-}SO_2Cl}$ in $\rm C_5H_5N$ (heterogeneous mixtures) and the amounts of primary OH determined by conversion of the products into 6-iodides. The amounts of 2:3-+ 3: 4-glycol are determined by HIO4. Alkylation in a quaternary NH4 base gives products in which OAlk is uniformly distributed along the chain, but the technical heterogeneous alkylation of alkali-cellulose leads to non-uniform distribution; moreover, the ratio of primary to sec. OH alkylated is higher in the former than in the latter reaction. Steric effects probably account for this difference.

Methods for investigating the distribution of ethoxy-groups in a technical ethylcellulose. J. F. Mahoney and C. B. Purves (J. Amer. Chem. Soc., 1942, 64, 9—15).—Oxidation of a technical ethylcellulose (I) (2-48 OEt per glucose unit; mol. wt. 232) by Pb(OAc)4 shows presence of 0·01 unit of 2:3-glycol. That of the ethylglucopyranosides (obtained by hydrolysis) by HIO4 shows 0·25—0·29 unit of 2:3-+3:4-glycol. That of the derived free sugars by Pb(OAc)4 shows 0·13—0·15 unit of 1:2-glycol. Thus, 0·13—0·15 free OH per glucose unit occurs in position 2 and 0·24—0·28 in position 3. Interaction of (I) with p-C₆H₄Me·SO₂Cl (II) in C₅H₅N (homogeneous solution) at 20° is followed for 6 months by determination of S and OEt in the product and periodic conversion thereof into the 6-iodide by NaI in (CH₂Ac)₂; this shows 0·124 free primary OH per unit in (I). Mathematical analysis of the reaction rate (unimol.) with (II) shows rapid esterification of 0·151 OH per unit (unimol.) with (II) shows rapid esterification of 0.151 OH per unit at $C_{(2)}$ and slower esterification of 0.245 OH at $C_{(3)}$, these estimates being more accurate than those given above. First-order consts. for reaction with (II) are 15, 2.3, and 0.07 for OH in positions 6, 2, and 3, respectively.

III.—HOMOCYCLIC.

Oxidation of cyclohexane.—See B., 1942, II, 52.

Synthesis of condensed ring systems. VII. Successful use of Synthesis of condensed ring systems. VII. Successill use of ethylene in the Diels-Alder reaction. L. M. Joshel and L. W. Butz (J. Amer. Chem. Soc., 1941, 63, 3350—3351).—C₂H₄ with (CH₂:CH₂) at 200°/4500 lb. gives \$18% of cyclohexene, with (CH₂:CMe)₂ at 200°/6200 lb. gives 50% of 1:2-dimethylcyclohexene, and with cyclopentadiene at 190—200°/5800 lb. gives 74% of dicyclo[2:2:1]
Athantana $\tilde{\Delta}^2$ -heptene.

Δ²-heptene. R. S. C. Preparation of $\Delta^{6:8(14)}$ -, $\Delta^{7:9(11)}$ -, $\Delta^{7:14}$ -, and $\Delta^{8:14}$ -cholestadienes. J. C. Eck and E. W. Hollingsworth (J. Amer. Chem. Soc., 1942, 64, 140—144).— Δ^8 -Cholesten-7-one and Al(OPrβ)₃-PrβOH give Δ^8 -cholesten-7-ol, m.p. 79—80°, $[a]_D^{24}$ +4·2° in CCl₄, dehydrated by HCl-EtOH to $\Delta^{6:8(14)}$ -cholestadiene, m.p. 84—85°, $[a]_D^{20}$ +1·1° in CCl₄ (absorption max. ~245 mμ.). Δ^8 -Cholestene (I) and Hg(OAc)₂-EtOH-AcOH give $\Delta^{7:9(11)}$ -cholestadiene, m.p. 83—84°, $[a]_D^{30}$ +31·3° in CHCl₃ (absorption max. 243 mμ.), also obtained by Br-CHCl₃ at -75° . With BzO₂H in CHCl₃, (I) gives $\Delta^{7:14}$ -cholestadiene, m.p. 82—83°, $[a]_D^{21}$ -93·2° in CCl₄ [absorption max. 242 and 250 mμ.; (CH·CO)₂O adduct, m.p. 170—174°]. $\Delta^{8(14)}$ -Cholestene (II) and BzO₂H give $\Delta^{8:14}$ -cholestadiene, m.p. 83—84°, $[a]_D^{20}$ -23·0° in CCl₄ (absorption max. 245 mμ.), also obtained by SeO₂ in boiling EtOH (product, $[a]_D^{23}$ -19·7°), Br-MeOH-Et₃O, or CrO₃, giving no (CH·CO)₂O adduct, and hydrogenated (Pd) to (II). [a] are compared with those of similar compounds. Br-titrations are discussed. pared with those of similar compounds. Br-titrations are discussed.

Catalysts for polymerisation of benzyl chloride.—See A., 1942, I, 177

p-Cymene. VII. Simultaneous nitration and partial dealkylation of p-cymene. T. F. Doumani and K. A. Kobe (J. Org. Chem., 1942, 7, 1—5; cf. A., 1940, II, 162).—p-C₆H₄Me·NO₂, obtained with 1:4:2-C₆H₃MePrβ·NO₂ by the mononitration of p-C₆H₄MePrβ, is derived by the replacement of Prβ by NO₂. The spent mixed acids the p-β-OME and COME, the latter arising by ovidation of a part contain $Pr^{\beta}OH$ and $COMe_2$, the latter arising by oxidation of a part of the former.

Preparation and reactions of 4-amyl-m-xylenes. D. Nightingale and O. G. Shanholtzer (J. Org. Chem., 1942, 7, 6-14).—In the

reaction between decahydronaphthalene, 4-neopentyl-m-xylene, b.p. 97—98°/10 mm., and AlCl₃, the neopentyl radical is cleaved to form isopentane in 20% yield. This is the first primary alkyl radical to react in this manner. The branched sec.-amyl radical gives a larger yield of mixed pentanes in this reaction than do the two straightthain sec.-amyl radicals. 5-tert.-Amyl-m-xylene (I), b.p. $102-103^\circ$ 14 mm., obtained from m-xylene, AlCl₃, and tert.-C₅H₁₁Cl, gives the highest yield of isopentane. 4-tert.-Amyl-m-xylene (II), m.p. $93-95^\circ$ 14 mm., is derived from m-xylene, tert.-C₅H₁₁·OH, and H₂SO₄. The following m-xylenes are described: 4-n-gmyl. (III) b. p. 122 95°/14 mm., is derived from m-xylene, lett.-C₅H₁₁-OH, and H₂SO₄. The following -m-xylenes are described: 4-n-amyl-, (III), b.p. 123-124°/16 mm., 4-isoamyl (IV), b.p. 116—117°/15 mm.; 4- β -amyl (V), b.p. 102—103°/11 mm., 4- β - Δ \beta-pentenyl-, b.p. 104—113 mm.; 4- β - γ -methylbutyl (VI), b.p. 100—102°/13 mm.; 4- β - γ -methyl- Δ \beta-butenyl-, b.p. 106—110°/16 mm.; 4- γ -n-amyl- (VII), b.p. 105—106°/13 mm.; 4- γ - Δ \beta-pentenyl-, b.p. 103—105°/16 mm.; 4- α - β -methyl- α -butenyl-, b.p. 108—111°/13 mm.; 4- α - β -methyl- Δ \beta-butenyl-, b.p. 107°/10 mm. They are obtained by Clemmensen reduction of the requisite lectones of which β : A-dimethylicovalexybenyme, b. p. 131-107°/10 fmm. They are obtained by Clemmensen reduction of the requisite ketones, of which 2:4-dimethylisovalerophenone, b.p. 131—132°/12 mm. (semicarbasone, m.p. 196°), and 2:4-dimethylpivalophenone, b.p. 107—109°/6 mm., which does not yield a semicarbazone, are new. The 4-n- and 4-iso-valeryl ketones give solid by products, C₂₆H₃₈O₂, m.p. 146° and 139—140°, respectively. m-Xylene is transformed by CH₃O and conc. HCl into 2:4-dimethylbenzyl chloride (VIII), b.p. 92—94°/8 mm.; (I), (II), and (III) are converted similarly into their CH₂Cl derivatives, b.p. 120—128°/3 mm., (IX), b.p. 115—123°/4 mm., and b.p. 125—135°/3 mm. (X). (VIII), (IX), and (X) are converted by an excess of NH₂Ac at 190—220° into the CH₂·NHAc compounds, m.p. 109°, 150°, and 105°, respectively. Nitration, reduction, and subsequent acylation of (I)—(VII) gives the (NHAc)₂- and (NHBz)₂-derivatives, m.p. 304° and 302°; — and 308°; 234° and 220°; — and 208°; 234° and 241°; 264° and 234—235°; 279—280° and 252—253°, respectively. H. W. Polveyclohexylnaphthalenes.—See B., 1942, II, 52.

Polycyclohexylnaphthalenes.—See B., 1942, II, 52.

9-Vinylphenanthrenes. III. α-9-Phenanthrylstilbene. F. Bergmann (J. Amer. Chem. Soc., 1942, 64, 69—72).—α-9-Phenanthrylstilbene (I), m.p. 167°, prepared from αβ-diphenyl-α-9-phenanthrylethyl alcohol (A., 1940, II, 308), is accompanied by a small amount of an isomeride (II), m.p. 140°. (I) and (II) are shown to have the Ph in trans- and cis-positions, respectively. A trace of I in boiling PhNO₂ converts (II) into (I). In Et₂O, (I) gives a Li₂ derivative, converted by EtOH into α-9-phenanthryldibenzyl (III), m.p. 197°, and a little 9-benzyl-1a: 4a-dihydro-1: 2: 3: 4-dibenzoftworene (IV), m.p. 236°, or by CO₂ into αβ-diphenyl-α-9-phenanthrylsuccinic m.p. 236°, or by CO₂ into aβ-diphenyl-a-9-phenanthrylsuccinic anhydride (V), m.p. 256—258° (decomp.). In boiling Ac₂O, (V) gives compounds, C₂₉H₁₈O₂, m.p. 276°, and C₂₉H₂₀O₂, m.p. 248—249° (with CH₂N₂ gives a? Me ester, m.p. 175—176°, very resistant to HI). The Li₂ derivative of (II) with EtOH gives (III) and traces of 10-phenyl-1:2:3:4-dibenzophenanthrene (VI), m.p. 185°, but with CO at 0° gives (VI) and an amorphous acid which gives but with CO₂ at 0° gives (VI) and an amorphous acid, which gives no anhydride but in hot Ac₂O yields 2-phenyl-3-9'-phenanthyylindone, m.p. 255°, and CO2.

Hydrogenation of β-iminonitriles. H. Adkins and G. M. Whitman (J. Amer. Chem. Soc., 1942, 64, 150—154).—CH₂R·CN (R = H, Me, Et, Pr^a, or Ph) gives, by the Thorpe reaction, CH₂R·C(NH)·CHR·CN or probably CH₂R·C(NH₂)·CR·CN. Hydrogenation (Raney Ni) readily gives CH₂R·CH(NH₂)·CHR·CH₂·NH₂ but CH₂R·C(NH₂)·CHR·CN could not be obtained. Except when R = Ph, a little hydrogenolysis to NH₂·CH(CH₂R)₂ (not formed by way of the diamine, which is stable) occurs; if R = Ph, 2% of Ph·[CH₂]₂·NH₂ is formed. NH·CBu^a·CHPr^a·CN exists as trimeride in freezing and as dimeride in boiling C₆H₆ and as solvate in boiling EtOH. NPh·CMe·CH₂·CN (I) (prep. from NH·CMe·CH₂·CN by NH₂Ph-AcOH-H₂O) is dimeric in boiling C₆H₆ and solvated in EtOH. Bu^aCN and β-piperidinocinnamonitrile (II) are monomeric in C₈H₆. Hydrogenation of (I) gives NH₂Ph (73—84%). NH₂·CHMe·[CH₂]₂·NH₂ (8%), and? NHBu^a·CHMe·[CH₂]₂·NH·CHMe·CH₂·CN. Hydrogenation of (II) leads only to hydrogenolysis of the piperidino-group. Hydrogenation (Raney Ni; 70—126°/150 atm.) of NO₂·CH₂·CHPh·CH₂·COPh gives βδ-diphenyl-n-butylamine, b.p. 144·5°/1 mm. (3-nitrophthalimide, m.p. 129·5°; phenylthiocarbamide, m.p. 191—191·5°). Addition of CH₂Ph·CN and then of MeI to NaNH₂-Et₂O gives CHPhMe·CO·CH₂Ph; with NH₃-H₂-Raney Ni in dioxan at 150°/100 atm., this gives β-amino-ay-diphenylbutane, b.p. 142·5°/51—54 mm. (hydrochloride, m.p. 174—175·5°; phenylthiocarbamide, m.p. 190·5—191·5°; 3-nitrophthalimide, m.p. 152—153°; phenylthiocarbamide, m.p. 146·5—1147°). ay-Diamino-β-methyl-n-pentane, b.p. 110°/88 mm. [platinichloride, m.p. 237° (decomp.)], ay-diamino-β-ethyl-n-hexane,

mm. (hydrochloride, m.p. 174–1765; pterdie, m.p. 190-3–1913; 3-nitrophthalimide, m.p. 152–153°; phenylthiocarbamide, m.p. 146-5–147°). αy-Diamino-β-methyl-n-pentane, b.p. 110°/88 mm. [platinichloride, m.p. 237° (decomp.)], αy-diamino-β-ethyl-n-hexane, b.p. 99°/17 mm. (dihydrochloride, m.p. 153–165°), ε-amino-nnonane, b.p. 78°/20 mm. (hydrochloride, m.p. 178–180°; pierate, m.p. 149-5–150°), ε-amino-δ-methyl-n-nonane, b.p. 87–90°/18 mm. (picrate, m.p. 153·5—154·5°), ay-diamino-β-n-propyl-n-heptane, b.p. 100°/5 mm. [dihydrochloride, m.p. 106—110° (decomp.)], and ay-diamino-β8-diphenylbutane, b.p. 166—168°/1·5 mm. (dihydrochloride,

m.p. >280°), are incidentally prepared.

Hydrogenation of primary arylamines.—See B., 1942, II, 95.

Action of chlorine on arylthiocarbimides and reactions of isoeyanodichlorides. II. G. M. Dyson and T. Harrington (J.C.S., 1942, 150—153; cf. A., 1940, II, 125).—A modified scheme is proposed for the action of Cl₂ on PhNCS; the unstable additive compound, probably NPh.'C(SCI)·NPh·CSCI (cf. loc. cit.), is converted by NaOH into 1-anilinobenzthiazole. PhNCS-NPh.'CCl₂-Cl₂ give (mainly) p·C₆H₄Cl·N:CCl₂, b.p. 220—226°, converted by NH₂Ph-C₆H₆ (reflux) into s-diphenyl-p-chlorophenylguanidine hydrochloride, m.p. 256° (some triphenylguanidine hydrochloride is formed). NPh:CCl₂ and NHPh₂ in C₂H₂Cl₄ yield pentaphenylguanidine hydrochloride, m.p. 172°; o., m., or p·C₆H₄Me·N:CCl₂ similarly gives s-tetraphenyl-o-, m.p. 172°, -m., m.p. 174—176°, and -p-tolylguanidine, m.p. 175°, respectively. Tertiary amines do not react under the conditions, p-C₆H₄Me·N:CCl₂ or p-NO₂·C₆H₄·N:CCl₂ and EtOH (reflux) give p-tolyl, m.p. 51°, or p-nitrophenyl-wrethane, m.p. 127°, respectively, in excellent yield, whereas NPh:CCl₂ and EtOH (reflux) give p-tolyl-, m.p. 51°, or p-nitrophenyl-wrethane, m.p. 127°, respectively, in excellent yield, whereas NPh:CCl₂ and EtOH (reflux) give p-tolyl-, m.p. 106°, or 0-C₆H₄Me·N:CCl₂ affords the respective urethane and a hydrochloride, C₂₀H₂₂O₂N₂.HCl, m.p. 270°, or a substance (contains N and Cl), m.p. 108°, respectively. NPh:CCl₂ and PhOH at 150° give Ph phenylimidocarbonate, m.p. 136°, and similarly prepared are p-tolyl phenyl-, m.p. 110°, Ph p-tolyl-, m.p. 108°, p-tolyl o-tolyl-, m.p. 115°, Ph p-bromophenyl-, m.p. 136°, and similarly prepared are p-tolyl phenyl-, m.p. 110°, Ph p-tolyl-, m.p. 108°, p-tolyl through NPh:CPh-OH.

