Seria: GEOMETRIA I GRAFIKA INŻYNIERSKA z.3

Nr kol 1453

Andrzej KOCH Wydział Matematyki Stosowanej Pracownia Geometrii Wykreślnej Akademia Górniczo-Hutnicza, Kraków

RELATIONS BETWEEN TWO PLANAR FIELDS OF IMAGES IN CENTRAL-POLAR PROJECTION METHOD

Summary. In central – polar projection method [3] transformations T and T^{-1} convert respectively the field of central projections A^s_i into the field of polar projections A^b_i . In the article have been investigated transformations $*T = \Pi(T)$ and $*T^{-1} = \Pi(T^{-1})$ (Π = collinear transformation) and in the latter 5 cases have been discussed.

ANALIZA NIEKTÓRYCH PRZEKSZTAŁCEŃ W ODWZOROWANIU ŚRODKOWO–BIEGUNOWYM

Streszczenie. Na wstępie przypomniano krótko zasadę odwzorowania środkowo – biegunowego O–SB oraz jego aparat projekcyjny A . Podano również definicje przekształceń T i T^{-1} opisanych w [3]. Przekształcenia te przeprowadzają odpowiednio układ rzutów środkowych A^s_i w układ rzutów A^b_i punktów A_i przynależnych do płaszczyzny α przestrzeni {P} oraz układ rzutów biegunowych A^b_i w układ rzutów A^s_i punktów A_i . Celem artykułu jest zbadanie własności przekształceń *T = Π (T) i *T $^{-1}$ = Π (T $^{-1}$) wynikających z *A = Π (A), gdzie Π jest przekształceniem środkowo–kolineacyjnym [2]. Wykazano, że *T ma charakter liniowo – kwadratowy, a *T $^{-1}$ kwadratowy. W tym ostatnim przekształceniu, w zależności od położenia płaszczyzny granicznej przestrzeni {P} względem pewnego stożka S $_1$ stopnia 2, wyróżniono i omówiono 5 przypadków dotyczących odpowiedniości * $A^b_i \rightarrow$ * $A_i \in *\alpha$.

Let us briefly recall the principle of Central – Polar Projection (C-PP) and its projecting apparatus A which have been described by W.A.Pieklicz in the article [3]. The projection can be accomplished in the following way: the apparatus A is determined in the form of a sphere K and a plane τ tangent to K at point T. Next, points A_i (i=1,2,3,...n) of space $\{P\}$ are projected from the centre 0 of the sphere K onto the plane τ of projection. Thus, central projections (images) A_i^s of the points A_i are obtained. Then for each point A its polar plane σ with respect to K is found as well as the line k_σ =

 $\sigma\cap\tau$. The points $~A_i~$ are projected orthogonally onto corresponding lines $~k_{\sigma i}$.Thus, polar projections (images) $A^b{}_i~$ of the points $A_i~$ are achieved .

The truth of the following statements (and converse ones) have been proved [3]:

- 1. To each point $A \in \{P\}$ of projection plane τ correspond two points A^s and A^b which are collinear with the point T and the line A^sA^b is perpendicular to k_{σ} .
- 2. To each line $p \in \{P\}$ of projection plane τ correspond: a line p^s as its central projection and a circle p^b with diameter TP as its polar projection, the point P being $P=p'\cap \tau$ and the lines p and p'-p polar lines with regard to K.

In the article [2] generalization of C-PP and A has been described. It can be executed by means of central -collinear transformation Π determined between spaces $\{P\}$ and $\{*P\}$, which can be written in the symbolic form of the following relations:

$$\Pi (C-PP) = *C-*P*P$$
 and $\Pi (A) = *A$

The sphere K and projection plane τ of the apparatus A are transformed into quadric *K and projection plane ${}^*\tau$ of the apparatus *A respectivel, the planar fields (τ) and $({}^*\tau)$ having common base (it has been assumed that the centre S of perspectivity belongs to τ). To the point T of contact between τ and K corresponds tangency point *T of ${}^*\tau$ and *K and to the centre S of the sphere S of the pole of the vanishing plane ${}^*\xi \in \{{}^*P\}$ with respect to *K .

The purpose of this article is to investigate what happens to the properties of the transformation T (as well as the converse one T^{-1}) described for C-PP if they are conveyed onto *C -*P*P, another words to characterize the transformations *T = Π (T) and * T^{-1} = Π (T^{-1}).

ANALYSIS OF TRANSFORMATIONS T AND *T

Definition 1. The transformation which converts the field of projections (images) A_i^s into the field of projections (images) A_i^b of points A_i belonging to an arbitrary plane α of space $\{P\}$ will be named *transformation* T.

Let the projecting apparatus A be given as well as a plane α and a point A^s moving along a line p^s of the projections plane τ . To subsequent positions $A_i{}^s$ of the point A correspond projecting rays $OA_i{}^s$ generating pencil (O), the base of which is projecting plane intersecting α along the line p which in turn is the the base of range of points (A_i) .

