Marcin ZYGMANOWSKI, Bogusław GRZESIK Katedra Energoelektroniki, Napędu Elektrycznego i Robotyki

MODULACJA WEKTOROWA 3-POZIOMOWEGO FALOWNIKA NAPIĘCIA ZREALIZOWANA PRZY UŻYCIU UKŁADU TMS320F2812

Streszczenie. W artykule przedstawiono realizację modulacji wektorowej dla falownika 3-poziomowego z diodami poziomującymi za pomocą mikrokontrolera sygnałowego TMS320F2812 oraz właściwości tej metody modulacji wraz z wynikami pomiarowymi uzyskanymi dla niskonapięciowego modelu falownika 3-poziomowego.

SPACE VECTOR MODULATION FOR A 3-LEVEL NEUTRAL-POINT CLAMPED INVERTER USING DSP TMS 320F2812

Summary. Space Vector Modulation for a 3-level neutral-point clamped inverter using DSP TMS 320F2812 is the subject of the paper. The control method is verified by using a low voltage model of the 3-level NPC inverter.

1. WPROWADZENIE

Artykuł ten powstał jako wynik systematycznych badań, których celem było opracowanie najbardziej korzystnej wersji układu kondycjonowania energii. Badania te dotyczą zarówno zasobników energii, jak i przekształtników energoelektronicznych takich, jak przekształtniki wielopoziomowe. Przekształtniki pracujące w układzie kondycjonowania energii narażone są na różne czynniki, często inne niż w przemiennikach częstotliwości MSI stosowanych w napędzie elektrycznym, dlatego potrzebne są badania przekształtników wielopoziomowych w tym zakresie.

Przekształtniki wielopoziomowe pozwalają na uzyskanie przebiegów napięcia wyjściowego o kształcie bliższym sinusoidalnemu w stosunku do napięcia wyjściowego klasycznych przekształtników (rys. 1b) [1, 2, 3]. Inną ich istotną cechą jest to, że mogą one być zbudowane z energoelektronicznych zaworów o niższych napięciach znamionowych niż napięcie obwodu pośredniczącego $U_{\rm DC}$. Na każdym z zaworów w stanie ustalonym maksymalne napięcie jest równe $U_{\rm DC}/(n-1)$, gdzie *n* jest liczbą poziomów napięcia wyjściowego mierzonego względem punktu A oraz punktu neutralnego napięcia stałego 0 (rys 1a). W zależności od topologii przekształtnika wielopoziomowego, odpowiednie napięcia $U_{\rm Px}$ i $U_{\rm Nx}$ (gdzie: x = 1, ..., (n-1)/2) są przyłączane do jego wyjścia.

Rys. 1. Przekształtnik *n*-poziomowy. (a) Schemat działania, (b) napięcie wyjściowe u_{A0} Fig. 1. *N*-level converter. (a) schematic description, (b) output voltage u_{A0}

Najczęściej spotykanymi w literaturze przekształtnikami wielopoziomowymi są: przekształtniki z diodami poziomującymi (*diode-clamped converters*), przekształtniki z kondensatorami poziomującymi (*capacitor-clamped converters*) oraz przekształtniki kaskadowe (*cascaded multicell converters*).

Jednym z poważniejszych ograniczeń w stosowaniu przekształtników wielopoziomowych jest potrzeba wysterowania dużej liczby zaworów energoelektronicznych wchodzących w ich skład, np. w przekształtniku 3-fazowym *n*-poziomowym jest to 6(n - 1) zaworów. Nowoczesne układy mikroprocesorowe oraz programowalne pozwalają wygenerować te sygnały w możliwie prosty sposób. Można to prześledzić w układzie sterowania trójfazowego falownika 3-poziomowego z diodami poziomującymi [4] (rys. 2) zaprezentowanego w niniejszym artykule, gdzie sterowanie jest zrealizowane za pomocą mikrokontrolera sygnałowego TMS320F2812 firmy Texas Instruments.

Przekształtnik 3-poziomowy jest pierwszym etapem na drodze do zbudowania wielopoziomowego układu kondycjonowania energii wraz z układem sterowania (docelowo przewiduje się budowę przekształtników 5-poziomowych).

