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RESEARCH OF "PERFECT" OBJECTS DEFINING THE
PROJECTION OF 3-DIMENSIONAL SPACE TO PLANE BY
PROGRAMMES IN TURBOPROLOG

Summary. The classical projection of 3-dimensional space P3to plane n is usually defined
as the structure <R, 71>, where R is a boundle of lines (projecting rays) with ideal or ordinary
point as the centre of projection and 7t is an ordinary plane as projection surface. It is well
known, that the set R may be a congruence of lines in the form K (mn), for m=1, where m
denotes the number of lines of congruence passing by any point of P3 and n denotes the
number of lines lying on plane ([!],[ 10]). The centre of classical projection is always singular.

POSZUKIWANIE ,IDEALNEGO” APARATU RZUTUJACEGO
PRZESTRZEN TROJWYMIAROWA NA PLASZCZYZNIE ZA POMOCA
PROGRAMOW W TURBOPROLOGU

Streszczenie. Klasyczny rzut tréjwymiarowej przestrzeni rzutowej P3 na ptaszczyzne
okre$lany jest jako struktura < R,7t>, gdzie R jest wigzka prostych (promieni rzutujacych) z
punktem wtasciwym lub niewtasciwym jako $rodkiem rzutowania i ptaszczyzng wtasciwag n
jako rzutnig. Jest dobrze znane, ze R moze by¢ kongruencjg postaci K(mn), dla m = 1, gdzie m
oznacza liczbe prostych kongruencji przechodzacych przez dowolny P3 i n oznacza liczbe
prostych lezacych na dowolnej ptaszczyznie ([1],[10]). Srodek klasycznego rzutu jest zawsze
osobliwy.

Uzycie innych kongruencji, np. zbioru wszystkich prostych przecinajgcych dwie proste
sko$ne (kongruencja K<i,i) lub zbioru wszystkich bisekant krzywej sko$nej 3th rzedu
(kongruencja Ka3) indukuje takze punkty osobliwe ([1],[10]). W naturalny, geometryczny
sposéb kongruencje otrzymujemy jako przeciecia dwoch zdegenerowanych komplekséw i
dlatego mamy punkty osobliwe. Interesujagcym pytaniem jest: ,,Czy istnieje taka kongruencja
prostych, ktéra nie indukuje punktéw osobliwych w okre$lonym przez nig rzucie”.
Przypuszczenie, ze kongruencja okre$lona przez dwa niezdegenerowane kompleksy nie
dopuszcza punktéw osobliwych, jest przedmiotem rozwazan niniejszej pracy. Rozwigzanie
wspomnianego wyzej problemu otrzymujemy badajac skonczone przestrzenie rzutowe z
wykorzystaniem pakietu programo6w napisanych w jezyku TurboPROLOG ([8],[9]).

W pracy formutujemy nowe wtasnosci komplekséw i kongruencji prostych w strukturach
skonnczonych i otrzymujemy nowe wyniki kombinatoryczne dotyczgce mocy powyzszych

zbiorow.
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1. POLARITIES AND NULL-POLARITIES

For the convenience of the reader we repeat the classic results concerning of the null-
polarities. Let F be a field and V be a vector space over F. Let us consider the set of all
subspaces of V. Let Sub>K(V) be the set of k-dimensional subspaces of V and let Sub'(V) be
the set of 1-codimensional subspaces of V. Then the projective space P=P(V) over V may
treated as the structure Subi (V), Subl(V),e > with points u, v, w,... being 1-dimensional
subspaces and hyperplanes U, V, W,... being 1-codimensional subspaces of V. Then 2-
dimensional subspaces are lines in the obtained projective space. For every point u e Subi
(V) there exists x 6 V -{0} such that

