BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS ### A., II.—Organic Chemistry SEPTEMBER, 1942. #### I.—ALIPHATIC. Strength of carbon-hydrogen and carbon-carbon bonds. Carbon-hydrogen bond strengths in methane and ethane.—See A., 1942, I, 258. Catalytic polymerisation of olefines in presence of phosphoric acid.—See A., 1942, I, 302. Manufacture of butadiene.—See B., 1942, II, 211. Gaseous hydrogenation and polymerisation reactions.—See A., 1942, I, 301. Thermal reaction of ethylene with acetylene.—See B., 1942, II, 209. Preparation of alkyl halides.—See B., 1942, II, 212. Chlorination of methane.—See B., 1942, II, 209. Reactions of bromine with carbon tetrachloride and tetrachloroethylene following neutron capture and isomeric nuclear transition.— See A., 1942, I, 306. Calculation of steric hindrance.—See A., 1942, I, 259. Nitration of methane.—See B., 1942, II, 209. Preparation of nitrohydroxy-compounds of the paraffin series.— See B., 1942, II, 212. Organic acid synthesis.—See B., 1942, II, 213. Preparation of organic acids from olefines and carbon monoxide.—See B., 1942, II, 213. Mixed electrolyses of nitrate with n-valerates and isobutylacetates. M. Rudin (Helv. Chim. Acta, 1942, 25, 636—640).—The products of the mixed electrolysis of nitrate and n-valerate are n-octane, Bu $^{\alpha}$ OH characterised as Bu $^{\alpha}$ O·NO, Bu $^{\alpha}$ NO₃, and Bu $^{\alpha}$ CO₂Bu $^{\alpha}$, (CHMe:)₂, leading to butane- $\beta\gamma$ -diol dinitrate, and an octanediol dinitrate. isoButylacetic acid [γ -methyl-n-valeric acid] similarly affords $\beta\eta$ -dimethyloctane, (?) isoamyl nitrite, and nitrates or isobutylacetates of a decanol, b.p. 106—108°/22 mm., or decanediol, b.p. 133—140°/14 mm. Formation of carbonyl compounds by the enzymic oxidation of unsaturated fatty acids. H. Süllmann (Helv. Chim. Acta, 1942, 25, 521—523).—CO-compounds, capable of forming hydrazone, dihydrazone, and osazone derivatives, are formed during the oxidation of linolenic acid by lipoxidase. H. W. Dihydroxystearic acid of castor oil; its constitution and structural relationship to the θι-dihydroxystearic acids, m.p. 132° and 95°, respectively. G. King (J.C.S., 1942, 387—393; cf. A., 1939, II, 5).— Dry HCl is passed through the naturally occurring dihydroxystearic acid (I), m.p. 141°, of castor oil at 160°, to give mixed chlorohydroxystearic acids, converted by boiling 2ν-NaOH- or -KOH-EtOH into (d-)oxidostearic acid (II), m.p. 59·5°, [a]_p¹⁰ +0·29° in EtOH, hydrolysed by 7ν-KOH at 170° (sealed tube) to r-dihydroxystearic acid (III), m.p. 95°. (I) and conc. HCl at 160° afford chlorohydrins and thence (II), with (probably) θ- and ι-ketostearic acid. r-Dihydroxystearic acid (IV), m.p. 332°, and dry HCl at 160° give chlorohydrins and thence r-oxidostearic acid, m.p. 59·5° [not identical with (II), but identical with the acid obtained from oleic acid by HOCl, followed by NaOEt-EtOH], and (III). (III) by the above procedure yields r-oxidostearic acid, m.p. 55·5° (identical with that obtained by autoxidation of elaidic acid), and thence (IV). The optical inversion involved in these transformations probably occurs during hydration of the oxide ring, and it is concluded that (I) is an active component of (IV). Configurations are assigned to the acids. Autoxidation of "oxygen-active" acids. I. Gravimetric and volumetric course of the addition of oxygen to the methyl esters. W. Treibs (Ber., 1942, 75, [B], 203—210).—In uncatalysed action Mee elacostearate rapidly absorbs 2 atoms of O; further absorption takes place very slowly and ceases before complete reaction with 3 O. In contrast to the other acids there is no elimination of H₂O in the absence of a catalyst but such is induced by impurities in the air and filter-paper used as a support for the ester. Me linoleate absorbs 4 O and loses 1 H₂O; further action of O₂ causes the production of large fragments. Me linolenate consumes 5 O and 277 K(A., II.) loses 2 or 1 $\rm H_2O$ according to conditions. Syneresis does not lead to formation of large fragments. The hexaenic ester of liver oils reacts with 7 O and eliminates 1 $\rm H_2O$; further oxidation is not observed. Oxalic acid from sawdust.—See B., 1942, II, 209. Formation of complexes of tartaric and metatungstic acids.—See A., 1942, I, 305. β-Methylallyl-substituted malonic ester.—See B., 1942, II, 214. Manufacture of succinic anhydride.—See B., 1942, II, 214. Alkylsuccinic acids. I. n-Tetradecyl- and n-hexadecyl-succinic acids. S. U. Mehta and K. S. Nargund (J. Univ. Bombay, 1942, 10, Part 5, 141—142).—n-Hexadecane- $aa\beta$ -tricarboxylic acid, m.p. 135°, on pyrolysis gives n-tetradecylsuccinic acid, m.p. 110° (lit. 121°) (Me_2 , b.p. 220°/20 mm., and Et_2 ester, b.p. 230°/20 mm.; anhydride, m.p. 74°; imide, m.p. 98—99°; monoanilide, m.p. 124—125°; mono-ptoluidide, m.p. 118—120°). n-Octadecane- $aa\beta$ -tricarboxylic acid, m.p. 135°, on pyrolysis gives n-hexadecylsuccinic acid, m.p. 89—90°, (Me_2 , b.p. 205—210°/10 mm., and Et_2 ester, b.p. 215—220°/10 mm.; anhydride, m.p. 63°; imide, 94—95°). W. C. J. R. Purification of maleic anhydride.—See B., 1942, II, 214. Effect of inorganic salts on ketone decomposition of oxaloacetic acid.—See A., 1942, I, 302. Synthesis of aminopropanols. I. O. Hromatka (Ber., 1942, 75, [B], 131—138).—1-γ-Hydroxypropylpiperidine, b.p. 223°/750 mm. (hydrochloride, m.p. 151°; picrate, m.p. 69°; methiodide, m.p. 133—134°; benzoate hydrochloride, m.p. 190—191°; ρ-nitrobenzoate hydrochloride, m.p. 211°), is prepared by heating piperidine (I) with CH₂:CH·CH₂·OH and CH₂:CH·CH₂·ONa (II) at 100°, or by reduction of Et β-piperidinopropionate, b.p. 123°/20 mm. [from (I) and CH₂:CH·CO₂Et], by Na–EtOH or by H₂ at 203°/234 atm. in presence of a CuO–Cr₂O₃ catalyst. (II) and morpholine at 108° slowly give 4-γ-hydroxypropylmorpholine, b.p. 143—145°/28 mm. (picrate, m.p. 136—137°; aurichloride, m.p. 125—127°; benzoate hydrochloride, m.p. 190°; p-nitrobenzoate hydrochloride, m.p. 238°). NHEt₂ and (II) at 110—120° give NEt₂·[CH₂]₃·OH, b.p. 122°/70 mm., in 46·7% yield. Under similar conditions NHMeBuβ affords NMeBuβ·(CH₂)₃·OH (III) (benzoate picrate, m.p. 96—98°; p-nitrobenzoate hydrochloride, m.p. 152—154°). (III) is also obtained by the reduction (Na–EtOH at 130°) of Et β-methylsec.-butylaminopropionate, b.p. 102—105°/13 Torr. CHMeBuβ·NHMe gives γ-methyl-β-isohexylaminopropan-α-ol, b.p. 115—120°/13 Torr (p-nitrobenzoate hydrochloride, m.p. 127—128°). NHPhMe and (II) at 108° afford methyl-γ-hydroxypropylaniline, b.p. 180—185°/25 Torr. NHPrβ₂ and NHBuβ₂ could not be caused to react with CH₂:CH·CO₂Et. Formation of glycine from serine. F. Leuthardt and B. Glasson (Helv. Chim. Acta, 1942, 25, 245—249).—Hippuric acid is formed from serine and BzOH but the yield of glycine obtained on hydrolysis is < that obtained with glutamine under similar conditions. Structural specificity of choline and betaine in trans-methylation,—See A., 1942, III, 619. Stereoisomeric aa'-iminodipropionic acids. P. Karrer and R. Appenzeller (Helv. Chim. Acta, 1942, 25, 595—599).—l(+)-aa'-Iminodipropionic acid, m.p. 247° (corr.; decomp.), $[a]_{1}^{16}+12\cdot1^{\circ}$ in H₂O, is obtained by condensation of d(+)-CHMeBr·CO₂H with l(+)-NH₂·CHMe·CO₂H in presence of NaOH; the l-acid, m.p. 247° (corr.; decomp.), $[a]_{1}^{13}-11\cdot0^{\circ}$ in H₂O, is obtained analogously from the (—)-acids. meso-aa'-Iminodipropionic acid, m.p. \sim 232—233° (decomp.), is derived by use of a (—)- with a (+)-reactant, the Walden inversion being complete. H. W. β -dl-a'β'-Dihydroxy-β'-methylbutyramidopropionic acid. W. Schindler and T. Reichstein (Helv. Chim. Acta, 1942, 25, 551—554). —CMe₂:CH-CO₂H is oxidised by OsO₄ and AgClO₃ and then esterified (CH₂N₂) to Me aβ-dihydroxy-β-methylbutyrate, b.p. 58—60°/0·2 mm. (corresponding amide and hydrazide are non-cryst.). CMe₂:CH-COCl and NH₂·[CH₂]·CO₂Et give Et β-dimethylacrylamidopropionate, b.p. 115—117°/0·08 mm., hydrolysed to the acid, m.p. 100—101°. This is oxidised by OsO₄ and AgClO₃ and then esterified to Me β-dl-a'β'-dihydroxy-β'-methylbutyramidopropionate, b.p. 105—108° (bath)/ 0.005 mm. (benzylthiuronium salt of the corresponding acid, m.p. 154—156°). H. W. Ureides containing a quaternary carbon atom.—See B., 1942, II, 216. Pyrolysis of methyl and ethyl cyanides. B. S. Rabinovitch and C. A. Winkler (Canad. J. Res., 1942, 20, B, 69—72).—HCN is a primary product of the thermal decomp. of MeCN at 865° and 675°. Final products are H₂, CH₄, HCN, C, small quantities of C₂ hydrocarbons, and products of high b.p. The products of the thermal decomp. of EtCN are H₂, CH₄, C₂H₆, C₂H₄, HCN, MeCN, acrylonitrile, C, small amounts of succinonitrile, and compounds of higher b.p. A. J. M. #### II.—SUGARS AND GLUCOSIDES. Supersensitive Schiff's aldehyde reagent. Demonstration of a free aldehyde group in certain aldoses. W. C. Tobie (Ind. Eng. Chem. [Anal.], 1942, 14, 405—406).—The reagent is a 0.05% solution of basic fuchsin in 0.1% aq. SO₂. With aldose sugars a pink colour is formed. So-called isosucrose. H. H. Schlubach and B. Middelhoff (Annalen, 1942, 550, 134—140).—The action towards enzymes of isosucrose obtained by Irvine et al. (A., 1929, 683) from the octaacetate, m.p. 133.5°, and NaOMe supports the view that it is an isomeride of turanose; it is regarded as isoturanose. A. T. P. Preparation of aldehydo-acylated ribose.—See B., 1942, II, 216. Heart glucosides. XIX. Lactone ring of scilliroside. A. Stoll and J. Renz (Helv. Chim. Acta, 1942, 25, 377—391).—The doubly unsaturated, 6-membered lactone ring of scilliroside (I) is characterised by the presence of OAc in the a-position to CO. The possibility of "isomerisation" proves that (I), like scillarene A (II) has a tert.-OH at C(14). The action of KOH-MeOH on (I) is in essence similar to that on (II) but the product does not form stable, homogeneous alkali enolates. With Ba(OMe)₂ (I) slowly yields a cryst. non-homogeneous ppt. which after acidification reacts to only a slight extent with CH₂N₂; the substance appears to react mainly in the carbonyl form but homogeneous products could not be isolated. (I) and KOH-MeOH yield Me deacetylscillirosidate (III), converted by o-C₆H₄(NH₂)₂ into a quinoxaline derivative, C₃;H₅₀O₁₀N₂. The corresponding acid loses CO₂ when treated with H₂O₂ but a homogeneous oxidation product could not be obtained. The reactions, however, decide the location of Ac in (I). With Ac₂O (III) gives an amorphous hexa-acetate, m.p. (indef.) 