Rys. 2. Trójfazowy falownik 3-poziomowy z diodami poziomującymi Fig. 2. Neutral-point clamped inverter

Celem tej pracy jest przebadanie możliwości modulacji wektorowej dla falownika 3-poziomowego zrealizowanej za pomocą układu TMS320F2812. Ten rodzaj sterowania jest jednym z etapów prowadzących do opracowania w pełni funkcjonalnego sterowania układu kondycjonowania energii zbudowanego z przekształtników wielopoziomowych.

W pracy przyjęto, że napięcia kondensatorów C_1 i C_2 są stałe i wynoszą $U_{DC}/2$. Przedstawioną metodę sterowania zweryfikowano na niskonapięciowym modelu falownika 3-poziomowego z diodami poziomującymi.

2. MODULACJA WEKTOROWA DLA FALOWNIKA 3-POZIOMOWEGO

2.1. Wektory napięcia falownika 3-poziomowego

W układach trójfazowych istnieje możliwość przedstawienia możliwych napięć fazowych w postaci przestrzennego wektora napięcia [5]. Wzór (1) jest odwzorowaniem trójfazowych napieć wyjściowych falownika na przestrzenny wektor napięć falownika – rys. 4a

$$u(t) = \frac{2}{3} \left(u_{A0}(t) + a \cdot u_{B0}(t) + a^2 \cdot u_{C0}(t) \right),$$
(1)

gdzie: $a = e^{j\frac{2\pi}{3}} = -0,5 + j\sqrt{3}/2$,

 $u_{A0}(t) = (S_A(t) - 1)U_{DC}/2, \ u_{B0}(t) = (S_B(t) - 1)U_{DC}/2, \ u_{C0}(t) = (S_C(t) - 1)U_{DC}/2 - \text{odpo-}$ wiednio napięcia wyjściowe mierzone między punktami A, B, C, a punktem 0, $S_A(t), S_B(t), S_C(t) \in \{0, 1, 2\}$ – stany łączników falownika dla faz A, B i C – rys. 3.

Rys. 3. Stany łączników jednej fazy falownika 3-poziomowego; x = A, B, CFig. 3. Switching states of one phase-leg of 3-level inverter; x = A, B, C

W celu łatwiejszego przedstawienia opracowanej metody modulacji, wektory napięcia falownika wymnaża się przez $3/U_{DC}$, aby odległość pomiędzy najbliższymi sąsiednimi wektorami wynosiła zawsze 1 - rys. 4b.

Rys. 4. Rozmieszczenie 27 możliwych wektorów falownika 3-poziomowego na płaszczyznach $u_x = \operatorname{Re}(u)$, $u_{y} = Im(u)$ i $u'_{x} = Re(u')$, $u'_{y} = Im(u')$: a) we ktory opisane wzorem (1), b) we ktory znormalizowane Fig. 4. Location of 27 possible 3-level inverter vectors on the planes $u_x = \text{Re}(u)$, $u_y = \text{Im}(u)$ and

 $u'_x = \operatorname{Re}(u'), u'_y = \operatorname{Im}(u')$: a) inverter vectors described by (1), b) normalized inverter vectors

Na rys. 4b przedstawiono zadany wektor przestrzenny U wraz z jego składowymi $U_x = \operatorname{Re}\{U\}$ i $U_y = \operatorname{Im}\{U\}$. Maksymalny moduł zadanego wektora przestrzennego wynosi $\sqrt{3}m$, gdzie *m* jest głębokością modulacji zmieniającą się w granicach $0 \le m \le 1$.

Podobnie jak w przypadku modulacji wektorowej dwupoziomowego falownika syntetyzowanie wektora przestrzennego odbywa się tu poprzez przełączanie pomiędzy trzema najbliższymi wektorami, np. dla przypadku z rys. 4b są to wektory {100/211, 200, 210}. Synteza wektora przestrzennego w falowniku wielopoziomowym może być znacząco uproszczona poprzez wybór wektorów bazowych oraz wydzielenie spośród wszystkich 27 wektorów (z 3-sześciokąta) mniejszych grup tworzących 2-sześciokąty z wektorem bazowym pośrodku.

2.2. Dekompozycja 3-sześciokąta

Opisane w poprzednim rozdziale wydzielanie grup wektorów napięć, nazywane także dekompozycją, powoduje, że w zależności od położenia zadanego wektora przestrzennego spośród wszystkich 27 wektorów napięcia tworzących 3-sześciokąt (obszar obejmujący wszystkie możliwe wektory falownika 3-poziomowego) wybierany jest odpowiedni 2-sześciokąt [6]. 2-sześciokąt to inaczej zbiór 8 wektorów napięcia, które tworzą taki sam zbiór jak odwzorowanie wszystkich możliwych wektorów napięcia falownika 2-poziomowego. Metoda dekompozycji została przedstawiona na rys. 5.

