Adam MAREK Katedra Energoelektroniki, Napędu Elektrycznego i Robotyki, Zakład Energoelektroniki

RÓWNOLEGŁE ŁĄCZENIE MODUŁÓW TRANZYSTOROWYCH W FALOWNIKACH L–LC DUŻEJ MOCY ZASILAJĄCYCH NAGRZEWNICĘ INDUKCYJNĄ

Streszczenie. W artykule omówiono dwie możliwości równoległego łączenia zaworów falownika L–LC: bezpośrednie łączenie półmostków falownika oraz łączenie półmostków falownika wraz z dławikami będącymi częścią struktury falownika L–LC. Omówiono czynniki powodujące nierównomierność rozpływu prądu w równolegle łączonych zaworach (w stanie normalnej pracy układu) dla obu wspomnianych rozwiązań. Zwrócono uwagę na wpływ wyboru częstotliwości pracy układu (częstotliwość rezonansu szeregowego f_s oraz częstotliwość rezonansu równoległego f_r) oraz na nierównomierność rozpływu prądów w zaworach dla przypadku łączenia półmostków falownika wraz z dławikami L_k .

PARALLEL CONNECTION OF TRANSISTOR MODULES IN THE HIGH POWER L–LC INVERTER FEEDING AN INDUCTION HEATER

Summary. In the paper there are discussed two possibilities of parallel connection of the L–LC inverter switches: direct connection of inverter half–bridges and connection of inverter half–bridges with inductors being the part of the L–LC inverter structure. Factors causing the unequal current load of parallel–connected switches (under normal operating condition) for the both mentioned solutions are dicussed as well. The attention is paid to the choice of the operating frequency (series resonant frequency f_s and parallel resonant frequency f_r) and its influence on the current load inequality of the switches in the case of parallel connection of the inverter half–bridges with inductors L_k .

1. WSTĘP

Schemat falownika L–LC (z szeregowo–równoległym obwodem rezonansowym) przedstawiony został na rys. 1. Falownik L–LC, podobnie jak falownik napięcia z szeregowym obwodem rezonansowym i falownik prądu z równoległym obwodem rezonansowym, może być wykorzystany jako układ zasilający nagrzewnicę indukcyjną. W falowniku L–LC połączono korzystne cechy obu wspomnianych falowników. Obok nagrzewnicy indukcyjnej (reprezentowanej tutaj przez zastępcze parametry R,L) i kondensatora kompensującego C w obwodzie obciążenia falownika L–LC pojawia się dodatkowo dławik L_k . Element ten staje się przyczyną pojawienia się dodatkowych strat w układzie. Jednocześnie dławik L_k może zostać

wykorzystany do wyrównania obciążeń w pracujących równolegle zaworach omawianego przekształtnika. Struktura falownika pokazana na rys. 1 sugeruje dwie podstawowe częstotliwości pracy: w pobliżu częstotliwości rezonansu równoległego f_r lub przy częstotliwości rezonansu szeregowego f_s . Generalnie, praca układu w obu przypadkach charakteryzuje się odmiennymi właściwościami. Wybór określonej częstotliwości pracy związany jest głównie ze stawianymi wymaganiami (dla pracy układu nagrzewnicy indukcyjnej), takimi jak: dopuszczalny zakres zmian napięcia na wzbudniku (przy szerokim zakresie zmian parametrów układu), dopuszczalny udział wyższych harmonicznych w prądzie wyjściowym falownika *I*, parametry znamionowe wykorzystywanych w układzie zaworów (w powiązaniu do przewidywanej mocy wydzielanej we wsadzie) itp.

