Seria: Matematyka-Fizyka z. 26

Eugeniusz SOCZKIEWICZ

Instytut Fizyki

ODDZIAŁYWANIA MIĘDZYCZĄSTECZKOWE TYPU LENNARDA-JONESA W PRZYPADKU RÓŻNEGO RODZAJU CZĄSTECZEK

> <u>Streszczenie</u>. Opisując oddziaływania międzycząsteczkowe w cieczy przy pomocy uogólnionego potencjału Lennarda-Jonesa, rozważono możliwość wyliczania wykładników odpychania n_{1,2} cząsteczek różnych rodzajów, ze znajomości wykładników odpychania n₁ i n₂ cząsteczek tego samego rodzaju. Wykazano przy tym, że reguła mieszania wykładników odpychania uzyskana przez Lichtenthalera z koncepcji warstwowego potencjału kulisto-symetrycznego daje wyniki zgodne z otrzymywanymi przy pomocy metody akustycznej ze wzoru Kuczery-Opilskiego w przypadku, gdy spełnione są następujące zależności między odległościami międzycząsteczkowymi i prędkościami propagacji fal

$$r_{1,2} = \frac{1}{2}(r_1 + r_2), \quad \frac{r_{1,2}}{w_{1,2}} = \frac{1}{2}(\frac{r_1}{w_1} + \frac{r_2}{w_2})$$

I. Watep

Do opisu oddziaływań międzycząsteczkowych w cieczach często używa się tzw. uogólnionego potencjału Lennarda-Jonesa [1-9]:

$$\varphi_{(\mathbf{r})} = \frac{1\varepsilon!}{n-m} \left[m \left(\frac{\mathbf{r}_o}{\mathbf{r}} \right)^n - n \left(\frac{\mathbf{r}_o}{\mathbf{r}} \right)^m \right], \tag{1}$$

gdzie:

- e oznacza głębokość dołu potencjału oddziaływania międzycząsteczkowego.
- m.n wykładniki opisujące przyciąganie i odpychanie się cząsteczek,

r - odległość międzycząsteczkowa,

r - odległość międzycząsteczkowa w równowadze.

Wykładnik odpychania n jest wielkością indywidualną dla każdej cieczy. Daje się on łatwo wyznaczyć metodą akustyczną przy pomocy wzoru Kuczery [4-6].

Opisując oddziaływania między różnego rodzaju cząsteczkami potencjałem typu (1), powstaje problem, czy parametry tego potencjału dają się wy-

1975

liczyć z parametrów potencjałów oddziaływań cząsteczek tego samego rodzaju [10-13]. Oddziaływania między cząsteczkami różnego rodzaju wyznaczano dotychczas przeważnie z zależności temperaturowej drugiego współczynnika wirialnego mieszaniny gazów [1, 12, 16-18]. Wiadomo, iż współczynnik wirialny B(T) wyraża się przez potencjał oddziaływania międzycząsteczkowego następującym wzorem:

$$B(T) = 2\pi N \int_{0}^{\infty} (1 - e^{-\frac{\varphi(r)}{kT}}) r^{2} dr, \qquad (2)$$

- N liczba Avogadra,
- k stała Boltzmanna,
- T temperatura w skali bezwzględnej.

Ze wzorów (1) i (2) otrzymuje się:

$$B(T) = \frac{2}{3} \pi N r_{o}^{3} F_{n,m}(\theta/T), \qquad (3)$$

przy czym:

$$\Theta = \frac{|\xi|}{k} \left(\frac{n}{m}\right)^{\frac{m}{n-m}} \cdot \frac{n}{n-m}$$

zaś

$$\mathbb{F}_{n,m}(\theta/T) = \left(\frac{m}{n}\right)^{\frac{3}{n-m}} \left(\frac{\theta}{T}\right)^{\frac{3}{n}} \left[\Gamma(\frac{n-3}{n}) - \frac{3}{n} \sum_{i=1}^{\infty} \left(\frac{\theta}{T}\right)^{i} \frac{n-m}{n} \frac{1}{i!} \Gamma\left(\frac{im-3}{n}\right)\right],$$