δ-Substituted semicarbazides. II. Semicarbazones of aldehydes and ketones. R. Barré and L. Piché (Canad. J. Res., 1942, 20, B, 17—20; cf. A., 1942, II, 88).—δ-p-Nitrophenylsemicarbazones are most suitable for determination of aldehydes and ketones, being very rapidly and quantitatively pptd. The following are described: δ-p-nitrophenyl-, m.p. 191° (hydrochloride, m.p. 215°), δ-2: 4-dinitrophenyl-, m.p. 178°, δ-p-nitrobenzyl-, m.p. 164° (hydrochloride, m.p. 195—197°), δ-p-xenyl- (hydrochloride, m.p. 308°), and δ-4'-nitroxenyl-semicarbazide, m.p. 178° (hydrochloride, m.p. 219°); glucose-δ-phenyl-, m.p. 161°, -δ-p-bromophenyl-, m.p. 168°, -benzyl-, m.p. 115°, -p-xenyl- (I), m.p. 194°, -nitroxenyl-, m.p. 172°, and -xanthyl-(II), m.p. 183°, -semicarbazone; acetone-2: 4-dinitrophenyl-, m.p. 248°, -p-nitrobenzyl-, m.p. 162°, -p-xenyl- (III), m.p. 228°, and -nitroxenyl-, m.p. 261°, -semicarbazone; acetone-, m.p. 264°, benz-aldehyde-, m.p. 235—236°, m-nitrobenzaldehyde-, m.p. 276°, vanillin-, m.p. 261°, glyoxylic acid-, m.p. 249°, pyruvic acid-, m.p. 261°, and glucose-, m.p. 192—193°, -δ-p-nitrophenylsemicarbazone. Solubilities of the named and other COMe₂ and glucose derivatives are recorded: those of (I), (II), and (III) are very low, but the compounds form gels and it is difficult to dehydrate them.

Direct introduction of the amino- and substituted amino-groups into the aromatic and heterocyclic nucleus. VI. Action of alkali diphenylamides on aromatic nitro-compounds. F. W. Bergstrom, I. M. Granara, and V. Erickson (J. Org. Chem., 1942, 7, 98—102). —PhNO₂ reacts fairly readily with a solution of NaNPh₂ or KNPh₂ in liquid NH₃ at —33°, giving NPh₂·C₆H₄·NO₂-p, m.p. 141·4—142·6°, optimum yields (45%) being secured with an excess of PhNO₂. Reaction occurs also in Et₂O but is much less complete in C₆H₆. In liquid NH₃ at room temp. an unidentified product, m.p. 201—212·5°, is also obtained and this is the sole isolable product when an excess of KNPh₂ is used under these conditions. Ba(NPh₂)₂ resembles NaNPh₂ in its action. NHPh·C₆H₄·NO₂-p, m.p. 132·5—133·5°, and large amounts of tar result from KNHPh and PhNO₂ in liquid NH₃ at —33° whereas an unidentified material, m.p. 157—158°, is derived from KNHPh, PhNO₂, and KNO₃ at room temp. o-C₆H₄Me·NO₂ and NaNPh₂ give, among other products, (o-NO₂·C₆H₄·CH₂·)₂, m.p. 120—121°. Similarly, p-C₆H₄Me·NO₂ gives (p-NO₂·C₆H₄·CH₂·)₂, m.p. 177·5—179°, in very poor yield. NaNPh₂ and m·C₆H₄Me·NO₂ in liquid NH₃ at —33° give (?) 4-nitro-2-methyl-triphenylamine, m.p. 129·5—130·5°. Definite compounds could not be obtained from NaNPh₂ and o-NO₂·C₆H₄·OMe or 1-C₁₀H₇·NO₂.

Identification of aromatic sulphonic acids containing an aminogroup. C. F. H. Allen and G. F. Frame (J. Org. Chem., 1942, 7, 15—18).—The customary methods of identifying sulphonic acids are not applicable to those containing NH₂ on account of the sensitiveness of this group towards PCl₅ and its tendency to inner salt formation. If, however, the NH₂ is diazotised and replaced by Cl the resulting Cl-acid is readily transformed into a cryst. sulphonamide. The method is applicable to amino-mono- and -di-sulphonic acids in the C₆H₆ series and to monosulphonic acids in the C₁₀H₈ series. (The m.p. of chlorosulphonamides derived from the commoner aminosulphonic acids are tabulated.) In the case of disulphonic acids of the C₁₀H₈ series the steps are satisfactory only as far as the formation of the disulphonamides. The disulphonyl chlorides are all solids of convenient m.p. but they do not generally crystallise well and are not suited to qual. org. analysis; 2:3:6-C₁₀H₅Cl(SO₂Cl)₂, m.p. 165°, is exceptional. The corresponding disulphonanilides have suitable m.p. and are readily made. 1:4:8-,

2:3:6-, 2:4:8-, 2:5:7-, and 2:6:8- $C_{10}H_5Cl(SO_2\cdot NHPh)_2$ have m.p. 233° , 185° , 235° , 206° , and 192° , respectively. 1-Chloronaphthalene-3:6:8-trisulphonanilide, m.p. 249° , is described. Chlorobenzene-2:5-disulphonamide, m.p. 229° , and 2-chlorotoluene-5-sulphonamide, m.p. 131° , are new. H. W.

Interaction of chloramine-T and hydrogen sulphide, phosphine, and arsine.—See A., 1942, I, 181.

Structure of N^4 -d-glucosidosulphanilamide.—See A., 1942, II, 166. Acid salts of p-aminobenzenesulphonylguanidine.—See B., 1942, III, 86.

p-Acylaminobenzenesulphonylguanidine.—See B., 1942, II, 142.

Manufacture of benzidine, tolidine, and dianisidine.—See B., 1942, II, 95.

Kinetic considerations of the thermal decomposition of benzenediazonium chloride in various solvents.—See A., 1942, I, 147.

Direct diazotisation of nitrobenzene. F. W. Bergstrom and J. S. Buehler (J. Amer. Chem. Soc., 1942, 64, 19—21).—PhNO₂ evolves N_2 when treated with NaNH₂ or KNH₂ in liquid NH₃ or with $Ca(NH_2)_2$ alone, but products (after hydrolysis) are tars. Addition of PhNO₂ to β - $C_{10}H_1$ -OH (I) and an excess of NaNH₃ or KNH₂ in liquid NH₃ gives N_2 and, after hydrolysis, 13—30% of 2:1-OH- $C_{10}H_6$ - N_2 Ph; O—NPh(NH₂)-ONa and thence NPh.N-ONa are probable intermediates. Na benzeneisodiazotate does not thus react with (I)—NaNH₂. Some, but not all, other NO₂-compounds evolve N_2 with (I)—NaNH₂, but the products were not obtained cryst.

Stable diazo-compounds.—See B., 1942, II, 143.

Preparation of tri-m-nitrophenyl orthoformate. M. Calvin and J. R. Segesser (J. Amer. Chem. Soc., 1942, 64, 186).—m-NO₂·C₈H₄·OH and CCl₃·CO₂H in conc., aq. KOH at 90° give a small amount of tri-m-nitrophenyl orthoformate, m.p. 182—183°. R. S. C.

Preparation of aryl acetoacetates.—See B., 1942, II, 95.

Influence of hydroxyl-ion concentration on the autoxidation of quinol.—See A., 1942, I, 176.

Behaviour of rhenium and of the complex thiocyanates of rhenium and molybdenum with toluene-3: 4-dithiol.—See A., 1942, I, 181.

Course of autoxidation reactions in polyisoprenes and allied compounds. I. Structure and reactive tendencies of the peroxides of simple olefines. E. H. Farmer and A. Sundralingam (J.C.S., 1942, simple diemes. It is that a large that Λ standard Λ in light from a Hg-vapour lamp for 2—4 hr. yields 30—40% of oxygenated material containing 80% of Δ^2 -cyclohexenyl H peroxide (II), with some Δ^2 -cyclohexenol (II) and cyclohexene epoxide (III) [isolated by reductive of the containing Λ in the cyclohexene epoxide (III) isolated by reductive Λ in the cyclohexene epoxide (III) isolated Λ in the cyclohexene epoxide (III) isolated Λ in tion (Na2SO3) of the product immediately the O2 intake ceases, and tion (Na₂SO₃) of the product immediately the O₂ intake ceases, and fractionation]. Fractionation of the oxidation product at 1 atm. yields some trans-cyclohexane-1: 2-diol. (I) at 70—80° gives chiefly (II), with a small amount of "dimeride," approx. C₆H₁₀O₂, but no (III), and with ultra-violet light at 35° followed by hydrogenation (PtO₂, EtOH) yields cyclohexanol and "dimeric" material, b.p. 110—176°/0·5 mm. (I) with cyclohexene yields (II), a small amount of (III), and polymeric material. (I) with N-H₂SO₄ at 40—45° during 1 week gives cyclohexane-1:2:3-triol, a "dimeric" acidic residue, and small amounts of (II) and cyclopentenealdehyde [? from a secondary product in (I)]. With H₂O at 110° the same products are formed in different proportions. Hock's observations (A., 1938, II, 360) on the action of dil. NaOH on (I) are confirmed. (A., 1938, II, 360) on the action of dil. NaOH on (I) are confirmed. I-Methylcyclohexene with O₂ at 35° similarly yields methylcyclohexenol, I-methylcyclohexene-1: 2-epoxide [hydrolysed (H₂SO₄) to 1-Methylcyclohexene with O₂ at 35° similarly yields methylcyclohexenol, 1-methylcyclohexene-1: 2-epoxide [hydrolysed (H₂SO₄) to the trans-1: 2-diol], and 2(with some 3)-methyl-Δ²-cyclohexenyl H peroxide (IV), b.p. 64—67° [0·2 mm. (IV) is reduced (Na₂SO₃) to 2(+3)-methyl-Δ²-cyclohexenol (A) [3:5-dinitrobenzoate, an oil (α-C₁₀H₇·NH₂ complex, m.p. 95—96°)], or (H₂. PtO₂, EtOH) to impure 2-methylcyclohexanol. (IV) with N-H₂SO₄ at 45° yields 1-methylcyclohexane-1: 2:3-triol, b.p. 152—154° [1 mm., m.p. 95° (40—50° yield), 1-acetylcyclopentene (5%), and crude (A), but no other CO-compound. (IV) with dil. NaOH at room temp., then at 30°, yields (A), and small amounts of Ac·[CH₂]₃·CO₂H and an acid, (7,H₁₀O₂, m.p. 207°, unaffected by H₂ (PtO₂), but oxidised (KMnO₄) to an acid, (?) C₇H₁₂O₆, m.p. 69°. 1:2-Dimethylcyclohexene with O₂ at 23° yields 2:3-dimethyl-Δ²-cyclohexenyl H peroxide (V), b.p. 67—70°/0·5 mm., the 1:2-epoxide (hydrolysed to the trans-1:2-diol), and 2:3-dimethyl-Δ²-cyclohexenol (VI), b.p. 80—82°/13 mm. (anaphthylurethane, m.p. 139—140°), oxidised (CrO₃) to the ketone. With N-H₂SO₄ at 45°, (V) yields 1:2-dimethylcyclohexane-1:2:3-triol, m.p. 109°, impure (VI), some polymeric material, and 2-acetyl-1-methyl-Δ¹-cyclopentene. (V) with dil. NaOH at room temp., then at 30—40°, yields (VI), Ac·[CH₂]₃·CO₂H, and an acid, m.p. 196—197°. With Fe^{II} phthalocyanine, (I) rapidly decomposes to (II), Δ²-cyclohexenone, cyclopentene-1-aldehyde, etc.; (IV) yields (A) and the corresponding ketones etc., and (V) yields (VI), the corresponding ketone, a little (CH₂·CH₂Ac)₂, etc. The "dimeric" products formed with (I), (IV), and (V) contain neutral H₂O-insol., neutral H₂O-sol., and acidic H₂O-sol. material, mostly unsaponifiable. The mechanism of autoxidation and reactions of the H peroxides are discussed.

A. LI.

Bimolecular reduction of hindered aldehydes. R. C. Fuson, E. C. Horning, M. L. Ward, S. P. Rowland, and J. L. Marsh (J. Amer. Chem. Soc., 1942, 64, 30—33).—When RCHO is reduced by Mg + MgI₂, the primary product, (rCHR·O·MgI)₂, is oxidised by R'CHO (R = R' = Ph) to COPh·CHPh·O·MgI, which gives benzoin. This oxidation does not occur if R or R' is sterically hindered and the products are then (CHR·O·H)₂. Thus, mesitaldehyde [prep. from s-C₆H₃Mc₂ in 82·5%, yield by HCl-Zn(CN)₂-AlCl₃ in (CHCl₂)₂ at 70°] (67 g.), m.p. 10·5°, b.p. 124—128°/15 mm., with Mg + MgI₂ in boiling C₆H₆-Et₂O gives hydromesitoin (13 g.), m.p. 214—215° (diacetate, m.p. 181—182°; also obtained from mesitoin by H₂-Cu chromite in EtOH at 125°/2300 lb.), isohydromesitoin (36 g.), m.p. 160—161° [diacetate, m.p. 124—125°; hydrogenated (Cu chromite; abs. EtOH; 250°/2000 lb.) to (2:4:6:1-C₆H₂Me₃·CH₂)₂], and αβ-dimesitylethylene (1·2 g.), m.p. 132—133°. 2:4:6-Triethylbenz-aldehyde, b.p. 146—149°/21 mm. (oxidised by air to the known acid; 2:4-dinitrophenylhydrazone, m.p. 180—181°; semicarbazone, m.p. 155—156°), is obtained as above in 75% yield. 2:4:6-Trisopropylbenzaldehyde (I) (prep. as above: 65% yield. 2:4:6-Trisopropylbenzaldehyde (I) (prep. as above: 65%) yield, b.p. 123—125°/4 mm. (semicarbazone, m.p. 150—151°), with Mg + MgI₂ gives 2:4:6:2':4':6'-trisopropyl-hydrobenzoin (III), m.p. 186—187° (diacetate, m.p. 201—202°), -isohydrobenzoin (III), m.p. 186—187° (diacetate, m.p. 160—161°), and -stilbene, m.p. 147—148°. Hydrogenation (Cu chromite; EtOH; 250°(6000 lb.) of (II) or (III) gives aβ-di-2:4:6-triisopropylphenylethane (IV), m.p. 160—161° (3:3'-Br₂-compound, m.p. 199—200°, prepared by Br-CHCl₃). s-C₄H₃Prβ₃ with CH₂Cl-OMe and SnCl₄ in CS₂ at 0° gives 2:4:6-triisopropylbenzyl chloride (85%), b.p. 129—130°/4 mm., which with other aldehydes) (W) (prep. from 2:3-C₁₀H₆Me₂ as above in 38% yield with other aldehydes), m.p. 77·5—78·5°, b.p. 165—168°/4 mm. [semi-carbazone, m.p. 265° (decomp.)