130—140°. (III) loses H₂O in EtOH-AcOH and becomes isomerised to the amorphous Me deacetylisoscillirosidate (IV), decomp. ~210°, which does not react with CH₂N₂ and gives an amorphous dinitrophenylhydrazone, decomp. 160—170°. (IV) is converted by Ac₂O-C₅H₅N into the cryst. penta-acetate (V), m.p. 242°, [a]_D²⁰ —46° in MeOH. The penta-acetate of the corresponding Et ester has m.p. 228°, [a]₂²⁰ —44° in MeOH. Hydrogenation (PtO₂ in MeOH) of (V) gives a substance, C₃₉H₅₆O₁₄, m.p. 138°, [a]₂²⁰ —5·6° in MeOH, deacetylated by Ba(OMe)₂ in MeOH at 0° to the compound, C₃₁H₄₈O₁₀, [a]₂²⁰ —25° in MeOH, and deacetylated and demethylated by NaOH-MeOH to the substance, C₃₀H₄₆O₁₀, m.p. 210°, [a]₂²⁰ —26° in MeOH. M.p. are corr. H. W. Carboxyl content of fibre- and wood-cellulose. E. Husemann and O. H. Weber (J. pr. Chem., 1942, [ii], 159, 334—342).—Determination of the CO₂H content of purified celluloses (I) by the "reversible methylene-blue method" shows that wood-(I) contain 1 CO₂H for 103—109 glucose residues whereas fibre-(I) have very high glucose vals. The high CO₂H content of cotton after purification with ClO₂ and NaOH is caused by slight impurity (pectins). Comparison of the glucose vals. with the viscosimetrically determined mean degrees of polymerisation shows the fibre-(I) to be approx. monocarboxylic acids, thus indicating that CO₂H is formed by oxidation of the terminal reduced glucose residues. Wood-(I) are polycarboxylic acids in which a macromol. contains 9—12 CO₂H and thus resemble the xylans which with the degree of polymerisation 150 have a xylose val. 16. The function of CO₂H in the plant cell is discussed. Cupriethylenediamine as a solvent for cellulose fractionation. F. L. Straus and R. M. Levy (Paper Trade J., 1942, 114, TAPPI Sect., 211—215; cf. B., 1942, II, 224).—A method is described for the fractional pptn. of cellulose (flax and cotton) (I), from its solution in 0.5m-Cu(OH)₂-(CH₂·NH₂)₂ (II) by means of 8n-H₂SO₄ at 25°, each fraction being centrifuged, washed, dried, redissolved in (II), and its η measured. The amount of (I) in each fraction is then determined in an aliquot portion by complete pptn. with H₂SO₄ followed by oxidation with K₂Cr₂O₇. The nature of the (I)-(II) complex is discussed mathematically in relation to the results obtained. H. A. H. #### III.—HOMOCYCLIC. Kinetics of the formation and decomposition of dicyclopentadiene. E. Baur and S. Fratter (Helv. Chim. Acta, 1941, 24, 768—782).— Manometric determinations of the formation and dissociation of dicyclopentadiene at 149°, 165.5°, 180°, and 195° and 109—638 mm. disclose systematic departures from the requirements of Guldberg's kinetic postulate. In the sense of Baur's kinetics, these discrepancies indicate onesidedness of the production of equilibrium. Light absorption of geometrical isomerides and structure of vitamin-D. H. P. Koch (Chem. and Ind., 1942, 273—275).—For cis-transisomerides or pairs of substances containing geometrically isomeric chromophores, the cis-form shows a much smaller extinction coeff. (ε). Steric hindrance is considered to be responsible for the feeble light absorption properties of various 2-methyl-Δ¹-cyclohexene derivatives. The abnormally low ε for vitamin-D (calciferol) supports the postulated structure; the factors preventing free rotation to form the stable trans-configuration are unknown. H. B. Raman spectra of monoalkylbenzenes and monoalkylcyclohexanes.—See A., 1942, I, 258. Bromination of o-nitrotoluene. Steric effect of bromine on the relative yields of the 4- and 6-bromo-derivatives. D. R. Mehta and P. Ramaswami Ayyar (J. Univ. Bombay, 1942, 10, A, Part 5, 99—109).—Thermal analysis of the reaction products of the bromination of o-C₆H₄Me·NO₂ (I) in the presence of C₅H₅N, Fe₂(SO₄)₃-H₂SO₄, Fe, Fe-I (the most effective catalyst), Sb, SbCl₃, and SbCl₅ shows an average yield of 57% of 1:4:2- and 43% of 1:6:2-C₆H₃MeBr·NO₂. (I) with Cl₂ affords 66% of 1:6:2-C₆H₃MeCl·NO₂; the lower yield with Br may be due to its larger at. vol. W. C. J. R. Sesquiterpenes. LIII. Synthesis of 5-methylazulene. P. A. Plattner and H. Roniger (*Helv. Chim. Acta*, 1942, 25, 590—594).—5-Chloromethylindane is dehalogenated (H₂-Pd-C in EtOH) to 5-methylindane, b.p. 74°/l1 mm., converted by treatment with CHN₂·CO₂Et at 130—140° and then at 165°, followed by hydrolysis and distillation over Pd-C, into 5-methylazulene [picrate, m.p. 110·5°; additive compound, m.p. 151·5°, with 1:3:5-C₆H₃(NO₂)₃]. M.p. are corr. Preparation of β -amino- α -phenylpropane.—See B., 1942, II, 273. Antiplasmodial action and chemical constitution. V.—See A., 1942, II, 288. Molecular compounds of carbamide derivatives. E. Ochiai and S. Kuroyanagi (J. pr. Chem., 1941, [ii], 159, 1—12; cf. A., 1939, II, 363).—F.p. diagrams show that compound formation does not occur between NH₂·CO·NH·COEt (I), m.p. 204° (lit. 210—211°), and p-NO₂·C₆H₄·OH (II) or 2-thiol-4-methylthiazole (III). CO(NH·COEt)₂ (IV), however, gives 1:1 mol. compounds with (II), (III), NH₂·CO·NHPh (V), and NH₂·CS·NHPh (VI), and 2:1 compounds with m-C₆H₄(OH)₂ (VII) and NHPh₂. Compounds are not formed from (IV) and pyramidone, veronal, m-NO₂·C₆H₄·CHO, or sulphathiazole, from (VI) and (II), (VII), or (V), from NH₂·CS·NH·CH₂Ph, NH₂·CS·NHAC, or Et 2-thiol-4-methylgly-oxaline-5-carboxylate with (II) and (VII). (III) yields compounds with (VII) (3:1) and (II) (1:1). Although CO(NH₂)₂ does not give a compound with (I) or (V), it forms a 1:1 compound with (IV). Carbinides. Reaction between phenylcarbinide and sodium phenylacetylide. A. Tyabji (J. Univ. Bombay, 1942, 10, A, Part.5, 110—113).—PhNCO and CNa:CPh in Et₂O (2 days) afford a compound, C₂₉H₂₁O₃N₃, m.p. 260°, and isomerides, C₂₂H₁₆O₂N₂, m.p. 201° (I) and 186° (II). (I) yields a Br₁-derivative, m.p. 190—191°. Attempted prep. of the phenylcarbamate of 4-hydroxy-2-phenylquinoline for comparison with (I) or (II) was unsuccessful. W. C. J. R. Theory of the benzidine rearrangement. A. Pongratz and K. Scholtis (Ber., 1942, 75, [B], 138—145).—(NPhAc)₂ is not attacked by cold MeI or conc. acids, thus showing that formation of benzidine (I) from (NHPh)₂ (II), is an ionic change when effected by conc. acids; this view is supported by the existence of salts of (II) with conc. acids and their established isomerisation in aq. and non-aq. media. The change occurs with the cation since the isomerisation of unsymmetrical hydrazobenzenes invariably yields exclusively the corresponding unsymmetrical (I) form and not mixed forms as would be expected from an extra-mol. course of the change. The suggested scheme is: (II) +2HX \(\to [(NH₂Ph)₂)X₂\(\to [C₆H₄·NH₃]₂X₂. The transformation by MeI is regarded as a cryptoionic change. The driving force of the isomerisation is the considerable difference in energy content of the two systems. NPhAc'NHPh and MeI at 100° yield N-acetyl-N'N'-dimethylbenzidine methiodide di-iodide, m.p. 205—206°, converted by Na₂SO₃ into N-acetyl-N'N'-dimethylbenzidine methiodide, m.p. 228° after softening. (NPhAc)₂ and MeI do not react at 100° but in presence of MeOH a primary hydrolysis occurs with ultimate resulting formation of [C₆H₄·NMe₃I]₃I₄ (III). (II) and cold MeI in a closed vessel shielded from light rapidly give hydrazobenzene dihydriodide; this is also obtained from the reactants at 100° but is then accompanied by (III) if the reaction is prolonged. (NPhMe)₂ and MeI give dimethylhydrazobenzene dimethiodide, m.p. >270°, which with MeI and MeOH at 100° gives (III) and tetra- methylbenzidine dimethiodide whereas the last-named is formed almost exclusively from (I) under like conditions. Prolonged heating of $(C_8H_4\cdot NMe_2)_2\cdot 2HI$ with MeI and MeOH at 100° in an airfree tube leads to (III). (II) and MeBr in a sealed tube at room temp. slowly yield hydrazobenzene dihydrobromide. H. W. Course of the coupling of dialkylated anilines. K. Holzach and A. Simon (Ber., 1942, 75, [B], 166—167).—4-Nitro-, m.p. 122°, 2-chloro-4-nitro-, m.p. 85·5°, 2: 4-dinitro-, m.p. 110° and 6-bromo-2: 4-dinitro-, m.p. 122°, -4'-di-n-butylazobenzene are obtained by coupling the requisite diazonium salt with NPhBu°2. There is no evidence of the elimination of an alkyl group or production of a monoalkyl dye. The presence of strongly negative substituents does not inhibit normal coupling. H. W. Solubilisation of diazoimino-compounds.—See B., 1942, II, 279. Mixed triaryl thiophosphates.—See B., 1942, II, 279. Aquo-ammono-phosphoric acids. II. Preparation of N-substituted derivatives of the phenyl esters of amido- and diamido-phosphoric acids. L. F. Audrieth and A. D. F. Toy (J. Amer. Chem. Soc., 1942, 64, 1337—1339).—N-Substituted derivatives of (a) Ph_2 amido- and (b) Ph diamido-phosphates can be prepared by aminolysis either of the corresponding chlorophosphates or of the POCl₃-PhOH-C₅H₅N reaction mixture. The latter method is satisfactory for (b), but is not recommended for (a). Ph di(methylamido)-, m.p. 103—105°, di(cyclohexylamido)-, m.p. 124—125°, and di(morpholido)-phosphate, m.p. 85—86°, and Ph_2 methylamido-, m.p. 95°, cyclohexylamido-, m.p. 104—105°, and morpholido-phosphate, m.p. 72:5—73:5°, are new. W. R. A. Cleavage of ethers by boron bromide. I. Common ethers. F. L. Benton and T. E. Dillon (J. Amer. Chem. Soc., 1942, 64, 1128—1129).—R₂O (R = Et, Pr $^{\beta}$, or Bu $^{\alpha}$) (3 mols.) and BBr₃ (1 mol.) give good yields of ROH + RBr. PhOPr $^{\beta}$, PhOBu $^{\alpha}$, o-C₆H₄Br·OMe, and 2:4:6:1-C₆H₂Me₃·OMe give good yields of phenol and alkyl halide. CH₂Ph·OPr $^{\alpha}$ gives Pr $^{\alpha}$ OH (71%) and CH₂PhBr (75%). R. S. C. Synthesis of allyl and propenyl essential oils. General method. L. Bert (Compt. rend., 1941, 213, 873—874).— OR·C₆H₄·CH₂·CH:CHCl (from PhOR, CH₂Cl·CHCHCl, and AlCl₃ or Zn dust) afford (with other products) (i) OR·C₆H₄·CH₂·CH₂·CH₂·CH₂·CH₃·CH₃·CH₃·CH₃·CH₃·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH₄·CH Reduction of aromatic nitro- and polynitro-compounds. XV. Cathodic reduction of nitrophenol ethers. K. Brand and W. Schreber [with, in part, E. Heck] [Ber., 1942, 75, [B], 156—165; cf. A., 1935, 482).