Rys. 1. Falownik L–LC (z szeregowo–równoległym obwodem rezonansowym) Fig. 1. L–LC inverter (with series–parallel resonant circuit)

2. SPOSOBY RÓWNOLEGŁEGO ŁĄCZENIA PÓŁMOSTKÓW FALOWNIKA L-LC

Często zachodzi sytuacja, w której przewidywany prąd roboczy jest większy od prądu znamionowego dostępnych zaworów falownika. Wówczas, w celu zwiększenia dopuszczalnej obciążalności układu zasilającego, można dokonać równoległego połączenia zaworów. Dla omawianego falownika L–LC przewiduje się dwie możliwości równoległego łączenia zaworów: bezpośrednie łączenie pómostków falownika (rys. 2. a) oraz łączenie półmostków falownika wraz z dławikiem L_k (rys. 2. b). Poniżej pokazano schematy połączeń obu wspomnianych przypadków.

- Rys. 2. Równoległe łączenie: a) samych półmostków falownika, b) półmostków falownika wraz z dławikiem dodatkowym
- Fig. 2. Parallel connection: a) only inverter half-bridges, b) inverter half-bridges with additional inductor

Do przeciążenia poszczególnych równolegle łączonych zaworów może dojść nie tylko w przypadkach awaryjnych, ale również w stanie normalnej pracy i przy prawidłowo dobranych

zaworach. Sytuacja taka może wynikać z dwóch zasadniczych przyczyn: różnicy parametrów równolegle łączonych zaworów bądź wystąpienia różnicy amplitud lub (i) faz napięć wyjściowych równolegle pracujących falowników. Ograniczenie nierównomierności rozpływu prądu w poszczególnych zaworach (wynikającego z różnych parametrów poszczególnych zaworów) można osiągnąć poprzez dobór zaworów ze wzglądu na określoną przez producenta klasę zaworów (ze względu na rozrzuty: napięć progowych oraz rezystancji dynamicznej). Pojawiająca się różnica wartości amplitud czy faz napięć wyjściowych falowników może mieć szczególnie niekorzystny wpływ w przypadku modułowego łączenia zaworów wraz z dławikiem L_k (rys. 2 b). Dla tego przypadku przyjęto schemat zastępczy pokazany na rys. 3.

Rys. 3. Schemat zastępczy równolegle łączonych falowników z dławikiem Fig. 3. Equivalent scheme of inverters parallelly connected with inductors

Gałąź z indeksem x reprezentuje n-1 równolegle połączonych falowników, posiadających dokładnie takie same parametry oraz generujące na wyjściu napięcia o takiej samej amplitudzie oraz fazie. Zawory n-tego falownika mają te same parametry, co pozostałe falowniki, ale na wyjściu tego falownika pojawia się napięcie o innej amplitudzie lub fazie. Przykładowo, sytuację występowania różnicy faz napięć wyjściowych falowników odzwierciedlają wykonane symulacje układu pracującego z częstotliwością rezonansu równoległego f_{rown} (obwodu $R, L, C \rightarrow$ rys. 4 a) oraz z częstotliwością rezonansu szeregowego f_s (rys. 4 b).

Rys. 4. Przebiegi napięć i prądów wyjściowych falownika modułowo łączonych półmostków falownika dla: a) $f = f_{rown}$, b) $f = f_s$

Fig. 4. Inverter output voltage and current waveforms of the module connected inverters operating at: a) $f = f_{rown}$, b) $f = f_s$ Powyższe przebiegi napięć i prądów otrzymano dla modelu, w którym: $L_k/L = 2,5$ $(L_k' = 2L_k)$, kąt między napięciami wyjściowymi falowników wynosił 30°el, zaś dobroć Q obwodu równoległego R,L,C wynosiła 10. Uwidacznia się znaczna asymetria obciążeń pracujących równolegle zaworów, wówczas gdy zawory te przełączane są z częstotliwością w pobliżu f_r ($f_{rown} \rightarrow rys. 4$ a). Natomiast przełączanie zaworów z częstotliwością f_s , dla tego samego układu, przyczynia się do zmniejszenia nierównomierności rozkładu obciążeń w równolegle łączonych zaworach. Zatem wybór częstotliwości, jak również innych parametrów pracy układu, może mieć zasadniczy wpływ na rozkład obciążenia w poszczególnych zaworach w normalnym stanie pracy falownika L–LC.

