1998 Nr kol. 1399

Jacek KORDEK Akademia Górniczo-Hutnicza, Kraków

WYKORZYSTANIE METOD ANALIZY I ROZPOZNAWANIA OBRAZÓW W PRZERÓBCE SUROWCÓW MINERALNYCH

Streszczenie. Podjęto próbę oceny składu ziarnowego materiału w warunkach przemysłowych z wykorzystaniem metod analizy i rozpoznawania obrazów. Przedmiotem analizy był materiał z urobku kopalni rudnej wyprowadzony na powierzchnię po wstępnym rozdrobnieniu pod ziemią. Celem próby była ocena składu ziarnowego wykonana na podstawie wizualizacji materiału na przenośniku taśmowym (w rejonie podszybia). Wykonano utrwalenie i digitalizację obrazu do postaci akceptowalnej metodami cyfrowymi (komputerowymi). Przeprowadzono analizę obrazową z wykorzystaniem programów profesjonalnych i autorskich. Zestawiono wyniki i oszacowano dokładność analizy.

THE APPLICATION OF METHODS OF ANALYSIS AND RECOGNITION OF IMAGES IN MINERAL PROCESSING

Summary. An attempt of evaluation of grain composition on the material was undertaken in industrial conditions with the use of the methods of analysis and recognition of images. The author analysed the material of the ore mine. The results were listed and the analysing accuracy was evaluated.

1. Wprowadzenie

Rozwój metod analizy obrazów nastąpił wraz z powstaniem nowoczesnych komputerów i opracowaniem stosownych programów analitycznych. W ramach pracy statutowej podjęto próbę oceny składu ziarnowego materiału w warunkach przemysłowych z wykorzystaniem metod analizy i rozpoznawania obrazów. Przedmiotem analizy był materiał z urobku kopalni rudnej wyprowadzony na powierzchnię po wstępnym rozdrobnieniu pod ziemią. Celem próby była ocena składu ziarnowego wykonana na podstawie wizualizacji materiału na przenośniku

taśmowym w rejonie podszybia. Część eksperymentalną w zakładzie wykonano dzięki uprzejmości i pomocy kierownictwa przeróbki Zakładów Górniczych "Trzebionka" S.A. w Trzebini.

Metoda z wykorzystaniem analizy obrazu optycznego obejmuje trzy etapy realizacji: utrwalenie obrazu (sceny), przetworzenie obrazu na postać cyfrową i komputerową analizę obrazu. Najczęstszym sposobem realizacji jest wykorzystanie toru telewizyjnego - kamera telewizyjna, linia, przetwornik analogowo-cyfrowy A/C oraz komputer wyposażony w stosowny (specjalizowany) program analityczny. Pomimo że dostępne są uniwersalne programy komputerowe analizy obrazów, konkretne rozwiązanie (konkretny typ obrazu) wymaga traktowania indywidualnego, zważywszy, że można analizować (rozpoznawać) różne obrazy, od zdjęć satelitarnych poczynając, na obrazach mikroskopowych różnych typów kończąc.

W warunkach niniejszej pracy obrazy utrwalono przez fotografowanie. Przedmiotem analizy były będące w ruchu na przenośniku taśmowym obrazy strumienia rudy, o stochastycznie zmiennych wielkościach i kształtach ziaren, (przy uwzględnieniu wszystkich utrudnień w obrazie jak np. pylenie, parowanie rudy itp.), oraz co jest szczególnym utrudnieniem w analizie obrazów, o złożonej morfologii. Dodatkowym utrudnieniem była konieczność analizy obrazu płaskiego ilustrującego strumień materiału o zmiennej grubości.

