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Summary. This paper describes a method for the representation of the 
polygonal model or model defined by the point-cloud data with the implicit function. 
The basic aspects of the method based on representation of the model with a Radial 
Basis Functions (RBFs) are analyzed.

B A D A N I E  M O D E L U  W I E L O K Ą T N E G O  M E T O D Ą  U W I K Ł A N I A

Streszczenie. Artykuł ten opisuje metodę reprezentacji modelu wielokątnego 
lub modelu zdefiniowanego za pomocą danych w postaci chmury punktów z funkcją 
uwikłaną. Przeanalizowane zostały podstawowe aspekty metody oparte na 
przedstawieniu modelu z funkcjami podstawy promienia (RBFs).

1. Introduction

It is well known that a perfect description of an object is if the object is defined 

by an implicit equation { f ( x )  = 0). The object can be directly visualized from the 

implicit form. Visualizing implicit surfaces typically consists of finding the zero-set of 

/ ,  which may be performed either by polygonizing the surface [1, 2, 4] or by direct 

ray tracing [3], There is a lot of techniques for visualization and rendering of the 

implicit surfaces defined by a function f ( x )  = 0 [6 ], The implicitly defined object can 

be evaluated at any point in order to produce a mesh with required resolution. The 

object can be also stored in its Implicit form for later use as well. A lot of objects,
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especially the basic primitives for the CSG (Constructive Solid Geometry) modeling 

[5], are described by the implicit equation. So it is good to have object defined by the 

implicit equation.

In case of the object model with no implicit description, one may use two 

various methods to create implicit representations. The first approach uses 

parametric expression of a primitive or a patch on the beginning as an input. The 

implicit representation of the object is generated by using symbolic operations for the 

parametric expression of object. The group of these methods is called Variables 

elimination methods [7]. In the other method we start with polygonal mesh or point- 

cloud data. Iso value, which provides information about particular point position, can 

be directly calculated from this representation. Then iso value means, whether the 

point is inside, outside or on the surface. This method is based on Variational implicit 

surfaces, for the implicit representation of the object surface. The Radial Basis 

Function (RBF) method, which is based on Variational implicit surfaces, will be 

elaborated below.

1.1. Implicit surfaces

The surface representation problem can be expressed as 

Problem:

Given n distinct points xi ,x1,...,xn on a surface S in 9f3, find a surface S’ that is 

a reasonable approximation to S.

Our approach is to model the surface implicitly with a function f ( x , y , z ) .  If a 

surface S consists of all the points (x,y, z) that satisfy the equation

f ( x , y , z )  = 0  (1)

then we say that/im plic itly  defines S. Note, that the object can be defined like point- 

cloud data or triangular mesh. In case the object is defined as a triangular mesh it is 

helpful to define a set of equation. This case will be discussed later.
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The shape transformation refers to the problem of scattered data interpolation. 

The problem of scattered interpolation is to create a smooth function that passes 

through a given set of data points [8 ].

2. Radial Basis Function interpolation

Having defined the problem to be solved, let us now describe the solution of a 

variational implicit functions. Scattered data interpolation can be achieved using 

radial basis functions centered at the constraints. Radial basis functions are circularly 

symmetric functions centered at a particular point. Radial basis functions may be 

used to interpolate a function with n points by using n radial basis functions centered 

at these points. The resulting interpolated function thus becomes

/ W  = 2 V(|x-cj). (2)
>i

where c . are locations of constrains, A,, are the weights and </>(r) is a radial basis 

function where ^ ( o )  = 0 .  It can be evaluated in radial r. Defined by the difference of 

the point in which we want to evaluate this function and the constraints.

Fig. 1. Solution of equation (2) for an arbitrary point x 
Rys.1. Rozwiązanie równania (2) dla dowolnego punktu x

In order to find a set of A, that will satisfy the interpolation constraints 

h, = f ( c,), we can define the right side of the equation (2 ) for / ( c,), which gives:
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/ ( c / )  =  £ v t c » - c v | ) = *i (3)
j -i

For the given constrains c, we can rewrite the equation (2) to the form

K = / ( c,) and the
Fig. 1 shows how the scalar value for an arbitrary po in t* is evaluated.

Since this equation is linear with respect to the unknowns Ay. , it can be

formulated as a system of linear equation. Let us define c,. =[c,x, c f , c f ] r  and

0  = (i(c,. - c j )  for interpolation in 3-d space. Then this linear system can be written as

follows:

$2 ■ <kn A'
2̂1 (j)12 filn K = K

<t>n1 ' ' <t>nn_ A. K .

In some cases (including the thin-plate spline solution), it is necessary to add a first- 

degree polynomial p ( \)  = a - c x + b - c y + c - c z + d  to account for linear and constant 

portion o f / a n d  ensure positive-determination of the solution. Then equation (2) is 

modified to equation (5).