gdzie Γ - oznacza tzw. funkcję gamma. Wartości funkcji są stabelaryzowane dla różnych wartości wykładników potęgowych n i m, np. w pracy [15] Współczynnik wirialny mieszaniny dwóch gazów wyraża się wzorem[11,12,22]:

$$B_{m}(T,x) = (1 - x)^{2} B_{1,1}(T) + 2x(1 - x)B_{1,2}(T) + x^{2} B_{2,2}(T)$$
(4)

gdzie:

x - oznacza stężenie molowe jednego ze składników,
 B - współczynniki wirialne poszczególnych składników,
 B - współczynnik zawierający oddziaływania różnego rojzaju cząsteczek.

Parametry potencjału oddziaływania międzycząsteczkowego uzyskuje się ze wzoru (4), dobierając je tak, aby wyrażenie (4) możliwie dobrze dopasować do krzywej doświadczalnej $B_m(T,x)$. Stosując tę metodę, Lichtenthaler i Strein [11] wykazali, iż używane często wzory [10]:

$$n_{1,2} = \frac{1}{2}(n_1 + n_2)$$

$$\epsilon_{1,2} = \sqrt{\epsilon_1 \cdot \epsilon_2}$$
(5)

nie są dokładnie spełnione. W tej sytuacji postanowiłem zbadać, jakie wyniki daje reguła mieszania wykładników odpychania n uzyskana przez Lichtenthalera [11, 19] z koncepcji tzw. warstwowego potencjału kulisto-symetrycznego, a następnie wyniki te porównać z otrzymywanymi ze wzoru Kuczery -Opilskiego [5, 14] wartościami n_{1.2}.

II. Warstwowy potencjał kulisto-symetryczny

Koncepcję warstwowego potencjału oddziaływania międzycząsteczkowego wprowadzili w swych pracach G. Thomaes, M. Atoji i W. Lipscomb 16,17 roz ważając oddziaływania między wieloatomowymi cząsteczkami. A. de Rocco i W. Hoover [18] używali tego potencjału do obliczania współczynników wirialnych, obecnie zaś stosowany jest on szeroko w pracach grupy prof. Schäfera na uniwersytecie w Heidelbergu [11, 12, 19-21]. W koncepcji tej przyjmuje się, że oddziaływania między pojedynczymi atomami opisuje potencjał 6-12 Lennarda-Jonesa, a obliczenie oddziaływań między cząsteczkami wieloatomowymi wymaga złożenia oddziaływań poszczególnych atomów, uwzględniając przy tym to, że położenia tych atomów ustawicznie się zmieniają, np. wskutek rotacji cząsteczek, co najprościej daje się uwzględnić przez przyjęcie ciągłego rozkładu źródeł potencjałów 6-12 na powierzchni kuli. Okazuje się przy tym, że przebieg potencjału warstwowego jest tym bardziej stromy, im większy jest stosunek średnicy omawianej kuli do odległości międzycząsteczkowej r. Dobierając odpowiednią wartość tego sto sunku, można uzyskać jednakowe przebiegi w pobliżu minimum krzywych uogół nionego potencjału Lennarda-Jonesa i potencjału warstwowego, co wykazał Lichtenthaler 19.

Przy oddziaływaniach cząsteczek różnych rodzajów przyjmuje się oczywiście, że średnice kul potencjału warstwowego są różne, jak to przedstawiłem na poniższym rysunku.