2.1. Bezpośrednie, równolegle lączenie półmostków falownika

W przypadku bezpośredniego, równoległego łączenia półmostków falowników zasadniczą przyczyną nierównomiernego rozpływu prądów w równolegle łączonych zaworach są nierówności czynników statycznych (nierównomierność statyczna) oraz dynamicznych (nierównomierność dynamiczna) łączonych równolegle elementów. Nierównomierność statyczna wynika głównie z występowania różnych spadków napięcia na zaworach w stanie przewodzenia (głównie różnych rezystancji dynamicznych zaworów). Z kolei na nierównomierność dynamiczną wpływają przede wszystkim czynniki związane z układami wyzwalania. Są to głównie problemy wynikające z różnych czasów propagacji układów wyzwalania dla poszczególnych, równolegle połączonych zaworów (niesynchroniczne załączanie i wyłączanie zaworów). W rozważanej sytuacji na nierównomierność rozpływu prądu w zaworach mają wpływ przede wszystkim czynniki związane z nierównomiernością statyczną (praca zaworów w stanie ustalonym). Na rys. 5 E_d oznacza napięcie progowe, r_d – rezystancję dynamiczną zaworu, zaś L – całkowitą dodatkową indukcyjność w obwodzie półmostka falownika (bez dławika L_k).

Rys. 5. Schemat zastępczy łączenia równoległego samych półmostków falownika Fig. 5. Equivalent scheme of directly connected inverter half-bridges

W obliczeniach przyjęto, że L = 0 (pomija się indukcyjności pasożytnicze oraz stany przejściowe). Wyrównanie nierównomierności statycznej dokonuje się poprzez selekcję elementów pod kątem spadku napięcia przy prądzie znamionowym oraz określenie w takim wypadku wpływu zmienności rezystancji dynamicznej na obciążenie zaworów. Firmy produkujące moduły tranzystorowe dokonują selekcji elementów pod kątem spadku napięcia oznaczając je najczęściej dodatkową literą. Najpoważniejszą przyczyną rozrzutu spadków napięcia na zaworach pozostaje więc zmienność rezystancji dynamicznej r_d (założono, że $E_{d1} = E_{d2} = ... = E_{dn}$). Wobec tego schemat elektryczny z rys. 5 sprowadza się do dwóch równolegle połączonych rezystancji. W przypadku równolegle połączonych *n* zaworów uzyskujemy ostatecznie schemat składający się z *n* połączonych równolegle rezystancji r_d . W najniekorzystniejszym przypadku *n*-1 zaworów ma maksymalną rezystancje r_d , zaś jeden z równolegle połączonych zaworów ma minimalną rezystancję r_d . Wówczas gałąź x reprezentuje (n-1) zaworów połączonych równolegle (o tej samej maksymalnej wartości rezystancji r_d). Układ sprowadza się wtedy do przypadku dwóch połączonych równolegle rezystancji: r_{dx} i r_{dn} , gdzie: $r_{dx} = r_d (1 + \Delta r_d) / (n-1)$, a $r_{dn} = r_d (1 - \Delta r_d)$, Δr_d – maksymalny rozrzut rezystancji dynamicznej zaworu. Na podstawie schematu z rys. 5 oraz przyjętych założeń uzyskuje się wyrażenie:

$$I = \left(1 + \frac{(n-1)(1-\Delta r_d)}{1+\Delta r_d}\right) I_n.$$
(1)

Prąd I można zdefiniować jako $I = n I_{id}$ przy założeniu, że I_{id} odpowiada wartości prądu płynącego przez równolegle połączone zawory (o tych samych parametrach). Współczynnik zmniejszenia dopuszczalnego prądu k_{min} definiuje się jako: $k_{min} = 1 - I_{id}/I_n$. Ostatecznie zależność na wartość współczynnika zmniejszenia dopuszczalnego prądu:

$$k_{\min} = 1 - \frac{1 + \frac{(n-1)(1 - \Delta r_d)}{1 + \Delta r_d}}{n}.$$
 (2)

Przykładowo, dla modułów IGBT producent określił rozrzut zmienności rezystancji dynamicznej dla modułów 600 V na $\Delta r_d = 0,1$, zaś dla modułów 1200 V na $\Delta r_d = 0,15$. Dla takich wartości Δr_d zostały wyznaczone wykresy zależności współczynnika zmniejszenia dopuszczalnego prądu k_{min} w funkcji liczby połączonych równolegle zaworów *n* (rys. 6).