U= {ze V :3ae F -{0} (z=ax)}. (1)
Therefore we can write briefly u: =Fx. We may consider the well known transformation

a :Sub| (V) i->Subl(V) (2)
defined by the condition

ueu'cueu0 (3)
for any u, o belonging to Subi (V). Such mapping is called a polarity ([3]). Ifpe uaforanyu
Subi (V) the transformation (1) is called null-polarity ([2]). For u e Subi (V) and uCe Subl
(V) such that U = uQwe say u is a pole of U and U is a polar of u. Any two points u, o
satisfying (3) are said to be conjugate; if a point is conjugate to itself, it is self-conjugate in

the polarity.
Every polarity is a correlation. Any correlation may be expressed as semi-linear map X:

V h V ”with respect to the isomorphism p if

k.(x +y) =k(x) + L(y).k(ax) = a™k(x), 4)

where V* is a dual vector space of a vector space V and p is an automorfism of F. The
equation of polar hyperplane of point Fy can be written as follows

(ya,x) =0, (5)
where thesymbol ”denotes scalar product definedon cartesianproduct V x V ([3D.
Supposenowthat dim(V) =n+1.Then for any polarity (null-polarity) a there exists a
symmetric (skew-symmetric) matrix

A=@ijmmni {6)

such that
z= AX, (7)
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where a vector z is an element of dual space V* of vector space V and a vector x is an element
of V. A hyperplane z and point x are conjugate ([2]). Let z = Ax be the equation of polarity in
an allowable coordinate system over F. Two points Fy and Fx are conjugate if yTAx = 0. If A
is skew-symmetric, then any point Fx is self-conjugate, i.e. XTAX = 0.

2. LINEAR COMPLEX

It is clear, that if two points Fx, Fy are conjugate, so that
yTAX =-x TAy =0, (8)

then any twopointsax+by and cx + dy on their join are also conjugate. Let x= (xi)i=0.i,2..n
and y = (yj)j»0,i,2...n with Fx * Fy and A is a skew-symmetric matrix. Wealso have

nn
0=y TAX= X S aijyiXj=i;aij(yixj -y ijxi)=£ aijuij> (9)
i=0j=0 i<j i<i
where (..u”..) are the Grassmann (or Pliicker) coordinates of the line joining the two
conjugate points Fx, Fy ([2]). Flence a null-polarity is associated with a set of lines LC

(called a linear complex whose Grassmann coordinates satisfy the relation (8). It is known,
that conversely any linear complex is associated with a unique null-polarity ([2]).

3. LINEAR COMPLEX IN 3-DIMENSIONAL SPACE

3.1. Algebraic view point of linear complex

Suppose now that n =3, i.e. dim(V) = 4. Then we can write

l‘4 - nll
where ij =0,1,...,3. We obtain six independent numbers from F:

u=(u0,l"u0,2>u0,3"u23>u31"u1l2) >

i.e. avector of space a2V, where AKV}is the inner k-product of V. Let u: = Fu. Then u is an
element of Subi(AKV), i.e. point of 5-dimensional projective space P(a2V) over a2V ([11]).
We introduce the following notation: Uo: = u0i, up =ite, u2:=u08 u3:= u23,u4d:=u3, W:=
Uj2. It is well kwown that the numbers uo, ui, u2 u3, u4, Us satisfy equation \begin{equation}

uwou3+ U uda+u2Us= 0. (12)
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Let us consider the well known transformation 5 : Subk (V) —» Subi(AkV), for k=2. The
image £2 = (Subi (V))6 of the set Sub2(V) is so-called Plticker' quadric ([11]). From (11) we
can write

fi:={(u0,ul,U2,u3,Us,u5)sF6:u0u3+u,ud +u2ub :0} (13)

For the quadric £2 we can define a polarity associated with it. Namely, for u eP (a2Vv) let
us consider a polynomial T>(uo,Ui,u2,U3U4,U5) =uoU3 + uiu4 + U5 and define a polar

hyperplane of the point u® = (ujj,uj\u?,u”,u5,ul?)with respect to Q. The coefficients of
equation of this hyperplane are

