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ON THE POSSIBILITY OF REALIZATIONS OF MODELS
OF THE NONLINEAR ONE-PORTS

Summary. A method of determination of frequency models of nonlinear one-ports has
been described in the article. These one-ports have been described by means of
Nemecky's polynomial operators. Application of the describing function method and
harmonic balance method for determination of frequency models of nonlinear one-ports
enables effective determination of parameters of these models. Frequency models have a
lot of applications in analysis of circuits. An example which illustrates proposed method
for selected characteristics of nonlinear inertialess and dynamic elements has been
presented.

O MOZLIWOSCI REALIZACJI CZESTOTLIWOSCIOWYCH MODELI
DWOINIKOW NIELINIOWYCH

Streszczenie. W artykule opisano metode wyznaczania czestotliwosciowych modeli
dwojnikéw nieliniowych. Dwaojniki te opisano wykorzystujac wielomianowy operator
Nemyckiego. Zastosowanie metody bilansu harmonicznych oraz metody funkcji opisu-
jacej umozliwito efektywne wyznaczenie parametrow tych modeli. Czestotliwosciowe
modele majg wiele zastosowan w analizie obwodéw. Zastosowang metode zilustrowano
przyktadami dla wybranych charakterystyk elementéw nieliniowych.

L INTRODUCTION

The most widespread methods of analysis of nonlinear one-ports use models of one-ports
and multiports described by means of state equations [6, 8] or integral equations [18].
Alternatively, models described by means of relations obtained using Fourier transformation
are applied in analysis of nonlinear systems. These are frequency models of nonlinear systems
i.e. one-ports or multi-ports including LTI or parametric one-ports and current or voltage
sources of harmonic waves.
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Fig. 1. Frequency models of nonlinear one-ports
Rys. 1. Modele czestotliwosciowe dwojnikow nieliniowych

Parameters of current and voltage sources (fig. 1) occurring in the models depend on:
¢ values of current and voltage across terminals of equivalent one-ports,
¢ values of fundamental frequency (in case of analysis of system containing a dynamical

and nonlinear element).

It follows that the one-ports are linear representations ofparametric or nonlinear elements.
These sources should be treated as controlled sources. Frequency models of nonlinear systems
are applied in analysis of steady state [2] and transient state [19] of circuits, analysis of SC
systems [7], microwave circuits [5, 12] and electronic circuits [11, 16, 17]. They are also used
as basic elements of some electric and electronic systems simulators [26] and also to describe
and to analyze phenomena in systems with non-sinusoidal waves, which are models
of power systems [3], [9]. In order to determine such models we can use the description
function method or harmonic balance method. These methods were applied in [22], [23], [24],
[25] to determine frequency models of nonlinear inertialess elements with smooth
characteristics described by polynomials. In similar way these methods have been applied to
the analysis of microwave systems, amplifiers, mixers and demodulators [5, 11, 14, 16, 17].
This work is a continuation of the prior works of the author [20, 21, 22, 23, 24, 25] concerning
ofthe dynamics analysis and the determining frequency models of nonlinear systems.

Operators describing nonlinear one-ports can be divided into classes shown in fig. 2.

Fig. 2. Classification of nonlinear one-ports
Rys. 2. Klasyfikacja dwdjnikow nieliniowych
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The frequency models of nonlinear one-ports for the operators g have been considered in
this article. These operators are designed to describe nonlinear elements and have been
determined below.

2. FORMALIZATION OF THE PROBLEM

Assuming, that operators describing nonlinear one-ports (fig. 1) are correctly determined
in voltage-current Hilbert’s spaces of T-period square integrable signals Lr, the relation
between voltage and current of nonlinear one-ports is determined as follows:

u(t) = <H(i(t),D7i(t),fi(t)), 1)

i(t) =g(u(t)Dku(t),I"u(t)), @
where:
%, g - the symbols of the following operations:
-4 =N 4» ®)
g : L\ 4 ()
Dk- the symbol of derivative operator k-th order,
/ - the symbol of integral operator I-th order.