—The cathodic reduction of o-nitrophenyl acetate or benzoate is rendered impossible by the ease with which the esters are hydrolysed, but satisfactory results are obtained with o- (I), b.p. 154°/16 mm., f.p. 30·5°, and p- (II), b.p. 166°/14 mm., f.p. 21·2°—nitrophenyl OMe·CH2 ether, obtained from CH2Cl·OMe and the dry Na or Li salt of the NO2 phenol. Reduction of (I) at a Hg cathode [anolyte is aq. Na2CO3 free from NaCl; catholyte is a solution of (I) in EtOH-H4O-NaOAc] gives a mixture of the expected azoxy- (III) and hydrazo- (IV)—ethers, which are not isolated. (III) is converted by HCl into 2: 2′-azoxyphenol, m.p. 153°. (IV) is oxidised by air to 2: 2′-dimethoxymethoxyazobenzene, m.p. 103·5° hydrolysed by HCl to 2: 2′-azophenol, m.p. 174° (whence 2: 2′-azoanisole, m.p. 154·5°, and 2-hydroxy-2′-methoxyazobenzene, m.p. 122°). Under these conditions the yields of (III) and (IV) are small, but if a Ni is substituted for a Hg cathode the yield of (IV) is increased to 40—60% and (III) is obtained in small quantity. At a Ni cathode (II) gives a 69—70% yield of 4: 4′-dimethoxymethoxyazobenzene, m.p. 82—83°, not apparently accompanied by the azoxy-ether. It is hydrolysed to 4: 4′-azophenol, m.p. 211°. With MeOH-NaOMe (I) and (II) exchange OMe·CH2 for Me before reduction to the azoxyanisole occurs. p-NO2·C6H4·OLi (+3H2O) is described. Thermal rearrangement of m-acetamidophenyl allyl ether. R. T. Arnold, J. McCool, and E. Schultz (J. Amer. Chem. Soc., 1942, 64, 1023—1025).—m-NHAc·C₈H₄·OH, CH₂·CH·CH₂Br, and K₂CO₃ in COMe₂ give m-acetamidophenyl allyl ether, m.p. 87—88°, rearranged in boiling NPhMe₂-H₂ or -N₂ (not in ligroin, b.p. 200—220°) into 5-acetamido-2-allylphenol, m.p. 160·5—162° [acetate (I), m.p. 132—133°]. H₂-PtO₂ and (I) in EtOHgive (after hydrolysis with aq. K₂CO₃) 5-acetamido-2-propylphenol (II), m.p. 173·5—174°, hydrolysed by HCl to 5:2:1-NH₂·C₆H₃Pr^a·OH, m.p. 132—132·5° [with Ac₂O gives the acetate, m.p. 117·5—118°, of (II), converted thereinto by aq. Na₂CO₃ + NaOH], which is also obtained by the method of Hartung et al. (A., 1941, II, 131), who obtained a form, m.p. 109—110°. 3:4:1-NO₂·C₆H₃Pr^a·NH₂ [prep. from 1:2:4-C₆H₃Pr^a(NO₂)₂ by H₂S-NH₃-H₂O-EtOH], m.p. 59—59·5°, gives (diazo-reaction) 3-nitro-, m.p. 46·5—47·5°, reduced by H₃-Pt in EtOH to 3-amino-4-n-propylphenol, m.p. 152—153° (acetylation gives oils). R. S. C. Action of thionyl chloride on β -naphthol and 1-hydroxy-2-naphthole acid. J. W. Airan and S. V. Shah (J. Univ. Bombay, 1942, 10, A, Part 5, 128—130).— β -C₁₀H₇·OH, SOCl₂, and BiCl₃ in Et₂O or C_6H_6 afford 2:2'-dihydroxy-1:1'-dinaphthyl sulphide, m.p. 212°, whilst 1:2-OH- $C_{10}H_6$ 'CO₂H similarly yields 4:4'-dihydroxy-3:3'-dicarboxy-1:1'-dinaphthyl sulphide, m.p. 265°. W. C. J. R. Interaction of sulphuryl chloride and naphthol derivatives. J. W. Airan and S. V. Shah (J. Univ. Bombay, 1942, 10, A, Part 5, 131—134).—a-C₁₀H₇·OH, SO₂Cl₂, and BiCl₃ in Et₂O afford 4:1-G₁₀H₆Cl·OH; 2:1-C₁₀H₆Ac·OH similarly gives 4-chloro-2-acetyl-1-naphthol, m.p. 116° (acetate, m.p. 82°); 1:2-OH·C₁₀H₆·CO₂H yields 1:4:2-OH·C₁₀H₅Cl·CO₂H (acetate, m.p. 102°); 2:3-OH·C₁₀H₆·CO₂H gives 3:4:2-OH·C₁₀H₅Cl·CO₂H (acetate, m.p. 186°). W. C. J. R. Preparation of alkali formaldehydesulphoxylate-diaminodiphenyl sulphide or sulphone reaction products.—See B., 1942, II, 279. Dielectric polarisation of benzyl alcohol.—See A., 1942, I, 293. Synthesis of "heavy" dl-adrenaline. G. R. Clemo and G. A. Swan (J.C.S., 1942, 395—397).—All six H of o-C₆H₄(OH)₂ exchange with D₂O in alkaline solution at 100°, although replacement of the last is very slow. The "heavy" pyrocatechol, m.p. 104°, used for subsequent reactions, was approx. C₆HD₅O₂. With CD₂Cl·CO₂D and POCl₃ at 55—60°, followed by hot D₂O, it affords "heavy" chloroacetylpyrocatechol, m.p. 172° (85·5 atoms % D), converted by CD₃·ND₂ in D₂O at room temp. into "heavy" adrenalone, and thence by hot dil. D₂O-D₂SO₄ into the "heavy" sulphate, which is reduced (D₂, Pd-C, D₂O) to "heavy" dl-adrenaline (90 atoms % D, i.e. C₉H_{1·3}D_{11·7}O₃N). Its physiological action is almost indistinguishable from that of "light" dl-adrenaline. A. T. P. Substituted cinnamic acid esters and amides.—See B., 1942, II, 280. Attempted direct synthesis of β -substituted cinnamic acids. B. D. Patel and K. V. Bokil (J. Univ. Bombay, 1942, 10, A, Part 5, 123—127).—Condensation of CH₂Ac·CO₂Et (I) with phenolic ethers in presence of varying [H₂SO₄] is studied; concns. <80% are ineffective. 80% H₂SO₄ yields substituted butyric acids and/or esters and more complex acids (II) formed by addition of (I) to any cinnamic acid (III) or ester formed. 85% H₂SO₄ gives (II) and sulphonated acids. Contrary to Limaye (A., 1940, II, 129) no substituted (III) has been obtained. PhOEt and (I) yield $\beta\beta$ -di-p-phenetyl-butyric acid, m.p. 60—62° (anilide, m.p. 135°), also obtained from p-OEt-C₆H₄-CMe:CH·CO₂H and PhOEt in 80% H₂SO₄. o-C₆H₄Me·OMe and (I) yield $\beta\beta$ -di-6-methoxy-m-tolybutyric acid, m.p. 131—132° (anilide, m.p. 141—142°); m-C₆H₄Me·OMe yields 4:7-dimethyl-coumarin, m.p. 132—133°; p-C₆H₄Me·OMe gives 4:6-dimethyl-coumarin, m.p. 150—151°. W. C. J. R. coumarin, m.p. 152—151°. Synthesis of 3': 5'-di-iodothyronine. P. Block, jun., and G. Powell (J. Amer. Chem. Soc., 1942, 64, 1070—1074).—Iodination of thyronine gives mixtures (cf. lit.). K 2: 6-di-iodo-4-nitrophenoxide best (~80%) prepared from p-NO₂·C₆·H₄·OH by ICl-AcOH-H₂O etc. at 95°, with Me₂SO₄-K₂CO₃-PhNO₂ at 130° gives the Me ether (85%), reduced by Fe-AcOH to 4:2: 6: 1·NH₂·C₆·H₂·2·OMe (90%), m.p. 105° (lit. 100°). A diazo-reaction (OBu·NO-H₂SO₄-AcOH at 15—18°; then H₂SO₄-H₂O at 110°) then yields 2: 6-di-iodoquinol 1-Me ether (75%), m.p. 125—125·5° (derived Me₂ ether, m.p. 56°, also obtained from 4:3:5:1·NO₂·C₆·H₂·I₂·OH by way of the quinone), which with p-C₆·H₄·C·NO₂-KOH-H₂O (little) at 130° (later 160°) gives 3':5'-di-iodo-4-nitro-4'-methoxydiphenyl ether (70%), m.p. 124—124·5°, reduced by H₃-Pd(OH)₂-CaCO₃ in EtOH-NaOH (little) to p-NH₂·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O·C₆·H₄·O Syntheses in the chaulmoogric acid series. IV. Synthesis of β -dl- Δ^2 -cyclopentenylpropionic acid, a new homologue of chaulmoogric acid. K. V. Bokil and K. S. Nargund (J. Univ. Bombay, 1942, 10, A, Part 5, 118—122).—Reduction (Na–Hg, 80% EtOH) of Et cyclopentanone-2-carboxylate-5- β -propionate (cf. Cook et al., A., 1934, 1002) and dehydration (Ac₂O) of the OH-acid yields a mixture separated by fractionation of the Ba salts from EtOH. The less sol salt gives an unsaturated dibasic acid, $C_9H_{12}O_4$, m.p. 128—129°. The sol, salt gives mixed Et esters whence the Et ester, b.p. 90—92°/7 mm., of β - Δ^2 -cyclopentenylpropionic acid, b.p. 127—129°/7 mm. Et Δ^1 - or Δ^2 -cyclopentene-1-carboxylate is reduced (Na, EtOH) to Δ^1 -cyclopentenylcarbinol, b.p. 57/10 mm. (p-nitrobenzoate, m.p. 36—37°). W. C. J. R. Synthesis of anti-leprosy drugs. I. New synthesis of κ -cyclohexylundecoic acid, an analogue of dihydrohydnocarpic acid. (Miss) B. C. Pandya, K. S. Nargund, and K. V. Bokil (J. Univ. Bombay, 1942, 10, A, Part 5, 114—117).—Et potassiocyclohexanone-2-carboxylate (modified prep.) and Et κ-bromoundecoate in C₆H₆ afford Et cyclohexanone-2-carboxylate-2-κ-undecoate, b.p. 260—265°/13 mm., hydrolysed by boiling conc. HCl to 2-carbethoxycyclohexanone-2-κ-undecoic acid, b.p. 260—265°/3 mm., and by KOH-MeOH to the crude dibasic acid, which on distillation gives κ-2-keto-cyclohexylundecoic acid, m.p. 61—62° (Et ester, b.p. 210—215°/3 mm.; semicarbazone, m.p. 134—135°), reduced (Clemmensen) to κ-cyclohexylundecoic acid, m.p. 57—58° (Et ester, b.p. 193—195°/3 mm.; amide, m.p. 107—108°). W. C. J. R. Derivatives of 3:5-di-iodohippuric acid. B. K. Blount, J. C. L. Resuggan, and F. A. Robinson (Quart. J. Pharm., 1942, 15, 16—20). —3:5-Di-iodo-4-hydroxyhippuric acid (I), m.p. 223—224° [O-Ac, m.p. 205—206°, and O-benzyl, m.p. 216—218° (Et ester, m.p. 164—165°), derivatives], prepared from glycine and p-OAc-C₆H₄-COCl followed by hydrolysis and iodination, yields a very sol. Na₂ salt. When injected intravenously into rabbits there is 100% excretion (begins ~75 min. after injection; complete in ~2.5 hr.). The toxicity is 1-8 times as great as that of indoxyl (II). 3:5 Diciodox toxicity is 1.8 times as great as that of iodoxyl (II). 3:5-Di-iodo-4-carboxymethoxyhippuric acid, m.p. 227° (Et₂ ester, m.p. 112—113°), from CH₂Cl·CO₂Et and the Et ester of (I) followed by hydrolysis, is nearly 1.4 times as toxic as (II) when tested on rats and nearly twice as toxic when tested on mice. Alkanolamines. XI. Monoalkylamino-alcohols and their esters. C. B. Kremer and E. Waldman (J. Amer. Chem. Soc., 1942, 64, 1089—1090).—NH₂·CMe₂·CH₂·OH and RBr in boiling EtOH give B-ethyl-, m.p. 75·5—76·5°, b.p. 162— 163° , -n-, m.p. 59-5—60-5°, b.p. 183— 185° , and -iso-propyl-, m.p. 43— 45° , b.p. 165— 166° , -n-, m.p. 69-5—70°, b.p. 195— 196° , and -iso-butyl-, m.p. 51—52-5°, b.p. 185— 186° , -n-, m.p. 60-60-5°, b.p. 216— 217° , and -iso-amyl-, m.p. 76-5— 77° , b.p. 205— 207° , -aminoisobutyl alcohol, converted by p-NO₂·C₆H₄·COCl in C₈H₈N at 30— 40° (not in alkali) into the p-nitrobenzoates, m.p. 206-5— 207° (impure), 185—185-5°, 140— 141° (impure), 163-5— 164° , 165— 166° , 151—151-5°, and 168—168-5°, respectively. In conc. HCl at $\Rightarrow 40$ — 45° powdered Sn then gives the hygroscopic p-aminobenzoate hydrochlorides (not detailed). R. S. C. Amidine salts of aminobenzoic acids.—See B., 1942, II, 280. Dimorphism of amylcaine hydrochloride. H. R. Kreider and A. R. Menotti (J. Amer. Chem. Soc., 1942, 64, 1227—1228).—Dimorphic forms, m.p. 153.5° (corr.) and 176° (2 pseudomorphs), of p-NH₂·C₆H₄·CO₂·[CH₂]₂·NH·C₅H₁₁-n,HCl are described with photonic arraphs NH₂·C₆H₄·CO₂·[CH₂]₂·NH·C₅H₁₁-n,HCl are described with photomicrographs. R. S. C. Rearrangement of 3:5-dichloro-4-crotyloxybenzoic acid. D. S. Tarbell and J. W. Wilson (J. Amer. Chem. Soc., 1942, 64, 1066—1070; cf. A., 1942, II, 258).—Alkaline hydrolysis of 4:3:5:1-OH·C₆H₂·Cl₂·CO₂Et (I) (prep. from p-OH·C₆H₄·CO₂Et by SO₂Cl₂ in 81% yield), m.p. (+H₂O) 108—116° (decomp.) and (anhyd.) 