A(u®) =(uMu5,utug,u®,un). (14)

Hence we obtain equation:
AV ), v A =0, (15)
u”o0 +u”Oi +u”u2 +Uq03+u”o4 +u”05=0 (16)

It is easy to see that the quadric Q consists of the self-conjugate elements of polarity with
respect to itself, namely

— (u),u\ =0. (17)
/

du

u3uO+ua4ul +USU2+uqus +U,u4+uU2u5=o0. (18)
Hence (in field of characteristic not equal to 2) we have

UQu3 +u,u4 +u2us =0. (19)

Let's assume co(u,v): = ~ ~ (u)»”e Itis abilinear form in a2v over the field F. Moreover,

notice that co (u,v) = co(v,u). Now the linear complex determined by (8) may be defined as the
set

K(u) = {x e £2: co(u,x) = 0}. (20)

Every complex is induced by any point of or by any nonzero vector ofa2v Ifu e Q then we
say that the complex K(u) is degenerate. For field F having the characteristic not equal to 2
the complex K(u) is degenerate iff co(u,) = 0.
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3.2. Axiomatic approach to line geometry

Every line can be treated as a subset of P" (i.e. as 2-dimensional subspace of V) and as an
element of Pliicker' quadric, i.e. as a sequence of six elements of the field F. In the former the
line will be denoted by a, b, c,....k, , m and the latter by u, v, w,..., X, y, Z. U, V, W,....X, Y, Z.
will denote the elemnets of P(a2V), which do not belong to Q.

The map 5is one-to-one correspondence from Sub2(V) to Q ([6]). Theelements of
Pliicker'quadric Q may be treated as lines from Sub2(V). [5],[7]present an axiomatic
approach to Sub2(V) as PLS - Partial Line Space, exactly as LS - Line Space ([12]).

The theory presented in [5], [7] has been considered as a one-sorted structure < L, -> with
L as an universum of lines and one primitive notion as an intersection of lines.'
Supposition that the elements of L are a,b,c,...and -(a”.-.ak) denotes an intersection of every
pair of lines (a,,aj) and a -rb denotes a nointersection of lines a,b [5] has introduced two
relations:
the Tri (Tri - triangle/tripod) relation defined as follows

Tri(abc)» (* (abc) a -(abc) a 3d(-(abd) a c-Pd)). (21)
which induces the set ofthe so-called variety} i.e. plane system} of lines or boundle of lines

[abc]: = (k e L: -(abck) a Tri (abc)} (22)
and
the Pen (Pen - pencil) relation defined as follows

Pen(abc) » (a*ba-(abc)aVd(-(abd)od-c)). (23)
which induces the set of the so-called pencil of lines

<ab >:={ke L:Pen(abk) Aa#b). (24)

3.3. Axiomatic approach to linear complex in projective space

The description, given here, is a continuation of axiomatization of line geometry presented
in [5], [7],

Consider inany projective space P (dim(P) > 3) a set of points P, a set of linesL. Let the
symbol "-p1* now denotes an intersection of lines (i.e. - p1 ¢ L x L) and anincidencerelation
the points and the lines (i.e. -pic P x L) simultaneously. We can define the set C as follows.
From algebraic properties of linear complex we have the following axioms for non-degenerate

complex:

A1l- VpeP'VkeL3mec(P’k ~PL m)'

A2.
'"Np<=P"k,m|,m2,ni3eL(((P>k - PL mI>m2>m3) A(m| * m2) A(P+PI-k) A(m[,m2 6 C)) =P m3 6 C).

A3.
vm1m2,m36LV pLp2,P3€p[((Pi ~PL Mj,mK)A*(i,j,k))]=»(pi =Pj v P| =pk VPj =pk)].
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We can formulate

Theorem 1. ((Mmi * m2* nB*mi) a A3) =>(p, = p2=p3

Proof. Suppose, that pi = p2* p3. When ml = (p23), m2= (pip3). Therefore mi = m2. We
obtain a contradiction.