Cyclisation of dieninenes. XIII. Methoxycyclohexenylacetylene derivatives. C. S. Marvel and W. L. Walton (J. Org. Chem., 1942, 7, 88—97; cf. A., 1941, II, 357).—4-Methoxycyclohexanone (I), b.p. 84—85°/14 mm. (semicarbazone, m.p. 175—176-5°; 2:4-dinitrophenylhydrazone, m.p. 150°), is condensed with C₂H₂ in presence of K tert.-amyloxide to 4-methoxy-1-acetylenylcyclohexanol (II), b.p. 121—122°/20 mm. (p-nitrobenzoate, m.p. 74·5—75·5°; 3:5-dinitrobenzoate, m.p. 112—114°), accompanied by (?) 4:4'-dimethoxy-2-cyclohexylidenecyclohexanone, b.p. 155°/4 mm. (2:4-dinitrophenylhydrazone, m.p. 154—155°). (II) is reduced (H₂-PtO₂-EtOH) to 4-methoxy-1-ethylcyclohexanol, b.p. 114—116°/22 mm. (3:5-dinitrobenzoate, m.p. 117·5—118°), stereoisomeric with the alcohol, b.p. 114—122°/22 mm. (3:5-dinitrobenzoate, m.p. 117-5—118°), repared from (I) and MgEtBr. (II) is rearranged by conc. H₂SO₄ at room temp. to a ketone (2:4-dinitrophenylhydrazone, m.p. 163—164°). Treatment of 1-acetylenylcyclohexanol with MgEtBr and then with (I) leads to aβ-1:1'-dihydroxy-4-methoxydicyclohexylacetylene (III), cis-trans isomerides, b.p. 110°/10-5 mm. (3:5-dinitrobenzoate, m.p. 131—132°). Similar condensation of (II) with cyclopentanone gives an (impure) glycol (IV), b.p. 110°/10-5 mm.; an analogous compound (V) is obtained from 2-methylcyclopentanone and a glycol, b.p. 110°/10-5 mm., from (I). Treatment of (III), (IV), and (V) with H₂SO₄ affords respectively Δ''-cyclohexenyl-, b.p. 135—135·5°/2 mm., Δ'-cyclopentenyl-, b.p. 174—175°/19 mm., and Δ'-2-methylcyclopentenyl-, b.p. 137—139°/3 mm., -Δ¹-4-methoxycyclohexenylacetylene. The separation of (III) into its two components does not simplify the problem of separating the products obtained by the cyclisation reaction. This is evidence that the first step is dehydration which the problem of separating the products obtained by the cyclisation reaction. This is evidence that the first step is dehydration which converts either isomeride into the same acetylene. Attempts to dehydrate (III) directly give a mixture of cyclic ketones and other products. This mixture is reduced (PtO₂-H₂) and then treated with 2:4-(NO₂₎₂C₆H₃·NH·NH₂ to give a mixture of cryst. 2:4-di-nitrophenylhydrazones. Two of these, m.p. 190—191° and 173— 174°, give analytical data as required by derivatives of the expected cyclic ketone but it is uncertain whether they are stereoisomerides of the phenanthrone or whether one is a phenanthrone and the other a spiranone. The third compound, m.p. 227—228°, is dodecahydrophenanthrone-2: 4-dinitrophenylhydrazone, proving loss of OMe as MeOH and reduction of the double linking thus developed. When the conditions of cyclisation are made more drastic, the amount of the unsubstituted ketone derivative increases at the expense of one of the methoxylated substances. Loss of OMe occurs after cyclisation since its loss at the acetylene stage would result in the formation of a dihydrobenzene derivative and thence a benzenoid mol. which does not cyclise. Dehydrogenation of the mixed ketones

over Pd-C at 330° gives phenanthrene, 3-methoxyphenanthrene, and, apparently, anthracene and a methoxyanthracene. The isolation of the two hydrocarbons is an indication that at least one of the cyclisation products may be a spiran. Oxidation of 3-methoxycyclohexanol with $\rm H_2SO_4$ and $\rm Na_2Cr_2O_7$ at 65—70° gives only Δ^2 -cyclohexenone, b.p. 63°/14 mm. (semicarbazone, m.p. 160—161°; 2:4-dinitrophenylhydrazone, m.p. 165—166° from EtOH or 167·5—168° from EtOAc). Δ^1 -cycloHexenylacetophenone (2:4-dinitrophenylhydrazone, m.p. 163—164°) is not affected by cold AcOH-H₂SO₄ or by hot AcOH containing a little H₂SO₄ and is hydrolysed to COPhMe by fairly conc. aq. $\rm H_2SO_4$. H. W.

Organic sulphur compounds. XXVII. Relation between the constitution of thioethers and thiols and their sensitivity towards alkali. A. Schönberg and Y. Iskander (J.C.S., 1942, 90—95).—p-Nitrobenzylthiolacetic acid, m.p. 114°, obtained from SH·CH₂·CO₂H-p·NO₂·C₆H₄·CH₂Cl in aq. EtOH-NaHCO₃ (reflux), is hydrolysed by boiling 5% aq. NaOH for 5 min., through (probably) ONa·NO:C₆H₄·CH·S·CH₂·CO₂H, to p-azobenzaldehyde (I). Similarly prepared is β-p-nitrobenzylthiolpropionic acid, m.p. 104—105°, hydrolysed to p-azoxybenzaldehyde and (CO₂H-[CH₂]·S·)₂ (II), with a trace of (I). p-NO₂·C₆H₄·CPh₂Cl and SH·CH₂·CO₂H-PhMe give p-nitrotriphenylmethylthiolacetic acid, m.p. 153—155°, hydrolysed by 5% aq. NaOH to p-NO₂·C₆H₄·CHPh₂ (III) [probably through OH·NO(ONa)·C₆H₄·CPh₂·S·CH₂·CO₂H → ONa·S·CH₂·CO₂H + OH·NO:C₆H₄·CPh₂ → (III)]. p-Aminobenzylthiolacetic acid, m.p. 155—156°, prepared from the NO₂-compound by Sn-HCl, is unchanged after boiling with 5% aq. NaOH for 20 min.; CH₂Ph·S·CH₂·CO₂H, CH₂Ph·S·[CH₂]·CO₂H, new m.p. 82—83°, and CPh₃·S·CH₂·CO₂H are affected only slightly or not at all by boiling 5% aq. NaOH. COPh·CHPhO₂(IV) and NaSH-EtOH at 0° yield didesyl sulphide, (COPh·CHPh)₂S (V), m.p. 168—169° and 128—129° (probably r- and meso-forms), and desylthiol, COPh·CHPh·SH (VI), m.p. 42—44° [hydrolysed by 10% aq. NaOH-EtOH to COPh·CH₂Ph (VII)]. (IV)-BzSH-EtOH, or (VI)-BzCl-C₅H₅N, afford desyl thiobenzoate, m.p. 110—112°, hydrolysed to (VII), BzOH, H₂S, and S. (V) (either form) also gives (VII), with some OH·CPh₂·CO₂H. (IV) and SH·[CH₂]·CO₂H at 100° (bath) yield (II) and β-desylthiolpropionic acid, m.p. 108—109°. Alkaline hydrolysis of the latter is slower than with desylthiolacetic acid, which readily affords (VII). (IV)-PhSH-NaOEt give COPh·CHPh·SPh, new m.p. 83—84°, only partly decomposed by boiling aq. NaOHlysis of the latter is slower than with desylthiolacetic acid, which readily affords (VII). (IV)-PhSH-NaOEt give COPh-CHPh-SPh, new m.p. 83—84°, only partly decomposed by boiling aq. NaOH-EtOH to PhSH. COPh-CPh₂Cl (VIII)-BzSK-EtOH afford a-benzoylbenzhydryl thiobenzoate, m.p. 129—130°, converted by 10% aq. NaOH-EtOH into a-benzoylbenzhydrylthiol, m.p. 98—101° (aq. FeCl₃-AcOH gives the corresponding disulphide, m.p. 150—154°). (VIII) and SH·CH₂·CO₂H or SH·[CH₂]₂·CO₂H at 100° (bath) yield COPh-CHPh₂ and COPh-CPh₂·S·CH₂·CO₂H, or (II) and β-(benzoylbenzhydrylthiol)propionic acid, m.p. 134—136°, respectively; hydrolysis of the respective acid by boiling 7% aq. NaOH yields benzhydrylthiolacetic acid, m.p. 128° (cf. Behaghel et al., A., 1939, II, 374), and β-(benzhydrylthiol)propionic acid, m.p. 89—90°. (VIII) and PhSH-PhMe (boil) afford Ph a-benzoylbenzhydryl sulphide, m.p. 119°, converted by 10% aq. NaOH-EtOH into CHPh₂·SPh. Mechanisms of the various hydrolysis reactions are discussed. There is no general parallelism between thermolability of thioethers There is no general parallelism between thermolability of thioethers and their sensitivity to alkali, e.g., (V) is thermolabile (forms a blue thiobenzil) and is also sensitive to alkali, whilst the thermolabile $CPh_3 \cdot SPh$ is very stable to alkali.

A. T. P.

Vapour-phase esterification of benzoic acid with ethyl alcohol. Effect of oxides on the catalytic activity of silicon carbide and alundum.—See A., 1942, I, 150.

Mechanism of "aromatising" diene reactions in nitrobenzene. F. Bergmann (J. Amer. Chem. Soc., 1942, 64, 176—177).—Aromatisation during diene reactions can occur when dienolisation is possible. Thus, dicyclohexenyl with (iCH·CO)₂O in boiling PhNO₂ gives 1:2:3:4:5:6:7:8-octahydrophenanthrene-9:10-dicarboxylic anhydride (I), m.p. 305°, but with CHMe:CH·CO₂H or CHPh:CH·CO₂H gives 9-methyl-, m.p. 164°, and 9-phenyl-1:2:3:4:5:6:7:8:9:10:11:14-dodecahydrophenanthrene-10-carboxylic acid, respectively. In boiling PhNO₂ 3:6-diphenyl-1:2:3:6-tetrahydrophthalic anhydride gives 3:6:1:2-C₄H₂Ph₂(CO)₂O and in PhNO₂ at 170—175° 1:2:3:4:5:6:7:8:9:10:11:14-dodecahydrophenanthrene-9:10-dicarboxylic anhydride gives (I), but anthraceneendosuccinic anhydride is unchanged. meso-(CHPh·CO₂H)₂ in hot PhNO₂ gives (CHPh·CO)₂O, and benzoin gives benzil. p-C₆H₄Br·NO₂, p-C₆H₄Cl,NO₂, or m-C₆H₄(NO₂)₂ does not cause aromatisation.

Chemotherapeutic comparison of the trypanocidal action of aromatic diamidines. J. N. Ashley, H. J. Barber, A. J. Ewins, G. Newbery, and A. D. H. Self (J.C.S., 1942, 103—116).—Amidines are best obtained by saturating with HCl a solution of the nitrile in EtOH (2·5—3 mols.) and, for sparingly sol. aromatic nitriles, an inert diluent (CHCl₃, C₆H₆, PhNO₂, or an excess of EtOH) at 0—5°, keeping for 5—7 days at room temp., and treatment of the resulting OEt·CR:NH,HCl (A) with 10% NH₃-abs. EtOH. Reaction occurs between OEt·CR:NH and NH₃, but 10 mols. of NH₃ are required

to suppress the decomp., (A) + 2EtOH \rightarrow NH₄Cl + CR(OEt)₃. The following are thus prepared: p-aminophenylacetamidine dihydrochloride, m.p. 270°; p-amidinomethylbenzamidine dihydrochloride, m.p. 280—285° (decomp.); 4:4'-diamidino-, -dimethylamidino-, -di-N-diethylamidino-, -di-N-phenylamidino-, and -di-amidinomethyl-diphenyl dihydrochloride; 4:4'-diamidinodiphenylamidinomethyl-diphenylamidino-, -di-N-phenylamidinodiphenylamidino-, -di-N-phenylamidinodiphenylamidino-, -di-N-phenylamidinodiphenylamidino-, -di-N-phenylamidinodiphenylamidino-, -di-N-phenylamidinodiphenylamidino-, -di-N-phenylamidinodiphenylamidinodiphenylamidino-, -di-N-phenylamidinodiphenyla methane dihydrochloride, -ethane dihydrochloride, +0·5H₂O, and -propane dihydrochloride; 4 : 4'-diamidino-triphenylmethane dihydrochloride, -methyldiphenyl dihydrochloride, -benzophenone dihydrochloride, m.p. 300°, -benzhydrol dihydrochloride, m.p. 212°, -benzylideneacetophenone dihydrochloride, -deoxybenzoin dihydrochloride, +1·5H₂O, m.p. 280—282°, -diphenyl ether, m.p. 215—216° (dihydrochloride, +2H₂O), -diphenyl sulphide, m.p. 209—210° (decomp.), -diphenylsulphone dihydrochloride, m.p. 296°, -dibenzylamine trihydrochloride, -dibenzyl ether, m.p. 195° (decomp.) (dihydrochloride, +H₂O), -dibenzyl sulphide, m.p. 198—199° (decomp.), -diphenoxymethane dihydrochloride, m.p. 198—199° (decomp.), -diphenoxymethane dihydrochloride, m.p. 249° (decomp.), -diphenoxythane, m.p. 234—235° (decomp.) (dihydrochloride, m.p. (+H₂O), m.p. 297°), -ay-diphenoxypropane dihydrochloride, m.p. (+H₂O), 292° (anhyd.) 300°, -aδ-diphenoxybutane dihydrochloride, +2H₂O, m.p. 297°), -aζ-diphenoxy-n-hexane dihydrochloride, +2H₂O, m.p. 236° (decomp.) [dihydrochloride, +2H₂O, m.p. 233—234° (decomp.); dimethanesulphonate], -aζ-diphenoxy-n-hexane dihydrochloride, +2H₂O, m.p. 246—247° (decomp.), -aη-diphenoxy-n-heptane, m.p. 175—177° (decomp.) [dihydrochloride, +2H₂O, m.p. >300°, -benzanilide, m.p. 245—250° (decomp.), -benzenesulphonanilide dihydrochloride, +4H₂O, m.p. 239°, -β-phenoxyethylaniline, m.p. 204° (decomp.) (dihydrochloride, +2H₂O, m.p. 230°, -β-p methane dihydrochloride, -ethane dihydrochloride, +0.5H2O, and m.p. 296—297°), -diphenyl disulphide dihydrochloride, +2H₂O, m.p. >300°, -diphenylcarbamide dimethanesulphonate, +H₂O, and -αδ-di->300°, -diphenylcarbamiae aimethanesupponaie, +H₂O, and -ao-urphenylbutadiene dihydrochloride; di-(p-amidinophenylmethyl) ether, m.p. indefinite (dihydrochloride); 4-amidino-2'-cyanodiphenyl, m.p. 160—161°; 3: 4'-, m.p. 300°, and 4: 4'-diamidinostilbene dihydrochloride, +2H₂O, m.p. 300°, and anhyd. (corresponding dimethanesulphonate); 4-nitro-, m.p. 300°, reduced by SnCl₂-aq. HCl-AcOH to 4-amino-4'-amidinostilbene dihydrochloride, m.p. 300°; 4-amidinostilbene dihydrochloride, m.p. 300°; 4-amidinophenyl diamidinobenyal to 4-amino-4'-amidinostilbene dihydrochloride, m.p. 300°; 4-amidino-diphenyl ether, m.p. 126—127°; p-amidinophenyl p-amidinobenzyl ether, m.p. 232—233° (dihydrochloride); m-amidinophenyl p-amidinobenzyl ether dihydrochloride, +0·5H₂O; p-amidinophenyl p-amidinophenyl ether m.p. 182°; p-amidinophenyl β-p-amidinophenylethyl ether dihydrochloride, +H₂O; αγ-di-m-amidinophenoxypropane dihydrochloride, m.p. 202—204° (decomp.); αε-di-m-amidinophenoxy-n-pentane dihydrochloride, +2H₂O; αmd p-di-p'-amidinophenoxyxylene dihydrochloride, +H₂O; and p-di-p'-amidinobenzyloxybenzene dihydrochloride, +2H₂O. Yields of dinitriles obtained by the Sandmeyer reaction are much improved by sublime obtained by the Sandmeyer reaction are much improved by sublimobtained by the Sandmeyer reaction are much improved by sublimation of the crude product at 0·1—1 mm. (apparatus described). Thus are prepared 4: 4'-dicyano-triphenylmethane (5%), m.p. 134—145°, -benzophenone (I) (60%), m.p. 162° (lit. 204°) (phenylhydrazone, m.p. 242—243°), -benzhydrol [prep. from (I) by Al-Hg in EtOH-NH₃], m.p. 158—159°, -stilbene (II) (45%), m.p. 282°, -azobenzene (45%), m.p. 270°, and -diphenyl sulphide, m.p. 133—134°. The di-(imino-ether) from (II) with NHPh·NH₂ in abs. EtOH at 50° gives aβ-di-(p-phenylbenzamidrazino)ethylene, m.p. 261—262° (decomp.) (dihydrochloride, m.p. >300°). 3: 4'-Diaminostilbene, m.p. 153°, is obtained from the (NO₂)₂-compound by SnCl.—AcOH—ag. gives aβ-di-(p-phenylbenzamidrazino)ethylene, m.p. 261—262° (decomp.) (dihydrochloride, m.p. >300°). 3:4′-Diaminostilbene, m.p. 153°, is obtained from the (NO₂)₂-compound by SnCl₂-AcOH-aq. HCl, and converted (Sandmeyer) into 3:4′-dicyanostilbene (26%), m.p. 137—138°. Addition of Ac₂O to p-NO₂·C₆H₄·CH₂·CO₂Na and p-NO₂·C₆H₄·CH·CH·CHO at 140—150° and heating at 150° and then with more Ac₂O at 160° gives aδ-di-p-nitrophenyl-Δαγ-pentadienoic acid, m.p. 295—300°, reduced by SnCl₂-aq. HCl-AcOH to the (NH₂)₂-acid, which yields (Sandmeyer) aδ-di-p-cyanophenyl-butadiene, m.p. 260—261° (decomp.). 4-Cyanostilbene, m.p. 114°, is prepared (Sandmeyer) in 16% yield. p-NO₂·C₆H₄·CH₂·CO₂H and p-NHAc·C₆H₄·CHO in piperidine at 160° give 4-nitro-4′-acatamido-m.p. 255°, hydrolysed (aq. EtOH-HCl) to 4-nitro-4′-acatamido-m.p. 245° (lit. 229—230°), which affords 4-nitro-4′-cyano-stilbene (31%), m.p. 247—249°. (CH₂·C₆H₄·CH·N·OH-p)₂ in boiling Ac₂O gives 70% of (p-CN·C₆H₄·CH₂)₂, other methods giving poor yields. (p-NH₂·C₆H₄·N)₂, m.p. 245—246°, is best obtained by reducing the (NO₂)₂-compound by Na₂S in boiling aq. EtOH. Distillation of (CH₂Ph·CO₂)₂Ca in a steel retort gives 60% of CO(CH₂Ph)₂, b.p. 178—182°/10—11 mm., reduced (Clemmensen) to Ph·[CH₂]₃·Ph (70%), b.p. 155—160°/9—10 mm., which affords successively ap-di-p-chloromethyl-, m.p. 103—104°, hydroxymethyl-, m.p. 118—122°, aldehydo-, an oil (dioxime, m.p. 125—127°), and -cyano-phenyl-propane, m.p. 94—95°. p-CN·C₆H₄·CHO (III), p-CN·C₆H₄·COMe, and a little piperidine in boiling, abs. EtOH give 4: 4′-dicyano-benzylideneacetophenone, m.p. 216—217°, obtained less well by other methods and resistant to H₂-Pd. Di-p-cyanophenyl-ulphone (prep. from the acid by way of the acid chloride), m.p. >300°, with P₂O₆ gives di-p-cyanophenyl-ulphone, m.p. 232—233°, also obtained by from the acid by way of the acid chloride), m.p. $>300^\circ$, with P_2O_5 gives di-p-cyanophenylsulphone, m.p. 232— 233° , also obtained by the Sandmeyer reaction. Boiling (\forall) with PhOH (excess) and KOH gives Ph p-cyano-, m.p. 43— 45° , and p-carbamyl-phenyl ether,

