
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ
Seria: GEOMETRIA I GRAFIKA INŻYNIERSKA z. 6

2004
Nr kol. 1615

Robert TORNAI

Institute of Informatics
University of Debrecen, Debrecen

GRAPHICS CLASSES FOR MOBILE EQUIPMENTS

Summary. The aim of my work is to inspire students to use the basic graphics
algorithms in practice. The limited capabilities of mobile machines give the
opportunity to teach useful programming tricks and tips. Programming these
equipments enhances the ability of abstraction and problem solving too.

S Y S T E M Y G R A F I C Z N E D L A P R Z E N O Ś N E G O S P R Z Ę T U

K O M P U T E R O W E G O

Streszczenie. Celem pracy jest zachęcenie studentów do stosowania w
praktyce podstawowych algorytmów graficznych. Ograniczone zdolności przenośne­
go sprzętu komputerowego skłaniają do uczenia się programistycznych „sztuczek”
użytkowych i poznawania dobrych rad. Wyposażenie programistyczne rozszerza
zdolności do myślenia i znajdowania rozwiązań.

1. Introduction

The evolution of computer graphics started slowly. At the beginning computer

graphics meant mainly monochrome displays with slow refresh rates. Firstly game

consoles and computer games drove the evolution, later business applications as

CAD, medical or entertainment programs gained a great influence. With time the

compatibility issues became a serious limiting factor in the evolution of graphics

equipments. The mobile solutions have the chance to use the experiences gained so

far and to avoid the pitfalls.

Standards are important because they ensure compatibility and continuity of

developments. Moreover, they are fundamental for portability. Mobile equipment

54 R. Tornai

manufacturers have a great influence on mobile standards. Accessible standards

that are easy to learn and easy to use will stimulate mobile applications [1],

Today mobile equipments' possibilities are comparable to the computers of 10 or

15 years ago. The different file transfer techniques (from the simplest as using

service cable to the wireless ones as GPRS, WAP or IrDA download) inspire people

to have commercial or own useful applications in their equipments, not only the built

in ones. My conviction is that as evolution continues, more and more graphical field

gains ground on mobile equipments. This article will focus on mobile phones in the

followings.

2. Possibilities and limitations

Mophun C++ is unhappily supported only by Sony-Ericsson. So, we have to

choose Java if we want our program to be used widespread. Almost all of the new

mobile phones are Java capable. This means that the target group, who may need

mobile applications, already has the necessary hardware.

Independently from the chosen programming language there are hardware

limitations. The CPU of this kind of machines has only fixed point unit. There is no

support for hardware floating point machinery. Using fix point numbers seems to be

the only alternative for this problem. Another limitation comes from the relatively

small resolution, from the physical size and from the small number of displayable

distinct colors (called color depth). What's more, the response time could be better

as well. The answer for the problem above is time. According to Moore's law [2]

(which says the size and cost of electronics shrinks by a factor of two every eighteen

months) will provide for more processing power, memory, and storage space. These

facts emphasize the role of developing scalable programs.

Fortunately Java itself has no restrictions about resolution, physical size or the

color depth. However, Java is lack of some tools. MIDP 1.0, supported by WTK 1.04,

has classes to manage access to the screen and to query the state of the keyboard

through its several methods. Putting aside the basic functions, there is no support for

visualizing any 3D object, especially surfaces. Clipping for different kind of regions is

not ensured, only for rectangles. MIDP 2.0 developments get compiled with WTK 2.0

beta. It is extended with package Game having new classes, and the existing classes

Graphics classes for mobile equipments 55

have some useful new functions as fillTriangle which makes it possible to visualize

surfaces approximated by adjacent triangles. Because of its bigger size, MIDP 2.0 is

not commonly contained yet in mobile phones nowadays.

Class Math does not have functions sin and cos, needed by rotation

transformations. Therewith a matrix implementation is needed for multiplying

transformation matrices and point coordinates together. Determining distances

requires the computation of square roots. Moreover, there is no built in support for

sorting in Mobile Java. Quick sorting is essential, (e.g. Painter's algorithm heavily

depends on it.) There is no kind of class that stores geometric information.