This theorem says that no triangle belongs to C.

Theorem 2. VpsP3m| m2eC[(p- PL m1>P- PL m2)A(m, *m 2)]

Proof. Take a point p and a line 1such that p+i>[l. By Al it exists mi such that p,IpLmi. Take a
line k skew with respect to mi and such that p-"pLk. On the basis of Al there exists a line
m2-pl P,k. Naturally mi * m2.

For any p e P let us take the set b(p) = (k: p-pi.k}, i.e. a complete boundle of lines in L.
We can formulate

Theorem 3. VpsP(b(p) C)

Proof. Suppose that b(p) ¢ C. Take q * p. According to theorem 2 there exist two lines mi,m2
e C such that g-PLmi,m2 mi * m2.0ne of two cases: mi s PAp, m2-tpl p holds. Let mi -r pl p.
Because every line from the boundle b(p) belongs to C, take such lines lu, 112, which intersect
mi in two different points qn, qi2-Then we obtain a triangle In, 112, mi. It is in conflict with

A3.
Now suppose that (dim(P) = n). Take the set Hipk (P) of all k-dimensional hyperplanes of

P, treated as the sets of points and as sets of lines. Foranyp 6 P andp e Hni e Hipn_i(P) let
us define the set b(p),,-i: = b(p) n Hn,i. There is

Theorem 4. VpgPb(p)n_, ¢ C)

Proof. Let us take a point p e P and two lines mi,m2e C, such that mi,m2-pLP and mi * m2.
The inclusion b(p)2c¢ C holds. Consider now a hyperplane H2(mi,ni2) and a line 1] such that
li n H2=#. There exists a line m3such that m3-PLp, m3-PLIli. Naturally m3ca H2 Next, let us
consider a hyperplane H3mi,m2,m3). The set C contains b(p)3. By induction we proceed to
H,.i (a boundle b(p),.i). There does not exist a line m,, e C such that mn-PLp and m,, <xHn.i. In
the oposite case we would construct the complete boundle b(p),, ¢ C. It is impossible.
Moreover, notice that there do not exist a line In2such that In2o Hni = 0. And a continuation
of the reasoning above is not impossible. The theorems, presented above, play an important
role in formulation of the cardinal numbers' properties of complexes and congruences. This is
important in construction of PROLOG' predicates.

4. PROLOG'SIMPLEMENTATION OF GEOMETRIC OBJECTS

The axiomatization described above allows define the virtual geometry in TurboPROLOG
program. We will use an algebraic description (9) of linear complex LC and Pliicker' quadric
Q (12), (13) too. It is worth noting that the definition (15) is not easy for implementation in
Prolog logic([8],[9]). Therefore we introduce the other in following way:
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Pen (abc) o (a”b A 3klI(-(abck) a -(abcl) a k +1)). (25)

In Prolog implementation it is explained in the following manner: Let k, 1be two lines
such that k -G

Pen (abckl) o Cai bA -(abck) a -(abcl) a k -rl)). (26)

Generally, in Prolog' implementation we may use the predicates from axiomatic characte-
rization and from image 5. Formerly we introduced in virtual geometry the computer
definition of field with characteristics for g = 2,3,4,5. The relation "-n" (intersection of lines,
important in PLS) in image 8 for u = (uo, ui, U2, U3, W4, Wp), v = (vo, V|, V2 v3 V4, \5) has a
form:

Uu-q v:» uOv3+U|V4 +u2v5+u3v0+udV|+ubv2 =0. 27)

Obviously u - nil-
The condition (27) for the lines is equivalent to the condition (15) which for the lines and
for the objects no belonging to quadric Q holds.