Rys. 1. Schemat do wywodu wzoru na warstwowy potencjał kulisto-symetryczny D₁, D₂ - średnice kul potencjału warstwowego

Obliczenie oddziaływań między tymi kulami wymaga:

a) wyliczenia oddziaływania punktu O ze wszystkimi punktami kuli I,
 co wyraża się wzorem:

$$\phi(\mathbf{r}, \mathbf{D}_{1}) = \frac{\int_{0}^{2\pi} d\theta \int_{0}^{\pi} \phi(\mathbf{t}) (\frac{1}{2} \mathbf{D}_{1})^{2} \operatorname{sin} \alpha d\alpha}{\int_{0}^{2\pi} d\theta \int_{0}^{\pi} (\frac{1}{2} \mathbf{D}_{1})^{2} \operatorname{sin} \alpha d\alpha}$$
(6)

z którego, po skorzystaniu ze związków:

$$\varphi(\mathbf{r}) = |\mathbf{t}| \left[\left(\frac{\mathbf{r}_0}{\mathbf{r}} \right)^{12} - 2 \left(\frac{\mathbf{r}_0}{\mathbf{r}} \right)^6 \right], \quad \mathbf{t}^2 = \mathbf{r}^2 + \left(\frac{1}{2} D_1 \right)^2 - \mathbf{r} D_1 \cos \alpha \qquad (7)$$

i wykonaniu całkowania otrzymuje się:

$$\phi(\mathbf{r},\mathbf{D}_{1}) = \frac{\left[Q^{(4)}(\mathbf{r}_{0},\mathbf{D}_{1})+4Q^{(5)}(\mathbf{r}_{0},\mathbf{D}_{1})\right]\left(\frac{x_{0}}{2^{2}}\right)^{1/2}Q^{(10)}(\mathbf{r},\mathbf{D}_{1})-\left[Q^{(10)}(\mathbf{r}_{0},\mathbf{D}_{1})+10Q^{(11)}(\mathbf{r}_{0},\mathbf{D}_{1})\right]\left(\frac{x_{0}}{2^{2}}\right)^{6}Q^{(4)}(\mathbf{r}_{1}\mathbf{D}_{1})}{4Q^{(5)}(\mathbf{r}_{0},\mathbf{D}_{1})Q^{(10)}(\mathbf{r}_{0},\mathbf{D}_{1})-10Q^{(11)}(\mathbf{r}_{0},\mathbf{D}_{1})Q^{(4)}(\mathbf{r}_{0},\mathbf{D}_{1})}$$
(8)

Użyto przy tym oznaczenia:

$$Q^{(j)}(r,D_1) = (1 + \frac{D_1}{2r})^{-j} - (1 - \frac{D_1}{2r})^{-j},$$

b) scałkowania funkcji $\phi(r, D_1)$ po całej powierzchni kuli II i podzieleniu otrzymanego wyrażenia przez powierzchnię tej kuli. Prowadzi to do wzoru:

$$\phi(\mathbf{r}, \mathbf{D}_1, \mathbf{D}_2) = \frac{1}{2} \int_{0}^{\pi} \phi(\mathbf{s}, \mathbf{D}_1) \sin \lambda \, d\lambda, \qquad (9)$$

z którego po skorzystaniu ze związku:

$$S^{2} = (\frac{1}{2} D_{2})^{2} + r^{2} - r D_{2} \cos \lambda,$$

otrzymuje się po wykonaniu całkowania:

$$\varphi(\mathbf{r},\mathbf{D}_{1},\mathbf{D}_{2}) = \left[t \right] \frac{\left[p^{(3)}(\mathbf{r}_{0},\mathbf{D}_{1},\mathbf{D}_{2}) + 3P^{(4)}(\mathbf{r}_{0},\mathbf{D}_{1},\mathbf{D}_{2}) \right] P^{(9)}(\mathbf{r},\mathbf{D}_{1},\mathbf{D}_{2}) \left[\frac{p^{(9)}(\mathbf{r}_{0},\mathbf{D}_{1},\mathbf{D}_{2}) + 9P^{(10)}(\mathbf{r}_{0},\mathbf{D}_{1},\mathbf{D}_{2}) \right] P^{(3)}(\mathbf{r},\mathbf{D}_{1},\mathbf{D}_{2}) \left[\frac{p^{(3)}(\mathbf{r},\mathbf{D}_{1},\mathbf{D}_{2}) P^{(3)}(\mathbf{r},\mathbf{D}_{1},\mathbf{D}_{2}) \left[\frac{p^{(3)}(\mathbf{r},\mathbf{D}_{1},\mathbf{D}_{2}) P^{(3)}(\mathbf{r},\mathbf{D}_{1},\mathbf{D}_{2}) P^{(3)}(\mathbf{r},\mathbf{D}_{2},\mathbf{D}_{2}) P^{(3)}(\mathbf{r},\mathbf{D}_{2},\mathbf{D}_{2}) P^{(3)}(\mathbf{r},\mathbf{D}_{2},\mathbf{D}_{2}) P^{(3)}(\mathbf{r},\mathbf{D}_{2},\mathbf{D}_{2},\mathbf{D}_{2}) P^{(3)}(\mathbf{r},\mathbf{D}_{2},\mathbf{D}_{2}) P^{(3)}(\mathbf{r},\mathbf{D}_{2},\mathbf{D}_{2}) P^{(3)}(\mathbf{r},\mathbf{D}_{2},\mathbf{D}_{2}) P^{(3)}(\mathbf{r},\mathbf{D}_{2},\mathbf{D}_{2},\mathbf{D}_{2}) P^{(3)}(\mathbf{r},\mathbf{D}_{2},\mathbf{D}_{2},\mathbf{D}_{2}) P^{(3)}(\mathbf{r}$$

przy czym:

$$P^{(j)}(r, D_1, D_2) = (1 + \frac{D_1 + D_2}{2r})^{-j} + (1 - \frac{D_1 + D_2}{2r})^{-j} + (1 + \frac{D_1 - D_2}{2r})^{-j} - (1 - \frac{D_1 - D_2}{2r})^{-j}$$
(11)

Ze związku:

$$\frac{\mathrm{d}^2\varphi(\mathbf{r})}{\mathrm{d}\mathbf{r}^2}\mathbf{r}_{0} = \left(\frac{\mathrm{d}^2\phi(\mathbf{r},\mathbf{D}_{1},\mathbf{D}_{2})}{\mathrm{d}\mathbf{r}^2}\right)\mathbf{r}_{0},$$
(12)

w którym:

$$r_0 = \frac{1}{2}(r_{0,1} + r_{0,2})$$

otrzymał Lichtenthaler [19] następujące wyrażenie na wykładnik odpychania różnego rodzaju cząsteczek:

$$n_{1,2} = \frac{\left[\sum_{p \geq 1} \left[\left(r_{0}, D_{1}, D_{2} \right) \left[p^{(3)} \left(r_{0}, D_{1}, D_{2} \right) + 3p^{(4)} \left(r_{0}, D_{1}, D_{2} \right) \right] - 2p^{(5)} \left(r_{0}, D_{1}, D_{2} \right) \left[p^{(9)} \left(r_{0}, D_{1}, D_{2} \right) + 9p^{(10)} \left(r_{0}, D_{1}, D_{2} \right) \right] \right] - 2p^{(10)} \left(r_{0}, D_{1}, D_{2} \right) \left[p^{(3)} \left(r_{0}, D_{1}, D_{2} \right) - 3p^{(4)} \left(r_{0}, D_{1}, D_{2} \right) p^{(9)} \left(r_{0}, D_{1}, D_{2} \right) \right] \right]$$

$$= \frac{\left[(10) \left(r_{0}, D_{1}, D_{2} \right) p^{(3)} \left(r_{0}, D_{1}, D_{2} \right) - 3p^{(4)} \left(r_{0}, D_{1}, D_{2} \right) p^{(9)} \left(r_{0}, D_{1}, D_{2} \right) \right] \right]$$

$$= \frac{\left[(10) \left(r_{0}, D_{1}, D_{2} \right) p^{(3)} \left(r_{0}, D_{1}, D_{2} \right) p^{(3)} \left(r_{0}, D_{1}, D_{2} \right) p^{(9)} \left(r_{0}, D_{1}, D_{2} \right) p^{(10)} \left(r_{0}, D_{1}, D_{2} \right) \right] \right]$$