111—112°, gives the acid (89%), m.p. 268—269° (lit. 265°). (I) with, best (63%; 22% pure), CHMe:CH·CH₂Br and NaOH in boiling; aq. COMe₂ and subsequent hydrolysis (Claisen's alkali) gives 3:5-dichloro-4-crotyloxybenzoic acid (II), m.p. 150—152° [structure proved by oxidation by alkaline KMnO₄ to 2:6-dichloro-4-crotyoxyphenoxyacetic acid (78%), m.p. 248—250°, not obtained from (I) and CH₂Br·CO₂Et]. Rearrangement of (II) to 4:2:6:1-CHMe:CH·CH₂C₆H₂Cl₂·OH (III) (61%) (phenylurethane, m.p. 149—150°) occurs without inversion at 165—175°, but in NPhMe₂ at 155° only decarboxylation occurs. 78% of 2:6:1-C₆H₂Cl₂·OH is obtained from 4:3:5:1-OH·C₆H₂Cl₂·CO₂H in NPhMe₂ at 155°, later 190°. 4:2:6:1-C₈H₂Bu²Cl₂·OH, b.p. 111—115°/3 mm. (phenyl-, m.p. 143—144°, and a-naphthyl-urethane, m.p. 142—143°), is obtained from (III) by H₂—PtO₂ in EtOH and by Clemmensen reduction of 3:5-dichloro-4-hydroxybutyrophenone (IV), m.p. 96—97°. 2:6-Dichlorophenyl n-butyrate [prep. by (Pr^aCO)₂O-C₈H₈N at 100°], b.p. 118—119°/3 mm., with AlCl₂ in PhNO₂ at room temp. gives (IV) (59%). 2:6-Dichlorophenyl acetate, b.p. 125—126°/17 mm., gives similarly 3:5-dichloro-4-hydroxyacetophenone (69%), m.p. 164—165·5°, converted by MgEtBr into β-3:5-dichloro-4-hydroxyphenyl-butan-β-ol (56%), m.p. 116—117°, which with a trace of I at 185° gives 2:6-dichloro-4-(2) a-methylpropenyl- (88%), b.p. 161—163°/17 mm., and thence (H₂—PtO₂: EtOH) -4-sec.-butyl-phenol, m.p. 90°/2 mm., at 193—200° (N₂) gives 2:6-dichloro-4-allyl-(~576%), m.p. 30—30°/2 mm., at 193—200° (N₂) gives 2:6-dichloro-4-al (V), b.p. $61-63^\circ/1$ mm. $(a-naphthylurethane, m.p. <math>125-126^\circ)$. o- C_8H_4Cl allyl ether (prep. in COMe₂), b.p. $108-110^\circ/15$ mm., at the b.p. gives 89% of (V). #### p-Sulphonamidobenzamidine.—See B., 1942, III, 189. Attempted synthesis of homoisovanillic acid. O. Hromatka (Ber., 1942, 75, [B], 123—131).—Attempts from o-NO₂·C₆H₄·OMe and o-C₆H₄Cl·OMe are described. 3:4:1-NO₂·C₆H₃(OMe)·CH₂Cl is converted by KCN in aq. EtOH at 65—70° into 3-nitro-4-methoxy- phenylacetonitrile, m.p. 86—87°, b.p. 175°/0·3 mm., reduced (H₂, Pd-C, MeOH at 19·5°) to 3-amino-4-methoxyphenylacetonitrile (I) (hydrochloride, m.p. 202°; picrate, m.p. 180°); attempts to diazotise the base were unsuccessful. (I) and 85% H₂SO₄ at 50° give 3-nitro-4-methoxy- (II), m.p. 155°, whereas at 95° the product is -4-hydroxy-, m.p. 162°, -phenylacetamide. (II) is converted by boiling aq. NaOH into 3-nitro-4-methoxyphenylacetic acid (III), m.p. 132°, reduced (as above) to the 3-NH₂-acid, m.p. 105°, which yields red resins and a small amount of p-OMe·C_eH₄·CH₂·CO₂H when diazotised and boiled with H₂O. (II) is reduced to 3-amino-4-methoxyphenylaceton. resins and a small amount of p-OMe·C₈H₄·CH₂·CO₂H when diazotised and boiled with H₂O. (II) is reduced to 3-amino-4-methoxyphenyl-acetamide, m.p. 164°. 2N-NaOMe-MeOH at 120° converts (III) into 2: 2'-dimethoxyazoxybenzene-5: 5'-diazetic acid, m.p. 195—196°. 4: 3: 1-OMe·C₆H₃Cl·CH₂Cl, m.p. 38° (obtained in 89·7% yield by saturating o-C₆H₄Cl·OMe in an excess of 40% CH₂O with HCl at 98°, and KCN in boiling PrβOH give 3-chloro-4-methoxyphenylaceto-mitrile, m.p. 55°, hydrolysed by KOH-H₂O-EtOH to the acid (IV), m.p. 98°, which is oxidised by KMnO₄ to 4: 3: 1-OMe·C₆H₃Cl·CO₂H, m.p. 213°. NaOMe in MeOH at 185° converts (IV), into 3-chloro-4-hydroxyphenylacetic acid, m.p. 107°. With KOH-NaOH at 220° (IV) gives 2: 4: 1-OH·C₆H₃(OMe)·CH₂·CO₂H, m.p. 130°, which when distilled affords 5-methoxycoumaranone, m.p. 56°, and with CH₂N₂ distilled affords 5-methoxycoumaranone, m.p. 56°, and with CH₂N₂ gives 2:4:1-(OMe)₂C₆H₃·CH₂·CO₂H. 3:3'-1tichloro-4:4'-dimethoxydiphenylmethane, m.p. 78°, is obtained from o-C₆H₄Cl·OMe, CH₂O, ZnCl₂, and HCl at 90°. H. W. Phenylglutaric acids. III. aa-Diphenylglutaric acid. J. J. Trivedi, N. L. Phalnikar, and K. S. Nargund (J. Univ. Bombay, 1942, 10, A, Part 5, 135—136; cf. A., 1937, II, 195; 1938, II, 188).— CHPh₂·CN, I·[CH₂]₂·CO₂Et, and EtOH-NaOEt give after hydrolysis (20% NaOH at room temp.) γ-cyano-γγ-diphenylbutyric acid, m.p. 161—162°, hydrolysed (conc. HCl, 160—170°, 6 hr.) to aa-diphenylglutaric acid, m.p. 193—194° [anhydride (I), m.p. 142—143°; monoanilide, m.p. 208°; mono-p-toluidide, m.p. 168°]. (I) at 180—190° in dry NH₂ yields aa-diphenylglutarimide, m.p. 159°. 190° in dry NH₃ yields aa-diphenylglutarimide, m.p. 168°]. (I) at 180—190° in dry NH₃ yields aa-diphenylglutarimide, m.p. 158—159°. W. C. J. R. cycloHexane series. VI. Stereoisomeric forms of 4- and 3-methyl-cyclohexane-1: 1-dicarboxylic acid, and conclusive chemical evidence cyclohexane-1: 1-dicarboxylic acid, and conclusive chemical evidence for the multiplanar cyclohexane ring. R. D. Desai, R. F. Hunter, and G. S. Sahariya (Proc. Indian Acad. Sci., 1942, 15, A, 168—172), —1-Carboxy-4-methyl-1-cyclohexylacetic acid-A, m.p. 173°, and -B, m.p. 137°, with successively PCl₅, Br first at room temp. (sunlight) and then at 50—60°, and HCO₂H, yield the -a-bromoacetic acid-A, m.p. 152° [with the β-lactone; m.p. 110° (previous sintering) (NH₂Ph salt +H₂O, m.p. 160°), of (I) (below)], and -B, m.p. 132°, respectively, hydrolysed (2N-aq. Na₂CO₃) to the -1-carboxylic-glycollic acid-A (I), m.p. 134°, and -B, m.p. 138°, respectively, oxidised (alkaline KMnO₄) to the -1: 1-dicarboxylic acid-A, m.p. 170° (decomp.), and -B, m.p. 175° (decomp.), respectively. Similarly 1-carboxy-3-methyl-1-cyclohexylacetic acid-A, m.p. 163°, and -B, m.p. 108—109°, yield the -a-bromoacetic acid-A, m.p. 142°, and -B, m.p. 155°, respectively, -1-carboxylic-1-glycollic acid-A, m.p. 166°, and -B, m.p. 134°, respectively, and -1: 1-dicarboxylic acid-A, m.p. 171—172° (decomp.), and -B, m.p. 185° (decomp.), respectively. The existence of the above pairs of stereoisomeric 1: 1-dicarboxylic acids supplies the first proof of the multiplanar forms of the cyclohexane supplies the first proof of the multiplanar forms of the cyclohexane Sulphur studies. XVIII. Sulphonium derivatives from p-phenylphenacyl bromide. R. W. Bost and H. C. Schultze (J. Amer. Chem. Soc., 1942, 64, 1165—1167; cf. A., 1941, II, 332).—p-C₆H₄Ph·CO·CH₂Br (I) and Alk₂S, in, best, boiling abs. MeOH give p-phenylphenacyldialkylsulphonium bromides (A), which with Ag salts of strong acids give the derived other sulphonium salts. Sulphonium salts of weak acids (AcOH, BzOH, o-OH-C₆H₄·CO₂H, p-NH₂·C₆H₄·SO₂·NH₂) cannot be isolated and with H₂S give the sulphonium H sulphide, which decomposes to give p-phenylphenacyl mercaptan, m.p. 109° (2: 4-dinitrophenylhydrazone, m.p. 159°), and B.S. (A) and the decired without H with the salts of sa mercapian, m.p. 109° (2: 4-dinitrophenylhydrazone, m.p. 159°), and R₂S. (A) and the derived nitrates, H sulphates, and sulphanilates, respectively, are described in which the alkyl are Me_2 , m.p. 148°, 136°, —, and 166° (and the normal sulphate, m.p. 148°), Et_2 , m.p. 131°, 125°, 157°, and 139°, Pr^a_2 , m.p. 117°, 118°, 152°, and an oil, Bu^a_2 , m.p. 96—107°, 138°, 172°, and an oil, Me Et, m.p. 139°, 134°, 155°, and 163°, Me Pr^a , m.p. 131°, 121°, an oil, and 158°, Me Bu^a , m.p. 119°, 137°, 168°, and 146° (and the benzenesulphonate, m.p. 129—134°), and diallyl, m.p. 72°, —, —, —. COPh·CH₂Br and MeSBu^a in abs. MeOH give SMe₂BuBr. p-Phenylphenacyldi-n- and -isoamylsulphonium bromides are oils. R. S. C. Constitution of natural tannins. VIII. Colouring matters derived from anthracene-9-aldehyde. A. Russell and W. B. Happoldt, jun. (J. Amer. Chem. Soc., 1942, 64, 1101—1103; cf. A., 1941, II, 173).—9-Anthraldehyde (improved prep.) and COArMe in HCl—EtOAc at room temp. give 27—71% of Ph, m.p. 122—123°, o-benzoyloxy-, m.p. 151°, o-, m.p. 159—160°, m-, m.p. 202°; and p-hydroxy-, m.p. 241—242°, 2:6-, m.p. 224°, and 2:5-dibenzoyloxy-, m.p. 171°, 2:5-, m.p. 146°, and 2:4-diacetoxy-, m.p. 188°, 2:5-, m.p. 228·5°, and 2:4-dihydroxy- (prep. in boiling KOH–MeOH–N₂), m.p. 199°, 2:3:4-tribenzoyloxy-, m.p. 161—162°, 2:4-, m.p. 139°, and 2:6-dimethoxy-phenyl, m.p. 202°, p-diphenylyl, m.p. 212—213°, and β-C₁₀H₇ β-9- anthranylvinyl ketone, m.p. 163°. 2:4:1-(OH)_eC₆H₃·COMe gives 7-hydroxy-2-9'-anthranylbenzopyrone (59%), m.p. 212—220°. anti-Phenyl phenylthiolmethyl ketoxime. Attempted synthesis of benzo-m-thiazine derivatives. E. Vinkler (J. pr. Chem., 1941, [ii], 159, 115—120).—SPh·CH₂·COPh affords the anti-oxime (I), m.p. 81—82°, converted (PCl₅-Et₂O) into SPh·CH₂·CO·NHPh, m.p. 82—83° (also obtained from SPh·CH₂·CO₂H and NH₂Ph at 150°). (I) could not be converted into the syn-form. Condensation of o-anisylsuccinic anhydride with o- and m-tolyl methyl ethers. B. S. Mehta, K. V. Bokil, and K. S. Nargund (J. Univ. Bombay, 1942, 10, A, Part 5, 137—140; cf. A., 1940, II, 132).— o-Anisylsuccinic anhydride (I), o-C₆H₄Me·OMe, and AlCl₃ in PhNO₂ or C₂H₂Cl₄ give β-6-methoxy-m-toluoyl-α-o-anisylpropionic acid (44—54%), m.p. 183° [with MeOH-HCl gives a pyrylium compound, m.p. >300°; Me (via Ag salt), m.p. 101°, and Et ester, m.p. 63—65°], and β-6-methoxy-m-toluoyl-β-o-anisylpropionic acid (42—49%), m.p. 140—141° (semicarbazone, m.p. 200°; Me, m.p. 113°, and Et ester, m.p. 93°). 4:3:1-OMe·C₆H₃Me·COMe, o-OMe·C₆H₄·CHO (II), and 50% aq. NaOH afford 6-methoxy-m-tolyl o-methoxystyryl ketone, m.p. 79°, which did not react with KCN or Br. (I) similarly condenses with m-C₆H₄Me·OMe to give β-5-methoxy-o-toluoyl-α-o-anisylpropionic acid (III) (58—60%), m.p. 151—152° (Me, m.p. 115°, and Et ester, m.p. 122°), and β-5-methoxy-o-toluoyl-β-o-anisylpropionic acid (20—27%), m.p. 125°. 5-Methoxy-o-toluoyl-β-o-anisylpropionic acid (20—27%), m.p. 125°. 5-Methoxy-o-tolyl o-methoxystyryl ketone, b.p. 210—215°/11 mm. [from 4:2:1-OMe·C₆H₃Me·COMe and (II)], with KCN gives a product hydrolysed to (III). W. C. J. R. Self-condensation of acetylcyclohexene. E. R. H. Jones and H. P. Koch (J.C.S., 1942, 393—395).—The two dimerides, m.p. 205° [mono-oxime, m.p. 254° (decomp.); 2:4-dinitrophenylhydrazone, m.p. 293°] and new m.p. 130° [mono-oxime, m.p. ~250° (decomp.); 2:4-dinitrophenylhydrazone, m.p. 212—213°], formed from 1-acetyl-cyclohexene by NaNH₂-Et₂O (cf. Rapson et al., A., 1935, 1498) are probably stereoisomeric a- and β-9-keto-12-acetyltetradecahydrophenanthrene, respectively. They both yield (Se at 300°) phenanthrene and show no high-intensity absorption in the ultra-violet. A third condensation product is probably 1-keto-3-Δ¹'-cyclohexenyl-Δ²-octahydronaphthalene, m.p. 85° [oxime, m.p. 232° (decomp.); semicarbazone, m.p. 213°; 2:4-dinitrophenylhydrazone, m.p. 228°], dehydrogenated by Pd-C at 340° (in CO₂) to 2-C₁₀H₇Ph. 