m.p. 164—165°. p-NH₂·C₆H₄·CN (VI), m.p. 82—84°, is best (80%) obtained by boiling crude p-NHAc·C₆H₄·CH:N·OH in Ac₂O and hydrolysing (2N-HCl) the product. The Sandmeyer reaction [KCu(CN)₂; 90—95°] gives 65—70% of p-OH·C₆H₄·CN, b.p. 148°/1 mm., which with NaOEt and then p-CN·C₆H₄·CH₂Cl (VII) boiling EtOH gives 90% of p-cyanophenyl p-cyanobenzyl ether, m.p. 167—168°. With m-OH·C₆H₄·CN, p-OH·C₆H₄·CH₂·CN, or p-C₆H₄(OH)₂, (VII) gives similarly m-cyanophenyl, m.p. 97—98°, w-cyanop-tolyl p-cyanobenzyl ether (and a little amide), m.p. 92°, and 1 · 4-di-p-cyanobenzyloxybenzene, m.p. 170—171°, respectively. ω-cyano-p-tolyl p-cyanobenzyl ether (and a little amide), m.p. 92°, and 1: 4-di-p-cyanobenzyloxybenzene, m.p. 170—171°, respectively. CH₂I₂ or Br-[CH₂]_n·Br (n = >1) with (IV) (prep. by NaOEt- or NaOH-EtOH) in boiling, abs. EtOH gives di-p-cyanophenoxymethane (30%), m.p. 148°, αβ-di-p-cyanophenoxyethane (VIII) (55%), m.p. 197°, αγ-di-p-cyanophenoxypropane (83%), m.p. 188°, αδ-di-p-cyanophenoxy-n-bentane (78%), m.p. 114—114-5°, αζ-di-p-cyanophenoxy-n-henoxy-nm.p. 107°, and aκ-di-p-cyanophenoxy-n-decane (30%), m.p. 123°; p-C₆H₄(CH₂Br)₂ gives similarly ωω'-di-p-cyanophenoxyxylene (60%), m.p. 215—216°; a similar reaction in H₂O gives β-p-cyanophenoxy-ethyl bromide [45%; and a little (VIII)], m.p. 59°, which with (VI) at 130—140° gives 4 · 4'-dicyano-β-phenoxy-ethylaniline (35%), m.p. 163°. Hydrolysis of (VII) by aq. Na₂CO₃ gives successively 4-cyano- (IX), m.p. 41—42°, b.p. 203° [53 mm. (phenylurethane, m.p. 112—113°), and 4-carbamyl-benzyl alcohol, m.p. 134—135° [believed by Banse (A., 1894, i, 575) to be (IX)], but in boiling 33% aq. KOH gives (p-CO₂H-C₆H₄-CH₂)₂O, m.p. 272—274° (and some p-OH·CH₂-C₆H₄-CO₂H), converted by PCl₅ into the diacid chloride and thence successively by aq. NH₃ into di-p-carbamyl-, m.p. 241°, and by P₂O₅ in xylene into di-p-cyano-benzyl ether, m.p. 97—98°, also obtained from (VII), (IX), and NaOEt in EtOH at 95—100°. With N₂O₄-CHCl₃ at 0° and later room temp., (IX) gives (III) and m.p. 107°, and aκ-di-p-cyanophenoxy-n-decane (30%), m.p. 123 also obtained from (VII), (IX), and NaOht in EtOH at 95–100°. With N₂O₄-CHCl₃ at 0° and later room temp., (IX) gives (III) and a little acid, but with Cu(NO₃)₂ gives mixtures. With KCN-EtOH-H₂O, (III) gives 4: 4′-dicyanodeoxybenzoin (40%), m.p. 219–220°, and a little acid. p-Cyanobenzoyl chloride (prep. by SOCl₂; PCl₅ gives too much anhydride), m.p. 65°, with (VI) in C₅H₅N gives p-cyanobenz-p'-cyanoanilide, m.p. 259–261°; p-cyanobenzenesulphon-p'-eyanoanilide, m.p. 201–202°, is similarly prepared. Ph·[CH₂]₂·Br (X) (prep. simplified; 90% yield) and (IV) give p-cyanophenyl β-phenylethyl ether (20%), m.p. 64°, which with HNO₃-H₂SO₄ at −5° gives 3: 4:1-NO₂·C₆H₃(OH)·CN, m.p. 143°, but with HNO₃ (d 1·5) at −10° to 0° gives 2-nitro-4-cyanophenyl β-(? 4-)nitrophenylethyl ether, m.p. 185–186°, hydrolysed by conc. H₂SO₄ at 90° to 3: 4:1-NO₂·C₆H₃(OH)·CO₂H (42%). Only traces of ether are obtained from p-OH·C₆H₄·CN and p-NO₂·C₆H₄·[CH₂]₂·Br (XI). β-p-Aminophenylethyl bromide hydrochloride, m.p. 212–213°, is obtained from (XI) by H₂-PtO₂ in HCl-EtOH or by SnCl₂-HCl at 80–90° and gives (Sandmeyer; 20–30°; in presence of C₆H₄; 40% yield) β-p-cyanophenylethyl bromide, m.p. 53°, b.p. 135–140°/2 mm., and thence p-cyanophenyl β-p-cyanophenylethyl ether (10–12%), m.p. 129–130°. p-CN·C₆H₄·NHBz and PCl₅ at 120° give N-p-cyanophenylbenziminochloride (76%), m.p. 88–89°, b.p. 194–198°/3 mm., which with (IV) in Et₂O gives N-p-cyanophenylbenziminochloride (76%), m.p. 88–89°, b.p. 194–198°/3 mm., which with (IV) in Et₂O gives N-p-cyanophenylbenziminochloride (76%), m.p. 155°, rearranged smoothly at 280–300° into benzdi-p-cyanophenylamide, +2·5H₂O, m.p. 194° (decomp.), recoverted after dehydration (100–110°)1–2 mm.) at 180–200° With N₂O₄-CHCl₃ at 0° and later room temp., (IX) gives (III) and gives benzdi-p-amidinophenylamide, +2.5H₂O, m.p. 194° (decomp.), converted, after dehydration (100-110°/1-2 mm.), at 180-200° into NH2Bz (82%) and di-p-cyanophenylamine (76%), m.p. 240-246° [obtained by hydrolysis of (XII) in (CH2·OH)2, but not from (V) and (VI)], which yields di-p-amidinophenylamine dihydrochloride, +H2O, or its H sulphate, B,1.5H2SO4.

Physico-chemical properties of the chromophoric groups, azomethine ('CH:N') and azomethinevinylene ('CH:CH:CH:N').—See A., 1942, I, 164.

Derivatives of β -o-anisylpropaldehyde. A. Zaki and H. Fahim (J.C.S., 1942, 182).— β -o-Anisylpropaldehyde (prep. from the acid chloride by H₂-Pd in xylene) gives a NaHSO₃ compound, m.p. 163—164°, and a p-nitrophenylhydrazone, m.p. 126—127°.

Catalytic action of Japanese acid earth. XI. Isomerisation of aldehydes to ketones and the explanation of migration of radicals on the electronic viewpoint (continued). K. Ishimura (Bull. Chem. Soc. Japan, 1941, 16, 252—262; cf. A., 1942, II, 55).—p-C₆H₄Me-MgI-CH₂Bz·OH-Et₂O afford di-p-tolyl, p-C₆H₄MeI, PhMe, and a-phenyl-a-p-tolylethylene glycol (I), m.p. 84·5—85·5° [monobenzoate, m.p. 136° (corr.)], oxidised by CrO₃-AcOH to p-C₆H₄Me·COPh. (I) and dil. H₂SO₄ at 180—185° afford p-C₆H₄Me·CHPh·CHO, b.p. 176° (corr.)]7 mm., which, passed over Japanese acid earth at 300—350°, gives C₆H₆, PhMe, and COPh·CH₂·C₆H₄Me-p (p-C₆H₄Me·CO·CH₂Ph not formed). p-Toluoylcarbinol (II) and m-C₆H₄Me·MgI yield a-m-tolyl-a-p-tolyl-ethylene glycol, m.p. 59—60° [monobenzoate (+H₂O), m.p. 173—174° (corr.; decomp.)], oxidised to m-tolyl p-tolyl ketone (III), m.p. 72°, or converted by aq. H₂C₂O₄ at 115—120° into m-tolyl-p-tolyl-acetaldehyde (IV), b.p. 182° (corr.)]7 mm. [semicarbazone, m.p. 179—180° (corr.; decomp.)]. (IV) and aq. AgNO₃-KOH-EtOH yield m-tolyl-p-tolylacetic acid, m.p. 93—94°, and (III). (III) affords isomeric oximes, m.p. 119—121° and m.p. 133—134°, and Beckmann

rearrangement (PCl₅-Et₂O) yields p-tolu-m- and m-tolu-p-toluidide, respectively. m-C₆H₄Me·CH₂·COCl and PhMe-AlCl₃ yield p-tolyl m-methylbenzyl ketone (V), m.p. 68° [semicarbazone, m.p. 192—194° (slight decomp.); oxime, m.p. 108—109°]. m-Tolyl p-methylbenzyl ketone (VI), m.p. 40—41° (oxidised on long keeping in air to m + p-toluic acid; oxime, m.p. 88·5°, rearranged to p-tolylacet-m-toluidide, m.p. 123—124°), is obtained from p-C₆H₄Me·CH₂·CN-m-C₆H₄Me·MgI, or from p-C₆H₄Me·CH₂·CN-dlowed by oxidation (CrO₃-AcOH) of the carbinol. (II) is hydrogenated (colloidal Pt; aq. AcOH) at 22°/761 mm, to p-tolylethylene genated (colloidal Pt; aq. AcOH) at 22°/761 mm, to p-tolylethylene glycol, m.p. 76·5—77·5°, converted by very dil. HCl at 180—185° into (VII). m-Tolu-p-methylbenzylamide has m.p. 116°. (IV) passed over Japanese acid earth at 300—350°/30 mm. (CO₂) yields (VI), but not (V), i.e., only the m-tolyl radical migrates.

Syntheses in the carotenoid series. III. Preparation of a methyl homologue of dehydro-β-cyclocitral. IV. Preparation of ω-phenyl-and ω-furyl-polyenealdehydes. J. Schmitt (Annalen, 1941, 547, 256—270, 270—284; cf. A., 1942, II, 126).—III. isoPhorone and MgMeBr give 1:1:3:5-tetramethyl-Δ^{2:4}-cyclohexadiene (I), b.p. 155°/760 mm., 52°/20 mm., and a small amount of a substance, C₁₉H₃₂O₂, m.p. 162·5°. With (CH·CO)₂O, (I) gives an adduct, m.p. 101° (derived acid, m.p. 100°), with Br gives 1:2:3:5:4:6-C₆Me₄Br₂, and with SeO₂ in aq. AcOH gives 2:2:4:6-tetramethyl-Δ^{3:5}-cyclohexadienone (II), b.p. 90—95°/16 mm. (2:4-dinitrophenyl-hydrazone, m.p. 234°), isodurene, and ? 2:2:4-trimethyl-6-hydroxy-methyl-Δ^{3:5}-cyclohexadienone, b.p. 86—87°/0·3 mm. (absorption hydrazone, m.p. 234°), isodurene, and ? 2:2:4-trimethyl-6-hydroxy-methyl-\$\Delta^{3:5}\$-cyclohexadienone, b.p. 86—87°/0·3 mm. (absorption max. 258 ± 1 mµ.; gives a 2:4-dinitrophenylhydrazone; \$C_{16}\H_{16}\O_{4}\N_{4}\N_{4}\$, m.p. 237°, and semicarbazone, \$C_{11}\H_{16}\O_{3}\N_{4}\$, m.p. 206°, with loss of \$H_{2}\O\$. With a drop of \$H_{2}\SO_{4}\$ in \$Ac_{2}\O\$, (II) gives a red and with \$\SbCl_{3}\$-CHCl₃ a bluish-green colour, with (iCH·CO)₂O gives an adduct, m.p. 152° [derived acid, m.p. 172° (decomp.) (2:4-dinitrophenyl-hydrazone, m.p. 268°)]. \$CH_{2}\Br-CO_{2}\Eta, (II)\$, and \$Z\$ in \$C_{6}\H_{6}\$ give \$Et\$ 1:5- (or 1:3-\shepoxy-2:2:4:6-tetramethyl-\$\Delta^{3}\$- (or \$\Delta^{5}\$-)cyclohexenylacetate, b.p. 100—105°/0·1 mm., hydrolysed by hot KOH-MeOH to an oily acid, which, when distilled at 12 mm., decomposes to give 2:3:4:6-or 2:2:3:4:6-pentamethyl-\$\Delta^{5}\$-cyclohexenone, b.p. 90—95°/12 mm. (semicarbazone, m.p. 173°), and a little? 1:3:5:5-tetramethyl-6-methylene-\$\Delta^{1:3}\$-cyclohexadiene, b.p. 70—75°/12 mm. (blue, later green, colour with \$\SbCl_{3}\$-CHCl₃, red with a drop of \$H_{2}\SO_{4}\$ in \$Ac_{2}\O\$). With \$CH_{2}\Close Close C (II) gives Et 1: α-epoxy-2: 2: 4: 6-tertamethyl-Δ···-cyclonexatienyl-acetate, b.p. 105°/0·1 mm., which yields an oily acid, converted by distillation at 12 mm. into 2: 2: 4: 6-tetramethyl-Δ···6-cyclohexatiene-1-aldehyde [semicarbazone, ? forms, m.p. 175° and (after sintering) 207° (absorption max. 307 mμ., log ε 4·27±0·03); 2: 4-dinitrophenylhydrazone, m.p. 200°; blue colour with H₂SO₄-Ac₂O, reddish-brown with H₂SO₄, violet after some min. with SbCl₃-CHCl₃, yellow with Schiff's reagent; reduces NH₃-AgNO₃], and a substance CHCl₃ m. 138° substance, C12H14O2, m.p. 138°

