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SURFACE PATCHES MODELLING AND COMPUTATION
OF GEOMETRIC PROPERTIES

Summary. Some of the problems in the classical geometric theories can be successfully
solved using Computer Graphics procedures and representations of geometric figures.
Geometry of the Creative space offers a new approach to several problems (in [3], [5], [6]),
based on the creative representations of geometric figures. Classical way of a geometric figure
definition as a subset of the three dimensional extended Euclidean space ,, E J determined by
the equation can be substituted by a creative law of the figure represented in the form of a
creative representation, from which the point function determining the figure analytically can
be expressed. The intrinsic geometric properties of the created figure can be calculated with
respect to the Differential Geometry on the base of the partial derivatives of its related point

function.

MODELOWANIE | OPIS WEASNOSCI GEOMETRYCZNYCH PLATOW
POWIERZCHNI

Streszczenie. Autorka przedstawia jeden z mozliwych sposobéw tworzenia ptatéow
r6znego rodzaju powierzchni za pomoca metod grafiki komputerowej. Na podstawie
znajomos$ci zasad tworzenia ptatow w przestrzeni wirtualnej mozna okresli¢ ich forme
analityczng w postaci funkcji opisanej za pomocg wspdtrzednych jednorodnych punktu, ktéry
lezac na powierzchni jest zdefiniowany przez pare wsp6trzednych krzywoliniowych. Pochod-
ne funkcji okreslajacej ptat wzgledem obydwu zmiennych defmujg wektory stycznych jedno-
parametrowych lukéw krzywych powierzchni, ptaszczyzne stycznosci i wektor normalny.

W pracy szczeg6towo omoéwiono niektédre rodzaje powierzchni powstatych z translacji,
obrotu, ruchu S$rubowego i homotetii krzywych. Rozwazania zilustrowano przyktadami
powierzchni utworzonych z prostoliniowego przesuniecia hipocykloidy Steinera i
sinusoidalnej translacji lemniskaty Bemoulliego, obrotu spirali Archimedesa i asteroidy oraz
ruchu $rubowego walcowego cissoidy, a takze ruchu $rubowego stozkowego elipsy.
Przedstawiono rowniez przyktad powierzchni generowanej przez zwigzek homotetii krzywych

podstawowych.
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1. INTRODUCTION

Creative space K is an ordered pair K = (U, G) of U (a base) as a set of figures in the
space (subsets of the extended Euclidean space ,E 3 and G ( a generator) as a set of
generating principles, G: GP (. E '+ L, while GP (. E : is a group of all projective
transformations of xe 3and L is asetofinterpolations (according to [4], [5]).

Any figure F (a non-empty subset of ,E J) can be in K synthetically represented by its
creative representation, an ordered pair (U, ¢ | of a basic figure U eU and a generating
principle GeG which are such, that applying G on U the figure Fcan be created.

The analytic representation of a figure F is a point function of one to four variables

r(u,v,w, t) = (x(u,v,w, t), y(u,v,w, t), z(u,v,w, t), h(u,v,w, t))

defined at the region £2 (where X, Y, Z and h are homogeneous coordinate functions of one to
four real variables at least C1icontinuous on Q), which is a local homeomorphic mapping of
the region £2 on the figure F. The analytic representation of a figure is the product of the
multiplication of matrices, which are analytic representations of the creative representation
elements (according to [4], [5]).

A point taken for a basic figure can be moved in a space forming thus a curve segment,
while the generating principle - motion can be represented as a class of geometric
transformations. Similarly a surface patch cp can be detennined by the creative law, in which
a curve segment as the basic figure is subdued to a generating principle in the form of a class
of geometric transformations. A three-parametric solid cell can be created from a surface
patch subduing it to a movement in the space and the movement of a solid cell forms an
animation sequence, four-parametric subset of the space determined by the point function of
four variables r(u,v,w, t), where tis the time coordinate.

The partial derivatives of the figure point function r(u,v,w, t) with respect to the
variables U, v, W, t , vector functions r,, rv, ru, r,, that define tangent vectors to the
isoparametric curve segments of the figure in the given point (a,b,c,d)efo0,114, and the
mixed second partial derivatives r,v, rm,r,, ,r,,, rv,rw that define twist vectors to the
isoparametric surface patches of the figure, and the mixed third partial derivatives ruw,
r,, ,rw, , rM that define density vectors to the isoparametric solid cells, respectively the
mixed fourth derivative ruw, determine the intrinsic geometric properties of the figure.