W przedstawionej na rys. 5 metodzie dekompozycji poszczególne 2-sześciokąty wybierane są na podstawie kąta zadanego wektora przestrzennego ωt oraz jego modułu. Jednolitym kolorem zaznaczono obszary, dla których wybierany jest odpowiedni sześciokąt. Pole zakreskowane to obszar, dla którego głębokość modulacji m > 1, a modulacja w tym obszarze nie

Rys. 5. Dekompozycja 3-sześciokąta na siedem 2-sześciokątów na płaszczyźnie $u'_x u'_y$ Fig. 5. Decomposition of 3-level inverter hexagon into seven 2-level inverter hexagons on $u'_x u'_y$ plane

jest przedmiotem badań w niniejszej pracy. Warunki, przy których wybierany jest odpowiedni 2-sześciokąt, zebrano w tabeli 1. Po wyborze odpowiedniego sześciokąta określa się nowe współrzędne wektora przestrzennego U_x , U_y odniesione do wybranego wektora bazowego – wzór (2)

Tabela l

Numor	Głębokość modulacji <i>m</i>		Wektor bazowy		
2-sześciokąta		Kąt ωt	stany łączników {w ₀ /w ₁ }	(<i>ub</i> ' _x ; <i>ub</i> ' _y)	
0	\leq 0,5	(0, 2π)	{000/111} {111/222}	(0; 0)	
1	> 0,5	(-π/6, π/6)	{100/211}	(1;0)	
2	> 0,5	(π/6, π/2)	{110/221}	$(0,5;\sqrt{3}/2)$	
3	> 0,5	(π/2, 5π/6)	{010/121}	(-0,5; $\sqrt{3}/2$)	
4	> 0,5	(5π/6, 7π/6)	{011/122}	(-1, 0)	
5	> 0,5	(7π/6, 3π/2)	{001/112}	$(-0,5;-\sqrt{3}/2)$	
6	> 0,5	$(3\pi/2, 11\pi/6)$	{101/212}	$(0,5;-\sqrt{3}/2)$	

Parametry 2-sześciokątów dla zadanego wektora przestrzennego
$$U = \sqrt{3} m e^{j\omega}$$

$$U'_{x} = U_{x} - ub'_{x}; U'_{y} = U_{y} - ub'_{y}.$$
⁽²⁾

2.3. Obliczenia czasów przelączeń t_0, t_1, t_2 dla okresu przelączania T_s

Podobnie jak w przypadku modulacji wektorowej dla falowników 2-poziomowych, dla modulacji 3-poziomowej w obrębie jednego okresu przełączania T_S zachowuje się następującą sekwencję wektorów (3)

$$z_1 \to a_1 \to a_2 \to z_2 \to z_2 \to a_2 \to a_1 \to z_1, \qquad (3)$$

gdzie: z_1 , z_2 - wektory zerowe, a_1 , a_2 - wektory aktywne

Na rys. 6a przedstawiono wybrany 2-sześciokąt, dla którego zaznaczono 2 wektory zerowe w_0 , w_7 , 6 wektorów aktywnych $w_1 + w_6$ oraz zaznaczono 6 sektorów I + VI. Sposób syntezowania zadanego wektora przestrzennego U' przedstawiono na przykładzie sektora VI w 2-sześciokącie 5 – rys. 6b. Przedstawiona sekwencja $w_0 \rightarrow w_1 \rightarrow w_6 \rightarrow w_7$ (dla $T_s/2$) pozwala na zminimalizowanie liczby przełączeń w trzech fazach falownika do sześciu na każdy okres przełączania. Dla pozostałych sektorów, niezależnie od wybranego 2-sześciokąta, sekwencje przełączania oraz warunki wyboru odpowiedniego sektora zestawiono w tabeli 2.