2. Realizacja eksperymentu

W celu zrealizowania możliwości rozpoznania i analizy obrazów strumienia rudy wykonano 10 serii (około 370) zdjęć w trakcie dwu różnych pierwszych zmian pracy zakładu. Po próbach wstępnych ustalono warunki i parametry ekspozycji - film Kodak, cz-b. 200 ASA, 1/250sek, 5.6, z wysokości około 137 cm. Zdjęcia wykonano ze specjalnego pomostu przygotowanego przez Zakład przy następujących warunkach technicznych: szybkość taśmy przenośnika 150 cm/sek, szerokość taśmy 130 cm, szerokość strugi materiału około 70 cm, oświetlenie 2 symetryczne reflektory 1000 W z wysokości około 40 cm, rozstawione w szerokości około 90 cm. Wszystkie zdjęcia zaopatrzono w indywidualny wskaźnik w celu identyfikacji jednostkowej. Cały materiał zdjęciowy przeskanowano w stałych parametrach skanowania do postaci pliku komputerowego typ BMP (mapa bitowa) z rozdzielczością 150 DPI (150 punktów na cal), dla 256 poziomów szarości. Z prostokątnego zdjęcia wybrano kwadratowy wycinek obejmujący około 80% powierzchni, co stanowi około 50 cm szerokości strugi materiału na taśmie przenośnika. Wymiar wycinka wynosi 591 x 591 punktów, pixeli w terminologii komputerowej. Odwzorowanie w stosunku do wymiarów rzeczywistych wynosi 1 pixel = 5/6 mm.

Tak przygotowany materiału eksperymentalny zawierający wszystkie charakterystyczne sytuacje zachowania się (składu ziarnowego) rudy na taśmie posłużył do wykonania całości opracowania i wyciągnięcia wniosków.

Na materiale tym przeprowadzono wszystkie operacje rozpoznawania i analizy obrazów (rozdział 3), ustalając pewien standard postępowania wobec całości zadania. Zastosowane w obróbce procedury są kompilacją bibliotecznych programów komputerowych oraz rozwiązań autorskich.

3. Analiza obrazów

Obraz w postaci mapy bitowej BMT został poddany kilkunastu zabiegom analitycznym, a mianowicie: wyodrębnienie granic ziaren, ustalenie i przywrócenie rzeczywistych wielkości i kształtów, wyeliminowanie ziaren poniżej pewnej wielkości, policzenie ziaren, zmierzenie ich powierzchni oraz policzenie średnic Fereta zgodnie z dwu głównymi kierunkami.

Należy zauważyć, że wymienione operacje zupełnie jednoznaczne w podanych formułach w zrozumieniu metod cyfrowej analizy obrazu muszą być przełożone na specjalne funkcje i zabiegi rachunkowe. Pierwszym zabiegiem jest binaryzacja obrazu (rys.1) polegająca na zamianie obrazu tonowego na czarno-biały. Na rysunku przedstawiono przykładowe zdjęcie (foto 17), gdzie z lewej jest obraz rzeczywisty, a po prawej obraz binaryzowany. Przyjmując, że szpary między ziarnami są czarne, a same ziarna białe binaryzacja ma na celu wyróżnienie ziaren wobec tła. Jako optymalną dla badanych obrazów przyjęto binaryzację na poziomie 90 (z zakresu 0+255). Kolejne zabiegi analityczne ilustruje rys.2. Obraz po binaryzacji poddano dwa razy zabiegowi otwarcia (otwarcie x2). Pod tym terminem [1] rozumie się połączenie

foto 17 po binaryzacji

Rys.1.Obraz rzeczywisty i po binaryzacji Fig.1. The real image and image after decimal-to-binary

funkcji erozja+dylatacja. Nie wchodząc w szczegóły formalne funkcje te działają na granicy ziaren przypisując małe obiekty graniczne jednemu z poziomów binaryzacji. W konsekwencji otrzymuje się wygładzenie poszarpanych brzegów ziaren, zanik ziaren małych oraz utrzymanie wymiarów ziaren dużych. Zabieg zalewanie otworów jest jednoznaczny (rys.2), kryje w sobie jednak niebezpieczeństwo nieuzasadnionego połączenia kilku drobnych ziaren w duże (patrz lewe dolne naroże obrazu). Kolejna operacja (otwarcie x5) powinna doprowadzić do przygotowania ziaren do pomiarów planimetrycznych; konkretnie określania wielkości, jeszcze bez rozdzielenia granic. Operacja (otwarcie x8) oraz operacja (skiz) służy do wyprodukowania najbardziej prawdopodobnych granic między ziarnami. Pogrubienie ich do "rozsądnych" granic otrzymuje się po operacji (erozja x2). Ostatnią operacją morfologiczną jest iloczyn logiczny AND obrazów (otwarcie x5) i (erozja x2), który zapewnia otrzymanie pojedynczych ziaren oddzielonych najlepszymi (programowo) granicami (patrz dolna część rysunku). Kolejna operacja (planimetryczna) obejmuje policzenie ziaren, zmierzenie indywidualnie dla każdego powierzchni i wartości średnic Fereta w pionie i w poziomie.