Rys. 6. Wykresy zależności $k_{min} = f(n) \operatorname{dla} \Delta r_d = 0,1 \text{ oraz } 0,15$ Fig. 6. Depedency of k_{min} on the number of modules *n* for $\Delta r_d = 0.1$ and 0.15

Maksymalny dopuszczalny prąd przy równoległym połączeniu zaworów wynosi:

$$I_{\max} = \left(1 + \frac{(n-1)(1 - \Delta r_d)}{1 + \Delta r_d}\right) I_{zn} \,. \tag{3}$$

Zależność maksymalnego dopuszczalnego prądu I_{max} w funkcji liczby równolegle połączonych modułów *n* (dla dwóch wartości prądów znamionowych oraz dwóch wartości rozrzutu zmienności rezystancji dynamicznej Δr_d) została zobrazowana na rys. 7.

Rys. 7. Wykresy zależności: $I_{max} = f(n) \text{ dla } \Delta r_d = 0, 1 I_{zn} = 200 \text{ A}; \Delta r_d = 0, 15 I_{zn} = 200 \text{ A}; \Delta r_d = 0, 15 I_{zn} = 300 \text{ A}; \Delta r_d = 0, 15 I_{zn} = 300 \text{ A}$ Fig. 7. Depedency of I_{max} on the number of modules *n* for $\Delta r_d = 0.1 I_{zn} = 200 \text{ A}; \Delta r_d = 0.15 I_{zn} = 200 \text{ A}; \Delta r_d = 0.15 I_{zn} = 300 \text{ A}$

Otrzymane na rys. 7 przebiegi wskazują, iż wzrost rozrzutu zmienności rezystancji dynamicznej (przy tej samej wartości prądu znamionowego) powoduje ograniczenie dopuszczalnego obciażenia zaworów.

Na nierównomierność statyczną ma wpływ również wzajemne umiejscowienie zaworów. Ważne jest, by łączone równolegle zawory znajdowały się na jednym radiatorze. W przeciwnym razie obudowy zaworów mogą posiadać różne temperatury. To z kolei przyczynia się do powstania różnic w wartościach rezystancji dynamicznych r_d poszczególnych zaworów. Należy w tym miejscu zauważyć, że wpływ temperatury występującej na złączach zaworów wprowadza w układzie rzeczywistym pewne poprawki. Zawór, który jest najbardziej obciążony, posiada wyższą temperaturę. W rzeczywistości więc jego rezystancja dynamiczna r_d staje się większa od założonej. Tym samym nierównomierność statyczna pomiędzy zaworami będzie mniejsza.

2.2. Modułowe, równoległe łączenie półmostków falownika

Na nierównomierność w rozpływie prądów w poszczególnych, równolegle łączonych zaworach falownika (wraz z dławikiem L_k) wpływają w czasie normalnej pracy przede wszystkim aspekty związane z układami wyzwalania (zwłaszcza niesynchroniczne załączanie i wyłączanie równolegle łączonych zaworów, co ma znaczenie zwłaszcza przy wyższych częstotliwościach pracy -> pojawienie się przesunięcia fazowego pomiędzy równolegle łączonymi falownikami) oraz asymetrii zasilania poszczególnych falowników (tym samym różnicy amplitud napięć na wyjściu równolegle łączonych falowników). Na podstawie schematu z rys. 3 można wyznaczyć równania opisujące prądy równolegle łączonych zaworów uwzględniające oba wspomniane problemy. Wartość skuteczna prądu gałęzi I_n opisana jest zależnością:

$$I_{n} = \frac{\sqrt{E_{zas}^{2} \left[n_{h}^{2} k^{2} a + cb\right]^{2} + \left[E_{zas}\left(\frac{n_{h}k}{Q}b - n_{h}kQca\right) + \frac{E_{x}(1 - k_{zas})(n - 1)}{n^{2}n_{h}kQ\frac{L_{k}}{L}}(b^{2} + n_{h}^{2}k^{2}Q^{2}a^{2})\right]^{2}}{nR_{o}\left[b^{2} + n_{h}^{2}k^{2}Q^{2}a^{2}\right]},$$

$$a = 1 + \frac{L_{k}}{L}\left(1 - n_{h}^{2}k^{2}\right),$$

$$b = 1 - n_{h}^{2}k^{2}\frac{L_{k}}{L},$$

$$c = 1 - n_{h}^{2}k^{2},$$

$$k_{zas} = \frac{E_{n}}{E_{x}},$$
(4)

gdzie: n_h – nieparzyste harmoniczne,

- R rezystancja uwzględniająca wpływ częstotliwości pracy na rezystancję zastępczą układu grzejnego wzbudnik wsad [2]: $R = R_o \sqrt{f/f_o} = R_o \sqrt{n_b k}$,
- R_o rezystancja zastępcza układu grzejnego wzbudnik wsad przy częstotliwości pracy układu równej f_o
- Q dobroć obwodu równoległego R,L,C dla pulsacji $\omega_o: Q = \omega_o L / R_o = 1 / R_o \omega_o C$,
- k względna pulsacja: $k = \omega/\omega_o$ [4].

Natomiast wartość skuteczna prądu Ix opisana jest zależnością:

$$I_{x} = \frac{(n-1)\sqrt{E_{zas}^{2}\left[n_{h}^{2}k^{2}a+cb\right]^{2} + \left[E_{zas}\left(\frac{n_{h}k}{Q}b-n_{h}kQca\right) - \frac{E_{x}(1-k_{zas})}{n^{2}n_{h}kQ\frac{L_{k}}{L}}\left(b^{2}+n_{h}^{2}k^{2}Q^{2}a^{2}\right)\right]^{2}}{nR_{o}\left[b^{2}+n_{h}^{2}k^{2}Q^{2}a^{2}\right]}.$$
 (5)

Z kolei E_{zas} zależnie od przyczyny asymetrii: a) różnicy amplitud napięć wyjściowych, b) różnicy faz napięć wyjściowych opisana jest wyrażeniem:

a)
$$E_{zas} = E_x - \frac{E_x - E_n}{n},$$

b)
$$E_{zas} = E_x \frac{\sqrt{(n - 1 + k_{zas} Cos [n_h \alpha])^2 + (k_{zas} Sin [n_h \alpha])^2}}{n}.$$
(6)

Na podstawie zależności (4), (5), (6 a) oraz k dla określonej częstotliwości pracy wyznaczono wykresy zależności stosunku $I_n/I_x = f(Q)$ przy parametrycznych zmianach liczby równolegle łączonych modułów n oraz dla najbardziej niekorzystnego stosunku $E_n/E_x = 0$ (kąt przesunięcia fazowego we wszystkich przypadkach $\alpha = 0$), stosunku $L_k/L = 1$, $n_h = 1$ (pierwsza harmoniczna), przy częstotliwości przełączania zaworów $f_{rown} - > a$) i $f_s -> b$):

Rys. 8. Wykres zależności $I_n/I_x = f(Q)$ dla $E_n/E_x = 0$, $L_k/L = 1$, $n_h = 1$, a) $f = f_{rown}$ b) $f = f_s$ Fig. 8. Depedency of: ratio I_n/I_x on quality factor Q for $E_n/E_x = 0$, $L_k/L = 1$, $n_h = 1$, a) $f = f_{rown}$ b) $f = f_s$