The operator (1) is called dependent on the current but the operator (2) is called dependent
on the voltage. The type of the dependency should be specified in case of multimodal operators
(1), (2). Representations of nonlinear one-ports in the form of the sources (fig. 1) depend on the
type of dependency. The one-port can be presented in the form of the equivalent voltage source
uNt) for one ports described by means of operator dependent on current:

« N(O = z Ch({Ahp{Bh})cos[hat)-Dh({Ah},{Bh})sm(hcot),
heN (5)

where the Fourier coefficients €,(m), D h(-) of the voltage of the source depend on coefficients
sets {Ah}, {Bh} ofthe source current:
i(t) =~ A hcos(hcot)+ Bhsin(hat), 6)

The coefficients of the series (5) are determined by:

Ch=y i{k.0,Dki,l"i)o;'(0]cos(®?)c*, 7

thEjk(T Dii,l"i) °/(0]sin(0#)c# , (8)
L)

where:
° -the symbol of superposition ofthe operator 3(.with the function (6).
The description for one-ports dependent on voltage (2) is similar. The current source iNt):

iN(t) = *Z Ah({Ch},{D L})cos(ha)t)-Bh({Ch},{D h})sm (hwt), 9)
hoN

is described by means of Fourier series with coefficients Ah(-), Bh(-) dependent on harmonics of
the voltage across source terminals:
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11(0 = Q cos(/7¢y/)+ Dhsin{hcot), (10)
heN

where:
Ah = — |[e ™w,Z) w,//w)ow(/)]cos(iy/)¢/l (12)
Bh=—fc(u,D”™uj'u) ow(/)]sin(tf>/)c//. (12)

Tn

Specifying of nonlinear elements in the form of the sources requires explicit assumptions
concerning properties of the operators and also some simplifications that enable to obtain

results in the closed form. The problem has been described below for the operators
of the class Q.

3. MODELS OF NONLINEAR INERT1ALESS one-ports

This section concerns inertialess one-ports dependent on voltage (2). Analysis of these
one-ports by means of the describing function method [13] as well as the harmonic balance
method [15] has been considered. Assuming, that a nonlinear one-port is described by a sum of
a time-invariant operator L and an inertialess and memory less operator Q (2) described by the
formula:

iN(t) = [Q"Yt) =Y jakuk(t), akeR, (13)
k=1

it’s possible to show the nonlinear one-port in the form presented in fig. 3.

(1 _
' Nonlinear

one-ports <=2

Fig. 3. Model of nonlinear one-ports
Rys. 3. Model dwojnika nieliniowego

The total current of the system from fig. 3 is determined by:
t

i(t) =iL(0 +iN(0 = fy(t- T)u(r)dT+ X A (Q >At)cos(frf)+ Bh(Ck,Dk)sin(iy/), (14)
0 h&N
where:
y() - impulse response function of the linear one-port £,
u(t) - the voltage across terminals of the system (fig. 3) determined by the formula (10),
ANCAD/J, BhfC~Di) - harmonics of the current of current source (fig. 3).
The equivalent diagram for a single harmonic in frequency domain for established
assumptions concerning nonlinear one-port is presented in fig. 4.
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Uk=CkjDk  Z(jkcoo) (57 )'/*= AN({CR.{DR)
I ~BN({CR, (D1)

Fig. 4. Diagram for a single harmonic of the system shown in Fig. 1
Rys. 4. Schemat uktadu przedstawionego na rys. 1 dla pojedynczej harmonicznej

A construction of nonlinear one-ports with current dependency can be carried out in
similar way.

3.1. Simplified model of the class G

Using a method of describing function [13] and assuming, that:
« frequency characteristic ZL(j(o) of the linear operator has a property of the bandstop filter
with a fundamental frequency a,
¢ influence of the higher harmonics of the voltage (10) on the one-port current described by
the operator g (fig. 3) can be described,
current source harmonics I'h, (fig. 2) depend only on the first harmonic (C=C;, D=D/) of the
voltage across terminals ofthe source.
For this case the coefficients Ah(C,D), Bh(C,D), heN are expressed by:

where:

The equivalent diagram (fig. 3) of the nonlinear one-port for a single harmonic ini
frequency domain is valid for established assumption. The coefficients Ahand Bh. of the current
source //, depend only on the first harmonic ofthe voltage (10).