Zestawienie wyników policzenia powierzchni i średnic Fereta zawiera tabela 1. Opisanym zabiegom analitycznym poddano wszystkie obrazy w serii.

Wykorzystanie metod ...

otwarcie x2

zalewanie otworów

and

otwarcie x5

skiz

Rys.2. Przekształcenia morfologiczne Fig.2. Morphological transformation

4. Zestawienie wyników

Wyniki pomiarów zestawiono zgodnie z zasadą wzrastającego uogólnienia. W pierwszej kolejności zilustrowano wyniki pomiarów indywidualnego zdjęcia (foto 17) (tabela 1), gdzie kolejno w kolumnach wpisano: NR - ziarna (obiektu), Surface - powierzchnię planimetryczną ziarna w (pixel)², Feret Diameter - średnice Ferata dla kierunku poziomego i kolejno pionowego. Jak widać, na zdjęciu foto 17 zidentyfikowano 206 ziaren. Kolejno wykresy 1a i b ilustrują występowanie ziaren na foto 17. Na osi rzędnych opisano wartość powierzchni w (pixel)², a na osi odciętych nr ziarna.(Nr ziarna, chociaż określa rzeczywisty obiekt nie musi być identyfikowany z konkretnym ziarnem.) Wykresy różnią się uporządkowaniem; w pierwszym kolejność wynika z wyszukiwania ziaren przez program, w drugim są one uporządkowane rosnąco.

Wykresy na rys. 3 i 4 mają charakter "przeróbczy" i ilustrują wyniki kolejno ze zdjęć; foto 16,17,20,24,30 i 37 traktowanych jako reprezentatywne dla eksperymentu. Wykresy mają charakter histogramów, gdzie na osi rzędnych opisany jest wychód wagowy materiału w procentach, dla klas wielkości ziaren opisanych na osi odciętych. Wielkości ziaren zdefiniowane są jako średnice projekcyjne; $d=2\sqrt{\frac{p}{2}}$ gdzie P. jest powierzchnią planimetryczną ziarna. Wymiar d podany w milimetrach odnosi się do rzeczywistych wielkości materiału na taśmie. Zestawione równocześnie na wykresach wydruki zdjęć, na podstawie których sporządzono wykresy, pozwalają na wstępną wizualną ocenę poprawności zrealizowanych programów. Należy zauważyć, że zawierające jedno lub kilka dużych ziaren foto 20, 24, 30 i 37 wyraźnie się różnią występowaniem pików od pozostałych foto 16 i 17, gdzie takich ziaren brak.

Uzyskany na podstawie analizy obrazów materiał doświadczalny, będący wynikiem swoistej analizy "sitowej" strumienia rudy, można zaprezentować na różne sposoby. Można przedstawić zarówno wykresy składu ziarnowego, jak i histogramy zawartości dla wychodów wagowych, sztukowych lub innych stosownie do konkretnego zapotrzebowania. Zastosowanie innych algorytmów pozwala na analizę materiału ze względu na kształt ziaren lub inne ewentualne cechy, w tym barwę, szarość czy połysk. Można również pokusić się o opracowanie specyficznych cech materiału pod warunkiem formalnej poprawności definicji wyróżnionej cechy.