4.1. Examples of predicates describing the select geometric notion in PROLOG

For example in PROLOG' implementation we show the following predicates: intersec
(intersection), prod (product in field), pointPluck (predicate defining a point of P5),
notpointPluck (predicate defining a point lying out of Q, abel (commutativity of field),
equ_w_coo (equality with coordinate in field), equal (equal), notequ (not equal), tri (Tri -
relation), pen (Pen - relation), var (variety - the set [...])

intersec(X 1,X2,X3,X4,X5,X6,Y 1,Y2,Y3,Y4,Y5,Y6):-
pointPluck (X1 ,X2,X3,X4,X5,X6),
pointPluck(Y 1,Y2,Y3,Y4,Y5,Y6),
not(notpointPluck(X 1,X2,X3,X4,X5,X6)),
not(notpointPluck(Y 1,Y2,Y3,Y4,Y5,Y6)),
prod(Xl1,Y 4,Pl), prod(X2,Y5,P2), prod(X3,Y6,P3),
prod(X4,Y1,P4), prod(X5,Y2,P5), prod(X6,Y3,P6),
add(PI,P2,PPI), add(PPI,P3,PP2), add(PP2,P4,PP3),
add(PP3,P5,PP4), add(PP4,P6,"0").

abel(X,Y,Z):-prod(X,Y,2), prod(Y,X,2Z).

equ_w_coo(Al,A2,A3,A4,A5A6,B1,B2,B3,B4,B5,B6,Z):-
coordinate(Z), abel(Z,Al,BIl), abel(Z,A2,B2), abel(Z,A3,B3),
abel(Z,A4,B4), abel(Z,A5,B5), abel(Z,A6,B6).

equal(Al,A2,A3,A4,A5 A6,B1,B2,B3,B4,B5,86)>
equ_w_coo(Al,A2,A3,A4,A5A6,B 1,B2,83,84,B5,B6,"1");
equ_w_coo(Al,A2,A3,A4 A5 A6,B1,82,83,B4,B5B6,"2");
equ_w_coo(A 1,A2,A3,A4,A5 A6,B 1,82,83,B4,B5,86,"3");
equ_w_coo(Al ,A2,A3,A4,A5A6,B 1,82,83,B4,B5B6,"4").
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notequ(Al,A2,A3,A4 A5 A6 BI,B2,B3,84,B5B6):-
not(equal(A 1,A2,A3,A4,A5 A6,B 1,82,B3,84,B5,86)).

tri(ALA2,A3,A4,A5, A6,
B1,82,83,B4,B5,B6,
C1,C2,C3,C4,C5,C6,
D 1,02,D3,D4,D5,D6):-
intersec(A 1,A2,A3,A4,A5,A6,B 1,B2,83,B4,B5,B6),
intersec(A 1,A2,A3,A4,A5 A6,C 1,C2,C3,C4,C5,C6),
intersec(B 1,B2,B3)B4,B5,86)C1,C2,C3,C4,C5,C6),
intersec(Al,A2,A3,A4,A5 A6,DI,D2,D3,D4,D5,D6),
intersec(B 1,82,83,84,85,86,D 1,02,03,04,05,06),
not(intersec(C1,C2,C3,C4,C5,C6,D1,02,03,D4,D05,D6)),
notequ(Al ,A2,A3,A4 A5 A6,B 1,B2,83,84,B5,B86),
notequ(A 1,A2,A3,A4,A5 A6,C1,C2,C3,C4,C5,C6),
notequ(B 1,B2,B3,84,85,86,C 1,C2,C3,C4,C5,C6).

pen(A 1,A2,A3,A4 A5 A8,
B 1,B2,B3,B4,B5,B6,
C1,C2,C3,C4,C5,C6,
D1,02,03,D4,D5,D6,
X1,X2,X3,X4,X5,X6):-
tri(AlLA2,A3,A4,A5 AB,