/(x) = X A yv|x-cy||)+P(x) (S)
j =i

If a polynomial is included, Eq. (4) similarly becomes [11]
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If we denote

A ij  = < %  - < v l l ) ’ W  =  ! , • • • , «

P i = [ c f , c f , c ‘ ,l]T, 1 = 1,...,«

a = \a,b,c,dY  (7)

k = [Aj ,T2,...,T „]r ,

p =[p , |p2 1 — Ip *].

then we can rewrite the equation system (6 ) to form

h ' ’ A |P"
a

—
_ Ö _

, where B =
p ^ l ö (8)

The linear equation system (6 ) must be solved. Then the function f ix )  can be 

evaluated for an arbitrary point. Discussion on the system solution and the variables’ 

determination will be provided in the following paragraphs.

3. Solution

If basis function </> is known then we know the values of all elements of the 

matrix B ( n x  n). It is obvious, that condition h, =0 is satisfied for all on-surface points 

thus h  is a zero vector. So it can be easily seen, that it is possible to create the
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homogeneous linear equation system, from which it is possible to calculate values of 

vectors X and a.

This system consists of n homogeneous linear equations and has always zero 

solution 0 = [ 0 ,0 , . . . ,0 ]r . If the matrix of the homogeneous linear system has rank k, 

then the system has (n-k) linear independent solutions and each solution of this 

system is a linear combination of these (n-k) solutions. Especially if k = n, the system 

has only zero solution 0  = [0 ,0 ,...,0 ] r . I f  m = n (number of rows is equal to number of 

columns) then the system has nonzero solution if and only if the determinant of the 

system is equal to zero. The system matrix B has at the main diagonal zero 

elements and non-diagonal are non-zero. It can be verified that the rank of our 

system matrix B is equal to n and its determinant is nonzero.

Now we can say that our system has only one solution, zero (trivial) solution. 

We need a non-trivial solution that approximate surface represented by set the given 

points. Therefore it is necessary to add a perturbation [9, 10] to input data set to get 

non zero solution. This perturbation adds new equations to the system, so the linear 

system is no longer homogeneous.

An obvious choice for perturbation representation is a signed-distance 

function. The signed-distance function defines points in a distance d from on-surface 

points. Points outside the object are assigned positive values, while points inside are 

assigned negative values. Similar to Turk & O’Brien [10], these off-surface points are 

generated by projecting along surface normals.

It should be noted that LU factorization [8 , 10, 11] is the most commonly used 

method for solving the linear system defined by the equation (6 ) and (4). Methods 

like Cholesky factorization or GMRES iterative method can be also used.

4. Results

Implementation of this method is based on the complex description of the RBF 

method presented above. Because the RBF method is very computationally 

expensive, therefore the method was tested for few points only.



A survey of method for implicitization of polygonal model 67

Fig. 2. The surface used for testing
Rys. 2. Powierzchnia używana do testowania

The first experiment with the RBF method was made on a surface defined by 

a few points in 3-d. Figure 2 shows the definition of on-surface points. Additional 

points were assigned with different values in order to solve the linear system of 

equations. Value -1  was used for points lying under the surface and, respectively, 

value 1 was used for points lying above the surface. All additional points have the 

same distance from on-surface points and are positioned in the direction of z-axis. 

The system of linear equations has been solved, while new points and the vector 

[X | a]r were determined.

Fig. 3. The surface visualized with the marching triangle method 
Rys. 3. Powierzchnia pokazana za pomocą metody ruchomego trójkąta

Now we can use any method for the iso-surface visualization (Marching 

cubes, Marching triangle etc.). Figure 3. presents visualization of the surface defined 

above on Figure 2 using matching triangle method [2]. The function </>(r) = r 3 was 

used for this experiment.
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a)

Fig. 4. Final curve in 2-d (center, left) and visualization of scalar values (Eq. (3)) on grid 
(right)

Rys. 4. Ostateczna krzywa w 2D (środek, lewa strona) oraz przedstawienie wartości skalar
nych (z równania (3)) na siatce (prawa strona)

In the second experiment the RBF method application for the 2-d polyline was 

tested. A polyline was defined and how the RBF method approximates of this line 

was tested. In this case the basic function 0(r) = r 2 logr was used.

The final smooth curve is presented at Figure 4.b. Figure 4.c presents how 

perturbation points were defined, how to find smooth curve, original polyline and 

a curve defined as a contour for the non-zero threshold.

5. Summary and future research directions

A complex method for implicitization of the object defined by the triangular 

mesh or point-cloud data was introduced, and fundamental properties were 

presented. Final implicit description and final quality of visualized object depend on 

basic function selection and its radius of support. This parameter will be analyzed 

and described in further work.

Implementation of the RBF method for the cases of 2-d polyline and 3-d 

surface was described in the paper.
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Abstract

This paper describes a method for the representation of the polygonal model or 

model defined by the point-cloud data with an implicit function. The basic aspects of 

the method based on representation of the model with a Radial Basis Functions
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(RBFs) are analyzed. This method is very complex and can be used also for other 

purposes than the representation of the polygonal model. The radial basis function 

method can help the reconstruction of the gaps or the detection of sharp features. 

The solution of this problem requires large memory and it is computationally very 

complex. An implementation of the method proved expected properties of the RBF, 

too.