1-Acetyl-2-methylcyclohexene does not undergo self-condensation with NaNH₂-Et₂O. Antihæmorrhagic activity of sulphonated derivatives of 2-methylnaphthalene. B. R. Baker, T. H. Davies, L. McElroy, and G. H. Carlson (J. Amev. Chem. Soc., 1942, 64, 1096—1101).—Heating 1: 2: 4-O:C₁₀H₅Me:O with aq. NaHSO₃ or KHSO₃ at 100° and then cooling at 0° and adding COMe₂ ppts. the biologically active Na or K salt (I), respectively, of the 1: 1 additive compound. Concn. of the mother-liquor and addition of KCl yields K 2-methyl-1: 4-naphthaquinol-3-sulphonate (II), which has <0·1 times the biological potency of (I). (I) and (II) are differentiated by formation of the corresponding S-benzylthiuronium salts, m.p. 127—129° (decomp.) and 138—139° (decomp.), respectively. With K₂Cr₂O₃-H₂SO₄-H₂O at 25°, (II) or the initial crude reaction product gives readily K (III) and thence S-benzylthiuronium 2-methyl-1: 4-naphthaquinone-3-sulphonate, m.p. 156—157°; the Na salt is similarly obtained. (III) is reconverted into (II) by Na₂S₂O₄ and with alkaline KMnO₄ gives o-C₆H₄(CO₂H)₂ (IV). The structure of (II), (III), etc. is proved as follows. 2: 1: 4-C₁₀H₃Me(OAc)₂ (V) with ClSO₃H in CHCl₃ at room temp. gives Na 2-methyl-1: 4-naphthaquinol-3-sulphonate diacetate, m.p. 148—150° (decomp.), oxidised by CrO₃-AcOH-H₄O-KCl to (III) and converted by HNO₃-H₂O into 3-mitro-2-methyl-1: 4-naphthaquinone, m.p. 124-5—125-8°. KMnO₄ oxidises this to (IV), and H₂-PtO₂ in AcOH yields-3-amino-2-methyl-1: 4-naphthaquinol with the complex of the active additive compound, since the yields of (III) and thence (VI) (prep. at 80—100°), m.p. 214—215° (with boiling Ac₂O-NaOAc gives the tetra-acetate, m.p. 173—174-5°), and oxidised by FeCl₃-HCl-H₂O to 3-amino-2-methyl-1: 4-naphthaquinol (mono-acetate, m.p. 124-5—125-8°, the 3-p-nitrobenzeneazo-derivative, m.p. 162—162-5°, which with KMnO₄ gives (IV) and with H₂-catalyst in AcOH and then Ac₂O-NaOAc at 100° gives (VI) and thence (boiling 10% NaOH-air) phthiocol. The stability of (I) to K₃Fe(CN)₆ etc. greatly exceeds that of Sulphonation of 1-aminoanthraquinone compounds.—See B., 1942, II. 280 #### IV.—STEROLS AND STEROID SAPOGENINS. 7-Benzoyloxysterols and their use in preparation of 7-dehydrosterols. O. Wintersteiner and W. L. Ruigh (J. Amer. Chem. Soc., 1942, 64, 1177—1179).—7(a)-Benzoyloxycholesteryl benzoate with NaOMe-MeOH-C₆H₆ at room temp. gives, after chromatography, 7(a)-benzoyloxycholesterol (I), m.p. 110—115°, [a]²⁵ +111° in CHCl₃ [absorption max. at 230 (ε 12,750) and 272 mμ. (ε 740); 3:5-dinitrobenzoate, m.p. 162—163°, [a]²⁵ +80·5° in CHCl₃; p-toluenesulphonate, m.p. varies, 90° to 100° (decomp.), with KOAc-MeOH gives an impure compound, m.p. 153·5—155·5°; no digitonide]. Pyrolysis (2 mm.) or boiling in NPhMe₂-CO₂ converts (I) into 7-dehydrocholesterol, m.p. 142·5—143·5°, [a]²⁶ -38·3° in CHCl₃ (3:5-dinitrobenzoate, m.p. 209·5—210·5°, [a]²⁶ -38·3° in CHCl₃) (cf. lit.). 7(a)-Benzoyloxystigmasteryl benzoate, m.p. 183·5—185° (lit. 156—158°, 184—186°), with NaOMe-MeOH-C₆H₆ at 23—25° gives 7(a)-benzoyloxystigmasterol, m.p. 154·5—156·5°, resolidifies, remelts at 193°, [a]²⁶ +100·8° in CHCl₃ (no digitonide; 3:5-dinitrobenzoate, m.p. 150·5—152·5°), converted in boiling NPhMe₂ into 7-dehydrostigmasterol, m.p. 150—152·5°, [a]²⁷ —104·0° in CHCl₃, —109·8° in C₆H₆ [absorption max. at 282 mμ. (ε 10,800); benzoate, m.p. 178·5—180°, [a]²⁶ -48·5° in CHCl₃]. Sterols. CXLI. 3(a):11:12-Trihydroxycholanic acid. R. E. Sterols. CXLI. 3(a): 11: 12-Trihydroxycholanic acid. R. E. Marker, A. C. Shabica, E. M. Jones, H. M. Crooks, jun., and E. L. Wittbecker (J. Amer. Chem. Soc., 1942, 64, 1228—1229).—Contrary to Longwell et al. (A., 1940, II, 95), 3(a): 11-dihydroxy-12-ketocholanic acid with N₂H₄,H₂O, NaOEt, and EtOH at 200° gives 3(a): 11: 12-trihydroxycholanic acid, m.p. 136° (decomp.), converted by CrO₃—AcOH and then Hg-Zn-HCl into neolithobilianic acid (I): 11-Hydroxy-12-ketocholanic acid (II) gives similarly 11: 12-dihydroxycholanic acid, m.p. 204—208°, and thence (I) [also obtained directly from (II) by CrO₃—AcOH]. R. S. C. Sterol group. XLIV. Oxidation of phytosterols with the Oppenauer reagent. E. R. H. Jones, P. A. Wilkinson, and (in part) R. H. Kerlogue (J.C.S., 1942, 391—393; cf. A., 1941, II, 251).—Cholesterol is oxidised [Al(OBu')₈—COMe₈—C₈H₆] to cholestenone (2:4-dinitrophenyllrydrazone, m.p. 233°). Fucosterol yields fucostadienone (50%), m.p. 94—94·5° [semicarbazone, m.p. 238° (decomp.); oxime, m.p. 166—167°; 2:4-dinitrophenyllrydrazone, m.p. 237°], and stigmasterol affords stigmastadienone (58%), m.p. 124·5—125° [oxime, m.p. 187—188°; 2:4-dinitrophenyllrydrazone, m.p. 244—245° (decomp.); semicarbazone, new m.p. 238—239°]. β-Sitosterol (I), m.p. 136—137° [obtained from its acetate, m.p. 125° (16 crystallisations from EtOAc), and KOH–EtOH], is oxidised similarly to sitostenone (15%), m.p. 83—84° (2:4-dinitrophenyllrydrazone, m.p. 247—248°), and a ketone (~10%), m.p. 143—145° (2:4-dinitrophenyllrydrazone, m.p. 208—209°), probably a mixture. Absorption spectra of the ketones and their derivatives are in accordance with expectations. It is doubtful if (I) as described in the literature is a homogeneous substance. Enolic ethers of ketocyclopentanopolyhydrophenanthrenes.—See B., 1942, III, 189. Diazoprogesterone.—See B., 1942, III, 189. #### V.—TERPENES AND TRITERPENOID SAPOGENINS. Syntheses in the camphor and terpene group. G. Komppa (Ber., 1942, 75, [A], 1-13).—A lecture. H. W. Influence of anhydride or lactone formation on the rotatory power of the diacids or hydroxy-acids derived from d-camphor. J. Vène (Compt. rend., 1941, 213, 842—843).—[a] of all known lactones or anhydrides (except β -campholide) having the 1:2:2-trimethyl-cyclopentane nucleus (whether halogenated or not), derived from d-camphor, is negative, that of the corresponding OH- or dibasic acids positive. A. Li. Alterations in molecular structure during chemical reactions. V. Neomenthol and phosphorus pentachloride. W. Hückel and K. Kümmerle (Ber., 1942, 75, [B], 115—120).—The action of PCl $_{6}$ on d- and dl-neomenthol (I) under conditions similar to those used for menthol (II) (A., 1937, II, 157) invariably gives menthene in amount which is variable and very dependent on slight variations in experimental technique. Chlorides are formed in considerable amount, mainly racemised neomenthyl chloride and tert.-4-chloromenthane (III) (ratio $\sim 3:2$) with a little l-menthyl and d-neomenthyl chloride ($\sim 1:1$). A part of (III) is isolated as such whereas the other part changes to p-menthan-4-ol; two 4-chloromenthanes hydrolysed with differing readiness must therefore be formed, of which only one stereoisomeride is isolated. Substitution of OH by Cl in (I) is accompanied to a considerable extent by migration of the halogen to the tert. position at $C_{(4)}$. The almost complete racemisation of the sec. chloride proves that Cl in the sec. position at $C_{(3)}$ in the reaction product is not a result of simple substitution. In general, substitution of OH by Cl in (I) does not proceed in the same manner as in (II) and resembles the change with aliphatic alcohols. Sesquiterpenes. LII. Degradation of dihydroguaiol by chromic acid. Preparation of 1:4:7-trimethylazulene. P. A Plattner and G. Magyar (*Helv. Chim. Acta*, 1942, 25, 581—589).—Dihydroguaiol is oxidised by CrO₃ in AcOH at 70° to 2:8-dimethyldicyclo-[0:3:5]- decan-5-one (I), $[a]_D$ -85.8° in EtOH (semicarbazone, m.p. 206°, $[a]_D$ -80.5° in AcOH), and an acid (II), probably CHMe CH₂—CH₂) CH·CHMe·[CH₂]₂·CO₂H, m.p. 186—187°, [a]_D ±0° in EtOH, +1.5° in 0·3n-KOH–EtOH (Me_2 ester, [a]_D -6.2° in EtOH), also obtained by ozonisation of benzylidene-2: 8-dimethyldicyclo-[0:3:5]-decan-5-one, m.p. 149°, [a]_D +124·1° in EtOH, prepared by the action of NaOH and PhCHO in EtOH on (I). Oxidation (Br-KOH in dioxan) of (I) gives a Br_2 -derivative, m.p. 97—98°, and (II). Guaiazulene is obtained by treatment of (II) with MgPr^βBr followed by dehydrogenation of the product by S at 200°/650 mm. (I) and MgMeI in Et₂O give 2:5:8-trimethyldicyclo-[0:3:5]-decan-5-ol, m.p. 83°, [a]_D -10° in hexane, dehydrated by KHSO₄ at 180°/600 mm. to 2:5:8-trimethyldicyclo-[0:3:5]-decane, b.p. 110—114°/12 mm., which is dehydrogenated by S at 200°/600 mm. to 1:4:7-trimethylazulene [additive compound, m.p. 177-178°, with 1:3:5-C₆H₃(NO₂)₃]. M.p. are corr. (See also A., 1942, II, 280.) #### VI.—HETEROCYCLIC. Furoanilides.—See B., 1942, II, 272. dl- Δ^3 -Dehydro- α -tocopherol.—See B., 1942, III, 189. Chemistry of the lignan group of natural products. R. D. Haworth (J.C.S., 1942, 448—456).—A lecture. F. R. S. 1:3-Dioxans.—See B., 1942, II, 255. Synthesis of ethyl 1-methylpyrrolidine-2-acetate. F. E. King, J. W. Clifton, and H. T. Openshaw (J.C.S., 1942, 422—424).— Et₃ ε-phenoxypentane-aββ-tricarboxylate, b.p. 203—205°/l mm., obtained from Et ethanetricarboxylate and OPh-[CH₂]₃·Br with NaOEt-EtOH, is hydrolysed (KOH) to the acid, m.p. 132—134°, which is decarboxylate at at 150° to the aβ-dicarboxylic acid (I), m.p. 153° (Br₂-derivative, m.p. 145—146°). HBr and (I) give ε-bromopentane-aβ-dicarboxylic acid, m.p. 91—92°, which does not afford a recognisable product on treatment with Br. NH₃ and (I) yield the NH₄ salt, which on heating is converted into ε-phenoxypentane-aβ-dicarboxylimide, m.p. 85—86°, which with NaOBr gives a mixture containing ε-phenoxy-Δα-hexenoic acid, m.p. 86°, obtained in purer form from CH₂(CO₂H)₂ and y-phenoxybutyronitrile (semicarbazone, m.p. 118°). This acid and HBr-P-AcOH afford βε-dibromo-n-hexoic acid, b.p. 154°/1 mm., which with NH₂Me-MeOH forms Et 1-methylpyrrolidine-2-acetate, converted by Na-PhMe-Et₂O followed by H₂SO₄ and picric acid into Et β-keto-ay-di-(1-methyl-2-pyrrolidyl)butyrate dipicrate, m.p. 155–157° (decomp.), and not cuskhygrine dipicrate. F. R. S. 2:3:6-Triaminopyridine.—See B., 1942, II, 255. Arylazopyridines.—See B., 1942, III, 190. Synthesis of 2-methylpyrrolizidine. G. R. Clemo and T. A. Melrose (J.C.S., 1942, 424—426).