The correspondence $A_i^s \rightarrow A_i$ is central projection, hence it is linear.

The polar projections A_i^b of points $A_i \in p$ determine a circle $p^b \in \tau$ being the polar projections of the line p.

Therefore, the correspondence $A_i \rightarrow A_i^b$ is quadratic. Thus, the transformation T such that A_i^s (T) = A_i^b , which is the product of the above –described correspondences is of linear–quadratic nature [3].

Now let us consider the nature of the transformation *T . We can apply similar reasoning as the previous one i.e. we can seek the results through the apparatus *A = Π (A). It is sufficient, however, to take the following relations between the fields of the pairs of projections in the plane τ [2]:

$$(*A_i^s) = \Pi(A_i^s)$$
 and $(*A_i^b) = \Pi(A_i^s)$

From the above it can be immediately concluded that *p^s is a line and *p^b – a conic and that the correspondence *A_i^s \rightarrow *A_i is linear (central projection in *C-*P*P) and the correspondence *A_i \rightarrow *A_i^b –quadratic.

Therefore, the product of these two correspondences, another words the transformation *T , is also of linear –quadratic nature .

ANALYSIS OF TRANSFORMATIONS T-1 AND *T-1

Definition 2. The transformation T^{-1} is such a transformation which converts the field of projections (images) $A_i^{\ b}$ into the field of projections (images) $A_i^{\ s}$ of points A_i belonging to an arbitrary plane α of space $\{P\}$.

Let again be given the projecting apparatus A, an arbitrary plane α and point A^b moving along a line p^b of the projections plane τ . It is known that in the field $(A_i{}^b)$ of polar projections to each line TA^b is attached at point A^b a line k_σ perpendicular to TA^b .

It means that the set of the lines $k_{\sigma,i} = \sigma_i \cap \tau$ forms a pencil (k^2) of 2^{nd} order. The envelope of (k^2) is a parabola s with its focus at the point T and the vertex at the point of tangency with the line p^b (fig.1).

Let us consider the correspondence : $A^b_i \to A_i \in \alpha$. As it has been proved [3] this is a quadratic correspondence. It results from the following reasoning : let the polar transformation with respect to the sphere \mathbf{K} be applied to the set of lines $k_{\sigma i}$. Then a new set $k^*_{\sigma i}$ is obtained, the lines $k_{\sigma i}$ and $k^*_{\sigma i}$

Fig.1. Parabola as the result of point A^b moving along line p^b Rys.1. Parabola jako wynik poruszającego się punktu A^b wzdłuż prostej p^b

being polar lines. Note that the lines $k'_{\sigma i}$ pass through the point T which is the pole of the projection plane τ . Thus, the above – mentioned polar transformation converts the pencil (k^2) of 2nd order into the bundle (T), the elements $k'_{\sigma i}$ of which are the generators of a cone S_1

of 2nd degree. In the correspondence $A^b_i \to A_i$ the conic $p = S_1 \cap \alpha$ is the image of the line p^b , which means that this correspondence is of quadratic nature.

Naturally, the line p^b of the plane τ is the projection (image) of the conic p.

Now let us take the correspondence $A_i \to A^s_i$. It is clear that this is central projection. The conic p and the centre O of the sphere K also determine a cone S_2 of 2nd degree . In the correspondence $A_i \to A^s_i$ the conic $p^s = S_2 \cap \tau$ is the image of the conic p of the projection plane τ , which means that the correspondence is also quadratic .

Therefore, the transformation T^{-1} such that $A_i^b(T^{-1}) = A_i^s$ being the product of the

above – described correspondences, is of the quadratic nature [3].

In like manner let us consider the transformation $*T^{-1}$. Let this time, as the results of transformation Π , be given: the projecting apparatus *A, plane $*\alpha$ and point $*A^b$ moving along the line $*p^b$ belonging to the projecting plane $*\tau$. It is clear that the above – listed objects of space $\{*P\}$ correspond in perspective collineation to the objects of space $\{P\}$.

Similarly to the previous case , to each line *T*A^b a line *k_{\sigma} at point *A^b is attached . This line, however, is not perpendicular to *T*A^b because the transformation \$\Pi\$ does not preserve the right angle . It denotes that the set of lines *k_{\sigmai} = *\sigma_i \cap *\tau\$ is a pencil of 2nd order cicumscribing a conic s which, unlike the previous case, can be any of three types resulting from the affine classification of the conic sections. Naturally, the type of the conic *s depends on the position of the vanishing line g of the field (\tau) with respect to parabola s.

Next, let us consider the correspondence ${}^*A^b \to {}^*A_i \in {}^*\alpha$. The polar transformation with respect to the quadric *K converts the set of lines ${}^*k_{\sigma i}$ into the set of lines ${}^*k'_{\sigma i}$. The latter pass through the point *T being the polar of the projection plane ${}^*\tau$. It means that the pencil (${}^*k^2$) has been transformed into bundle (*T), the elements of which are the generators of a cone *S_1 of 2nd order. The intersection of this cone and the plane ${}^*\alpha$ is a conic *p which in the correspondence ${}^*A^b_i \to {}^*A_i$ is the image of the range ${}^*p^b$ on ${}^*\alpha$. Therefore, it means that this correspondence is of the quadratic nature as well.