Example

Parameters of the current source Ih which are the function of the variables C,D
for the specific characteristic of the nonlinear element have been determined on the base
of considerations carried out in previous sections. The characteristic of the nonlinear element
has been described by the following formula:

i(t) =0.00006u(t) +0.000015u3(t) , (19)

and presented in fig. 5.
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Fig. 5. Characteristic ofthe nonlinear element
Rys. 5. Charakterystyka elementu nieliniowego

The first and third harmonics of the source current iNt) (fig. 3) occur for the characteristic

of the nonlinear element given by the equation (19). The complex values of the individual
harmonics have been determined as:

I, =0.00I[(0.03C +0.005625(CD2+ C3))-j(0.03D +0.005625(c:D + D 3))], (20)

13 =0.001[(0.001875C3-0.005625CD: )+ j(0.001875D3-0.005625C 2£>)]. (21)

Three-dimensional diagram of the amplitude and phase of the first and third harmonics

of the source current iNt) (fig. 3) in dependence on amplitude and phase of the first harmonics
ofthe supplying voltage (fig. 3) have been shown in fig. 6 and 7.

(Pifrifl)]
a)

Fig. 6. The diagrams: (a) amplitude and (b) phase of the first harmonics of source current iNt)
in dependence on amplitude and phase of the first harmonics ofthe supplying voltage source

Rys. 6. Wykresy: (a) amplitudy i (b) fazy pierwszej harmonicznej zrédta pradowego iNt) w zaleznosci
od amplitudy i fazy pierwszej harmonicznej napieciowego zrodta zasilajagcego
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£7

a> b)

Fig. 7. The diagrams: (a) amplitude and (b) phase of the third harmonics of current source iNt) in

dependence on amplitude and phase of the first harmonics of the supplying voltage source

Rys. 7. Wykresy: (a) amplitudy i (b) fazy trzeciej harmonicznej zrédta pradowego iNt) w zalezno$ci od

amplitudy i fazy pierwszej harmonicznej napieciowego zrodfa zasilajagcego

The packet Mathematica™ has been used in this example in the range of symbolic and

numeric computations.

3.2. The complex model of the class G

Using the harmonic balance method [4, 15] and assuming, that a spectrum of the voltage

u(t) is limited:

u(t) =~ C kcos(kcot)+Dksm(kojt),
k=\
the complete current from fig. 1is determined by the equation (14).

The coefficients AN{CK,{DR),Bh({CK,{DK), hsN are determined by the formulae:

Ah({Ck},{Dk}) =

t(, ClI v'N

r | X 6/ Z C*co{koi)+Dksin(A'ftf)y cos(hai)dt=
0nr=1 *=j

——;— 'Fjbj X P4C\ D\ mmmmCl''D, =

=l a ai,.ol,,ai.cs,,ai

cos+1 (tat)sin«2 (a/)-..-cos'2Z' (lat)\co~hox)dt

(22)

(23)
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Bh({Ck},{Dk}) =

1
1
J E~/ E Ckco~keot)+Dksm(kcot)  sin(hcot)dt =

1
a E fiic? U? D f-
Y1 ajahen 2l dhordd (24)

mjl~cos*“1 (fttf)sin“2 (oj/)-..-c0s 21" (Icot)sm"* 2 (lo.x)jsin(h0Jt]dt

—V h n Canaimm n“a eS)
T L1 Uy - L M alk=1,2.21 *
where:

e ok 25)
E«/ =u (26)
£j\-, ~P c_l_,éfcosd/(ﬁi)sin’\'(ft/)-..-cosfM(/&r)sin":i (/6/)jcos(/7(vr)j?, (27)

{ eV
ISAIT‘ﬁ\F;:oé" (&r)sinr (ft/) s . co$~ -1 (/ft/)sin"2 (/&/)! st{/z(f)cTE (28)

0

A lot of characteristics of nonlinear elements can by describe by the polynomials of the
third order. Thus, in order to specify the model of nonlinear element the coefficients
Ah({CK,{DRK), Bh{CR,{Df}) have been determined for the characteristic (2) which is a
polynomial of the third order.