Tabela 1

NR	Surface	Feret- Diame- ters 0	Feret- Diame- ters 90				
1	2131	52	55	56	523	22	29
2	855	46	25	57	53	13	8
3	6963	94	132	58	699	35	35
4	332	18	22	59	127	25	6
5	232	13	18	60	1041	43	42
6	174	13	14	61	411	37	21
7	15	5	5	62	68	10	15
°	727	39	23	63	6	2	4
0	157	16	14	64	191	13	19
10	1698	42	58	65	12	3	6
10	1000	26	23	66	112	24	9
10	300	20	10	67	5	3	2
12	392	23	15	68	192	21	19
13	140	17	10	60	204	30	34
14	1030	37	35	70	400	25	22
15	101	10	10	70	450	11	5
16	1912	43	04	72	820	3.4	37
17	1	40	29	72	238	18	14
18	890	40	20	73	230	14	11
19	420	22	20	74	66	11	11
20	122	19	3/	75	3	2	2
21	132	12	16	70	1238	4 1	37
22	209	10	20	78	1855	55	47
23	498	32	20	70	16	35	5
24	132	11	12	13	1053	42	34
25	438	22	20	81	177	42 11	18
26	351	17	24	92	1604	57	37
27	18	17	2	02	190	5,	23
28	895	40	23	03	1607	51	41
29	162	14	24	04	203	1.4	16
30	750	29	31	60	203	134	96
31	200	16	13	00	1039	7	30
32	63	6	13	67	20	1	7
33	3	2	2	88	2	4	2
34	77	12	11	89	2	1	2
35	566	30	20	90	94	0	11
36	328	18	19	91	1005	22	40
37	87	11	12	92	270	20	17
38	41	11	0	93	315	23	22
39	5569	91		94	909	20	25
40	48	10	10	95	330	10	10
41	551	30	26	90	40	10	10
42	/11	25	39	97	9474	12	74
43	249	15	25	98	24/4	40	24
44	12	6	3	99	249	12	29
45	1016	35	40	100	187	13	19
46	34	8	8	101	11	11	1
47	446	22	23	102	30	11	3
48	112	13	14	103	114	14	14
49	835	38	27	104	121	11	11
50	205	19	16	105	243	16	17
51	631	26	32	106	1	1	1
52	238	14	18	107	66	11	11
53	581	27	25	108	15	5	4
54	1	1	1	109	242	15	22
55	12	6	6	110	48	13	8

cd. tabeli 1

111	177	13	17	166	21	11	2
112	15	6	6	167	10	1	10
113	55	11	5	168	5162	84	100
114	143	12	12	169	1946	44	72
115	3	2	2	170	78	15	8
116	2982	66	85	171	37	4	11
117	6458	69	119	172	1023	28	46
118	11	11	1	173	686	32	27
119	579	22	38	174	1081	40	33
120	32	9	6	175	67	11	11
121	1072	41	37	176	67	9	12
122	589	24	29	177	117	24	7
123	50	8	15	178	968	50	28
124	66	8	12	179	6973	132	112
125	183	19	14	180	15	6	4
126	78	6	13	181	465	19	28
127	450	21	27	182	1537	42	51
128	952	33	54	183	7	7	1
129	1654	39	59	184	53	13	9
130	1	1	1	185	68	7	11
131	40	17	8	186	3534	68	83
132	169	11	16	187	3569	68	77
133	48	10	10	188	2867	43	88
134	12	1	12	189	1158	53	41
135	15	6	3	190	2637	76	61
136	32	7	12	191	3707	79	85
137	55	10	10	192	540	23	28
138	274	19	20	193	1096	33	48
139	121	11	11	194	91	11	10
140	473	21	32	195	11	6	4
141	14	13	2	196	96	15	10
142	9619	137	137	197	36	8	8
143	229	15	16	198	14	6	4
144	94	13	8	199	77	11	12
145	343	15	27	200	777	37	30
146	207	21	26	201	662	26	29
147	526	30	21	202	737	51	22
148	509	29	20	203	95	8	12
149	66	11	11	204	237	23	11
150	154	14	13	205	112	13	9
151	127	11	12	206	78	13	6
152	246	10	26				
153	59	16	6				
154	603	29	25				
155	166	13	13				
156	4192	72	118				
157	1	1	1				
158	1319	43	45				
159	388	17	30				
160	2096	54	50				
161	216	13	17				
162	836	38	25				
163	287	14	26				
164	289	17	17				
165	1	1	1				

Występowanie ziaren

Wykres 1a.Histogram występowania ziaren Graph 1a. Histogram of occurrence of grains

Uszeregowanie ziaren

Wykres 1b.Histogram występowania ziaren cd. Graph 1b. Histogram of occurrence of grains continued

foto 17

foto 20

d - średnica projekcyjna

foto 24

foto 30

foto 37

Rys.4.Zestawienie wyników cd. Fig.4. Listing of results continued

5. Dyskusja wyników, wnioski, komentarze i uwagi

Kwestią zasadniczą w podanych zestawieniach i wykresach pozostaje dokładność odwzorowania rzeczywistych rozmiarów badanego materiału. Składają się nań odchyłki powstałe w trzech różnych miejscach eksperymentu. Pierwsza odchyłka wynika z fotografowania taśmy w biegu. Wynosi ona 6 mm wartości bezwględnej i powoduje rozmycie konturów ziaren o tę wielkość. Odchyłka ta jest jednokierunkowa i nabiera praktycznego znaczenia dla ziaren drobnych.