Oprócz sekwencji wektorów ważne są czasy ich trwania w obrębie okresu przełączania. Podobnie jak dla metody 2-poziomowej, czasy t_1 i t_2 (odpowiednio czasy trwania wektorów a_1 i a_2) określają udział danego wektora w okresie przełączania. Na rys. 7 przedstawiono sposób obliczania tych czasów. Sposób ten pozwala na szybsze wykonanie obliczeń niż w przypadku metody bazującej na kącie $\omega't$ sprowadzonego do 2-sześciokąta. Czas trwania obu wektorów zerowych (w_0, w_7) w półokresie przełączania $T_s/2$ oblicza się ze wzoru (4):

- Rys. 6. 2-sześciokąt odniesiony do nowego wektora bazowego: a) numeracja wektorów i sektorów w 2-sześciokącie b) napięcia wyjściowe w okresie przełączania T_s dla 2-sześciokąta 5 i sektora VI
- Fig. 6. 2-level inverter hexagon referred to the newer base vector: a) vector and sector numbers in 2-level inverter hexagon, b) output voltages in switching interval T_S for 2-level inverter hexagon 5 and sector VI

$$t_0 = \frac{T_{\rm S}}{2} - t_1 - t_2 \,. \tag{4}$$

Tabela 2

Sekwencja Sektor Warunek $t_1 \ (0 \le t_1 \le T_S/2)$ $t_2 \ (0 \le t_2 \le T_S/2)$ wekt. (dla $T_S/2$) $U'_{x} \ge 0; \sqrt{3}U'_{x} > U'_{y} \ge 0$ $\frac{2}{\sqrt{5}}U'_{y}T_{s}/2$ Ι $(U_{\rm x} - 1/_{3}U_{\rm y})T_{\rm S}/2$ $w_0 - w_1 - w_2 - w_7$ $(U_{\star} + \frac{1}{\sqrt{3}}U_{v}) T_{S}/2$ $U_{\rm v} \geq \left| \sqrt{3} U_{\rm v} \right|$ $(-U_{x} + \frac{1}{\sqrt{3}}U_{y})T_{s}/2$ Π W0-W3-W2-W7 $U'_{x} < 0; -\sqrt{3}U'_{x} > U'_{y} \ge 0$ $2/_{J_3}U'_y T_s/2$ $(-U_{x} - \frac{1}{\sqrt{3}}U_{y})T_{S}/2$ Ш $w_0 - w_3 - w_4 - w_7$ $-\frac{2}{\sqrt{3}}U'_{y}T_{s}/2$ $U'_{x} < 0; 0 > U'_{y} \ge \sqrt{3}U'_{x}$ $(-U_{x} + \frac{1}{\sqrt{3}}U_{y})T_{S}/2$ IV W0-W5-W4-W7 $-\left|\sqrt{3}U_{x}\right| \geq U_{y}$ $(-U_{x} - \frac{1}{\sqrt{5}}U_{y})T_{s}/2$ $(U_{x} - \frac{1}{\sqrt{5}}U_{y})T_{s}/2$ V $w_0 - w_5 - w_6 - w_7$ $U'_{x} \ge 0; 0 > U'_{y} \ge \sqrt{3}U'_{x}$ $(U'_{x} + \frac{1}{\sqrt{3}}U'_{y})T_{s}/2$ $-\frac{2}{\sqrt{3}}U'_{y}T_{s}/2$ VI $w_0 - w_1 - w_6 - w_7$

Kolejność i czas trwania wektorów w połowie okresu przełączania $T_{\rm S}/2$ dla odpowiednich sektorów

3. MIKROPROCESOROWA REALIZACJA MODULACJI WEKTOROWEJ

3.1. Mikrokontroler TMS320F2812

Mikrokontroler sygnałowy TMS320F2812 taktowany jest sygnałem zegarowym o częstotliwości $f_{CLK} = 150$ MHz [7]. Najważniejszą częścią składową mikrokontrolera użytą w realizacji modulatora wektorowego jest układ czasowo-licznikowy – rys. 8a. Mikrokontroler TMS320F2812 ma dwa takie układy (Event Manager – EVA i EVB) [8]. W skład każdego z nich wchodzą m.in.: dwa liczniki 16-bitowe (GP Timers), trzy podwójnie buforowane komparatory 16-bitowe (Compare Units) oraz trzy wyjściowe układy logiczne. Każdy z układów

Rys. 7. Metoda geometryczna do obliczania czasów t_1 i t_2 Fig. 7. Geometrical method for t_1 and t_2 calculations