		_		_	_	_		_			_	_	_			
42 0	18.457	18,765	641.61	19,543	19,966	20,420	20, 005	21,423	21,974	22,562	23,186	23, 851	24,558	25,311	26,113	26,966
98 [*] 0	18,023	18,342	18,689	19,063	19,467	19,899	20,360	20,853	716.15	21,935	22,527	23,158	23,828	24 * 540	25, 297	26,103
0*52	17,616	17,921	18,251	18,609	18,993	19,405	19, B44	20,313	20, 812	21,342	21,905	22,503	23, 139	23, 813	24,530	25,293
0, 24	17,230	17,520	17,835	18,177	18,543	18,936	19,355	19,802	20, 277	20,781	21,317	21, 886	22,489	23, 129	23, 809	24,530
0, 23	16,861	17,139	17,440	17,766	18,116	18,491	18,891	19,317	19,770	20, 251	20,761	21,302	21, 876	22,484	23,129	23, 813
0, 22	16,511	16,776	17,065	17,376	17.71	18,069	18,452	18, 859	19, 291	19,750	20, 236	20,752	21, 298	21, 876	22,489	23,139
0, 21	16,178	16,432	16,705	17,006	17,327	17,669	18,035	18,424	18, 837	19, 275	19,739	20, 231	20,752	21,302	21,686	22,503
0, 20	15,862	16,105	16,370	16,655	16,962	17,290	17.640	18,012	18,408	18,826	19, 270	19,739	20, 236	20,761	21,317	206*12
0, 19	15,561	15,795	16,048	16,322	16,616	16,931	17,266	17,623	18,001	18,402	18, 826	19, 275	19,750	20, 251	20,781	21,342
0,18	15, 276	15,500	15,744	16,007	16, 289	16,591	16,912	17, 254	17.617	18,001	18,408	18,837	19, 291	19,770	20, 277	20, 812
0,17	15,006	15,222	15,456	15,708	15,979	16, 269	16,578	16,906	17,254	17,623	18,012	18,424	18,859	19,377	19,802	20,313
0,16	14,751	14,958	15,183	15,426	15,687	15,966	16,263	16,578	16,912	17, 266	17,640	18,035	18,452	16,891	19,355	19,844
0,15	14,511	14,710	14,927	15,161	15,412	15,680	15,966	16, 269	16,591	16,931	17,290	17,669	18,069	18,491	18,936	19,405
0,14	14,285	14,477	14,686	14,911	15,153	15,412	15,687	15,979	16, 289	16,616	16,962	17,327	11.7.71	18,116	18, 543	18,993
0,13	14,073	14,258	14,460	14,678	14,911	15,161	15,426	15,708	16,007	16,322	16,655	17,006	17,376	17, T66	18,177	1B, 609
0,12	13,876	14,055	14,250	14,46D	14,686	14,927	15,183	15,456	15,744	16,048	16,370	16,708	17,065	17,440	17,835	18,251
0,11	13,693	13, B66	14,055	14, 238	14,477	14,710	14,958	15, 222	15,500	15,795	16,105	16,432	16,776	17,139	17,520	126*14
0,10	13, 524	15,693	13, 676	14,073	14, 265	14,511	14,751	15,006	15, 276	15,561	15,862	16,178	16,511	16,861	17,230	17,616
L N	0,10	11	12	13	14	15	16	11	8	19	0,20	¥.	22	ស	24	23
2 ⁰ 2																

272

Tshein 7

R

é

Adama ta

Korzystając z maszyny cyfrowej Odra 1204, wyliczyłem z powyższego wzoru wartości wykładników n_{1,2} dla różnych stosunków $\frac{D_1}{2r_0}$ i $\frac{D_2}{2r_0}$. Wyniki obliczeń przedstawia tabela I.

Wzór (13) stanowi nową regułę mieszania wykładników odpychania n,gdyż znając wykładniki n_1 i n_2 , można obliczyć D_1 i D_2 , a następnie ze wzoru (13) wykładnik potęgowy $n_{1,2}$.