B1,B2,83,B4,B5,B6,

C1,C2,C3,C4,C5,C6,

D 1,D2,D3,D4,D5,D6),
intersec(Al,A2,A3,A4,A5 A6,X 1,X2,X3,X4,X5,X6),
intersec(B1,B2,B3,B4,B5,B6,X1,X2,X3,X4,X5,X6),
intersec(C 1,C2,C3,C4,C5,C6,X 1,X2,X3,X4,X5,X6),
intersec(D 1,02,D3,D4,D5,06,X 1,X2,X3,X4,X5,X6).

var(A 1,A2,A3,A4,A5,A6,
B1,B2,B3,B4,B5,B6,
C1C2,C3,C4,C5,Cs6,
D1,D2,D3,D4,D5,D6,
X 1,X2,X3,X4,X5,X6):-
intersec(A 1,A2,A3,A4,A5A6,B 1,B2,B3,B4,B5,B6),
intersec(Al,A2,A3,A4,A5A6,Cl,C2,C3,C4,C5,CH),
intersec(B 1,B2,83,84,B5,B6,C 1,C2,C3,C4,C5,C6),
intersec(Al,A2,A3,A4,A5A6,D1,02,03,D4,D5,D6),
intersec(B 1,B2,B3,B4,B5,86,D 1,02,D3,D4,D5,D6),
not(intersec(Cl,C2,C3,C4,C5,C6,DI,D2,D3,D4,D5,D6)),
intersec(Al,A2,A3,A4,A5,A6,X1,X2,X3,X4,X5,X6),
intersec(B 1,B2,B3,B4,B5,B6,X 1,X2,X3,X4,X5,X6),
intersec(C 1,C2,C3,C4,C5,C6,X 1,X2,X3,X4,X5,X6),
notequ(A 1,A2,A3,A4,A5A6,B1,B2,B3,B4,B5,B6).
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4.2. Combinatoric formulas for cardinal numbers of complexes
We suppose now that the number of elements of a field F is g. Then the number of all k-
dimension hyperplanes of projective space P" (g) n,k are projective dimensions) is equal to
(ktl)q-where
(V) _ @n-D(an-a)(@"-q2)-{gn-q k- 28)
Ulg (ak-D(ak-a)a -g2)-(ak-qk_i)

Since, for k = 0 we obtain the number of all points in Pn(q) ([4]). It is equal to

n+f| =g~ _i=qgn+qn-l+qn-2+..+q+1. (29).
1

The number of all lines in Pn(q) is equal to

n+1) ~@n+l-Hgn-1)_(gn+qgn~"+- +q+1)(gn "+gqn 2+...+q+1) (30)
@-)o-0 q+1

On the basis on the theorem 4 we can determine the cardinal number of non-degenerate
linear complex. From (29) it follows that we have gn+ gq"'1+ .. + g + 1 points and in each
point according to theorem 4 we have qn2 + q"3+ .. + q + 1 lines. Together we have
(gn+ g"'1+ .. + g+ 1) (qn2+ q"'3+ ... + g +1). The above number must be divided by q + 1
(the number points on the line). Thus we obtain the cardinal number of every non-degenerate
linear complex

Theorem 5. The cardinal number of the non-degenerate linear complex equal

(gn+gn +..+q+1)(gn-2+qn-3+..+q+1)
q+1

Determining of the cardinal number of the degenerate complex (i.e. the set of all lines
intersecting the fixed line) is simplier than in the above case. Let any line k be given. In every
point p of line k, by theorem 4, we have a boundle b(p)ni of lines, which includes
q"'2+ qn3+ ... + g lines without one line (a line k). The line k contains q + 1 points, then we
obtain ("2 + "3 + .. + q) (q+1). Adding one line k, previously excluded, we obtain
(qn2+ gqn3+ ... + q) (q+1) + 1lines. Thus we have

Theorem 6. The cardinal number of the degenerate linear complex equal

(Qn~2+qn-3+. )+ )+ 1. (32)

Moreover, notice that in (9) the number of all linear complexes in P"(q) equals —
q-1

and the number of all degenerate complexes, by (30) equals n*1
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5. CONGRUENCES