Example

The computations for the characteristics described by the equation (19) and shown
in fig. 5 have been carried out. For this characteristic of the nonlinear element and established
assumptions voltage u(t) can be put in the following form:

u(t)=Cjcoscot+Djsincot+ C20s2 cat+D2sin2 cot+C3cos3 cot+D3Xin3 cot. (29)
Coefficients Ah(), Bh() for h=1,2,3, are expressed by:
A,(-)=5.625E-6(5.333Ci+Ci3+2C1C2+C12C3+C2Cs+2C,CR+CIDi2-

C3D]J2+2CiD2-C3D2 +2CIDID3+2C2D2D3+2CiD3), (30)
Bj(-)=5.625E-6(5.333D,+Ci2D,+2CfD, 2C,CD,+2C/D,+D,3+2C2C3D2+2DiD22 (31)

+CfDr C2D3DfD3+D2D3+2DDf),
A2(-)=0.00001125(2.66C2+C12C2+0.5C/+C1C2C3+C2CR+CDi2+C3D,D2+0.5CD?2 32

C2D,D3+C,D2D3+C2D 2 (32)
B2(-)=0.00001125(C2CD i+2.66D2+CiD2+0.5C2D2-CiCP2+CPD2+D,D2+0.5D B (33)

+C]C2D3+DiD2D 3+DiD f)
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A3(-)=1.875E-6(C/+3C,C/+16C3+6C,2C3+6C,C3+3C3-3CiDij+6C3D,2+6C,DID,-

3C,D2+6CD2+3CD3) (34)
B3(j =5.625E-6(C12D1-C22D1-
0.333D,3+2CiC2D2+DiD 2+5.333D3+2C 1D 3+2C2D 3 (35)

+C D3+2DfD3+2Di2D3+D 3
Dependences ofthe amplitude and the phase:
\L,I =V K ({c*},{Dty)2 + (Bh({Ct ;,;\DKk})Y, (36)
Bh({Ck},{Dk})

V h--arcts M™ Am ) (37)

for eachharmonics of the source current iN(t) on amplitude \Um\ and phase <y of the first
harmonic of voltage u(t) have been shown in the form of three-dimensional diagram

in fig. s and 9.

b) Itum <plrad]

Fig. s. Diagrams: (a) amplitude and (b) phase, of the first harmonic of the source current ij/t) as
a function of amplitude and phase of the first harmonic of voltage u(t)
Rys. s. Wykresy: (a) amplitudy i (b) fazy pierwszej harmonicznej zrédta pradowego iNt) jako funkcji
amplitudy i fazy pierwszej harmonicznej napiecia u(t)

y/2x0.25[rad]

3.5

4.5

b)  \um\m o1 e,[rad]

Fig. 9. Diagrams: (a) amplitude and (b) phase of the second harmonic ofthe source current 2vfi)
as a function of amplitude and phase of the first harmonic of voltage u(t)

Rys. 9. Wykresy: (a) amplitudy i (b) fazy drugiej harmonicznej zrédta pragdowego i”*t) jako funkcji
amplitudy i fazy pierwszej harmonicznej napiecia u(t)
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y/3x0.33[rad]

-1 <pi[rad] IUﬂ\[\/J (p,[rad]

Fig. 10. Diagrams: (a) amplitude and (b) phase, of the third harmonic of the source current is(t) as
a function of amplitude and phase of the first harmonic of voltage u(t)

Rys. 10. Wykresy: (a) amplitudy i (b) fazy trzeciej harmonicznej zrédta pradowego i\(t) jako funkcji
amplitudy i fazy pierwszej harmonicznej napiecia u(t)

The packet Mathematica™ has been used in the example in the range of the symbolic and
numeric computations.

4. MODELS OF DYNAMICAL AND NONLINEAR ONE-PORTS

Nemycky’s polynomial operator which corresponds to the operator (2) can be written in
the form:

mm m

m =5X -5X . m rmyree'W"-
dQolizo a,=0 (38)

a,, » &R

It can be interpreted as functional Taylor series [1], [10] of suitably smooth operation.
While carrying out the operation of superposition of the operator (38) with formula (22), one
obtains:

a 2k-2
X R R R R
aQ=0a\=0 an=0 k=\ % 'Pis P\’P i »**Pls-\»Pis

1A Nk-2
i-\
iC f'D m..«Cf'Dfx -..-CfZ 1D cos” (ru)sir/A(ar*.coS®* (hot)AxtH1(/za”.cos~- 1 (.s'd/jsir/~ 1 (vit/)-
’ (39)
(-7 H@EA _

CADf2 msir/<(0/)cosee (&r)..sit/" (/7&i)cosAti {hoA.sirfl '(soi)cot'-"" (sol),
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where:

X = for Am+\<n, (40)
j=0
(41)
=Y jkak >
k=i
(42)

The Fourier coefficients of frequency representation of the operator (39) are determined
by the following formulae:

A({c*P(A P ="rJ/(0cos(/try/)cl/, (43)

5{C*}>{A})="p (o sin(riV /. (44)

In general, these coefficients could not be determined in a closed form. Their determining,
when the form ofthe operator (39) is known, is carried out using symbolic operations.