IV. ω-Phenyl- and ω-furyl-polyenealdehydes, R·[CH:CH]_n·CHO (R = Ph, 2-furyl), are obtained in good yield by condensing aldehydes by piperidine acetate in a solvent (70% EtOH) in which the products are insol.; condensation with crotonaldehyde (III) is the easier the more unsaturated is the other reactant. Purification is by recrystallising and sublimation. Thus, CHPh:CH·CHO and (III) give ζ-phenylheptatrienal (50%), m.p. 116° (lit., 96°, 94°, 112·5—113°), and κ-phenylundecapentaenal (IV) (20%), m.p. 183°. Ph·[CH:CH]₂·CHO and (III) give similar yields of θ-phenylnonatrienal, m.p. 144°, and μ-phenyltridecahexaenal, m.p. 213°. β-2-Furylacraldehyde and (III) give ζ-2-furylheptatrienal, m.p. 111°, and κ-furylundecapentaenal (V), m.p. 194°. δ-Furylpentadienal and (III) give θ-furylnonatriaenal, m.p. 155°, and μ-furyltridecahexaenal, m.p. 218°. In C₆H₆, (IV) and (III) give ξ-phenylpentadecaheptaenal (80%), m.p. 232° (lit. 234°). In PhMe, (V) and (III) give ξ-furylpentadecaheptaenal (poor yield), m.p. 230° (decomp.). The pure products are stable. Regularities of the m.p., colour, and colour reactions are noted. The Ph and furyl series are similar in properties. products are insol.; condensation with crotonaldehyde (III) is the

Prototropic changes of carbonyl compounds.—See A., 1942, I, 149. Lignin and related compounds. LIX. Aromatic aldehydes from plant materials.—See A., 1942, III, 360.

Structure and absorption spectra. IV. αβ-Unsaturated ketones. —See A., 1942, II, 164.

Application of Fries reaction to esters of quinol. R. Y. Shahane (Current Sci., 1941, 10, 523—524).—p-C₆H₄(OAc)₂ is converted by heated AlCl₃ into 1:2:5-C₆H₃Ac(OH)₂, m.p. 202°, in 76% yield. Similarly a 42%, yield of 1:2:5-C₆H₃Bz(OH)₂ is derived from p-HW C₆H₄(OBz)₂.

Fries migration of the esters of polyhydroxy-phenols. R. D. Desai and C. K. Mavani (Current Sci., 1941, 10, 524).—p-C₆H₄(OAc)₂ and p-C₆H₄(OBz)₂ give good yields of 1:2:5-C₆H₃Ac(OH)₂ and c-C₆H₃Bz(OH)₂. 1:3:5-C₆H₃Me(OAc)₂ gives 2:4-diacetylorcinol, readily de-acetylated to γ-orcacetophenone. 1:2:3-C₆H₃(OAc)₃ gives exclusively gallacetophenone in excellent yield. 1:3:5-C₆H₃(OAc)₃ gives mainly 2:4:6-triacetyl-or 2:4-diacetyl-phoroglycinol according to conditions and phlorogetophenone coloring glucinol according to conditions and phloracetophenone only in H. W.

p-Anisyl γ-phenoxypropyl ketone. W. E. Bachmann and A. L. Wilds (J. Amer. Chem. Soc., 1942, 64, 186).—This substance, m.p. 59—60·5°, is obtained from p-OMe·C₈H₄·MgBr and OPh·[CH₂]₃·CN in Et₂O by way of the imine hydrochloride. R. S. C.

Application of the Nencki reaction to β-naphthol. R. D. Desai and W. S. Waravdekar (Current Sci., 1941, 10, 524—525).—Excellent yields of 1-lauryl-, 1-palmityl-, and 1-stearyl-2-naphthol are obtained from β -C₁₀H₇-OH and the requisite acid by the Nencki

Photochemical decomposition of cyclic ketones.—See A., 1942, I,

Structure of vinyl polymerides.—See A., 1942, II, 164.

Structure of vinyl polymerides.—See A., 1942, II, 164.

Synthesis of an analogue of the sex hormones. W. E. Bachmann and D. G. Thomas (J. Amer. Chem. Soc., 1942, 64, 94—97).—m-OMe·C_eH₄:[CH₂]₂·OH [prep. from m-C_eH₄I-OMe, EtBr, Mg, and (CH₂)₂O in Et₂O-C_eH₆; 85% yield] with PBr₃-C_eH₆ gives the bromide (66%), which with CHNa(CO₂Et)₂ etc. gives γ-m-anisyl-butyric acid. The derived (PCl₅-C_eH₆) chloride with SnCl₄-C_eH₆ at 0° gives 1-keto-6-methoxy-1:2:3:4-tetrahydronaphthalene, m.p. 78—79·5° (lit. 77·5—82°), converted by Me₂C₂O₄ etc. at 5—15° into the Me 2-glyoxylate (95%), m.p. 76·5—77·5°, which with glass powder at 175—185° gives Me 1-keto-6-methoxy-1:2:3:4-tetrahydro-2-naphthoate, m.p. 88—89·5° after sintering (Pyrex; pre-heated bath). Subsequent reactions are as described earlier (A., 1941, II, 138). Methylation gives Me 1-keto-6-methoxy-2-methyl-1:2:3:4-tetrahydro-2-naphthoate (84%), m.p. 91—92·5°, converted (Reformatsky; dehydration; reduction; esterification) into Me 2-carbomethoxy-6-methoxy-2-methyl-1:2:3:4-tetrahydro-1-naphthylacetate, a-, m.p. 77·5—79°, and β-form, an oil. Hydrolysis gives 2-carbomethoxy-6-methoxy-2-methyl-1:2:3:4-tetrahydro-1-naphthylacetic acid, a-, m.p. 118·5—120·5°, and β-form, m.p. 128—130°, which by Arndt—Eistert—Wolff reactions yield Me β-2-carbomethoxy-6-methoxy-2-methyl-1:2:3:4-tetrahydro-1-naphthyl-1:2:3:4-tetrahydrocyclopentano-1':2'-1:2-naphthalene, a-, m.p. 94—96·5°, and β-form, m.p. 117—119° (both m.p. after sintering; Pyrex; preheated bath), hydrolysed to 3'-keto-6-methoxy-a-, m.p. 38·5—40·5°, and β-form, m.p. 117—119° (both m.p. after sintering; Pyrex; preheated bath), hydrolysed to 3'-keto-6-methoxy-a-, m.p. 38·5—40·5°, and β-form, m.p. 112—113·5°, which with AcOH-48%) HBr-N₂ gives 3'-keto-6-hydroxy-2-methyl-1:2:3:4-tetrahydrocyclopentano-1':2'-1:2-naphthalene, a-, m.p. 38·5—40·5°, and β-form, m.p. 115—113·5°, which with AcOH-48%) HBr-N₂ gives 3'-keto-6-hydroxy-2-methyl-1:2:3:4-tetrahydrocyclopentano-1':2'-1:2-naphthalen

Action of hydrogen bromide in acetic acid on unsaturated 1:4diketones. M. Couper and R. E. Lutz (J. Org. Chem., 1942, 7, 79-87; cf. A., 1933, 607).—The reaction between HBr-AcOH and two of four unsaturated a δ -diaryl- $\beta\gamma$ -dimethyl-a δ -diketones is essentially reduction, whereas in the other two it is reduction and bromination in a para position in Ph. β -C₁₀H $_7$ -OH acts as Br acceptor and in its presence the reactions are confined to reduction (and furanisation in two cases). A mechanism of bromination is given. The product of the action of HBr-AcOH on (${}^{\circ}$ CMeBz)₂ is trans- β -benzoyl- γ -p-bromobenzoylbutane (I), m.p. 125°, also obtained by reduction (SnCl₂, AcOH, conc. HCl) of the - $\Delta\beta$ -butene (II), m.p. 125° (prep. from β -p-bromobenzoyl- $\alpha\beta$ -dimethylacrylyl chloride, AlCl₃, and C_8H_8). Dimethylfumaryl chloride, AlCl₃, and PhBr in CS₂ afford trans- $\beta\gamma$ -di-p-bromobenzoyl- $\Delta\beta$ -butene (III), m.p. 172:5—173°, converted by SnCl₂ in boiling AcOH-conc. HCl or by Zn dust and boiling conc. AcOH into 2:5-di-p-bromophenyl-3:4-dimethylfuran (III), m.p. 181°, also obtained in poor yield from PBr₅ and 2:5-diphenyl-3:4-dimethylfuran or (I). (IV) is oxidised by HNO₃ in well-cooled EtCO₂H to cis- $\beta\gamma$ -di-p-bromobenzoyl- $\Delta\beta$ -butene (V), m.p. 138—139°. (I) is scarcely affected by prolonged boiling with KOH-EtOH. in two cases). A mechanism of bromination is given. The product (I) is scarcely affected by prolonged boiling with KOH–EtOH, is not reduced by Zn–AcOH or catalytically in presence of Pt or Pd–BaSO₄, and is oxidised (hot HNO₃ or KMnO₄) to p-C₆H₄Br·CO₂H. It cannot readily be furanised. Bromination (Br–HBr–AcOH) of its leady to (IV) it leads to (IV). HBr-AcOH and (CMeBz) in presence of β -C₁₀H₇·OH afford 2:5-diphenyl-3:4-dimethylfuran, m.p. 116—117°. (II) and HBr-AcOH give (IV) and (I) (ratio 1:4), whereas in presence of β -C₁₀H₇·OH the product is (I). (III) similarly yields (IV), also in presence of β -C₁₀H₇·OH; (IV) is also obtained from (V). (CH₂Bz)₂ and HBr-AcOH give diphenylfuran, m.p. 90—92°. $\alpha\beta$ -Dimesitoylethylene, HBr-AcOH, and β -C₁₀H₇·OH afford $\alpha\delta$ -dimesitoylethylene, m.p. 120, 122°. mesitylbutane-aδ-dione, m.p. 130-132°.

Application of the p-hydrogen method to some problems of organic constitutions. I.—See A., 1942, I, 166.

Preparation of tetrahydroxybenzoquinone and rhodizonic acid salts from the product of oxidation of inositol by nitric acid. P. W. Preisler and L. Berger (J. Amer. Chem. Soc., 1942, 64, 67—69).—Prep. of K₂ rhodizonate (I) and of 1:2:3:5:6:4-O.C(OH)₄.O and its K₂ salt from inositol is improved. The K salts are disand its K_2 sait from mostor is improved. The N saits under tinguished by solubilities in H_2O and N-HCl and analysed by potentiometric titration $[Na_2S_2O_4; K_3Fe(CN)_6]$. The colour changes during titration of SO_4'' by Ba" are probably due to (I).

Dyes related to toluidine-green. C. F. H. Allen, G. F. Frame, and C. V. Wilson (J. Org. Chem., 1942, 7, 63—67).—Comparison of the absorption spectra of homologues of toluidine-green (I) with those of the parent substance shows that the curves of dyes having substituents in the 6:7-positions resemble the unsubstituted alizarine-cyanine-green rather than (I). Halogen and OH in the α-position have a much greater effect on the absorption curves of this type of dye than the same group in a β-position. The 3'-sulphonic acid resembles the corresponding isomeride in the 1:5- (blue) series, the curve falling off in the far red. 3:6:1:2-C₆H₂Cl₂(CO)₂O, ο-C₆H₄Cl₂, and AlCl₃ at 95—98° yield 3:6-dichloro-o-3':4'-dichloro-benzoylbenzoic acid, m.p. 170—171° after softening at ~164°, cyclised by ~8% oleum at 160° to 1:4:6:7-tetrachloroanthraquinone (II), m.p. 259—260°, the constitution of which is established by its subsequent reactions. m-Hemipinic acid and p-C₆H₄(OH)₂ give 1:4:6:7-tetrahydroxyanthraquinone (III) (tetra-acetate, m.p. 192—193°). Gradual addition of a mixture of 4:5:1:2-C₆H₂Br₂(CO)₂O and p-C₆H₄(OH)₂ to AlCl₃-NaCl at 200—220° yields 6:7-dibromoquinizarin (IV), m.p. 296—298°. (III) is reduced by Sn and HCl in AcOH to the 2:3-H₂-compound, converted by p-C₆H₄Me·NH₂ and H₂BO₃ at 100° followed by atm. oxidation into 1:4-di-p-toluidino-6:7-dihydroxyanthraquinone. Similarly (IV) is transformed into its H₂-derivative, m.p. 287—289°, and thence into 6:7-dibromo-1:4-di-p-toluidinoanthraquinone. (II) and p-C₆H₄Me·NH₂ at 165—175° slowly give 6:7-dichloro-1:4-di-p-toluidinoanthraquinone.

Dyes related to toluidine-blue. C. F. H. Allen, C. V. Wilson, and G. F. Frame (J. Org. Chem., 1942, 7, 68—72).—4:8-Di-m-toluidino-(I), -p-toluidino-, -p-tert.-amylanilino- (II), -p-anisidino- (III), -p-chloroanilino- (IV), -p-xenylanino- (V), and -β-naphthylanino- (VI)-1:5-dihydroxyanthraquinone are obtained from 4:8-dichloroanthrarufin and the requisite base. Addition of H₃BO₃ is essential for the otherwise similar prep. of 4:8-di-o-chloroanilino-1:5-dihydroxyanthraquinone. The sulphonation of these compounds is described. The dyes from (I), (III), (V), and (VI) are much more sol. in H₂O than toluidine-blue (VII) and from the S:N ratio it appears that 2 SO₃H are present per N. The absorption curves of these dyes resemble that of the blue dye which results when (VII) is treated with fuming H₂SO₄ and has S:N > 1. (II) gives a dye resembling (VII) but apparently weaker. The dyes from (IV) does not have as high absorption in the far red. It appears that only p-alkylated amines can be expected to produce dyes closely resembling (VII).

IV.—STEROLS AND STEROID SAPOGENINS.

Preparation of $\Delta^{6:8(14)}$ -, $\Delta^{7:9(11)}$ -, $\Delta^{7:14}$ -, and $\Delta^{8:14}$ -cholestadienes. A., 1942, II, 167.

Relationship between optical rotatory power and constitution of sterols. II. S. Bernstein, E. J. Wilson, jun., and E. S. Wallis (J. Org. Chem., 1942, 7, 103—110).—Examination of [a]_D of a no. of sterols and the corresponding acetates, benzoates, and 3:5-dinitrobenzoates leads to the equation $[M]_{D \text{ derivative}} = [M]_{D \text{ sterol}} + \text{const.}$ The consts. for the acyl groups are quoted and depend on the group itself and on the mode of its union in the mol. Applications are discussed.

H. W.

Synthesis of an analogue of the sex hormones.—See A., 1942, II, 176.