Zastosowanie modułowego, równoległego łączenia półmostków falownika umożliwia zasadnicze ograniczenie nierównomierności rozpływu prądów w poszczególnych zaworach (wynikającej z asymetrii napięć zasilania falowników), zwłaszcza w przypadku pracy układu z częstotliwością f_s (rys. 8 b). Praca układu w pobliżu częstotliwości f_r jest w tych warunkach znacznie mniej korzystna. W takim przypadku obciążenie zaworów n-tego falownika I_n zmierza do krotności n-1 prądu zaworów innego, równolegle połączonego falownika (rys. 8 a). Przeprowadzone badania dowiodły, że wzrost stosunku L_k/L prowadzi do zmniejszenia nachylenia charakterystyk zależności n-1). W analizowanym stanie pracy, stosunek I_n/I_x dla trzeciej harmonicznej jest mniejszy od jedności. Nie występuje więc problem nadmiernego, dodatkowego obciążenia n-tych zaworów prądami wyższych harmonicznych. Udział prądu trzeciej harmonicznej w prądzie n-tego zaworu wzrasta liniowo wraz ze wzrostem napięcia E_n (ze wzrostem E_n maleje jednakże stosunek I_n/I_x dla pierwszej harmoniczna prądu I_n .

Rys. 9. Wykresy zależności $I_n/I_x = f(\alpha)$ dla Q = 10, $L_k/L = 5$, $n_h = 1$, a) $f = f_{rown}$, b) $f = f_s$ Fig. 9. Depedency of: ratio I_n/I_x on output voltage shift phase α for Q = 10, $L_k/L = 5$, a) $f = f_{rown}$, b) $f = f_s$

Pojawienie się różnicy faz napięć wyjściowych falowników może skutkować większą asymetrią prądów zaworów falowników niż w przypadku różnicy amplitud napięć zasilających falowników (rys. 9). Różnica widoczna jest szczególnie przy pracy układu z częstotliwością f_s , gdzie różnice w obciążeniach zaworów były znikome nawet przy niedużych wartościach stosunku L_k/L oraz małych dobroci Q (rys. 8 b, rys. 9 b). Praca układu w pobliży

częstotliwości f_r jest również w tym wypadku mniej korzystna od pracy układu przy częstotliwości f_s (rys. 9). Porównanie obu niekorzystnych stanów pracy układu uwidocznia zasadniczą różnicą pomiędzy nimi. W tym wypadku zwiększanie liczby równolegle łączonych falowników prowadzi do zmniejszenia asymetrii obciążeń zaworów. Pojawienie się różnicy faz napięć zasilających jest szczególnie niekorzystne przy pracy równoległej dwóch falowników niezależnie od wybranej częstotliwości pracy tzn. f_r lub f_s (zwłaszcza dla kątów $\alpha > 0.75 \pi$).

Rys. 10. Wykres zależności $I_{n'}I_x = f(\alpha)$ dla $f = f_s$, $L_{k'}L = 5$, Q = 10, $n_h = 3$ Fig. 10. Depedency of: ratio $I_{n'}I_x$ on output voltage shift phase α for $f = f_s$, $L_{k'}L = 5$, Q = 10, $n_h = 3$

Ograniczenie nierównomierności obciążeń zaworów falowników można uzyskać poprzez zwiększenie stosunku L_k/L . Asymetria obciążeń zaworów zmniejsza się także wraz ze wzrostem dobroci Q. Pojawienie się różnicy faz napięć zasilających falowniki skutkuje również dodatkowym nierównomiernym obciążeniem *n*-tego falownika prądami wyższych harmonicznych (znaczenie ma zwłaszcza trzecia). Szczególnie niekorzystne jest przesunięcie faz napięć wyjściowych falowników o kąt $\pi/3$ (rys. 10). Wobec tego praca układu z częstotliwością w pobliżu f_r (przy równoległym łączeniu zaworów wraz z dławikiem) może być wyjątkowo niekorzystna.

Wystąpienie różnicy faz napięć wyjściowych falowników może być bardziej niekorzystne od pojawienia się nawet dużej asymetrii amplitud napięć wyjściowych falowników, ze względu na większą nierównomierność obciążenia prądowego poszczególnych zaworów, zarówno dla pierwszej jak i trzeciej harmonicznej (niezależnie od wyboru częstotliwości pracy falownika L-LC).