III. <u>Oddziaływania międzycząsteczkowe w roztworach według koncepcji pro-</u> pagacji fal akustycznych w nici krystalicznej

Propagację fal akustycznych w roztworach cieczy rozważyli F. Kuczere i A. Opilski przy zastosowaniu metody nici krystalicznej [5, 14, 23]. Dle nici krystalicznej składającej się z dwóch rodzajów cząsteczek, w ilości N_1 i N_2 , autorzy ci otrzymali następujące wyrażenie na długość nici i czas przejścia fali akustycznej przez nią:

$$1 = (N_1 - \frac{1}{2} N_{1,2})r_1 + (N_2 - \frac{1}{2} N_{1,2})r_2 + N_{1,2} r_{1,2}$$
(14)

$$\mathbf{t} = (\mathbf{N}_{1} - \frac{1}{2} \mathbf{N}_{1,2}) \frac{\mathbf{r}_{1}}{\mathbf{w}_{1}} + (\mathbf{N}_{2} - \frac{1}{2} \mathbf{N}_{1,2}) \frac{\mathbf{r}_{2}}{\mathbf{w}_{2}} + \mathbf{N}_{1,2} \frac{\mathbf{r}_{1,2}}{\mathbf{w}_{1,2}},$$
(15)

gdzie:

r1, r2,	r1.2	-	oznacza odpowiednio, średnie odległości między cząstecz									
			kami pierwszego rodzaju, drugiego rodzaju i różnych ro-									
			dzajów,									
N ₁₂		-	liczbę par cząsteczek różnych rodzajów,									
W1 W2		-	prędkości ultradźwięków w pierwszym i drugim składniku,									
W1 2		-	prędkość ultradźwięków w roztworze złożonym z par róż-									
195			nych cząstec.ek.									

Ze wzorów (14) i (15) wynika następujące wyrażenie na prędkość ultradźwięków w roztworze o stężeniu z [14, 23]:

$$w = \frac{x^{2}r_{1} + (1 - x)^{2}r_{2} + 2x(1 - x)r_{1,2}}{x^{2}\frac{r_{1}}{w_{1}} + (1 - x)^{2}\frac{r_{2}}{w_{2}} + 2x(1 - x)\frac{r_{1,2}}{w_{1,2}}}$$
(16)

przy czym:

$$x = \frac{N_1}{N_1 + N_2}$$

Korzystając ze wzoru Kuczery [4-6] na wykładnik odpychania cząsteczek:

$$n = -6 \frac{\frac{1}{w} \left(\frac{\partial w}{\partial T}\right)_p}{\alpha}, \qquad (17)$$

gdzie α - oznacza współczynnik rozszerzalności objętościowej cieczy, A. Opilski [14] wykazał, że otrzymana ze wzoru (16) wartość wykładnika odpychania cząsteczek różnego rodzaju zależy od spełniania lub niespełniania przez roztwór następujących warunków:

$$\frac{\mathbf{r}_{1,2}}{\mathbf{w}_{1,2}} = \frac{1}{2} \left(\frac{\mathbf{r}_1}{\mathbf{w}_1} + \frac{\mathbf{r}_2}{\mathbf{w}_2} \right), \tag{18}$$
$$\mathbf{r}_{1,2} = \frac{1}{2} (\mathbf{r}_1 + \mathbf{r}_2)$$

Jeśli powyższe warunki są spełnione, to:

$$n_{1,2} = -6 w_{1,2} \frac{\frac{r_1}{w_1} \beta_1 + \frac{r_2}{w_2} \beta_2}{r_1 \alpha_1 + r_2 \alpha_2},$$
 (19)

gdzie:

$$\phi_1 = \frac{1}{w_1} \left(\frac{\partial w_1}{\partial T} \right)_{\text{p}}; \quad \phi_2 = \frac{1}{w_2} \left(\frac{\partial w_2}{\partial T} \right)_{\text{p}}$$

α₁, α₂ - współczynniki rozszerzalności objętościowej składników roztwo ru,

w1.2 - prędkość ultradźwięków w roztworze ekwimolarnym.