2. BASIC RELATIONS

Let the surface patch S be created from a basic figure in the form of a curve segment
subdued to a generating principle that is a class of geometric transformations. Analytic
representation of the basic curve segment is the point function p(u) of one variable defined at
the unit interval 7=[0,1], which is a local homeomorphic mapping of the interval 1 onto the
curve segment. Class of geometric transformations can be expressed analytically by a
functional matrix T(v), a regular square matrix of rank 4 with elements in the form of
real functions of one variable defined and at least C1continuous at the unit interval /, while

the determinant |T(v)|=1 forany v e/T he basic curve segment moves (and deforms) in the
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space forming thus a one-parametric system of curve segments. From the surface creative
representation and definition the surface point function can be obtained in the form
s(n,v) = p(u). T(v),

and homogeneous coordinates of the surface point can be calculated from the point function
for the ordered pair of point curvilinear coordinates (a,b)e [0,1]2

s(a.b) = p(a). T(b)

Partial derivatives of the surface point function s(u,v) with respectto the variables u
and v that are vectors s, s, define tangent vectors to the isoparametric u-, and v-curve
segments located on the surface patch in the given point (a,b)e[0,I]2. Tangent vectors s,, sv
determine the tangent plane x the created surface patch and can be expressed in the form

s.(a,b) = p (a).T(6),

b) =p(a). T(Z>)
Matrix T'(E>) is the value of the first derivative of the functional matrix T(v) expressed for the
variable v=b. The vector product of the two tangent vectors is the normal vector to the

surface patch in the given point
n(u, b) = su(a, b) x sva, b)

Choosing special classes of geometric transformations for generating principles we can
create classical types of surfaces wellknown and used in engineering geometry and we can
find analytic representations of these surfaces in the form of point functions representing the
oriented surface patches. Intrinsic geometric properties can be calculated on computers on the
base ofthe presented formulas. Created surface patches can be easily visualised in some of the
available graphical systems and programmes, their views in some of the projection methods
can be drawn as suitably dense nets of the isoparametric curve segments.

Illustrative figures are included for separate surface types.

3. TRANSLATION SURFACES

Let the analytical representation of the basic curve segment be the point function
p(u) = (x(u), y(u).z(u), 1)

satisfying the required conditions on the unit interval /=[0,1].
The generating principle in the form of the class of translations is represented
analytically by the matrix function T(v) with the derivative in the matrix form T'(v)

T(v) =

b(v) c(v) y (V) by) ¢(v) o,



26 D. Velichova

of the required properties on the unit interval /. The trajectory of movement of the basic
segment points is the curve segment represented by the point function

g(v) = (a(v), b(v), ¢(v), 1)
defined on 1 and satisfying required conditions.

In the case of the movement on a line segment (in the direction of a vector (a,b,c)) the
coordinate functions are in the simple forms a(v)=av, b(v)=bv, c(v)=cv, and their derivatives
are constants a, b, c.

Surface patch analytic representation is a point function

s(k.v) = p(u). T(vV) = (*(«),y(u), z(u), 1) . T(v)

= (x(u) +a(v),y(u)+b(v), z(u)+ c(v), 1) (w, v)e[o,l]12

satisfying required conditions on region [0,1]2
The partial derivatives with respectto the variables u, v are in forms

cuyy =pwy - T(V) = (x \u), y Xu), ZXu), 0). T(V)= (x Xu),y Xu), z Xu), 0)

S V)-RL). TH(V) = (4u)y(u), z(u), 1) . TH(V)=(FI'(v), b '(v), ¢ '(v), 0) n
Normal vector can be calculated as the vector product of the first partial derivatives,
which is the value ofthe determinantDT
i j k
n(n,v):Su(qu) sv(u, v) DT = x\u) y'(u) z\u)
a'(v) br(v) c¢’(v)
Calculations can be processed with respect to the predefined values of the two variables u,
vs[0,I]. In the Fig.l there is the illustration of the translation surface created by the

movement of the Lemniscate of Bernoulli on the sinusoidal trajectory and the surface created
from the Steiner hypocycloid translated on the linear trajectory.

Fig.l
Rys.I
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4. SURFACES OF REVOLUTION

Surface of revolution can be created from the basic curve segment analytically represented
by the point function p(u) that revolves about an axis.
The matrix function representing the class of revolutions (for the easy formulations the axis
ofrevolutions is located into the coordinate axis z) is a square functional matrix T(v) ofrank 4
in the fonn

cos2kv sin2;rv 0 0

-sin27rv cos2kv 0 0

T(v) = ,with the first derivative in the form
0 0 10
0 0 0 ly
i-Insm Im 2" c0S2nv 0 o0

-27rcos27rv  -27rsin2;rv

T'(v) = defined on the interval [0,1].

o o o
o o o

Created patch of the surface of revolution can be analytically represented by the point

function

s(u, V) = p(k) . T(v) = (X(W),y(u), z(u), 1). T(v) =

= & @)cos 2kv -y (u) sin 2kv, x(u) sin 2nv +y(«)cos 27tv, z(u), 1), (u,v)e [0,1]2

Partial derivatives of the point function s(u, v) with respect to the variables u, v are in
forms (1) with the corresponding matrices T(v) and T'(v) and the normal vector can be
calculated as the value ofthe determinant DR,

SV Ii=P-() T(v) = (x'(u),y Xu), z Xu), 0). T(v) =
= (x Xu)cos 27tv -y '(n)sin 2nv, x ‘(u)sin 2nv+ y '(«)cos 2rtv, z '(«), 0) =

= (S'(k.v).C'(«,v).z'(«), 0)