—3-Keto-4:5-dihydrodi-(1:2)-pyrrole with Zn-MeI gives a condensation product, m.p. 209° (by elimination of H₂O from 2 mols of ketone), and is reduced (Na-Hg) to the pinacol, m.p. 183—184°. CH₂:CMe-CO₂Me and HBr-AcOH yield Me β-bromoisobutyrate, b.p. 75°/22 mm. 5-Methyl-4:5-di-hydrouracil is hydrolysed (HCl) to β-carbethoxy-n-propylamine, b.p. 71°/13 mm. (picrate, m.p. 108—109°), which with CH₂Cl-CO₂Et-NaOAc affords carbethoxymethyl-β-carbethoxy-n-propylamine, b.p. 110°/1 mm. (picrolonate, m.p. 137—138°), converted by K-PhMe into Et 3-hydroxy-4-methylpyrrole-2-acetate, m.p. 85° (p-nitrobensoyl derivative, m.p. 152°). Reduction (H₂-PtO₂) of Et pyrrole-2-acetate gives Et pyrrolidine-2-acetate, b.p. 110°/27 mm. (picrolonate, m.p. 125°/1 mm. This ester and K form 2-ketopyrrolizidine, b.p. 78°/1 mm. (picrolonate, m.p. 212—213°), which with Mg-MeI gives 2-hydroxy-2-methylpyrrolizidine, b.p. 95°/1 mm. (picrolonate, m.p. 198°). The carbinol and PCl₅ afford dehydro-2-hydroxy-2-methylpyrrolizidine (picrolonate, m.p. 169—170°), which is reduced (H₂-PtO₂) to 2-methylpyrrolizidine, b.p. 62°/25 mm., the picrate, m.p. 169—170°, of which is not identical with that obtained by Menschikoff (A., 1936, 1123). Preparation of 8-hydroxyquinoline. F. E. King and J. A. Sherred (J.C.S., 1942, 415—416).—8-Methoxyquinoline has been prepared by the Skraup reaction using As₂O₅ and is readily demethylated with boiling HBr. F. R. S. Reaction of 4-chloroquinaldines and of 2-chlorolepidines with ammonia, and the preparation of the corresponding phenyl esters. O. G. Backeberg and J. L. C. Marais (J.C.S., 1942, 381—383).—By passing NH₃ into a solution of 4-chloro-quinaldine or -quinoline in PhOH, 4-amino-6-, m.p. 209°, and -8-methoxyquinaldine, m.p. 233°, are formed, and these are also obtained by reduction of 4-benzene-azo-6-, m.p. 73°, and -8-methoxyquinaldine, m.p. 130°, respectively. By using the chlorolepidines in the same reaction, only 10% yields of the 2-aminolepidines are obtained and the products are mainly the Ph ethers, which are formed in theoretical yield in absence of NH₃. The following are described: 4-phenoxyquinoline [picrate, m.p. 179°; platinichloride, m.p. 220° (decomp.)]; 4-phenoxy-, m.p. 71.5°, 4-phenoxy-6-, m.p. 112°, and -8-methoxy-, m.p. 147°, -6-, m.p. 121°, and -8-ethoxy-quinaldine, m.p. 100°; 2-phenoxy-, m.p. 48°, 2-phenoxy-6-methoxy-, m.p. 70°, and -6-ethoxy-lepidine, m.p. 95°. When the chlorolepidines are heated (sealed tube) with ZnCl₂,2NH₃, the corresponding 2-amino-6-methoxy-, m.p. 174°, and -ethoxy-lepidine, m.p. 207°, are formed. Oxidation (FeCl₃) of the crude NHPh·NH-compound from the chlorolepidines gives 2-benzeneazo-6-methoxy-, m.p. 142°, and -6-ethoxy-lepidine, m.p. 162°. F. R. S. Antiplasmodial action and chemical constitution. V. Carbinolamines derived from 6-methoxyquinoline. H. King and T. S. Work (J.C.S., 1942, 401—404).—By the action of the appropriate alkyl halide on benzylhexylamine and removal of CH₂Ph by reduction (H₂-AcOH-PtO₂) the following are obtained: benzyl-n-butyl-, b.p. 170°/18 mm., n-butyl-, b.p. 201°/738 mm. (hydrochloride, m.p. 268°), benzyl-n-amyl-, b.p. 175—177°/15 mm., n-amyl-, b.p. 108°/15 mm. (hydrochloride, m.p. 275—276°), benzyl-n-propyl-, b.p. 155°/15 mm., n-propyl-, b.p. 145°/13 mm., and ethyl-hexylamine, b.p. 158°/743 mm. (hydrochloride, m.p. 191°). Similarly prepared are benzyl-n-, b.p. 179°/12 mm. (hydrochloride, m.p. 199—200°), benzyldi-, b.p. 240°/12 mm., benzyl-n-propyl-, b.p. 185°/13 mm., propyl-, b.p. 119°/14 mm. (hydrochloride, m.p. 237°), benzylethyl-, b.p. 178°/11 mm. (benzyldiethylnonylammonium iodide, m.p. 64—65°), and ethyl-nonylamine, b.p. 103°/14 mm. (hydrochloride, m.p. 200—201°). Benzylnonylamine and MeI give benzyldimethylnonylammonium iodide, m.p. 89°, converted into the hydroxide and hydrosulphide, which in solution under reduced pressure affords dimethylnonylamine, b.p. 209°/741 mm. (methiodide, m.p. 170°). Nonyl iodide and NH₂Me in MeOH yield some methyl- (I), b.p. 95°/14 mm. (hydrochloride, m.p. 180—181°), but mainly methyldi-nonylamine, b.p. 190—192°/15 mm. Nonylamine and PhCHO give benzylidenenonylamine, b.p. 179°/14 mm., which with MeI, followed by 90% EtOH and HCl, forms (I). Condensation of the appropriate amine with 6-methoxy-4-quinolyl CH₂Br ketone hydrobromide followed by reduction gives ethyl-(dipicrate, m.p. 170°, propyl- (dipicrate, m.p. 169°), and butyl-hexyl-(dipicrate, m.p. 158—159°), and methylnonyl-aminomethyl- (dipicrate, m.p. 151°). and 2': 2': 6'-trimethylpiperidinomethyl- (dipicrate, m.p. 151°). The carbinolamines are inactive when tested on bird-malaria in canaries. F. R. S. Synthesis of amines from amides through the amidodichlorides. T. S. Work (J.C.S., 1942, 429—432).—Ginchoninanilide, m.p. 161—162°, prepared from cinchoninic acid, SOCl₂, and NH₂Ph, with PCl₅ followed by reduction (SnCl₂), gives N-phenyl-lepidylamine (I), m.p. 121°, and not the expected quinoline-4-aldehyde (Sonn-Müller reaction). Similarly, cinchoninomethylamide, m.p. 111°, affords N-methyl-lepidylamine dihydrochloride, m.p. 215—220° (decomp.). Cinchoninodiethylamide, b.p. 180°/2 mm. (picrate, m.p. 189°), does not undergo the reaction. 6-Chlorocinchoninanilide, m.p. 205°, with PCl₅ in CHCl₃ gives a mixture of the hydrochloride and an oil, converted by boiling NH₂Ph into NN-diphenyl-6-chloro-4-quinolylamidine, m.p. 207°. The hydrochloride and PCl₅ in CHCl₃ give an oil, which with CS₂ forms unstable orange needles (6-chlorocinchoninanilide amidodichloride?), and is reduced (SnCl₂) to N-phenyl-6-chlorolepidylamine, m.p. 129° (nitrosamine, m.p. 131°). Quinoline-4-aldehyde anil, m.p. 85°, is reduced (SnCl₂) to (I). Nicotinethylamide, m.p. 57°, with PCl₅ followed by SnCl₂ yields a mixture of pyridine-3-aldehyde and 3-N-ethylaminomethylpyridine (platinichloride; picrate, m.p. 207°). The mechanism of the reactions is discussed. Antiplasmodial action and chemical constitution. VI. Compounds related to lepidylamine. T. S. Work (J.C.S., 1942, 426—429).—Condensation of the appropriate aldehyde with diethyl-8-aminoamylamine (I), followed by reduction (H₂-Pd-C), gives a-diethylamino-δ-amyl-benzylamine, b.p. 187—189°/25 mm., -p-methoxy-, b.p. 218°/17 mm., and -m-amino-benzylamine, b.p. 184—186°/25 mm., and -lepidylamine (dipicrate, m.p. 147—148°). Conversion of the cinchoninamide of δ-amino-a-diethylaminopentane by PCl_δ into the amidodichloride followed by reduction with SnCl₂ leads to the formation of the appropriate quinoline polyamines. Acetyl-sulphanilyl chloride (II) and lepidylamine followed by hydrolysis (NaOH) give N¹-lepidylsulphanilamide, m.p. 194° (N²-Ac derivative, m.p. 215°), is similarly prepared. a-Diethylamino-δ-amyl-6-methoxylepidylamine (tripicrate, m.p. 87—88°) is prepared from quininic acid. ζ-Diethylaminohexanol, b.p. 96—99°/2 mm., prepared from hexamethylene chlorohydrin and NHEt₂, with SOCl₂ gives diethylamino-chlorohexane, b.p. 118—120°/19 mm., which does not condense successfully with lepidylamine. δ-Chloroisatin and AcCO₂H afford 6-chloroquinoline-2: 4-dicarboxylic acid, m.p. ~250° (decomp.), which is partly decarboxylated (boiling PhNO₂) to 6-chlorocinchoninic acid (III), m.p. 302°, the Me ester, m.p. 79·5°, of which yields the amide, m.p. 244°, converted (P₂O₅) into the nitrile, m.p. 164°, which is reduced (H₂-PtO₂-HCl) to 6-chloro-4-aminomethylquinoline, m.p. 90° (dihydrochloride, m.p. ~250° (decomp.)]. 6-Chlorolepidylamine and (II) give N⁴-acetyl-N¹-(6-chlorolepidyl)-sulphanilamide, m.p. 194°, hydrolysed (NaOH) to the N¹-compound, m.p. 200°. The acid chloride hydrochloride of (III) with (I) affords the 6-chlorocinchonin- amide of diethyl-8-aminoamylamine, m.p. 99°, which after conversion into the amidodichloride followed by reduction (SnCl₂) leads to a-diethylamino-8-amyl-6-chlorolepidylamine (picrate, m.p. 97—99°). None of the polyamines containing the quinoline nucleus and none of the sulphonamides showed any antiplasmodial action. Chemotherapeutic studies in the acridine series. IX. Chloro-aminoacridines. F. R. Bradbury and W. H. Linnell (J.C.S., 1942, 377—381).—4:2:1-NO₂·C₆H₃Cl·CO₂Na and m-C₆H₄Cl·NH₂ (Na₂CO₃-Cu-n-BuOH) give 3'-chloro-5-nitrodiphenylamine-2-carboxylic acid, m.p. 221—222°, which with POCl₃ followed by HCl affords a mixture of chloronitroacridones, reduced (SnCl₂-HCl) to the corresponding NH₂-compounds, further reduced (Na-Hg) to 6-, m.p. 179—180°, and 8-chloro-2-aminoacridine (I), m.p. 220—221°. 2:4:1-[NO₂)C₆H₃·CHO, PhCl, and H₂SO₄ yield 4-nitro-C-(9-chlorophenyl)-anthranil (II), m.p. 215°, and 8-chloro-2-nitro-10-hydroxyacridone, m.p. 200° (-10-OMe-derivative, decomp. 241°); with NaNO₂-H₂SO₄ (II) gives 8-chloro-2-nitroacridone (also obtained if the original condensation be carried out in presence of NaNO₂), reduced (SnCl₂-HCl) to (I). 5:2:1-NO₂·C₆H₃Cl·CO₂K and m-C₆H₄Cl·NH₂ (K₅CO₃-Cu-n-BuOH) form 3'-chloro-4-nitrodiphenylamine-2-carboxylic acid, m.p. 272—273° (decomp.), which on ring-closure leads to 5:6-, m.p. 201°, and 5:8-dichloro-3-nitroacridine, m.p. 223°. The 5:6-compound with HCl gives 6-chloro-3-nitro-, m.p. > 300°, reduced (Na-Hg) to the -3-anino-acridine, m.p. 211—212°. 8-Chloro-3-aminoacridone, m.p. 267—269°, is obtained by reduction (Na-Hg) of mixed 6- and 8-chloro-3-nitroacridones, followed by fractionation. Barbituric acids.—See B., 1942, III, 172. Pyridylquinolines.—See B., 1942, II, 255. Synthesis of N¹-substituted sulphanilamides. S. Rajagopalan (Current Sci., 1942, 11, 146).—The following are described: 4-, mp. 189—190° (lit. 208°), and ω-sulphanilamidoacetophenone, m.p. 176—177° (decomp.); ω-sulphanilamido-α-acetonaphthone, m.p. 169°; N⁴-acetylsulphanilamidoguanidine, m.p. 117—118°; 5-, m.p. 243—244° (decomp.), and 7-sulphanilamidoindazole, m.p. 249—250° (decomp.); 3-N⁴-acetylsulphanilamido-1: 2: 4-triazole, m.p. 94°; 3-sulphanilamidoindatriazine, decomp. 200—201°. 3-Amino-indotriazine, m.p. 195—196° (decomp.), is obtained from isatin and minoguanidine carbonate in AcOH. P. G. M. Invert soaps. X. Sulphonamidotetrazolium salts: action on the glycolysis of lactic acid bacteria. D. Jerchel (Ber., 1942, 75, [B], 75—81).