Fig. 8. Event Manager of TMS320F2812 - EVA. a) simplified block diagram b) output Logic for PWM1 and PWM2 signals

logicznych ma dwa dowolnie konfigurowalne wyjścia cyfrowe PWM – rys. 8b. Do zrealizowania modulatora wektorowego wykorzystano jeden układ czasowo-licznikowy, w którym użyto licznika 1 realizującego trójkątny sygnał nośny. Częstotliwości sygnału zegarowego taktującego licznik 1 i jego pojemność dobierana jest w zależności od częstotliwości podstawowej harmonicznej f_m oraz częstotliwości przełączania $1/T_S = m_f f_m$. Szczegółowy sposób doboru tych parametrów przedstawiono w pracy [9]. Wyjściowe sygnały PWM użyto do wysterowania górnych łączników falownika, które pogrupowano parami PWM1 i PWM2 dla fazy A (S_{A1} , S_{A2}), PWM3, PWM4 dla fazy B (S_{B1} , S_{B2}) oraz PWM5 i PWM6 dla fazy C (S_{C1} , S_{C2}). Dolne łącznikó falownika sterowane są komplementarnie wobec łączników górnych.

W dowolnej połowie okresu sygnału nośnego $T_S/2$ przełączenia w poszczególnych fazach występują w czasach $t_0/2$, $t_0/2 + t_1$ oraz $t_0/2 + t_1 + t_2$. Te trzy wielkości odpowiednio przeskalowane do aktualnej pojemności licznika 1 są wpisywane do komparatorów, gdzie są porówny-

wane z trójkątnym sygnałem nośnym generowanym w liczniku 1. Z właściwości przekształcenia (1) wynika, że kolejność przełączanych faz falownika wraz ze zmianą wektorów nie jest zależna od wybranego 2-sześciokąta, lecz zależy tylko od sektora. W tabeli 3 zestawiono czasy wpisywane do trzech komparatorów w zależności od numeru sektora.

Dla wybranego 2-sześciokąta półokres przełączania rozpoczyna się wektorem zerowym w_0 , którego stany łączników przyjmują wartość '0' lub '1', a kończy się wektorem zerowym w_7 , którego poszczególne fazy mają stany o '1' większe od w_0 . To oznacza, że w fazie falownika, która w wektorze zerowym w_0 jest w stanie '0', nigdy nie będzie załączany łącznik S_{x1} (x = A, B, C), a łącznik S_{x2} będzie przełączany zgodnie z tabelą 3. W przypadku występowania w wektorze w_0 stanu '1' na stałe załączony będzie łącznik S_{x2} , a łącznik S_{x1} będzie przełączany – tabela 4. Reasumując, numer 2-sześciokąta ma jedynie wpływ na odpowiednie przełączenia sygnałów na wyjściu układu czasowo-licznikowego. W tym też celu używa się wyjściowych układów logicznych – rys. 8b. Dla układu tego deklaruje się, czy sygnał wyjściowy przy porównaniu ma się zmieniać z '0' na '1', z '1' na '0' lub stale ma być równy '1' albo '0'.

Interesujący jest wybór odpowiedniego wektora zerowego dla 2-sześciokąta 0, ponieważ istnieją dwa możliwe wektory $w_0 - \{000\}$ lub $\{111\}$. Rozwiązaniem tutaj może być wybranie na stałe jednego z nich lub ich przełączanie co okres podstawowej harmonicznej (rys. 12). Takie przełączanie może umożliwić lepsze wykorzystanie zaworów w falowniku dla niskich współczynników głębokości modulacji *m*.

Tabela 3

Sektor	Faza A	Faza B	Faza C
Ι	$t_0/2$	$t_0/2 + t_1$	$t_0/2 + t_1 + t_2$
II	$t_0/2 + t_1$	$t_0/2$	$t_0/2 + t_1 + t_2$
III	$t_0/2 + t_1 + t_2$	$t_0/2$	$t_0/2 + t_1$
IV	$t_0/2 + t_1 + t_2$	$t_0/2 + t_1$	$t_0/2$
V	$t_0/2 + t_1$	$t_0/2 + t_1 + t_2$	$t_0/2$
VI	$t_0/2$	$t_0/2 + t_1 + t_2$	$t_0/2 + t_1$

Kolejność przełączania faz A, B, C w funkcji numeru sektora

Tabela 4

Ustawienia wyjściowego układu logicznego w zależności od numeru 2-sześciokąta († - przełączenie ze stanu '0' na '1' przy porównaniu w komparatorze)