3. Implemented basic graphics algorithms

There is a built in method for clipping to rectangle areas, so I focused on convex

and concave area clipping, and in or out examinations for convex and concave

areas. Class CB_Rep (developed classes’ names will start with capital ‘C1)

implements boundary representation for solid object modeling. This class stores

geometric and topology information of spatial objects. Class CGraph encapsulates in

or out examinations of points and line drawing for convex and concave windows (that

can contain holes or even islands in the holes recursively in arbitrary deep) [4]

Furthermore, this class implements Painter's algorithm needed for surface

representation. This method sorts the parameter array containing triangles according

to their weight points’ z coordinates. The function WindowToViewport helps

repositioning and resizing the projected picture of the space.

All the following classes rely on a powerful fix point class that takes over the role

of the real number types. Class CPoint2D and CPoint3D represent two or three-

dimensional points having homogeneous coordinates. These classes have a

normalizing function and what is more important, a function to determine the

Descartes coordinates of a point. Moreover, they implement scalar and vectorial

product of vectors. These methods are essential to compute intersection points of

lines, or to determine on which side of a line a point is. CMatrix is a container class

for transformation (translate, rotate, mirror, scale) and projection (central, parallel,

axonometric) matrices having fixed point homogeneous coordinates. [3] It

implements the desired matrix functions. The transformation and projection matrices

56 R. Tornai

can be multiplied together into one matrix. Using the result matrix instead of applying

the transformation matrices one by one yields a huge increase in execution speed.

To achieve the defined goals, we need to take care of some mathematical

functions as sin, cos or sqrt too. I decided to store the fixed point values in arrays for

functions sin and cos. This old trick can be combined with another one: instead of

the traditional 360 degrees the circle is divided into 256 pieces. If there is a need for

more precision, it is advisable to divide the circle into pieces of a power of 2 ,

because bit masking is an efficient way to determine the correct angle in the case of

overflow or underflow. For computing the square root of a number, I have

implemented the formula of Newton that converges to the square root of the

parameter value in relatively small number of iterations.

4. Performance issues

Programming languages having a garbage collector do not fit for real-time

program developing. So, the number of dynamically allocated objects has to be kept

as low as possible by avoiding returning objects of user classes. Instead of doing so,

the methods will have an extra parameter taken as a reference to a previously

allocated object. The amount of time the garbage collector uses can be reduced this

way.

This programming style means as if we were programming in pure C. An

essential object-oriented feature is lost this way, but the performance gain worth it.

(At least till the mobile machines will have enough horsepower for the overhead.) I

think that only those applications can rely on serious computational power yet for a

time that follows this pure C style.

Since Java's interpreter and the fact that there is no possibility to write inline

functions or macros, performance can increased by reducing the number of function

calls which cause a significant overhead. Let's try to avoid the unnecessary calls by

storing semi results and unchanging values in variables.

Graphics classes for mobile equipments 57

5. Teaching programming via computer graphics

I am always trying to use my lectures to broaden the field of view of my students

by showing them programming techniques and tricks, not necessarily related with

graphical problems’ solutions.

I can see a sharp border between old school and new school programmers. Old

school programmers took the full path from the beginning. This means they are used

to hardware with limited capabilities. Restrictions always enhanced inventiveness, so

they have the ability to develop tricky algorithms or improve the code manually. They

are usually familiar with many programming languages such as imperative ones like

Basic, Assembly, Pascal or C (perhaps even Fortran, Ada or PL1), declarative ones

such as Prolog or Lisp, or with the object oriented Java or C++. (There are of course

database handler languages as Clipper. However, since these languages have a

special application field, not necessarily are used by all of the programmers.) These

circumstances developed their program planning and designing ability. Abstraction

and abstract thinking are essential. Programmers of old school are not bound by one

or two programming language. They are solving problems independently from the

implementation issues and they are able to choose the best tool for coding.