Sterols. CXXV. Sapogenins. LI. Structure of the dibasic acid obtained by permanganate oxidation of anhydrosarsasapogenoic acid. Sterols. CXXVI. Sapogenins. LII. Structure of the side-chain of sarsasapogenin. Identification of the acid obtained by the haloform reaction on the dibasic acid from the potassium permanganate oxidation of anhydrosarsasapogenoic acid. R E. Marker and A. C. Shabica (J. Amer. Chem. Soc., 1942, 64, 147—149, 180—181).—LI. The dibasic acid, m.p. 206—207° (decomp.), obtained from anhydrosarsasapogenoic acid by KMnO₄ (Fieser et al., A., 1939, II, 31) is probably (I). Further oxidation gives 3(β)-hydroxy-16-ketobisnorcholanic acid,

and thence by NaOI 3-hydroxyætiobilianic acid (II). Oxidation of (I) by KMnO₄ at room temp. or of its Me ester acetate by CrO₃ and reduction of the product by Na-EtOH or -MeOH gives sarsasapogeninlactone.

LII. NaOI converts (I) into (II). (I) does not reduce AgNO₃-aq. NH₃ and is thus not an α-CO-acid (cf. loc. cit.). R. S. C.

V.—TERPENES AND TRITERPENOID SAPOGENINS.

Absorption spectra of terpenoid compounds. II. Irone.—See A., 1942, I, 164.

Vapour-phase thermal isomerisation of α - and β -pinene. L. A. Goldblatt and S. Palkin (J. Amer. Chem. Soc., 1941, 63, 3517—3522).—Under optimum conditions, pure α -pinene, $[\alpha]_D + 32 \cdot 06^\circ$, is isomerised at 375° to α - $[(CH \cdot CO)_2O$ adduct, m.p. $91-92^\circ$] and β -pyronene $[(CH \cdot CO)_2O$ adduct, m.p. $163-164^\circ$] ($\alpha + \beta$ 12%), dipentene (\sim 42%), and alloocimene (40%), b.p. $88 \cdot 4^\circ$ /20 mm. $[(CH \cdot CO)_2O$ adduct, m.p. $83-84^\circ$]. Pure β -pinene, $[\alpha]_D - 21 \cdot 81^\circ$, gives similarly myrcene (\sim 67%), l-limonene (\sim 13%), and α -camphorene (\sim 9.5%).

Reactions of β -pinene. I. With selenium dioxide in various solvents. W. D. Stallcup and J. E. Hawkins (J. Amer. Chem. Soc., 1941, 63, 3339—3341).—SeO₂ and β -pinene give pinocarvone, b.p. 75—78°/3 mm., 221—223°/760 mm., [a] $_{0}^{30}$ —16·5° [semicarbazone, m.p. 212—213° (corr.); 2:4-dinitrophenylhydrazone, m.p. 223—223·5° (corr.)], and carvopinone (I), b.p. 82—84°/3 mm., [a] $_{0}^{30}$ +62·7° (polymerises at 140° or when kept to a solid, softens at ~320°, and then melts with decomp.; semicarbazone, m.p. >300°; when distilled with $H_{2}C_{2}O_{4}$ in steam gives carvone and some polymeride). The amount of (I) formed depends partly on the solvent and, in general, increases with the time of reaction. The product of Dupont et al. (A., 1933, 1166) was a mixture.

Diethylamides and some derivatives of camphor. M. Herold and E. Jirát (Casopis Českoslov. Lék., 1938, 18, 165—171).—Camphor-10-sulphonyl chloride, m.p. 67° (from the acid and PCl₅), with NHEt₂ gives the sulphondiethylamide, m.p. 50°. Camphoryl chloride (from the acid and PCl₅) similarly yields the di(diethylamide), m.p. 130°. Camphoric anhydride and NHEt₂ yield NN-diethyl-a-camphoramic acid, m.p. 166°. The pharmacological action of these diethylamides and that of camphor-3-carboxydiethylamide are studied in comparison with that of o-C₆H₄(CO·NEt₂)₂. They show weak analeptic properties or little solubility in usable solvents.

F. R.

Camphorylidenesulphanilamides.—See B., 1942, III, 114.

American musk. I. Chemical constitution of the musk of the Louisiana muskrat. P. G. Stevens and J. L. E. Erickson (J. Amer. Chem. Soc., 1942, 64, 144—147).—The volatile oil (2·1%) from the scent glands of the Louisiana muskrat (Ondatra zibethicus rivalicius) contains dihydrocivetol (58), normuscol (40), and the derived odorous ketones (2%). The following data appear new. cyclo-Heptadecane, m.p. 66·0—66·2° (lit. 65°). Dihydrocivet-oxime, m.p. 63—64°, and -2: 4-dinitrophenylhydrazone, m.p. 84·5—86° after sintering. Normusc-2: 4-dinitrophenylhydrazone, m.p. 108—109°, and -1-menthylhydrazone, m.p. 138·5—139·5°. Cryoscopic consts. of civetone and cycloheptadecene are 39 and 20·2, respectively, the high val. of the former being probably due to intramol. conjugation of the CO and C.C.

R. S. C.

VI.—HETEROCYCLIC.

Tetrahydrofuran compounds. II. Preparation of γ -chloro- α -2-tetrahydrofurfurylbutane. R. D. Kleene (J. Amer. Chem. Soc., 1941, 63, 3539; cf. A., 1941, II, 266).—Furfurylideneacetone and H_2 -NiO in EtOH at 125°1100 atm. (initial) give a-2-tetrahydrofurfuryl-n-butan- γ -ol (63%), a liquid, which with SOCl₂ at C_8H_8N at >50° gives γ -chloro- α -2-tetrahydrofurfuryl-n-butane, b.p. 58—60°/3 mm.

Preparation of ω-furylpolyenealdehydes.—See A., 1942, II, 175.

Oxime of furfurylideneacetone. R. D. Kleene (J. Amer. Chem. Soc., 1941, 63, 3538).—Furfurylideneacetoxime, m.p. 88—90°, is prepared. R. S. C.

Synthesis of 4-aminocoumarone-1: 2-dicarboxylic acid cyclohydrazide, a heterocyclic analogue of 4-aminophthalhydrazide. E. H. Huntress and W. M. Hearon (J. Amer. Chem. Soc., 1942, 64, 86—90).—Benzfuran-1: 2-dicarboxylic acid and HNO3 (1 conc. + 1 d 1·5) at 100° give the 4-NO2-acid (I) (75%), m.p. 282—284°, which with KMnO4-NaOH gives 2:5:1-OH·C6H3(NO2)·CO2H (proof of structure), but gives no anhydride. Its Me2 ester (II) (CH2N2), m.p. 150—151°, gives no hydrazide, but evaporation of the acid with aq. N2H4 and heating the residue at 160—170° and then 195±5° gives 4-nitrobenzfuran-1:2-dicarboxylcyclohydrazide (III), m.p. 335—336° (Ac, derivative, m.p. 241—243°), also obtained by nitrating the unsaturated cyclohydrazide. With FeSO4-aq. NH3, (III) gives 4-aminobenzfuran-1:2-dicarboxylcyclohydrazide (IV) (40%), decomp. ~330°. Hydrogenation (PtO2) of (II) in AcOH gives Me2 4-aminobenzfuran-1:2-dicarboxylate, m.p. 137—138°, and thence (IV). Hydrogenation of (I) gives the 4-NH2-acid, m.p. >400°, which with CH2N2 gives Me2 4-dimethylaminobenzfuran-1:2-dicarboxylate, m.p. 65—67°; the Ag salt is unchanged by MeI in xylene. Oxidation of (IV) gives less luminescence than does that of 4-aminophthalhydrazide. R. S. C.

H,O.

New reactions of 2-keto-1-benzylidenebenzfuran. I. T. B. Panse, R. C. Shah, and T. S. Wheeler (J. Indian Chem. Soc., 1941, 18, R. C. Shah, and T. S. Wheeler (J. Indian Chem. Soc., 1941, 18, 453—456).—2-Keto-1-p-anisylidenebenzfuran (I) (reacts similarly to chalkones) and Br-CHCl₃ afford 1-bromo-2-keto-1-(ω-bromo-p-methoxybenzyl)benzfuran, m.p. 148°, converted by boiling MoH or EtOH into 1-bromo-2-keto-1-(ω: p-dimethoxy-, m.p. 137°, or -(p-methoxy-ω-ethoxy-benzyl)benzfuran, m.p. 145°, respectively, or by 0·1n-KOH into 4'-methoxyflavonol. (I) and cyclohexanone in boiling EtOH-aq. NaOH yield 2-keto-1-(ω-(2'-keto-1'-cyclohexyl)-p-methoxybenzyl]benzfuran, m.p. 278°, and (I) and Cyclohexanone in boiling EtOH-aq. NaOH yield 2-keto-1-(ω-(2'-keto-1'-cyclohexyl)-p-methoxybenzyl]benzfuran, m.p. 278°, and (I) and Cyclohexanone in boiling EtOH-aq-nanisyletnyl)benzfuran, m.p. 243°, or Et 5-p-anisylbenzfurano-1': 2': 3: 4-Δ²-cyclohexen-1-one-6-carboxylate (II), m.p. 159° [semicarbazone, m.p. 253—255°; oxime, m.p. 183° (decomp.); 2: 4-dinitrophenylhydrazone, m.p. 209—210° (decomp.); Cu salt, m.p. 210°], respectively. (II) and 10% HCl at 160° give 5-p-anisylbenzfurano-1': 2': 3: 4-Δ²-cyclohexen-1-one, m.p. 152°.

A. T. P.

Isolation of a physiologically active tetrahydrocannabinol from Cannabis sativa resin. H. J. Wollner, J. R. Matchett, J. Levine, and S. Loewe (J. Amer. Chem. Soc., 1942, 64, 26—29).—The EtOHand S. Loewe (J. Amer. Chem. Soc., 1942, 64, 26—29).—The EtOH-extract (30%) of Indian charas is successively acetylated, fractionated at 0.001 mm., and subjected to chromatography. Fractionation at 0.015 mm. of a fraction, $[a]_D^{21} - 205^\circ$ in EtOH, free from cannabidiol diacetate, and later chromatography gives a tetrahydrocannabinol acetate (I), $[a]_D^{21} - 214^\circ$ in EtOH. (I) is unaffected by further fractionation or chromatography, has a potency 14-6 ($\pm 7.2\%$) relative to the $7:8:9:10\text{-H}_4\text{-compound}$, is dehydrogenated by S at 225° or chloranil in xylene to cannabinol acetate is $(\pm 7.2\%)$ relative to the 7:8:9:10-H₄-compound, is denydrogenated by S at 225° or chloranil in xylene to cannabinol accetate, is hydrogenated to a H₆-compound, $[a]_2^{\rm BI}$ -119° in EtOH, has absorption max. at 2745 (log ϵ 3:52) and 2805 A. (log ϵ 3:53), and with (a) acid-EtOH or NH₃-PhMe gives a tetrahydrocannabinol, (a) $[a]_2^{\rm BI}$ -216° in EtOH, relative potency 8:04 (\pm 22%), (b) absorption max. at 2760 (log ϵ 3:42) and 2820 A. (log ϵ 3:43), $[a]_2^{\rm BO}$ \sim -193° in EtOH

Osage orange pigments. VIII. Oxidation. M. L. Wolfrom and A. S. Gregory (J. Amer. Chem. Soc., 1941, 63, 3356—3358; cf. A., 1941, II, 267).—Pomiferin Me₃ or tetrahydropomiferin Me₃ or isopomiferin Me₂ ether with H₂O₂ and a little KOH in aq. COMe₂ give 2:3-epoxides (yields: 80, 10, and 82%, respectively), m.p. 159·5°, 150—151°, and 200°, respectively (liberate I from hot, but not cold, KI-AcOH), yielding 3:4:1-(OMe)₂C₆H₃·CO₂H by more prolonged action in more conc. alkali. No epoxide was isolated from osajin, but isoosajin Me₂ ether gives a 2:3-epoxide, m.p. 199·5—200°, and thence p-OMe·C₆H₄·CO₂H. These and known reactions prove that the isoflavone nucleus is not reduced in the H₂-derivprove that the isoflavone nucleus is not reduced in the H4-derivatives and that neither the 2:3-ethylenic linking nor the OH of the 3-aryl nucleus is affected by the acid isomerisation, and fixes the positions of all but one OH.

R. S. C.

Anthochlor pigments of Coreopsis gigantea.—See A., 1942, III,

Structure of glycollaldehyde dimeride: R. K. Summerbell and L. K. Rochen (J. Amer. Chem. Soc., 1941, 63, 3241—3244).—The dimeride (I) of OH-CH₂-CHO is proved to be 2:5-dihydroxy-1:4dimeride (I) of OH·CH₂·CHO is proved to be 2:5-dihydroxy-1:4-dioxan (cf. E. Fischer, A., 1895, i, 437). Dioxadiene and HBr-CHCl₃ at 0° give 2:5-dibromo-1:4-dioxan (II), darkens at 104—106°, decomp. 134°, converted by p-NO₂·C₃H₄·NH·NH₂,HCl (III) in 25% AcOH at 100° into (·CH·N·NH·C₈H₄·NO₂·p)₂ (IV) and by AgOAc in PhMe at room temp. into 2:5-diacetoxy-1:4-dioxan (V), m.p. 157—158°. (II) and (V) are identical with the products obtained from (I) (H. O. L. Fischer et al., A., 1927, 857). (p-NO₂·C₈H₄·NH·N·CH·CH₂)₂O could not be obtained by ozonolysis etc. of 2:5-dihydrofuran, only (IV) being isolated. Hydration of dioxene by boiling, very dil. HCl and then treatment with aq. (III) gives the p-nitrophenylhydrazone, m.p. 142°, of OH·[CH₂]₂·O·CH₂·CHO (2:4-dinitrophenylhydrazone, m.p. 136°). This is converted into (IV) by boiling 25% AcOH [with or without addition of (III)] or boiling very dil. HCl, but is stable in boiling H₂O.

R. S. C.

2-Vinylthiophen. R. Kuhn and O. Dann (Annalen, 1941, 547, 293—299).—2-Acetylthiophen and Al(Orrβ), in PrβOH-N₂ at 108° give α-2-thienylethyl alcohol (I) (47%), b.p. 90·5°/11 mm. [5-HgCl derivative, m.p. 157° (block); phenyluvethane, m.p. 85° (block)], with some 2-thienylethyl Prβ ether, b.p. 75°/12 mm., 154° (decomp.)/755 mm. [hydrolysed by H₃PO₄; 5-HgCl derivative, m.p. 112—113° (block)], and di-α-2-thienylethyl ether (II), b.p. 121—122°/3 mm. [5·5'(HgCl)₂ derivative, m.p. 196—198° (block)]; more prolonged reaction gives more of the ethers; in C_eH₆, (I) is accompanied by (II) and 2-vinylthiophen (III), b.p. 62—63°/50 mm. (III) is best obtained by boiling (I) with a little quinol; it can be titrated with o-CO₂H·C_eH₄·CO₃H or (CNS)₂ but consumes 2 ICl; its colour reactions and absorption spectrum (max. 272 mμ.) are described; it 2-Vinylthiophen. R. Kuhn and O. Dann (Annalen, 1941, 547, actions and absorption spectrum (max. 272 m μ .) are described; polymerises when heated or kept, rapidly in O_2 . R. S. C

9-Thiolphenanthrene and some of its derivatives. P. C. Dutta (J. Indian Chem. Soc., 1941, 18, 469—471).—K 9-phenanthrene-sulphonate and PCl₅-POCl₃ at 140° give the chloride, converted

by Zn-aq. H₂SO₄ at 100° (bath) into 9-thiolphenanthrene (I), m.p. 67°, and thence by I-EtOH into diphenanthrenyl 9:9'-disulphide, m.p. 149° (shrinks at 137°). (I) and AcCl (water-bath), or BzCl at 150—160°, or Me₂SO₄-aq. NaOH, yield 9-acetyl-, m.p. 93° (shrinks at 85°), 9-benzoyl-, m.p. 109° (shrinks at 95°), or 9-methyl-thiolphenanthrene, m.p. 75°, respectively. (I) and (COCl)₂ at room temp, followed by AlCl₃-CS₂ at room temp., then reflux, afford 4:5-di-keto-4:5-dihydrophenanthro-9':10'-2:3-thiophen, m.p. 245° (shrinks 1+297°) at 227°).