By congruence we understand the intersection of two complexes. Accordingly to (20) the
congruence is determined by two points u, v of the projective space P(a2V) or by two
vectors u, v from vector space a2V can be expressed in the following way

K(u, v) = {xe Ci:co(u, x) = 0, co(v, x) = 0}. (33)
It is equivalence to

K(u, v) = {xeQ: aco(u, x) + Pco(v, x) = 0}. (34)
forany a, p e F. The we have equality aco(u,x) + P<»(v,x) = co(au + Pv,x).Thus we can write

K(u,v) =K(u) n K(v) =n a PieFK (au + pv). (35)

This denote that the congruence is an intersection of all complexes of the pencil of
complexes K(au + Pv). This pencil may contain 0, 1, 2 or card F + 1 degeneratecomplexes
Indeed for any two elements a, p, the complex K(au + Pv) is degenerate iff co(au+ Pv,au +
Pv) = 0. Because mis a bilinear form, then we obtain the equation

co(au + pv,au + Pv) =a2co(u,u) + 2aPto(u, v) + P2a>(v,v) = 0. (36)

5.1. Combinatoric formulas for cardinal numbers of congruences
First we shall prove in P", for n = 3 the following lemma.

Lemma 1. The congruence being an intersection of two nondegenerate complexes does not
consist of a pencil of lines.

Proof. Indeed. Let two complexes K(u) and K(v) such that K(u) * K(v) be given. Let
k e K(u) n K(v). Then a line ki does not exist that ki e K(u) n K(v), k-pLki and k * k.
Suppose that we have the opposite option. Then by Al with two lines k, ki both complexes
contain the pencil < kkj > of lines determined by these lines. The lines k, kj determine
2-dimensional hyperplane H2, which contains q2 + q + 1 points. Out of this hyperplane we
have g3 points. Since (n = 3), then through every point, from theorem 4, there passes at least
one line m which belongs to every complex. A line m intersects the hyperplaneH2. Hence a
line m intersects a certain line k2 belonging to the pencil of lines <kk|>. A line k2 is a

3

common line for q points lying outside of the H2. Hence we have — =2 pencils of lines.
q

Each pencil has g + 1lines. Then we have q2(q + 1) lines. Let

H4(u):=jxeP5:X uixi=° (37)
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Then K(u) = H,,(u) n Q, K(u) = H4(u) n Q. Next K(u) n K(v) = (H,,(u) n H4()) n Q. For
two different complexes K(u), K(v) the set H3(u,v): = H4u) n H4v) is 3-dimensional
hyperplane. Thus the set H3(u,v) n Q is at least a quadric in 3-dimensional space, which
includes (q+1)2 (cf. [7]) or 22+ g + 1 lines, if there is a pair planes. Notice that (q + 1)2>
292+ q + 1forgq > 2. And next q3+ gq2> 292+ q + 1for g > 2, because a function /(q) =
g3 -q2-g-1 is monothonic on the set (1, + 00) and /(2) = 1 The cardinal number of the set
K(u) n K(v) is greater than the cardinal number of the set H3(u,v) n Q. Therefore according
to theorem 5, the complexes K(u) i K(v) are identical. It is in conflict with our assumption.

Let us consider two complexes K(u), K(v) and the equation (36) formulated for them. The
equation (36) has 0, 1,2 and g + 1solutions. Consider thess cases:

Case 1 (no solution). In this case a degenerate complex does not belong to pencil. Then for
any pair of lines k,I e K(u) n K(v) we have k hpll Take a line k e K(u,v) = K(u) n K(v).
Out ofthe line k we have q + g2points. Exactly one line of congruence K(u,v) passes through
every point. Then we obtain g3 + 2 lines. But every line passes through g + 1 points.

3+ 2
Therefore we have q +q =q2lines. Finally we must add one line k and we obtain g2+ 1
q+1

lines.