Example
A nonlinear capacitor with the characteristic (Fig. 11) given in charge-voltage coordinates

is described by the formula:

o{u) = 1.58912-10%6 - -5.70566-10"9 -w3 . (45)

qu)

O /

i
3
/
/
/
C
1 U D

Fig. 11. The characteristic of a nonlinear capacitor
Rys. 11. Charakterystyka nieliniowego kondensatora
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Nemycky’s operator (see eq. (2)) is determined as follows:

= (1-5891210_6-17.1169810_9n2| ~ . (46)
dt diidt y dt (40)

Using Norton’s model the frequency representation of the capacitor with parameters that
depend only on the first harmonic of voltage t//= Cj-jDi, is described by the formulae:

z = . 8
1 7 (6.35648-10"6-17.11698-10 o(C2 +£»2))iy’ 47)
Jj(°) =|Im3sin(3m? + tpi ), (48)
where:

\JIn3\=-JAi +B3 =2-139622510~90jJ(C2+D2)3 , (a9)

S3 C3-3CD2
f=arct8 — = arctg—; . (50)

A3 D -3C D

The frequency representation of this capacitor, also for Norton’s model, but in the case of
parameters that depend on the first and the third harmonics of voltage (Ui=CrjDi, Uj=Cj-iDj)
is described by the formula:

Z|=fa-jB: zJT ' <5l
where:
A =— m((-2.13962-109(as-a 2as+a,cz2+ Cza,)%+
1os;r W 1 13 11 13" (52)
+D, (7.9456-10 7 - 4.27925-10°9(C2-C,C3 + ZR))),
B, =— co(c.(1.9456-10 7-4.27925-1 09(a2-D.D .+ C\))+
8x (53)
+(-2.13962¢10°9(C3- c,2C3+C,a 2 +a,z2C3)))
7'(0 =|-/m3|sin(3mt + "3)s (54)
where:
+B3 , (55)
@ = arctg53 (56)
A3
A} =0 (2.13962-10“9a 3-1.28377-10s(Cras+D;D}) +
+2.38368-10'6a 3-6.41887-10 9(Cza, + asc 2 + a3)} (57)
B} =m(2.13962-10~9C3+1.28377-10"8(C2C3+a,2C3) +
(58)

+2.38368-10 6a 3 - 6.41887-109(a 2C, - a 2C3 - C3)).
The dependence of:
impedance module |Z/| of equivalent one-port (Fig. 4),
module ofthe third harmonic of the current of source current (Fig. 4)
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on coefficients Cj and Cj for the fundamental frequency & and the other coefficients set
(Fig. 4) have been presented in Fig. 12 and 13.

Fig. 12. Diagrams of dependence ofthe impedance module \Z\ of equivalent one-port (Fig. 3)
on coefficients: (a) C/, (b) C3

Rys. 12. Wykresy zaleznosci modutu impedancji |Z;| rownowaznego dwojnika (Rys. 3) od
wspotczynnikéw: (a) Cl , (b) C3

Fig. 13. Diagrams of dependence of the module of the third harmonic of the source current (Fig. 3)
on coefficients: (a) Ch (b) C3

Rys. 13. Wykresy zalezno$ci modutu trzeciej harmonicznej zrédta pradowego (Rys. 3) od wspotczyn-
nikéw: (a) C,, (b) Cj

The packet Mathematica™ has been used in the example in the range of the symbolic and
numeric computations.

6. CONCLUSIONS

The presented method allows relatively simple determination of frequency parameters
of nonlinear models of one-ports. In the case under consideration current i(t) is a function
of voltage u(t) and its derivatives, thus, in contrast to inertialess characteristics ofthe nonlinear
element, the first harmonic of current i(t) depends not only on amplitude but also on frequency
of the voltage u(t). Besides frequency representations of nonlinear systems considered in this
article there are many other possible descriptions of nonlinear systems (e.g. using Volterra
series approach, Czebyshev polynomial etc.). Their comparison from effectiveness point
of view will be a matter of further works.
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