5-Iodo-4: 6-diketo-2-methyltetrahydropyridine-1-acetic acid.—See B., 1942, III, 114.

Isomeride of dimethylethylpyridine. R. H. Siddiqui (J. Indian Chem. Soc., 1941, 18, 505—506).—K₂ 2: 6-dimethyl-4-ethylpyridine3: 5-dicarboxylate (A., 1940, II, 53) is decarboxylated by short treatment with soda-lime, and after 4 months' contact the product gave no 2: 6-dimethyl-4-ethylpyridine, but mainly an icomoride gave no 2:6-dimethyl-4-ethylpyridine, but mainly an isomeride (+1·25H₂O), b.p. 195—196°, and a little of a base, b.p. 217—220°. The former base affords a hydrochloride, m.p. 197°, hydriodide, m.p. 155°, ethiodide, m.p. 185°, platinichloride, m.p. 222°, aurichloride, m.p. 180°, and picrate, m.p. 167° (anhyd. or +0.5H₂O).

Structure of hydroxymethylene-methyl ethyl ketone and -methyl β-phenylethyl ketone. S. N. Joshi, R. Kaushal, and S. S. Deshapande (J. Indian Chem. Soc., 1941, 18, 479—484).—The OH·CH₂ derivative (I) of COMeEt is OH·CH:CMe·COMe, whereas that of Ph·[CH₂]₂·COMe is Ph·[CH₂]₂·CO·CH:CH·OH. (I) can be distilled without decomp. at 250 mm.; the titre of alkali against (I) in the complex of the without decomp. at 250 mm.; the titre of alkali against (I) in EtOH remains const. after I week, whereas that of (II) diminishes to nearly half of the val. (I) and CN·CH₂·CO·NH₂ in EtOH-piperidine (water-bath) give 5-cyano-6-hydroxy-2:3-dimethylpyridine, m.p. 270°, converted by 50% H₂SO₄ at 150° into 6-hydroxy-2:3-dimethylpyridine-5-carboxylic acid, m.p. >280°, decarboxylated by distilling with a little Cu powder to 6-hydroxy-2:3-dimethylpyridine, m.p. 205° (distilled with Zn in H₂, it yields 2:3-dimethylpyridine). By similar reactions, (II) [Cu salt, m.p. 176° (decomp.)] affords 5-cyano-6-hydroxy-2-β-phenylethylpyridine, m.p. 198° (decomp.), and thence the -5-carboxylic acid, m.p. 211—212°, 6-hydroxy-2-β-phenylethylpyridine, m.p. 152°, and 2-β-phenylethylpyridine (platinichloride, m.p. 185°, blackens at 160°) [oxidised by aq. KMnO₄ to BzOH and picolinic acid (Cu salt, +2H₂O)].

3:3-Di-(4'-hydroxy-2'-methyl-5'-isopropylphenyl)oxindole and some derivatives. E. Bureš and J. Kužel (Casopis Českoslov. Lék., 1938, 18, 199—208).—Condensation of thymol and isatin with ZCl₄ at 120° yields the α-isomeride (I), m.p. 284° (decomp.), and condensation with conc. H₂SO₄, the β-isomeride (II), m.p. 284° (decomp.), of 3:3-di-(4'-hydroxy-2'-methyl-5'-isopropylphenyl)oxindole, differing probably according to whether attachment is made on the α- or β-CO of the isatin mol. (I) gives a Hg^{II} salt with Hg(OAc)₂ and B₂, m.p. 255° (decomp.), Ac₂, m.p. 168°, Ac₃, m.p. 144°, and Bz₂, m.p. 148°, derivatives. (II) gives a Hg^{II} salt with Hg(OAc)₂ and B₃, m.p. 248°, Cl₈-, m.p. 209°, Ac₂, m.p. 159°, Ac₃, m.p. 145°, and Bz₂, m.p. 147°, derivatives and 3:3-di-(4'-methoxy-2'-methyl-5'-isopropylphenyl)oxindole, m.p. 129°.

F. R. 3:3-Di-(4'-hydroxy-2'-methyl-5'-isopropylphenyl) oxindole

2-Aminoacridine-7-sulphonamide. E. Aarons and A. Albert (J.C.S., 1942, 183).—2-Aminoacridine-7-sulphonamide, m.p. 253° (decomp.), is prepared by reduction (Na-Hg-EtOH) of the 2-nitro-acridone derivative. 2-Aminoacridine-7-sulphonic acid is similarly prepared using Al-Hg.

Prepared using Al-Hg.

N-Substituted derivatives of phenobarbital. H. R. Henze and J. J. Spurlock (J. Amer. Chem. Soc., 1941, 63, 3360—3363).—Na phenobarbital (I) (dried at 140°) with boiling Cl·[CH₂]₂·OH (excess; less well with 1 mol. in MeOH at 110°) gives 1-β-hydroxyethylphenobarbital (60%), m.p. 145—145·5° (not obtained from the Ag salt), converted by PCl₅ at 100° or PBr₃ at 110° into 1-β-chloro· (II) (stable to boiling H₂O), m.p. 112·5—113·5°, and 1-β-bromo-ethylphenobarbital, m.p. 127·5—128·5°. Phenobarbital, OH·CH(CH₂Br)₂ and NaOMe-MeOH at 110° give β-hydroxy-ay-propylenedi-1-phenobarbital (33%), a glass. With COMe·CH₂Br in boiling MeOH, (I) gives 1-acetonyl- (54%), m.p. 115—116° (2 : 4-dinitrophenylhydrazone, m.p. 223·5—224·5°), and 1 : 3-diacetonyl-phenobarbital (18%), m.p. 137·5—138° (stable to boiling H₂O; with N-alkali gives an acid, which at ~120° gives a gas). 1-Phenacyl- (49%), m.p. 159·5—160°, 1 : 3-diphenacyl- (32%), m.p. 149—149·5°, 1-p-phenylphenacyl- (44%), m.p. 195·5—196°, ? 1 : 3-di-p-phenylphenacyl-, an oil, -phenobarbital are similarly prepared. 1-Propionyl- (III) (43%), m.p. 96—96·5°, 1 : 3-dipropionyl- (IV), m.p. 108—109°, and 1-a-bromo-a-ethyl-n-butyryl- (V) (67%), m.p. 132—136°, -phenobarbital are obtained from Ag phenobarbital by EtCOCl-C₆H₈ or CEt₂Br·COBr-PhMe, respectively. M.p. are corr. The products have little or no hypnotic effect, but some, notably (II)—(V), are anticonvulsants.

Chemistry of vitamin- B_6 . IV. Reactions in solutions at elevated temperatures. S. A. Harris (J. Amer. Chem. Soc., 1941, 63, 3363—3367; cf. A., 1942, II, 30).—Vitamin- B_6 in H_2O at 120° and p_B

6.5 (i.e., conditions of sterilisation) gives the insol. dimeride (I) (6.4%), m.p. 205—209°, and later a gelatinous polymeride, C₂₄H₂₉O₇N₃. (I) is formed from the betaine form of -B₆ (A., 1941, II, 268); its structure is proved as follows. With Mel-Its structure is proved as follows. With Mel- C_6H_6 -MeOH it gives only a (mono) methiodide hydriodide (II), m.p. 197—198°, and with 48% HBr gives the $(CH_2Br)_3$ compound dihydro-bromide, sublimes >230° (decomp.); $-B_6$ poly-merises only in neutral solution, but its N-Me betaine and the 4-Me compound do not poly-merises of all. The 4-Me compound do not poly-CH₂·OH merise at all. The 4-Me ether at 120° gives a

merise at all. The 4-Me ether at 120° gives a gelatinous polymeride with loss of OMe; in boiling CH₂Ph·OH, (I) gives the 4- CH_2 Ph ether (III), m.p. 217—218°. In a borate buffer, (I) gives a faint dichloroquinonechloro-imide test and a good colour in a veronal buffer, but (II) gives none. In boiling CH₂Ph·OH, $-B_6$ gives its 4- CH_2 Ph ether (IV), m.p. 166-5° (hydrochloride, m.p. 144-145°), and (III). The structure of (IV) is shown by its positive FeCl₃ and dichloroquinonechloroimide test (borate buffer). In Bu^aOH, $-B_6$ gives the 4- Bu^a ether hydrochloride (V), m.p. 127—128° (cf. Scudi, A., 1941, III, 685). Relative curative doses are $-B_6$ 1, (I) 40, (IV) ~ 20 , (V) < 20. R. S. C.

Bisbenzimidazoles. (A) M. A. Phillips. (B) R. L. Shriner and R. W. Upson (J. Amer. Chem. Soc., 1942, 64, 187, 187—188).—Re R. S. C. priority.

Chlorophylls. CVI. Derivatives of purpurin-18. H. Fischer and H. Gibian. CVII. Chloro-derivatives of chlorophyllporphyrins, phorbides, and chlorins. H. Fischer and E. Dietl (Annalen, 1941, 547, 216—233, 234—256; cf. A., 1942, II, 152).—Structures given below are supported by and of the deduced from absorption given below are supported by, and often deduced from, absorption spectra, which are detailed.

CVI. The absorption spectrum of the so-called oxime (I) (Zn salt) (Dietz et al., A., 1934, 308) of purpurin-18 Me ester (II) (modified prep.) shows a shift towards blue; (I) thus probably contains the grouping (A) or (B). The same applies to the oxime Me ether (III).

The intermediate H hydroxylamide could not be isolated. Hydrolysis of (I) or (III) to chlorin- p_6 or a derivative thereof failed and the N·OMe of (III) is also unaffected. NaOMe or KOH-Pr^aOH gives only unstable, green metal salts. N₂H₄ and (II) similarly give an unstable, green H hydrazide, which yields the "hydrazone," sinters at 264° , [a]²⁰ +930 \pm 200° in COMe₂ (white light) (Zn salt), analogous to (I) and also resistant to hydrolysis. Increase in basicity of the reagent permits isolation of the intermediate resolute. The of the reagent permits isolation of the intermediate product. Thus of the reagent permits isolation of the intermediate product. Thus NH₂Me and purpurin-18 in COMe₂ at room temp. give an acidic product, converted by esterification into chlorin-p₆-carboxylmethylamide Me₂ ester (IV), sinters at ~155° (Zn salt), which in conc. H₂SO₄ slowly, in alkali instantaneously, or with NaOH-C₅H₅N, NH₂OH, N₂H₄, or NH₂Me loses MeOH and gives the cyclic "methylimide" (V), m.p. >300° (Zn salt), analogous to (I). Piperidine and (II) at room temp. give a H piperidide (VI), converted by esterification into chlorin-p₆-carboxylpiperidide Me₂ ester (VII) [analogous to (IV)], m.p. 199° (Zn salt, sinters at ~280°, m.p. >300°), which cannot yield a cyclic product: (VI), obtained as above, is rapidly cannot yield a cyclic product; (VI), obtained as above, is rapidly hydrolysed to (II) by dil. HCl, but if prepared by hydrolysis (NaOMe) or (VII), resists the action of acid. With NH₃-MeOH, (NaOMe) or (VII), resists the action of acid. With Nri₃-mech, (II) gives chlorin- p_6 , but with semicarbazide gives a cyclic product analogous to (I). Mesopurpurin-18 [prep. by hydrogenation (Pd; dioxan) of the Zn salt, m.p. >300°, of (II)] gives analogously the cyclic mesopurpurin-18 Me ester "oxime," m.p. >260° (Zn salt; Me ether, sinters at ~245°, m.p. 260—280°), "hydrazone," m.p. >300° (Zn salt), and "methylimide" (Zn salt), and mesochlorin- p_6 -carboxyl-methylimide and -piperidide Me₂ ester (Zn salts). The CHN-CO-Et adduct of (II) reacts similarly giving products identical CHN₂·CO₂Et adduct of (II) reacts similarly giving products identical with the adducts from (I), (IV), and (V). HI-AcOH at 50° converts the cyclic products into those of the rhodopurpurin-γ-carboxylic anhydride series.

CVII. Phylloerythrin Me ester with H₂O₂ in 20% HCl at 10° and later CH₂N₂ gives 1-chlorophylloerythrin Me ester, sinters at ²⁴¹°, m.p. >300° (purified by chromatography; impure Cu salt, m.p. 275°; oxime, m.p. >340°), and a small amount of the? Cl₂-ester, sinters at 220°. Attempts to replace the Cl by CN led only to elimination of HCl, but the position of the Cl is proved by spectra and analogy. Phaeocorphyring. Me, ester gives similarly the and analogy. Phæoporphyrin- a_5 Me $_2$ ester gives similarly the 10-Cl-derivative, m.p. 272° (purified by chromatography impure Cu salt, m.p. 205°). Mesomethylphæophorbide-a gives chlorohydroxymesomethylphæophorbide-a (VIII), m.p. 196° , [a] 20 +438 $^\circ$ in COMe $_2$ (white light) (oxime), converted by KOH-PrOH-Et $_2$ O- C_5H_5 N (little) at room temp. and then CH $_2$ N $_2$ into chlorohydroxymesopurpurin-7 Me $_3$ ester, m.p. 176° , [a] 20 +1700 $^\circ$ in COMe $_2$ (white light) (also obtained from mesopurpurin-7 Me $_3$ ester); this gives the Cu, $[a]^{20}$ +1250° in COMe₂ (white light), and FeCl derivative, m.p. 256°, $[a]^{20}$ +4000° in COMe₂ (white light), of dihydroxymesopurpurin-7 Me₃ ester, which could not itself be obtained cryst. Nitromesopurpurin-7 Me₃ ester, m.p. 128°, is obtained by NaNO₂ in AcOH at 10°. Short treatment of (VIII) with hot KOH–MeOH–C₃H₅N and then CH₂N₂ gives dihydroxymesochlorin-e₆ Me₃ ester, m.p. 123°, cyclised by NaOH in boiling C₅H₅N. Mesorhodochlorin Me₂ ester gives a product, C₃₄H₃₈O₅N₄Cl₂, m.p. 150°, $[a]^{20}$ +3250° in COMe₂ (white light), and later possibly a Cl₃-derivative. Purpurin-7 Me₃ ester gives a product, C₃₇H₃₈O₇N₄Cl₂, m.p. 151°. R. S. C. R. S. C.

Application of the p-hydrogen method to some problems of organic constitutions. I.—See A., 1942, I, 166.

Thiazoles. Synthesis of 2-phthalimidomethyl-4-diethylaminomethylthiazole. Y. F. Chi and S. Y. Tshin (J. Amer. Chem. Soc., 1942, 64, 90—91).—CH₂Cl·CN (prep. in 71% yield by heating the amide and P₂O₅ at 120—150° and then distilling at 200 mm.) and o-C₆H₄(CO)₂NK at 120—130° give phthalimidoacetonitrile (77%), m.p. 118—120°, which with H₂S and a little N([CH₂]₂·OH)₃ in hot EtOH gives phthalimidoacet-thioamide (59%), sinters at 155°, m.p. 168—170°. With CO(CH₂Cl)₂ in hot abs. EtOH this gives 4-chloromethyl-2-phthalimidomethylthiazole (32%), m.p. 133—134·5°, converted by NHEt₂ in hot abs. EtOH into 2-phthalimidomethyl-4-diethylaminomethylthiazole (46%), m.p. 92—93°. R. S. C.

Thiazole sulphonamides.—See B., 1942, III, 115.

Azine dyes derived from 2: 3-diketo-4: 5: 9': 10'-phenanthra-thiophen. P. C. Dutta and R. M. Sinha (J. Indian Chem. Soc., 1941, 18, 477—478).—4: 5-Diketo-4: 5-dihydrophenanthra-9': 10'-2: 3-thiophen and the respective o-diamine in AcOH yield 4: 5: 9': 10'-phenanthrathiopheno-2: 3-phenazine [phenanthra-9'': 10''-2': 3'-thiopheno-4': 5': 2: 3-quinoxaline] (I), m.p. 255°, -2: 3-2''-chloro-4'': 5''-tolazine, m.p. 271° (shrinks at 265°), -2'': 3''-phenazine-azine, m.p. 290°, and -quinoxaline-azine, m.p. 234°, respectively.