However, the above – described general relations can in *C-*P*P assume a few particular forms because the succession of various cases may occur . Depending on the position of the vanishing plane η of space $\{P\}$ towards the cone S_1 and assumption that α is generally positioned with respect to it ,the following cases are posible :

- a) The plane η intersects S_i in non-degenerate conic
- b) The plane $\boldsymbol{\eta}$ intersects S_1 in two real and different generating lines
- c) The plane η intersects S_1 in two coincident generating lines (η is tangent to S_1)
- d) The plane η intersects S_I at point T but is not tangent to K
- e) The plane $\boldsymbol{\eta}$ intersects S_1 at point T and is tangent to K .

Ad a) It is a general case .To the cone S_1 in *C - *P*P correspond: a cone $*S_1$ with point *T as the vertex, to the conic p-a conic $*p = \Pi(p)$ of the plane $*\alpha$ and to the parabola s-a conic $*s = \Pi(s)$.

Ad b) .To the cone S_1 in ${}^*C - {}^*P^*P$ corresponds a hyperbolic cylinder *S_1 whose generators ${}^*k'_{\sigma\,i}$ pass through point ${}^*T^{\infty}$, whereas to the conic p-a hyperbola *p of the plane ${}^*\alpha$.

Since the vanishing line g of the field (τ) passes throught point T being the focus of the parabola s, then this line is secant towards s, which means that in the field (* τ) to this parabola corresponds a hyperbola *s.

Ad c) . To the cone S_1 in *C - *P*P corresponds a parabolic cylinder $*S_1$ with vertex $*T^{\infty}$, whereas to the conic p - a parabola *p.

Similarly to the previous case and on account of the same reason, to the parabola s corresponds a hyperbola *s in the field $(*\tau)$.

Ad d). To the cone S_1 in *C - *P*P corresponds an elliptic cylinder $*S_1$ with vertex $*T^{\infty}$, to the conic p - an ellipse *p, and to the parabola *s - a hyperbola *s.

Ad e) . In this case we have $\eta \equiv \tau$. For practical reasons (the images on the projection plane τ are transformed into elements at infinity) this case is not considered.

Lastly let us take the case where the planes $\,\eta\,$ and $\,\alpha\,$ are parallel . Then the homologous conics $\,p\,$ and $\,^*p\,$ are centrally similar .

Finally, let us take the correspondence ${}^*A_i \to {}^*A_i^s$ which is central projection . The conic *p and the point *O of the quadric *K determine a cone *S2 of 2nd order (a cylinder – in particular case where $O \in \eta$). The conic *ps = *S2 \cap *\tau is the image of the conic *p \in \pi \alpha \alpha and the correspondence in question is a quadratic one .

Therefore, the transformation ${}^*T^{-1}$ such that ${}^*A_i{}^b$ (${}^*T^{-1}$) = ${}^*A_i{}^s$ and being a composition of the last – considered two correspondences, is also of the quadratic character.

REFERENCES

- 1. Filon L. N. G: An Introduction to Projective Geometry. London 1947
- Koch A.: On Certain Transformation of Central Polar Projection. Sbornik 16. Seminare Odborne Skupiny Pro Geometrii a Pocitacovou Grafiku. Dolni Lomna 1996
- 3. Pieklicz W. A.: Sojedinienje centralno i polarnowo projektirowania. Woprosy Geometriczeskowo Modelirowania. Sbornik Naucznych Trudow no. 71. Leningrad 1972
- 4. Plamitzer A.: Elementy geometrii rzutowej. Lwów 1927
- Plamitzer A.: Geometria rzutowa układów płaskich i powierzchni stopnia drugiego. Warszawa 1938

Recenzent: Dr Czesław Prętki Politechnika Poznańska

Abstract

At the beginning of the article the principle of central – polar projection (C-PP) as well as its projecting apparatus A have been recalled. Also definitions of transformations T and T^{-1} described in [3] have been given. The transformations convert respectively: the planar field of central projections A^s_i into the field of polar projections A^b_i of points A_i belonging to plane α of space $\{P\}$ and the field of projections A^b_i into the field of projections A^s_i of points A_i . The purpose of the article is to investigate the properties of transformations ${}^*T = \Pi$ (T) and ${}^*T^{-1} = \Pi$ (T^{-1}) resulting from relation ${}^*A = \Pi$ (A), where Π is central – collinear transformation. It has been proved that *T is of linear quadratic nature and ${}^*T^{-1}$ is quadratic. In the latter, depending on the position of the vanishing plane of space $\{P\}$ towards a certain cone of 2^{nd} order, five cases concerning correspondence ${}^*A^b_i \to {}^*A_i \in {}^*\alpha$ have been singled out and discussed.