Sluv-pm T (V)=
= (-27i.(x(w)sin27tv +y(w)cos 2ttv), 271.(-x(u)cos2tiv +y(n)sin 2nv), 0, 0) =

-2n (x(n)sin27iv +y(n)cos 27iv, x(n)cos27iv -y(w)sin 27tv), 0, 0) =

-2k (4(«,v), CXu,), 0,0)
i j k
DR = 2k E.(m,V) C'(u,v) z'{u)

-£ (k,v) £ (u,v) o

while the curvilinear coordinates of the points located on the surface can be calculated as in

the previous type of surfaces.
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Surface of revolution created from the Archimedean spiral by the class of revolutions
about the coordinate axisy and another one generated from the Asteroid by revolving it about
the coordinate axis z is presented in the Fig. 2.

Fig.2
Rys.2

5. HELICAL SURFACES

Helical surface patch can be created from the basic curve segment determined by the
point function p(w) by the helical movement about an axis.
The matrix function representing the helical movement and its derivative (for the easy
formulations the axis of cylindrical helical movement is located into the coordinate axis z) are

in form
© CO0S27TV ~ sin2m o o» 27sin 2m 2;rcos2;zv 0 oN
- sm2m cos2m 0 O - 2n COS2m - 2nsin2m 0 0
iT'(v) =
0 0 1 0 0 0 0 0
0 0 av K \Vi 0 0 a o,

where a=2nr, while r is the reduced pitch defining the helical movement.
Analytic representation of the helical surface patch is the point function

S(W, v) = p(«). T(V) = (x(u),y(u), z(u), 1) ,T(v) =
= (x(w)cos 27tv -y{u) sin 2rtv, x(u) sin 27iv +y(«)cos 2rtv, z(u) + 2nrv, 1), (u, v)e[0,l]2

Partial derivatives with respect to the variables it and v for the values from the interval 1
are calculated according to (I), with the corresponding matrices T(v) and T'(v) and the normal

vector can be calculated as the value of the determinant DH
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*(“>v) = P'(«) e T(v) = (X\u),y '0), z2'(«), 0) . T(v) =
= 0x'(m)cos2tcv -y'(z0sin27iv, * '(u)sm27tv+y '00cos27tv, z'(u), 0) =
= (4'(kv),E" (wy)»z '(«),0)
s«, v) = pOO.T'(v) = (-27t(;r00sin2Ttv + yOOcos27tv), 27t(x(w)cos27rv -j00sin27tv), a, 0)

= 2ji(-£(k, v), Qu, v), 1, 0)

i i K
DH = 24 4>,V) Z'(“)
-£(h,v) f(»,v) r

In the Fig. 3 there is an illustrations of the helical surface patch created from the basic
curve segment in the form of a cissoid by a cylindrical helical movement and a patch created
from the ellipse by the conical helical movement.
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6. HOMOTHETICAL SURFACES

Homothetical surface can be created from the basic curve segment p(«) by the class of

homotheties (scalings) to the centre in the given point s=(a,b,c,\) determined by a
nonzero coefficient h.

The matrix function representing the class of homotheties and its derivative are in forms

‘1-vh 0 0 on f-h 0 0 O
0 1-vh 0 0 0 -h 0 0
T(v): T"(V) =
0 0 1-vh 0 0 0 -h o0
vahv ~ bhv  chv 1] ah bh ch ;

Surface patch analytical representation is the point function

S(u, V) = p(«).T(V) = (x(u)y(u), z(u), 1) . T(v) =

= ((\-vh)x(u) + ahv, (\-vh)y{u) + bhv, (1-v/i) z(u) + chv, 1), («, v)e[0,l]2

Partial derivatives with respect to the variables v and v for the values from the interval
[0,1] are calculated according to (1)

v) = plu). T(V) = (x\u),y\u),z\u),0). T(v)= (L-vh)(x\u),y\u),z\u), 0)
s ,v) = p(u) T'(V)= (x(u),y(u), z(u), 1). T'(v)= -h(x(u)+a,y(u)+b, z(u)+c, 0)

The normal vector can be calculated as the value of the determinant DS.
i j k
DS = x’(u) y'(u) z'(u)

x(u)+a y(u)+b z(u)+c

Homogeneous coordinates ofthe points located on the surface can be calculated on computers
from the point function determining the point curvilinear coordinates.

Rys.4
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Illustrations are in the Fig. 4, truncated pyramidal surface created from the basic pentagon
subdued to the class of homotheties with the coefficient h< 1 and a double conical surface
created from the Folium of Descartes by the class of homotheties with the coefficient h> 1,
while centres of these homotheties are in the surface vertices.
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Abstract

The paper deals with some of the possible strategies for generating different kinds of
surface patches using computer graphics methods. On the base of the surface patch creative
law there can be derived its analytical representation in the form of a point function
representing homogeneous coordinates of any point located on the surface patch and defined
by a pair of the curvilinear coordinates. Derivatives of the surface patch point function with
respect to both variables define tangent vectors to the surface patch isoparametric curve

segments, tangent plane and a normal vector.