3. WNIOSKI

Przedstawione zagadnienia związane z pracą równoległą zaworów w falowniku L–LC wskazują jednoznacznie, że praca układu z częstotliwością rezonansu szeregowego f_s jest znacznie korzystniejsza niż praca w pobliżu częstotliwości rezonansu równoległego f_r . Jest to szczególnie zauważalne w przypadku modułowego (wraz z dławikiem L_k), równoległego łączenia falowników. Potwierdzają to przypadki pojawiającej się w czasie normalnej pracy (lub awaryjnej) asymetrii napięć wyjściowych falowników (rys. 8) oraz różnicy faz napięć wyjściowych falowników (rys. 9). Problem nierównomiernego obciążenia zaworów falowników dotyczy również wyższych harmonicznych. W tym względzie szczególnie

niekorzystne jest pojawienie się różnicy faz napięć wyjściowych falowników, gdyż prowadzi do dodatkowego obciążenia i tak już przeciążonego *n*-tego zaworu (rys. 3). W przypadku trzeciej harmonicznej szczególnie niekorzystna jest praca układu odpowiadająca przesunięciu faz o kąt $\alpha = \pi/3$ (rys. 10). Duża nierównomierność obciążeń równolegle, modułowo łączonych zaworów falownika pracującego w pobliżu częstotliwości *f*, skłania do zastosowania bezpośredniego, równoległego łączenia zaworów falownika bądź ograniczenie różnicy faz i amplitud napięć wyjściowych równolegle łączonych falowników. Na nierównomierność obciążeń zaworów w przypadku bezpośredniego, równoległego łączenia zaworów falowników ma głównie wpływ maksymalny rozrzut rezystancji dynamicznej zaworu Δr_d (po dokonaniu selekcji elementów pod kątem spadku napięcia oraz pominięciu indukcyjności pasożytniczych -> nierównomierność statyczna). Wówczas na podstawie przewidywanej wartości prądu wyjściowego falownika L–LC można wyznaczyć niezbędną liczbę równolegle łączonych zaworów (rys. 7).

LITERATURA

- Espí JM., Dede EJ., García R., Castelló J., Martí JM.: Nuevas tendencias basadas en osciladores de tres elementos para Calentamiento por Inducción: el inversor L-LC. Ediciones Técnicas Rede, Enero 2001.
- 2. Geisel H., Remscheid: Das Betriebsverhalten von Schwingkreisumrichter für induktive Erwärmung. Elektrowärme international. Bd. 27 Nr 6 1969.
- 3. Marek A.: Wybrane aspekty pracy falownika L-LC do nagrzewania indukcyjnego. XI Sympozjum PPEE'2005, Wisła 2005.
- 4. Marek A.: Wybrane zagadnienia związane z pracą falownika L-LC. SENE 2005, Łódź 2005
- 5. Matthes H.-G.: Der statistische Frequenz Umrichter zum Einsatz in der industriellen. Elektrowärme international. Heft B3, 1977.
- 6. Matthes H.-G., Jurgens R.: *HF Rohrschweissen mit IGBT Reihenschwingkreis-umrichter*. Elektrowärme international. Heft B4, 1998.
- 7. Matthes H.-G., Mauler E.: Stromversorgungseinrichtungen für Induktionserwärmungsanlagen. Elektrowärme international. Heft B2, 1978.
- Schönknecht A., De Doncker R. W.: Novel topology for parallel connection of soft-switching highpower high-frequency inverters. IEEE transactions on industry applications, vol. 39, No. 2, March / April 2003.
- 9. Schwarzer U., Schönknecht A., De Doncker R. W.: Hochleistungs-IGBT-Umrichter für induktive Erwärmungsanwendungen. Elektrowärme international. Heft 2/2001.

Pracę wykonano w ramach projektu badawczego Nr 4 T10A 066 25 finansowanego przez Ministerstwo Edukacji i Nauki.

Wpłynęło do Redakcji dnia 15 października 2005 r. Recenzent: Dr hab. inż. Maciej Tondos prof. nadzw. AGH