—CHMe:N·NHPh, diazotised p-NH₂·C₆H₄·SO₂·NH₂, and cryst. NaOAc in EtOH at 0—10° give N-phenyl-N'-p-sulphonamidophenyl-C-methylformazan, NHPh·N:CR·N:N·C₆H₄·SO₂·NH₂ [(I), R = Me], m.p. 235°. Analogously prepared are compounds in which R = Pr^a, m.p. 200°, n-C₆H₁₃, m.p. 181°, n-C₇H₁₅, m.p. 176°, and n-C₁₁H₂₃, m.p. 167°. (I) is oxidised by Pb(OAC)₄ in dry CHCl₃ to 2-phenyl-3-p-sulphonamidophenyl-5-methyltetrazolium chloride, N·NPh N+C₆H₄·SO₂·NH₂}Cl⁻ [(II), R = Me], m.p. ~198°. Compounds, $R = Pr^a$, m.p. 179° , $n\text{-}C_6H_{18}$, m.p. 147° , $n\text{-}C_7H_{15}$, m.p. 142° , and $n\text{-}C_{11}H_{23}$ (III), m.p. 135° , are obtained similarly. Towards Streptobacterium plantarum (III) is about as active as diphenyl-undecyltetrazolium chloride or zephirol. H. W. Bile pigments. XXXI. Intermediate compounds in the transformation of hæmins into bile pigments. E. Stier [with, in part, [Miss] K. Gangl] (Z. physiol. Chem., 1942, 272, 239—272).—Coproverdohæmin ester is reduced (Pd in 100% HCO₂H at 70—75°) to coproporphyrin I Me₄ ester which is accompanied by coproglaucobilin ester, m.p. 202°. This last substance is also obtained as a byproduct of the oxidation of copro-ester-pyridinehæmochromogen, which is transformed by H₂O₂—O₂ into a complex mixture of pigments from which a cryst. material could not be obtained. Oxidation of meso-Me₂ ester-C₅H₅N-hæmochromogen by H₂O₂ and benzoylation of the product leads to benzoyloxymesoporphyrin Me₂ ester, m.p. (indef.) 197—199° after softening at 175° (complex Zn salt, m.p. 232°). It does not appear to be affected by attempted atalytic hydrogenation but is converted by NaOMe in boiling MeOH—dioxan into hydroxymesoporphyrin Me₂ ester. This with Fe(OAc)₂—NaCl at 100° yields hydroxymesohæmin Me₂ ester, converted by C₅H₅N at room temp. into an unseparated mixture of bile pigments. Protohæmin Me₂ ester is transformed by N₂H₄H₂O in aq. C₅H₅N at 60° into the partly cryst. proto-Me₂ ester—C₅H₅N-hæmochromogen, which is oxidised and benzoylated to benzoyloxyprotoporphyrin Me₂ ester, m.p. 219° after softening at 195°. This is catalytically hydrogenated to benzoyloxymesoporphyrin Me₂ ester and Converted by NaOMe in MeOH—dioxan into hydroxyprotohæmin Me₂ ester. Introduction of Fe then leads to hydroxyprotohæmin Me₂ ester. Introduction of Fe then leads to hydroxyprotohæmin Me₂ ester. Introduction of Fe then leads to hydroxyprotohæmin Me₂ ester, m.p. 205° after softening at 200°. Phyllo-ester-C₅H₅N-hæmochromogen in like manner affords benzoyloxyphyllo-porphyrin Me ester, m.p. (indef.) 224° after softening at 210°, hydro-porphyrin Me ester, m.p. (indef.) 224° after softening at 210°, hydro-porphyrin Me ester, m.p. (indef.) 224° after softening at 210°, hydro-porphyrin Me ester, m.p. (inde lysed to hydroxyphylloporphyrin Me ester. Phylloporphyrin with conc. H₂SO₄ and 20% oleum appears to yield δ-phyllorhodin. Ætioxanthoporphinogen is transformed by HBr-AcOH at 140—150° into hydroxyætioporphyrin (I), decomp. 255°. Similarly meso-xanthoporphinogen gives hydroxymesoporphyrin (IX), m.p. 255—256°, converted by HCl-MeOH into the Me₂ ester, m.p. 171°. Reactions of certain thiazoles and glyoxalines with picryl chloride and 2: 4-dinitrochlorobenzene. J. McLean and G. D. Muir (J.C.S., 1942, 383—386).—Thiazole (improved prep.) and picryl chloride (I) give a mixture of thiazole hydrochloride, m.p. 139—140°, and picryl-thiazole, m.p. 172°. 2-Methylthiazole and (I) in COMe₂ afford N-picryl-2-methylthiazolium chloride, m.p. 126° (decomp. in hot EtOH), and a small amount of picryl-2-methylthiazole, m.p. 150°. 4-Methylthiazole and (I) yield 2-hydroxy-3-picryl-4-methyl-2: 3-dihydrothiazole (cf. Tomlinson, A., 1937, II, 36). 5-Methylthiazole and (I) in COMe₂ form the hydrochloride, m.p. 81°, and picryl-5-methylthiazole, m.p. 111°. 2: 4-Dimethylthiazole and (I) give the hydrochloride, m.p. 189°, whilst the 2: 5-compound affords an COMe₂ additive compound (?) of picryl-2: 5-dimethylthiazole, m.p. 172° (decomp.). 1: 4-Dimethylglyoxalinium with (I) yields N-picryl-1: 4-dimethylglyoxalinium chloride, m.p. 179°, and with 1: 2: 4-C₆H₂Cl(NO₂)₂ forms N-(2: 4-dimitrophenyl)-1: 5-dimethylglyoxalinium chloride, m.p. 227°. N-(2: 4-Dimitrophenyl)-1: 5-dimethylglyoxalinium chloride, m.p. 253°, is similarly obtained. A mechanism for the varying reactions is put forward. Structural-chemical investigations. VI. Reductive fission of 5-phenyl-4-methylthiazole. H. Erlenmeyer and M. Simon (Helv. Chim. Acta, 1942, 25, 528—530).—CHPhBr-COMe and HCS-Nh. gives-phenyl-4-methylthiazole, b.p. 134—135°/25 mm. (picrate, m.p. 147°), reduced by Na and EtOH to CH_Ph-CHMe·NHMe (platinichloride, m.p. 198—199°; phenylthiocarbanide derivative, m.p. 134°). H. W. Isosteric and structurally similar compounds. XVI. 4-Hydroxybenzthiazole. H. Erlenmeyer and H. Ueberwasser (Helv. Chim. Acta, 1942, 25, 515—521).—o-OMe·C₈H₄·NH·CS·NH₂ is converted by Br in CHCl₃ into 2-amino-4-methoxybenzthiazole, m.p. 152°, diazotised under strictly defined conditions and then transformed by Gattermann Cu and conc. HCl or HBr into 2-chloro-(I), m.p. 66°, or 2-bromo-, m.p. 71°, -4-methoxybenzthiazole. (I) with red P and HI (d·7) in boiling AcOH gives 4-hydroxybenzthiazole, converted by oleum at the temp. of ice and salt into 4-hydroxybenzthiazole-5: 7-disulphonic acid, and by conc. H₂SO₄ at room temp. into the -7-sulphonic acid, which with I-KI in neutral solution gives 5-iodo-4-hydroxybenzthiazole-7-sulphonic acid (K salt). 5-Chloro-2-methoxyphenylthiocarbamide, m.p. 144—145° (NN'-5:5'-dichloro-2:2'-dimethoxydiphenylthiocarbamide, m.p. 165—166°), similarly affords 7-chloro-2-amino-4-methoxybenzthiazole, m.p. 203°, diazotised and converted into 2:7-dichloro-, m.p. 124°, and 7-chloro-2-bromo-, m.p. 141—142°, -4-methoxybenzthiazole. Partial dehalogenation of these compounds to 7-chloro-4-methoxybenzthiazole (II), m.p. 92—94°, succeeds if the Raney Ni catalyst is kept saturated with H₂. 7-Chloro-4-methoxy-2-ethoxybenzthiazole has m.p. 87—88°. (II) is dealkylated by 48% HBr at 170—180° to 7-chloro-4-hydroxy-, m.p. 211° after partial sublimation, converted by I-KI in neutral solution into 7-chloro-5-iodo-4-hydroxy-, m.p. ~195° (decomp.), -benzthiazole. H. W. Highly C-alkylated 2-amino-1: 3: 4-thiodiazoles and their sulphanillamide derivatives. H. Arnold (Ber., 1942, 75, [B], 87—93).— Hydnocarpyl chloride and NH₂·CS·NH·NH₂ (I) at 60—70° give 5-amino-2-norhydriocarpyl-1: 3: 4-thiodiazole, m.p. 150—152° (hydrochloride, m.p. 112—114°), converted by p-NHAc·C₆H₄·SO₂Cl in dry C₆H₅N at 60° into 5-p-acetamidobenzenesulphonamido-2-norhydnocarpylthiodiazole, m.p. 117—118° (softens at 113°). Oleyl chloride and (I) at 110° yield 5-amino-2-α-Δθ-heptadecenyl-1: 3: 4-thiodiazole, m.p. 150—160° (softens at 110°) (hydrochloride, m.p. 85—90°), which yields 5-p-acetamidobenzenesulphonamido-2-α-Δθ-heptadecenyl-1: 3: 4-thiodiazole, m.p. 109—111°. Analogously, CHPh:CH·COCl affords 5-amino-, m.p. 233—235° (hydrochloride, m.p. 230—232°), 5-p-acetamidobenzenesulphonamido-, m.p. 285—286°, -2-styryl-1: 3: 4-thiodiazole. H. W. #### VII.—ALKALOIDS. Strychnos alkaloids. CXIV. Condensations of dihydro- ψ -strychnine and -brucine with acetic anhydride, malonic acid, and hydrocyanic acid. H. Leuchs and K. D. Gundermann (Ber., 1942, 75, [B], 168—173).—Dihydro- ψ -strychnine (I) is converted χ ac₂O at 100° into dihydrostrychnine-9-acetic acid (II), m.p. 300—303° (vac.; decomp.), [a]₂₀²⁰ +43.0° in H₂O [Na salt; Me ester, m.p. 227—228° (vac.; decomp.), and its methiodide], converted by Br-HBr into bromodihydrostrychnine-9-acetic acid, m.p. 290° (vac.). (II) is also obtained from (I) and CH₂(CO₂H)₂. (I) and KCN in AcOH afford dihydrostrychnine-9-nitrile, m.p. 283—286° (vac.; slight decomp.) (hydrochloride; perchlorate). P.tc (4 wi an Ph TE izc fi Ph h [With Y. Hwang.] Dihydro- ψ -brucine (III) is converted by Ac₂O and NaOAc at 100° into dihydrobrucine-9-acetic acid (IV), m.p. 282—284° (vac.; decomp.), $[a]_D^{20} + 33 \cdot 1^{\circ}/d$ in AcOH (perchlorate, decomp. 260—280°), and N-acetyl-sec.- ψ -dihydrobrucine, apparently two forms, m.p. 80—90°, becoming resinous at 155—185°, and m.p. \sim 160° (decomp.); with Ac₂O-C₅H₅N at 100° (IV) does not appear to be produced. (IV) does not react with NH₂OH in AcOH at 100°, and is not catalytically hydrogenated in HCl or AcOH. It gives a noncryst. Et ester (picrate, m.p. 120—140°), and Me ester, m.p. 200° (vac.) [picrate, m.p. 231—235° (decomp.) after softening at 210°; methiodide, m.p. 190° decomp. ~218°]. (IV) is oxidised by 2N-HNO3 at 0° to the quinone, C₂₃H₂₄O₆N₂ (perchlorate), reduced by SO₂ to the corresponding quinol (perchlorate). With CrO₃-dil. H₂SO₄ at 70—80° (IV) gives a substance, C₁₉H₂₄O₇N₂, m.p. 230—232° (vac.; decomp.) (softens at 220°). (IV), PhCHO, and NaOMe in boiling MeOH afford benzylidenedihydrobrucine-9-acid [perchlorate, m.p. 245—255° (decomp.) (darkens at 180°)]. (IV) is also produced from (III) and CH₂(CO₂H)₂. With KCN in AcOH (III) yields dihydrobrucine-9-nitrile, m.p. 176—178° (vac.; decomp.) (hydrochloride; perchlorate). is not catalytically hydrogenated in HCl or AcOH. It gives a non- Alkaloids from Koto-tzuzarafuji (Stephania sasakii, Hayata).— See B., 1942, III, 172. Alkaloids of Lycopodium species. I. L. complanatum, L. R. H. F. Manske and L. Marion (Canad. J. Res., 1942, 20, B, 87—92).—From L. complanatum, L., the following alkaloids are obtained: 92).—From L. complanatum, L., the following alkaloids are obtained: lycopodine, $C_{18}H_{25}ON$ [perchlorate, m.p. 283° (decomp.)], nicotine (its first recorded occurrence in a pteridophyte), and the new compounds, complanatine (L1), $C_{18}H_{31}ON$, m.p. 169° (perchlorate, +H₂O, m.p. 194°), and alkaloids L2, $C_{18}H_{29}O_2N$, m.p. 97° (perchlorate, m.p. 231°), L3, $C_{18}H_{31}O_2N$ (perchlorate, m.p. 246°), L4, $C_{16}H_{27}N$ (perchlorate, +0.5H₂O, m.p. 225°), L5, $C_{18}H_{28}O_2N_2$ (perchlorate, m.p. 282°), and obscurine, L6, $C_{18}H_{28}ON_2$ (diperchlorate, +H₂O, m.p. 299°, with some previous decomp.). Nicotine is also isolated from Equisetum arvense, L. Hydrolysis (dil. H_2SO_4) of the H_2O -insol. polysaccharides from (I) gives d-galactose. A. T. P. #### VIII.—ORGANO-METALLIC COMPOUNDS. Veratral-6-arsinic acid. A. A. Schamschurin (J. Gen. Chem. Russ., 1941, 11, 647—649).