2-sześciokąt	Wektor w ₀	Faza A		Faza B		Faza C	
		PWM1/SAI	$PWM2/S_{\Lambda 2}$	PWM3/S _{B1}	PWM4/S _{B2}	PWM5/S _{CI}	PWM6/S _{C2}
0	{000}	.0,	Ť	·0'	Î ↑	.0,	1
0	{111}	<u>↑</u>	' 1'	1	·1'	<u>↑</u>	·1'
1	{100}	Ť.	' 1'	<u>'0'</u>	1	.0,	↑
2	{110}	Î	·1'	↑	·1'	.0,	1
3	{010}	·0'	↑	1	·1'	·0'	1
4	{011}	,0,	↑	1	·1'	Î	·1'
5	{001}	'0'	1	·0'	1	Î	÷1'
6	{101}	Î	-1'	.0,	Î	Î	·1'

3.2. Sterownik mikroprocesorowy z mikrokontrolerem TMS320F2812

Sterownik falownika 3-poziomowego zrealizowano za pomocą układu startowego eZdspTM bazującego na mikrokontrolerze sygnałowym TMS320F2812. Program dla mikrokontrolera realizujący modulację wektorową napisano w języku C, a skompilowano, używając oprogramowania Code Composer Studio.

3.3. Model falownika 3-poziomowego

Przedstawiony w pracy układ sterowania został przetestowany na niskonapięciowym modelu trójfazowego falownika 3-poziomowego z diodami poziomującymi (rys. 9). W modelu tym jako zaworów energoelektronicznych użyto kluczy analogowych typu MAX4662 o rezystancji przewodzenia $R_{on} = 2,5 \Omega$. Napięcie obwodu pośredniczącego tworzyły dwa źródła stabilizowanego napięcia stałego +/- 12 V, a odbiornik – trzy rezystory 330 Ω . Jako diod poziomujących użyto diod Shottky'ego typu BAT43 o napięciu przewodzenia $U_F = 0,35$ V ($I_F = 10$ mA). Zastosowanie diod Shottky'ego było podyktowane ograniczeniem wpływu napięcia przewodzenia diod poziomujących na przebiegi wyjściowe falownika.

4. WYNIKI

Badania eksperymentalne wykonano dla zadanego wektora przestrzennego wirującego z częstotliwością $f_m = 50$ Hz, o krotności częstotliwości sygnału nośnego do modulującego $m_f = 21$ oraz głębokości modulacji m = 0,8 i m = 0,3. Poniżej, na rys. $10 \div 12$ zostały zamieszczone oscylogramy przedstawiające odpowiednio napięcie wyjściowe, międzyfazowe oraz fazowe wraz z ich widmami harmonicznych. rys. 11 i 12 obrazują przebiegi dla m = 0,3, gdzie wektor napięcia jest syntetyzowany w obrębie 2-sześciokąta 0. Na rys. 11 przedstawiono przebiegi dla modulacji z wektorem $w_0 - \{000\}$, a na rys. 12 zamieszczono przebiegi napięć, na których wektor w_0 zmienia się co jeden okres podstawowej harmonicznej pomiędzy stanami $\{000\}$ i $\{111\}$.

Rys. 9. Model niskonapięciowy trójfazowego falownika 3-poziomowego z diodami poziomującymi Fig. 9. The low-voltage model of the three-phase 3-level neutral-point clamped inverter

Fig. 10. Oscilloscope traces for $f_m = 50$ Hz, $m_f = 21$ and m = 0.8: a) phase voltage u_A and output voltage u_{A0} , b) line-to-line voltage u_{AC} and u_{A0} , c) spectrum of output voltage u_{A0} and d) spectrum of phase voltage u_A

5. PODSUMOWANIE

Przedstawiony w pracy algorytm modulacji wektorowej został zrealizowany na mikrokontrolerze sygnałowym TMS320F2812. Badania weryfikujące przeprowadzono na modelu niskonapięciowym trójfazowego falownika 3-poziomowego. Badania przedstawione w niniejszym artykule wykazują, że:

1. Mikrokontroler TMS320F2812 jest bardzo dobrym narzędziem pozwalającym na realizację modulatora wektorowego dla falownika 3-poziomowego. Osiągane czasy obliczeń na 1 okres przełączania wynosiły średnio około 4,0 µs, co z kolei stanowiło mniej niż 1% wykorzystania czasu pracy mikrokontrolera (0,42% dla $f_m = 50$ Hz i krotności częstotliwości sygnału nośnego do modulującego $m_f = 21$). Tak niskie czasy obliczeń pozwalają sądzić, że sterowanie przekształtnikami o większej liczbie poziomów niż 3, pracującymi w układzie kondycjonowania energii, może być realizowane za pomocą mikrokontrolera sygnałowego TMS320F2812. Taki sterownik oprócz wykonywania obliczeń związanych z modulacją szerokości impulsów będzie również sterował całym układem kondycjonowania energii.