Case 2 (1 solution). In this case exactly one degenerate complex belongs to pencil of
complexes. We assume, that K(u) is degenerate complex and K(v) is non-degenerate complex.
Suppose that a line k, having the coordinates u, is an axis of complex K(u). Therefore the
congruence K(u,v) can be treated as the set of all lines of the complex K(v) intersecting line k.
Out of the line k in P3we have g3 + g2 points. Through any such point there passes exactly
one line intersecting of the line k. Then we obtain g3+ g2 of lines. But to every line belong g

points out of the line k. Therefore we have -— — =q2 +q lines. Finally we must add one line
q
k and we obtain g2 + g + 1 lines.

Case 3 (2 solutions). In this case exactly two degenerate complexes belongs to pencil of
complexes. Let the lines k, 1be the axis of this complexes. The lines k, lare skew. Then we
obtain as the congruence K(u,v) the set of all lines intersecting both lines k, 1 The number of
these lines equal (g + 1)2 because through every point of line k pass the pencil of lines
intersecting a line 1, i.e. g + 1 lines.

Case 4 (q + 1solutions). In this case the axes k, 1of degenerate complexes intersect. Then
we obtain as the congruence K(u,v) the set of all lines created by the union of the plane
system of lines (q2+ g + 1 lines) and of the boundle of lines (q2+ q + 1 lines). Q + 1 lines is

doubled. Therefore we obtain 22+ q + 1 lines.
The obtained theorem can be formulated as follows

Theorem7. The cardinal number ofthe linear congruences in P3depends on the number of
solutions of equation (36) and it equals:

a) g2+ 1, if the equation (36) has not solution,

b) g2+ q + 1, if the equation (36) has 1solution,

c) (g + 1)2 ifthe equation (36) has 2 solutions,

d) 292+ q + 1, if the equation (36) has q + 1solutions.
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5.2. Final remarks

The results obtained one above by reasoning above aided by PROLOG' programs from the
theorem 7 are shown in Table 1

The projection realized by all congruences, discussed above, have the singular points and
it is worse than classic central projection realized by a congruence Kq,0) (complete boundle of
lines). The above considerations allow the assumption that these does not exist the perfect
projection of objects not having singular points.

Table 1
Classification of singular points in projection by K(u,v)
Solution Card (K(u,v)) Number of singular ~ Sets of singular points
of equation (36) points
0 q2+1 g+ 1 K@uv)yn rt= {3}
1 qg2+q+ 1 g2+ q+ 1 n
2 (g+i)2 g2+ 3gq+ 1 ttuluk
g+ 1 202+ q+ 1 g2+ q+ 1 n
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Abstract

The classical projection of 3-dimensional space P3to plane n is usually defined as the
structure <R, 7i>, where R is a boundle of lines (projecting rays) with ideal or ordinary point
as the centre of projection and 7 is an ordinary plane as projection surface. It is well known,
that the set R may be a congruence of lines in the form K (mn), for m=1, where m denotes the
number of lines of congruence passing by any point of P3 and n denotes the number of lines
lying on plane ([1],[10]). The centre of classical projection is always singular.

The employement of other congruence e.g. the set of all lines intersecting two skew lines
(congruence K(u) or the set of all bisecantes of the skew curve of the 3th order (congruence
K(i 3 induces the singular points too ([1],[10]). The natural geometric congruences are
obtained as the intersection of two degenerated complexes of lines and therefore the singular
points are obtained. The interesting question is: “"Does such congruence of lines exist which
doesn't induce the singular points in a projection it defines?". A supposition, that the
congruence defined by two non-degenerated complexes eliminate the singular points, leads to
a solution formulated in this work problem. The solution of above problem is obtained by an
investigation of finite projective spaces on the basis of the package of programmes in
TurboPROLOG language ([8],[9])-

In the paper we formulate some properties of linear complexes and congruences in finite
structures and we obtain the new combinatorial results concerning above sets.