Najwięcej niedokładności wnosi program przekształceń morfologicznych, który z jednej strony niweluje rozmycie ale wnosi zniekształcenia wynikające z niejednorodnych "poszarpanych" konturów ziaren na ciemnym tle. Wielkość zniekształceń jest istotna dla ziaren małych i ma kierunek zarówno dodatni, jak i ujemny rozłożony przypadkowo. Zatem dla ziaren "kubicznych", to jest bez wklęsłości i możliwie zbliżonych do brył geometrycznych i dla wzrastającej wielkości odchyłki programowe zanikają.

Należy wspomnieć również o odchyłkach "formalnych", wynikających z faktu, że wymiar średnicy Fereta jest jednoznacznie zdefiniowany i podaje wartość umowną, a także z faktu, że średnica projekcyjna (najważniejszy wymiar podany w sprawozdaniu) jest równoważna średnicy koła o powierzchni równej powierzchni ziarna. Powierzchnia ziarna odwzorowana jest z dokładnością do 1 pixela (największą z możliwych), (1 pixel w pliku = 5/6 mm w rzeczywistości).

Reasumując można stwierdzić, że zgodnie z założeniami, próba oceny składu ziarnowego opisanego materiału została wykonana poprawnie.

Bezwzględną wartość odchyłek wymiarów liniowych daje się jedynie oszacować i w opinii autora wynosi ona przeciętnie 10%, to znaczy, że wymiar liniowy opiniowany na 100 mm, w rzeczywistości może wynosić od 90 mm do 110 mm. Oczywiście, wymiar (nie ziarno) 300 mm może odchylać się o 3 ÷ 5%, a dla wymiarów mniejszych od 100 mm może nieznacznie wzrosnąć.

Ważniejszą od wymiarów jest informacja o wykrywalności ziaren ze względu na ich wielkość. W opinii autora każde ziarno o przybliżonych rozmiarach od 40 mm wzwyż, o ile nie jest przykryte warstwą materiału drobnego, zostanie wykryte, z tym że prawdopodobieństwo wykrycia ziaren większych (do maksymalnych włącznie) jest wielokrotnie wyższe aniżeli proporcjonalny wzrost ich wielkości. Tytułem komentarza należy uzupełnić, że w przypadku zastosowania telewizji, kamery przemysłowe używane do podobnych celów, są wyposażone w elektroniczną migawkę, co eliminuje niekorzystny wpływ ruchu materiału oraz dzięki transmisji cyfrowej, błędy odwzo-rowania i skanowania.

Zastosowane oprogramowanie było właściwe dla analizowanych obrazów, ale w ogólności oprogramowanie jest elastyczne i można go doskonalić stosownie do konkretnych potrzeb, nawet (lub zwłaszcza) po zainstalowaniu systemu telewizyjnego.

Zastosowanie wymienionego systemu w warunkach ruchowych wiąże się z kosztami, których wielkość wzrasta wraz wymaganiami (oczekiwaniami) użytkownika. Szczególnie podwyższa koszty potrzeba wnikliwego analizowania szczegółów obrazu oraz wzrost częstotliwości próbkowania.

Metoda analizy obrazu optycznego materiału na taśmie w całości spełnia warunki przyjęte w założeniach.

Powyższe opracowanie powstało w ramach pracy statutowej Nr 11 100 93.

LITERATURA

- 1. Wojnar L., Majorek M.: Komputerowa analiza obrazu. Fotobit, Kraków 1994.
- 2. Tadeusiewicz R.: Systemy wizyjne robotów przemysłowych. WNT, Warszawa 1992.
- Hoose N.: Computer image processing in traffic engineering. Research Studies Press. Taunton, England
- Yang H.T., Lee S.J.: Optimal decomposition of morphological structuring elements. International Conference on Image Processing. Lausanne 1996.

Abstract

An attempt of evaluation of grain composition of the material was undertaken in industrial conditions with the use of the methods of analysis and recognition of images. The author analysed the material of the ore mine output, brought to the surface after initial crushing underground. The aim of the attempt was to estimate the grain composition performed according

to the visualisation of the material on a belt conveyor (in the region of a shaft bottom). The image was fixed and digitalised to an acceptable form by digital (computer) methods. The image analysis was performed with the application of professional and author programs. The results were listed and the analysing accuracy was evaluated.