Conversely, programmers of new school (who started to deal with informatics in the

90s) usually have poor abstraction abilities. When new technologies become

available, there is no appropriate base for comparison.

I try to pass over the benefits of the old school to my students. Real problems

help to bring closer to them important techniques they might have learnt. The

significance of fix point over floating point computation is visible only when

performance becomes a serious limiting factor. Who is familiar with assembly

programming knows about the amount of CPU cycles that instructions take up, or

with macros that can be replaced by defines and inline functions. Incremental

algorithms are more important than on desktop machines. 80% of time is spent in the

core part of the iterations. The most important thing is to reduce the load at these

points of a program. The implemented graphical problems are ideal for acquiring

program planning and design. Students can learn how to split up problems into

smaller ones that are easier to handle. Besides students can see multiple ways to

solve particular problems. Many times a totally different approach ensures only

58 R. Tornai

significant improve in execution speed. Developing in practice enforce students to

acquire the use of handy tools such as Debugger or Profiler.

6. Results

With the help of the developed classes I succeeded in writing applications using

3D computer graphics. I have tested the MIDP 1.0 applications on my Siemens S55.

It has turned out that even on this top model the real-time animation is applicable

only to simpler wire frame models. However, in my opinion the greatest result is that

3D surfaces can be visualized even if real-time motion is not possible. I think that

mostly business and game programs will enjoy these new graphical benefits. Paired

with Bluetooth or other wireless solution, medical monitoring equipments can profit

from it as well.

Perhaps the class CFixPoint can be improved to handle varying fix point

according to the actual value. Doing so may increase precision.

Nevertheless, the developed classes can serve as a good basic for further

developments, extensions. My plan is to integrate the classes into a package.

Computer graphics perhaps becomes more interesting for students by their mobile

equipments. By teaching the applied techniques through these graphics classes too,

supposedly will inspire the students to write own programs which using and

extending them. The applied techniques and tricks or even the approach to the

problems can be used widely in other fields of programming.

The object-oriented design makes it possible to transfer the classes to C++. I am

planning to create a Mophun C++ port of the graphics classes. Hopefully this port will

result in a quicker system for Sony-Ericsson machines. I would like to test my

programs not only on mobile phones. If there is a chance, I will perform a

comparative performance test. Teaching of computer graphics can benefit from the

developed classes mostly, where studying concrete implementations can be more

important and useful than using them.

Graphics classes for mobile equipments 59

BIBLIOGRAPHY

1. http://www.nokia.eom/nokia/0,,27155.00.html May 5, 2003.

2. Moore G.: Cramming more components onto integrated circuits. Electronics, 38, 8 ,

1965.

3. Juhász I.: Számítógépi geometria és grafika. Miskolci egyetemi kiadó, Miskolc

1995.

4. Foley J., van Dam A., Feiner S., Hugues J., and Phillips R.: Introduction to

Computer Graphics. Addison Wesley, 1993.

Recenzent: Dr Edwin KOŹNIEWSKI

Abstract

While the mobile equipment penetration is larger and larger these days, the

quality of the graphics of mobile applications is not satisfying. One reason can be

that development tools do not support graphics, especially 3d graphics at an

acceptable level. Since almost all of the development tools are object-oriented for

these machines the aim of my work is to provide a class library specialized for mobile

equipments that speeds up development time and ensures a higher quality.

Although commercial products as OpenGL ES (Embedded System) or

3DObjects for Java are on the way to conquer this area, I think that a maybe less

complex class library ready right now has its own usage field. Moreover, the main

benefit of an own framework is that it can easily be used for educational purposes.

The developed class library will help me to extend the scope of my course covering

basic computer graphics problems. Since all source files are given, when new

graphics problems arise, the students can extend my graphics classes themselves,

which is an efficient way to improve their knowledge in my opinion.

http://www.nokia.eom/nokia/0,,27155.00.html