—6-Nitroveratrole on reduction with FeSO₄-aq. NH₃ gives 87% of 6-aminoveratrole, which by the Bart reaction affords 46% of 4:5-dimethoxybenzaldehyde-6-arsinic acid, m.p. ~300° (decomp.) (semicarbazone, m.p. 256°). The acid is stable to boiling 15% HCl and is oxidised by KMnO₄ to 4:5-dimethoxy-2-carboxyphenylarsinic acid, m.p. 300° (retains 1 H₂O at 100°). GARK G. A. R. K. Organic compounds of mercury. V. Interaction of mercury dialkyls with mercury salts of tribasic acids. N. N. Melnikov and M. S. Rokitzkaja (J. Gen. Chem. Russ., 1941, 11, 592—595).—Hg dialkyls do not react with Hg salts in org. solvents (cf. A., 1938, II, 166), but in presence of small amounts of H₂O good yields of alkyl Hg salts are obtained. The following have been prepared (% yield in parentheses): (HgMe)₃PO₄, decomp. 182° (80), (HgEt)₃PO₄, m.p. 179—180°, monohydrate, m.p. ~110° (98), (HgEt)₃AsO₄, m.p. 184—186° (75), HgEt·NO₃, m.p. 86—86·5° (80—85), (HgPr^a)₃PO₄, m.p. 96° (98), (HgBu^a)₃PO₄, m.p. 75° (88), (HgC₅H₁₁-iso)₃PO₄, m.p. 105° (62). G. A. R. K. Electric moments of organomercuric halides in dioxan.—See A., 1942, I, 293. #### IX.—PROTEINS. Oxazoline and thiazoline rings in proteins. S. Blackburn, W. R. Middlebrook, and H. Phillips (Nature, 1942, 150, 57).—Activated peptide linkings which undergo methylation may be those which have undergone condensation with the side-chains of β -OH-acids giving rise to oxazoline rings. Free cysteine side-chains in reduced wool may form thiazoline rings. A. A. E. #### X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES. Behaviour of some lignin preparations in the molecular still. Hechtman (Paper Trade J., 1942, 114, TAPPI Sect., 259—264).— A pot still has been constructed so that the reservoir and condensing surfaces are removable for weighing. The distillation characteristics of native lignin (I), CH₂N₂-methylated lignin (II), fully methylated lignin (III), and Willstätter lignin (IV), all from black spruce, were examined. At 260°/1 \(\mu\). Pressure, (I) gave 4% of distillate; both residue and condensate had the same OMe content as the original. Ultra-violet absorption curves and solubility characteristics indicated that the residue might be of higher and the condensate of lower mol. wt. than (I). At >290°/>1 μ . decomp. occurred. At 290°/1 μ . (II) gave 6% of condensate containing 17.7% OMe; the OMe content of the residue was 20.9% and of the original 21.1%. Even at 350°/1 μ . no distillate was obtained from (III), although noncondensable material was lost. Under the same conditions (IV) too yielded no condensate, and only 2% of volatile material was lost after 20 hr. At 260°/25—50 μ . (IV) gave a considerable condensate (OMe content 14·0%), but when air was replaced by N₂ no condensate was obtained even at 350°. The significance of these results is discussed. #### XI.—ANALYSIS. Micro-Kjeldahl nitrogen determination without use of titration procedure. W. H. Taylor and G. F. Smith (Ind. Eng. Chem. [Anal.], 1942, 14, 437—439).—The Wagner micro-Kjeldahl procedure is modified by absorption of the NH₃ in aq. H₃BO₃, dilution to a standard vol., and electrometric titration to a definite p_H, the results being interpreted by a preformed calibration curve. J. D. R. Micro-determination of sulphur and halogens.—See A., 1942, I, Potentiometric titration of dibasic acids.—See A., 1942, I, 306. Colorimetric estimation of arginine and histidine. H. T. Macpherson (Biochem. J., 1942, 36, 59—63).—Arginine is determined by a modification of Weber's method (A., 1930, 755) in which the CO(NH₂)₂ is added prior to the OBr' and the colour developed in two stages [i.e., by repetition of the addition of $CO(NH_2)_2$ and OBT] to ensure max. and consistent colour development. Since the colour does not obey Beer's law a photometer is preferable to a colorimeter and 0.02 ± 0.001 mg. may be determined. Histidine is determined by a modification of the method of Jorpes (A., 1932, 1270) in which the reaction with sulphanilic acid and NaNO₂ is carried out at room temp., Na₂CO₃ used for colour development, and the colour stabilised by slightly alkaline EtOH. The final colour may be measured in a colorimeter since it obeys Beer's law. H. G. R. Determination of terpinyl acetate and other esters. H. M. Perry d. T. F. West (Analyst, 1942, 67, 159—161).—The B.P. 1932 method for the determination of esters with 0.5N-KOH-EtOH gives low results with terpinyl acetate, some other terpinyl esters, and menthyl valerate. Boiling ~ 1.5 g. of the sample with 40 ml. of 0.5 N-KOH in $\text{OH} \cdot [\text{CH}_2]_2 \cdot \text{OEt}$ for 30 min. completely saponified all the 30 esters tested except terpinyl propionate, which required 40 min. The reagent is suitable for determining terpenic alcohols after acetylation or formylation. Data are given for a no. of esters, alcohols, and essential oils. T. F. W. Determination of quercetin-like substances using a Klett-Summerson photoelectric colorimeter. C. W. Wilson, L. S. Weatherby and W. Z. Bock (Ind. Eng. Chem. [Anal.], 1942, 14, 425—426).—The sample is mixed with a solution of citric and boric acids in anhyd. COMe2 and the colour produced measured in a Klett-Summerson photoelectric colorimeter. Recovery of added quercetin was quant. Gravimetric determination of flavines. B. A. Ellis (Analyst, 1942, 67, 226-227).-Euflavine and acriflavine are determined directly by pptn. from aq. solution as the picrate, $C_{20}H_{17}O_7N_6$ (I). A certain excess of picric acid is necessary and (I) is washed with ice-cold H_1O_7 , dried at 100°, and weighed. The filtrate may be used for determination of Cl′, due allowance being made for the Cl derived from the enfavine. Shell dressings are extracted with acidified EtOH, and after adding H2O the extract is evaporated to low bulk, filtered, and (I) pptd. as above. Sterilisation of the dressings reduced the recoveries of flavines. Colorimetric (p-dimethylaminobenzaldehyde-sulphuric acid) method for determining small quantities of atropine. R. P. Daroga (J. Indian Chem. Soc., 1941, 18, 579—584).—Conditions for the max. sensitivity of a colorimetric method for atropine (I) have been worked out. The test solution is treated with 0·1 c.c. of reagent (made as required by diluting a 20% solution of p-NMe₂·C₈H₄·CHO in conc. H₂SO₄ with H₂O₁ 1:1) and warmed for 30 min. (steambath). After diluting to 25 c.c. the violet colour is matched against permanent standards in a tintometer. A linear relationship between permanent standards in a tintometer. A linear relationship between concn. of (I) and colour intensity is shown to exist. W. C. J. R. Determination of cystine content of proteins by means of sulphuric, hydrochloric, hydriodic, and mixtures of hydrochloric and formic acids. W. C. Hess and M. X. Sullivan (J. Washington Acad. Sci., 1942, 32, 130-132).-Similar vals. are obtained for cystine in a variety of proteins whatever hydrolysing agent is used, except that HI gives slightly higher vals. owing to non-formation of humin. P. G. M. ## MATOACUL ANALYTICAL REAGENTS WITH ACTUAL BATCH ANALYSIS ### INDEX OF AUTHORS' NAMES, A., II. SEPTEMBER, 1942. Airan, J. W., 281, 282, Appenzeller, R., 278, Arnold, H., 290, Arnold, R. T., 281, Audrieth, L. F., 281, Ayyar, P. R., 280. Backeberg, O. G., 287, Baker, B. R., 285. Baur, E., 279. Benton, F. L., 281. Bert, L., 281. Blackburn, S., 291. Block, P., jun., 282. Blount, B. K., 283. Bock, W. Z., 292. Bokil, K. V., 282, 285. Bost, R. W., 284. Bradbury, F. R., 289. Brand, K., 281. CARLSON, G. H., 285. Clemo, G. R., 282, 287. Clifton, J. W., 287. Crooks, J. M., jun., 286. Daroga, R. P., 292. Davies, T. H., 285. Desai, R. D., 284. Dillon, T. E., 281. Ellis, B. A., 292. Erlenmeyer, H., 290. FRATTER, S., 279. Gangl, K., 289. Glasson, B., 278. Gundermann, K. D., 290. HAPPOLDT, W. B., jun., 284. Haworth, R. D., 287. Hechtman, J. F., 291. Hess, W. C., 292. Holzach, K., 281. Hromatka, O., 278, 283. Hückel, W., 286. Hunter, R. F., 284. Husemann, E., 279. Jerchel, D., 289. Jones, E. M., 286. Jones, E. R. H., 285, 286. KARRER, P., 278. Kerlogue, R. H., 286. King, F. E., 287. King, G., 277. King, H., 288. Koch, H. P., 280, 285. Kreider, H. R., 283. Kremer, C. B., 283. Kummerle, K., 286. Kuroyanagi, S., 280. Leuchs, H., 290. Leuthardt, F., 278. Levy, R. M., 279. Linnell, W. H., 289. McCool, J., 281. McElroy, L., 285. McLean, J., 290. Macpherson, H. T., 292. Magyar, G., 286. Manske, R. H. F., 291. Marias, J. L. C., 287. Marion, L., 291. Marker, R. E., 286. Mehta, B. S., 285. Mehta, D. R., 280. Mehta, S. U., 278. Melnikov, N. N., 291. Melrose, T. A., 287. Menottí, A. R., 283. Middlebrook, W. R., 291. Middlehoff, B., 279. Muir, G. D., 290. Nargund, K. S., 278, 282, 284, 285. Ochiai, E., 280. Openshaw, H. T., 287. PANDYA, B. C., 282. Patel, B. D., 282. Perry, H. M., 292. Phalnikar, N. L., 284. Phillips, H., 291. Plattner, P. A., 280, 286. Pongratz, A., 280. Powell, G., 282. Rabinovitsch, B. S., 279. Rajagopalan, S., 289. Reichstein, T., 278. Renz, J., 279. Resuggan, J. C. L., 283. Robinson, F. A., 283. Rokitzkaja, M. S., 291. Roniger, H., 280. Rudin, M., 277. Ruigh, W. L., 285. Russell, A., 284. Sahariya, G. S., 284. Schamschurin, A. A., 291. Schindler, W., 278. Schlubach, W. C., 279. Scholtis, K., 280. Schreber, W., 281. Schultz, E., 281. Schultz, H. C., 284. Shah, S. V., 281, 282. Sherred, J. A., 287. Simon, A., 281. Simon, M., 290. Smith, G. F., 292. Stier, E., 289. Stoll, A., 279. Straus, F. L., 279. Süllmann, H., 277. Sullivan, M. X., 292. Swan, G. A., 282. TARBELL, D. S., 283. Taylor, W. H., 292. Tobie, W. C., 279. Toy, A. D. F., 281. Treibs, W., 277. Trivedi, J. J., 284. Tyabji, A., 280. UEBERWASSER, H., 290. Vène, J., 286. Vinkler, E., 285. WALDMAN, E., 283. Weatherby, L. S., 292. Weber, O. H., 279. West, T. F., 292. Wilkinson, P. A., 286. Wilson, C. W., 292. Wilson, J. W., 283. Winkler, C. A., 279. Wintersteiner, O., 285. Wittbecker, E. L., 286. Work, T. S., 287. THE CENTRAL CHEMICAL & PRESIDENCE COL Chamilton Manufacturers, Judex Works, Sudbury, Millelosex # JUDACTAN ANALYTICAL REAGENTS WITH ACTUAL BATCH ANALYSIS Each Batch subjected to INDEPENDENT **ANALYSIS** before label is printed You are invited to compare the above actual batch analysis with the purities ACTUAL BATCH ANALYSIS guaranteed by the specifications of any competing maker in this Country or abroad THE GENERAL CHEMICAL & PHARMACEUTICAL CO. LTD. Chemical Manufacturers, Judex Works, Sudbury, Middlesex