- Modulacja wektorowa umożliwia dowolne kształtowanie wektora przestrzennego. Oprócz funkcji generowania odpowiednich napięć wyjściowych można, przy wykorzystaniu nadmiarowości wektorów zerowych w poszczególnych sześciokątach, stabilizować napięcie w punkcie neutralnym (ang. *Neutral Point*) [10] – na rys. 2 punkt 0.
- Kontynuacją pracy będzie przebadanie mikroprocesorowego sterowania bazującego na mikrokontrolerze TMS320F2812 realizującego zadania wynikające z pracy przekształtnika wielopoziomowego w układzie kondycjonowania energii.

Rys. 11. Przebiegi napięć dla f_m = 50 Hz, m_f = 21 oraz m = 0,3: a) napięcie fazowe u_A i napięcie wyjściowe u_{A0}, b) napięcie międzyfazowe u_{AC} wraz z u_{A0}, c) widmo napięcia wyjściowego u_{A0} oraz d) widmo napięcia fazowego u_A
Fig. 11. Oscilloscope traces for f_m = 50 Hz, m_f = 21 and m = 0.3: a) phase voltage u_A and output voltage u_{A0}, b) line-to-line voltage u_{AC} and u_{A0},

c) spectrum of output voltage u_{A0} and d) spectrum of phase voltage u_A

- Rys. 12. Przebiegi napięć dla $f_m = 50$ Hz, $m_f = 21$ oraz m = 0,3 dla wektora zerowego w_0 zmieniającego się pomiędzy stanami {000} a {111}: a) napięcie fazowe u_A i napięcie wyjściowe u_{A0} , b) napięcie międzyfazowe u_{AC} wraz z u_{A0} ,
- Fig. 12. Oscilloscope traces for $f_m = 50$ Hz, $m_f = 21$ and m = 0.3 for null vector w_0 changeable between states {000} and {111}: a) phase voltage u_A and output voltage u_{A0} , b) line-to-line voltage u_{AC} and u_{A0} ,

LITERATURA

- 1. Rodríguez J., Lai J.S., Peng F.Z.: *Multilevel inverters: a survey of topologies, controls, and applications*. IEEE Transactions on Industry Applications, 2002, tom 49, nr 4, pp. 724-738.
- Lai J.-S., Peng F.Z.: Multilevel converters a new breed of power converters. IEEE Transactions on Industry Applications, t. 32, n. 3, 1996, pp. 509-517.
- 3. Veenstra M., Rufer A.: Control of a hybrid asymmetric multilevel inverter for competitive medium-voltage industrial drives. IEEE Transactions on Industry Applications, t. 41, n. 2, 2005, pp. 655-664.
- Nabae A., Takahashi I., Akagi H.: A new neutral-point clamped PWM inverter. IEEE Transactions on Industry Applications, 1981, tom 17, pp. 518-523.
- Rodríguez J., Morán L., Correa P., Silva C.: A vector control technique for medium-voltage multilevel inverters. IEEE Transactions on Industrial Electronics, t. 49, n. 4, 2002, pp. 882-888.
- 6. Holmes D.G., Lipo T.A.: *Pulse width modulation for power converters: Principles and practice*. Wiley-IEEE Press, Nowy Jork 2003.
- 7. TMS320F2812 Digital signal processor Data manual, Texas Instruments, 2004.
- 8. *TMS320x281x DSP Event Manager (EV) Reference Guide* nota aplikacyjna SPRU065C, Texas Instruments, 2004.
- Zygmanowski M., Biskup T., Maj W., Michalak J.: Sterowanie mikroprocesorowe falownika 3poziomowego z diodami poziomującymi – idea i realizacja. Materiały konferencji SENE'05. Łódź-Arturówek 23-25.11.2005. Łódź 2005. Oddane do druku.
- Celanovic N., Borojevich D. A comprehensive study of neutral-point voltage balancing problem in three level neutral-point-clamped voltage source PWM inverters. IEEE Transactions on Power Electronics, 2000, tom 15, nr 2, pp. 242-249.

Wpłynęło do Redakcji dnia 4 października 2005 r.