Thiazinocyanines. I. Carbocyanines containing the 2:4-benz-thiazine nucleus. B. Beilenson and (Miss) F. M. Hamer (J.C.S., 1942, 98—102).—3-Methyl-2:4-benzthiazine in C_6H_6N with 2- β acetanilidovinylbenzoxazole ethiodide gives trimethin[2-(3-ethyldi-hydrobenzoxazole)][3-(2:4-benzthiazine)] (I), m.p. 138°, with the -6:7-benzbenzoxazole affords the -6:7-benzbenzoxazole derivative, m.p. 163°, and with the -benzthiazole (II) yields the -benzthiazole derivative, (III), m.p. 199—200°; the -4:5-benzthiazole, m.p. 196°, and -benzselenazole derivatives, m.p. 212°, are similarly obtained. p-C₆H₄Me·SO₂Et and (I) followed by KI give [2-(3-ethylbenzoxazole)]-[3-(4-ethyl-2:4-benzthiazole)]rimethincyanine iodide, m.p. 237° (decomp.) and (III) similarly affords the heavthiazole composed. comp.), and (III) similarly affords the -benzthiazole compound, m.p. 231—232° (decomp.). 3-Amino-2: 4-benzthiazine and (II) yield y-azatrimethin-[2-(3-ethyldihydrobenzthiazole)][3-(2:4-benzthiazine)], m.p. 145° (decomp.), and 3-anino-2: 4-benzthiazine ethiodide, m.p. 220° (decomp.), and (Π) afford [2-(3-ethylbenzthiazone)][3-(4-ethyl-2: 4-benzthiazine)]-γ-azatrimethincyanine iodide, m.p. 240° (decomp.). Absorption max. of the various dyes have been compared. The effect of replacing the benzthiazole by the 2: 4-benzthiazine nucleus in carbonavariae to produce a benzehraniae hit. in carbocyanine is to produce a hypochromic shift.

VII.—ALKALOIDS.

Azeotropism in the system nicotine-water. Separation of nicotine from related alkaloids by aqueous distillation. C. R. Smith (Ind. Eng. Chem., 1942, 34, 251—252).—An azeotropic mixture of nicotine (I) and $\rm H_2O$ (2.5 g. per 100 ml.) exhibits a b.p. lowering of 0.012°. (I) can be satisfactorily separated from nornicotine and anabasine by distilling with H₂O, making the distillate alkaline, and redistilling.

Alkaloids of Rauwolfia canescens (Linn.). II. (Miss) A. Mookerjee (J. Indian Chem. Soc., 1941, 18, 485—488; cf. A., 1941, II, 341).

"Rauwolscine" (I) [Me ester of (II)] and 10% aq. KOH at 100° (bath) give "rauwolscinic acid" (II), [a]²³/₂ +136·8° in H₂O [hydrochloride, m.p. 255·5—257·5° (decomp.) (+2·5H₂O or anhyd.); picrate, +EtOH, m.p. 232—234° (decomp.); Et ester, m.p. 234—236° (decomp.) (hydrochloride, m.p. 262—264° (decomp.); picrate, m.p. 179·5—181·5° (decomp.); Pr^a ester, m.p. 206—208° (decomp.) (hydrochloride, m.p. 264—266° (decomp.)); Bu^a ester, m.p. 181—182·5° (decomp.), after frothing at 105—106° (hydrochloride, m.p. 251—253° (decomp.))]. Absorption curves of the hydrochlorides of yohimbine and (I) are very similar.

A. T. P.

Isolation of a new alkaloid from perennial ryegrass. J. Melville and R. E. R. Grimmett (Nature, 1941, 148, 782).—Perloline (I), C₃₆H₂₂O₃N₄(OMe)₄, has been isolated from Lolium perenne, L. (I) is sol. in EtOH and CHCl₃, slightly sol. in COMe₂, Et₂O, and H₂O. Dil. solutions in CHCl₃ are golden-yellow with a green fluorescence that can be detected in ordinary light at a concn. of 1 in 5×10^6 . (I) is reduced by $TiCl_3$ to a colourless material, which can be oxidised quantitatively by $Fe(CN)_6$ ". The grass may contain from 3 μg . to 1 mg. per g. dry wt. Other alkaloids have been found in ryegrass.

Alkaloid nicotinates.—See B., 1942, III, 86.

VIII.—ORGANO-METALLIC COMPOUNDS.

Metallation of triphenylarsine. H. Gilman and C. G. Stuckwisch (J. Amer. Chem. Soc., 1941, 63, 3532—3533).—AsPh₃ and LiBua in Et₂O give the 3-Li derivative (I), which with CO₂ gives a gummy acid, converted by KMnO₄ into diphenyl-m-carboxyphenylarsine oxide (II), m.p. 215°. m-C₆H₄Me·MgBr and AsPh₂Cl in Et₂O give diphenyl-m-tolylarsine (72%), m.p. 170—173° [HgCl₂ derivative, m.p. 201—202°; also obtained (2.7%) from (I) by Me₂SO₄], slowly oxidised to (II) by aq. KMnO₄ at 60°. R. S. C.

Relative reactivities of organo-metallic compounds. XLIII. Introduction of aminoaryl groups by the halogen-metal interconversion reaction. H. Gilman and C. G. Stuckwisch (J. Amer. Chem. Soc., 1941, 63, 2844—2855; cf. A., 1942, II, 41).—p-C₆H₄Br·NH₂ and LiBu^a in Et₂O at -60° give [max. (\$68%) in 9 min.] p-Li·C₆H₄·NH₂ (I), as judged by the yield of acid obtained. With AsPhCl₂ in Et₂O at, successively, -45°, room temp., and the b.p., (I) gives 63% (over-all) of As Ph di-p-aminophenyl [4:4'-diamino-triphenylarsine], m.p. 69°, which with p-NHAc·C₆H₄·SO₂Cl-C₅H₅N and later hydrolysis by aq. NaOH gives As Ph di-p-sulphanilamido-phenyl (I), m.p. 198° (N⁴N⁴·Ac₂ derivative, m.p. 184°). PPhCl₂ similarly gives 64% of P Ph di-p-aminophenyl, an oil (Ac₂ derivative, m.p. 169°), and di-p-sulphanilamidophenyl, m.p. 202—204° [does not depress the m.p. of (I); Ac₂ derivative, m.p. np. 186—187°].

X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES.

Hydrolytic derivatives of lignin volatile compounds. A. Bailey (J. Amer. Chem. Soc., 1942, 64, 22—23).—The volatile products (27·5%) obtained from BuOH-lignin of Western hemlock by HCl-BuOH-H₂O at 160° contain COMe₂ 1·9, Pr^aCHO 1·6, MeOH 2·5, CH₂:CH·CH₂·OH 2·5, Pr^aOH 4·8, HCO₂H (as Bu ester) 11·4, and CHEt:CMe·CHO 2·8%. A non-volatile C₈H₆-sol, and a resinous alkali-sol, fraction were also formed.

R. S. C.

Mechanism of chlorination of lignin. E. V. White, J. N. Swartz, O. P. Peniston, H. Schwartz, J. L. McCarthy, and H. Hibbert (Paper Trade J., 1941, 113, TAPPI Sect., 299—309).—The reactions involved in the chlorination of lignin (I) and of unbleached wood pulp by aq. Cl₂ are discussed. With isolated alkali-(I), treatment with aq. Cl₂ results in almost equiv. chlorination and demethoxylation to a degree which increases with increase in the % of Cl added and also with the acidity of the reaction mixture. It is believed that chlorination takes place at either the 6- or the 5-positions of the guaiacyl nuclei of (I), depending on whether the \$p\$-OH groups of these nuclei are free or not. Furthermore, the presence of such Cl atoms induces instability in the OMe groups, which then split off with the formation of quinone or diketo-structures which may then undergo further fission to yield acidic groups in the (I). The rate of Cl₂ consumption by ligninsulphonic acid can be accounted for by assuming that the process involves two main reactions, the initial one rapid, and the second slow (second order). The former is one of chlorination and demethoxylation as evidenced by the correlation found to exist between the rate of Cl₂ consumption and the rate of introduction of Cl and accompanying loss of OMe by the (I). The latter appears to be essentially an oxidation process in view of its similarity to the second-order internal oxidation reaction involved in the self-decomp. of aq. Cl₂. During aq. acidic chlorination of unbleached pulp little (I) is removed, but it is made potentially sol. in alkali, presumably as a result of the formation of Clopinated (I) from pulp is shown to be largely a physical process in which such factors as temp. and time of treatment control the degree of dissolution of the (I) by the alkaline medium. H. A. H.

XI.—ANALYSIS.

Improved distilling column head.—See A., 1942, I, 188.

CHNIKI

Immersion still-head for low-pressure distillation of organic mixtures.—See A., 1942, I, 188.

Chromatography of solutions containing a single solute.—See A., 1942, I, 159.

Modifications in the Dumas micro-method for nitrogen. Automatic apparatus for combustion micro-methods. G. L. Royer, A. R. Norton, and F. J. Foster (Ind. Eng. Chem. [Anal.], 1942, 14, 79—82).—Combustion furnaces, auxiliary control equipment, and procedure are described. Tank CO₂ is used, and gives a const. blank of 0·010 c.c, per determination. The automatic combustion method gives results that are as accurate as, and more reproducible and quicker than, those given the standard Pregl procedure. A single determination requires 40 min.

L. S. T.

Aliphatic sulphinic acids. I. Analysis and identification.—See A., 1942, II, 162.

Identification of alcohols in aqueous solution.—See A., 1942, II, 161.

Electrophotometric microdetermination of phosphorus in lipin extracts.—See A., 1942, III, 428.

Gasometric determination of carboxyl groups in free amino-acids. D. D. Van Slyke, R. T. Dillon, D. A. MacFadyen, and P. Hamilton. Determination of free amino-acids by titration of carbon dioxide formed in reaction with ninhydrin. D. D. Van Slyke, D. A. MacFadyen, and P. Hamilton (J. Biol. Chem., 1941, 141, 627—669, 671—680; cf. A., 1938, II, 211).—α-NH₂-acids boiled in H₂O with an excess of ninhydrin (I) (chloramine-T is less satisfactory) at ρ_H 1—5 evolve the CO₂ of their CO₂H groups quantitatively in a few min.; details and apparatus are described. Proline and hydroxy-proline yield their carboxylic CO₂ similarly. Structures which react are NH₂-CHR-CO₂H and CH₂-R'-NH-CHR-CO₂H. When NH₂ is in β or γ position, reactivity of the CO₂H is diminished. Under the conditions used the following give no CO₂: peptides, except where C(NH₂)-CO₂H is present, e.g., glutathione; acetylated and benzoylated NH₂-acids; derivatives with no H on NH₂-N; acid esters (e.g., glycine ester) or amides; simple org. acids, e.g., AcOH; OH-acids, e.g., lactic, citric; keto-acids, e.g., AcCO₂H. Glutamic acid evolves CO₂ from 1 CO₂H only; creatinine and (I) in H₂O react only slightly at ρ_H 2·5, but CO₂ is evolved in boiling AcOH. The property of aspartic acid (like cystine) to evolve 2 mols. of CO₂ with (I) permits its determination in mixtures containing most of the other NH₂-acids (not lysine or proline) yielded by protein hydrolysis. In digestion of casein to peptides by cryst. trypsin no free NH₂-acid is liberated (cf. 20% liberation with crude trypsin). CO₂ is determined by distilling in vac. into Ba(OH)₂, and excess of the latter is titrated.

A. T. P.

Determination of pentoses with hydrobromic acid. G. Jayme and P. Sarten (Naturwiss., 1940, 28, 822—823).—The sample is distilled with 20—30% HBr to obtain 400—800 c.c. of distillate, H₂O being added to the distilling flask as is necessary. Furfuraldehyde is determined in the distillate with barbituric or thiobarbituric acid, and a correction applied for the solubility of the ppt.

J. L. D.

Colorimetric determination of phenothiazine. H. L. Cupples (Ind. Eng. Chem. [Anal.], 1942, 14, 53).—The phenothiazine in EtOH is treated with an excess of aq. Br kept at 60° , the excess of Br boiled off, the solution filtered, and the red colour determined photometrically. The accuracy is $\pm 6\%$.

J. D. R.

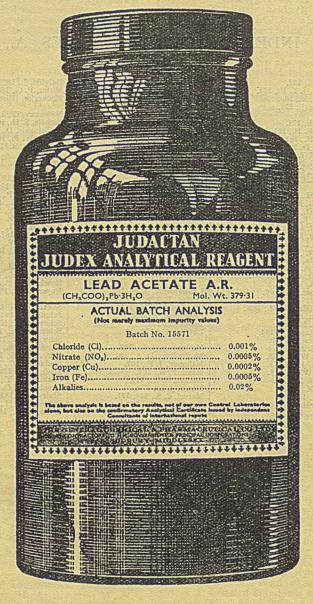
Colour reactions of reducing pyrimidines. E. B. Knott (J.S.C.I., 1941, 60, 313—314).—Aq. solutions of reducing pyrimidines give characteristic colour changes when treated with 0-ln-KI-I, then l drop of aq. NH $_3$ (dil.) followed by EtOH and HCl. A table is given showing how the compounds fall into four groups according to the no. and position of the NH $_2$ -groups in the 4-, 5-, or 6-positions. The test can be adapted for micro-identification. W. C. J. R.

Iodosulphate microchemical identification tests for cinchona alkaloids. C. C. Fulton (Ind. Eng. Chem. [Anal.], 1941, 13, 848—850).—Three reagents are described, all consisting of varying proportions of I–KI in aq. AcOH–H₂SO₄. These reagents give with quinine, quinidine, cinchonine, and cinchonidine characteryst. ppts., readily identified under the microscope. Numerous photomicrographs are reproduced.

J. D. R.

Reactivity of porphyrindin in presence of denatured proteins. J. P. Greenstein and W. V. Jenrette (J. Biol. Chem., 1942, 142, 175—180).—The advantages and disadvantages of the method of determination of SH groups in native and denatured proteins by titration with porphyrindin (I) are discussed. The method has been improved by the use of Na nitroprusside as an outside indicator, by standardising the (I) solutions against cysteine during the course of the titration with protein, and by modifying the method so as to provide a stepwise and rapid determination of the protein SH groups. When cysteine is added in varying amounts to denatured proteins, it is nearly quantitatively recovered by subsequent titration of the mixtures with (I), and there is little, if any, interference by other reducing groups of the proteins, as these react too slowly under the conditions of the method. Data on the SH group content of denatured tobacco mosaic virus protein and of ovalbumin, obtained by the use of various oxidants and sol. denaturing agents, which show good agreement, are compared and discussed.

Determination of hydroxylysine in proteins. D. D. Van Slyke, A. Hiller, and D. A. MacFadyen (J. Biol. Chem., 1941, 141, 681—705).—Hydroxylysine (I) is pptd. from protein hydrolysates with other diamino-acids by phosphotungstic acid, and is determined by the NH₃ liberated from the group 'CH(OH)·CH(NH₂)· with NaIO₄· Other NH₂-acids, e.g., serine, threonine, also give quant. yields of NH₃, and these are separated from (I) by crystallising the phosphotungstates. In only gelatin and collagen of the proteins analysed did the amount of (I) approach 1% of the total protein-N. A. T. P.


JUDACTAN

ANALYTICAL REAGENTS WITH ACTUAL BATCH ANALYSIS

ACTUAL

BATCH

ANALYSIS

Each Batch subjected to IDEPENDEN

ANALYSIS before

label is printed

You are invited to compare the above actual batch analysis with the purities

guaranteed by the specifications of any competing maker in this Country or abroad

THE GENERAL CHEMICAL & PHARMACEUTICAL CO. LTD.

Chemical Manufacturers, Judex Works, Sudbury, Middlesex