W przypadku niespełniania przez roztwór warunków (18), wyżej wspomniani autorzy otrzymali:

$$n_{1,2} = -6 w_{1,2} \frac{\beta \frac{r}{w} - x^2 \frac{r_1}{w_1} \beta_1 - (1-x)^2 \frac{r_2}{w_2} \beta_2}{r \alpha - x^2 r_1 \alpha_1 - (1-x)^2 r_2 \alpha_2},$$
 (20)

gdzie:

$$w_{1,2} = \frac{2r^* - \frac{1}{2}(r_1 + r_2)}{2\frac{r^*}{w^*} - \frac{1}{2}(\frac{r_1}{w_1} + \frac{r_2}{w_2})},$$

przy czym wyrażenia z gwiazdkami odnoszą się do roztworów ekwimolarnych.

IV. Pomiary prędkości ultradźwięków w niektórych roztworach oraz obliczenia wykładników odpychania

Pomiary prędkości ultradźwięków i ich temperaturowych współczynników wykonałem w szeregu ekwimolarnych roztworów niepolarnych cieczy, przy pomocy ultradźwiękowego interferometru impulsowo-fazowego. Średni błąd pomiaru prędkości nie przekraczał 0,2 $\begin{bmatrix} m\\ g \end{bmatrix}$, a wahania temperatury w naczyńku po miarowym - 0,02°C. Otrzymane z pomiarów wartości prędkości ultradźwięków i temperaturowych współczynników prędkości przedstawiono w tabeli II.

Tabela II

Roztwór	$w_1\left[\frac{m}{s}\right]$	$- \left(\frac{\partial w_1}{\partial T}\right)_p$	w ₂ [<u>m</u>]	$-(\frac{\partial w_2}{\partial T})_p$	$w_{1,2}\left[\frac{m}{s}\right]$	$-(\frac{\partial w_{1,2}}{\partial T})_p$
CC1 ₄ + C ₉ H ₂₀	937	3,19	1225	4,13	1060,5	3,57
$C_{6}H_{3}(CH_{3})_{3} + C_{6}H_{14}$	1355	4,36	1100	4,77	1221,4	4,22
$C_6H_3(CH_3)_3 + C_6H_{12}$	1355	4,36	1276	4,99	1303,2	4,32
$C_6^{H_3}(CH_3)_3 + C_7^{H_{16}}$	1355	4,36	1150	4,29	1240,0	4,27
CC1 ₄ + C ₆ H ₁₂	937	3,19	1276	4,99	1063,0	3,87
$C_6^{H_3}(CH_3)_3 + CCl_4$	1355	4,36	937	3,19	1129,2	3,79
$C_2 C_4 + C_9 H_{20}$	1052	2,94	1225	4,13	1113,7	3,76
$C_2C_4 + C_6H_{14}$	1052	2,94	1100	4,77	1040,0	3,42
$C_2C_4 + C_6H_{12}$	1052	2,94	1276	4,99	1119,5	3,92
C ₂ Cl ₄ + CCl ₄	1052	2,94	937	3,19	996,0	3,52

Wartości zmierzonych prędkości i temperaturowych współczynników prędkości ultradźwięków w czystych cieczach i ich roztworach

Wykładniki odpychania cząsteczek tego samego rodzaju wyliczyłem przy pomocy wzoru Kuczery (17). Biorąc odległości międzycząsteczkowe z pracy [1] wyznaczyłem przy pomocy danych tabeli I średnice kul potencjału warstwowego, a następnie wykładniki odpychania cząsteczek różnego rodzaju n_{t 2}. Korzystałem przy tym ze wzoru:

 $r_{0,1,2} = \frac{1}{2}(r_{0,1} + r_{0,2}).$

Odnośne wyniki przedstawione są w tabeli III.

Eugeniusz Soczkiewicz

Tabela III

Roztwór	r _{0,1} [A ⁰]	r _{0,2} [A°]	D ₁ [A°]	D ₂ [A ⁰]	n ₁	ⁿ 2	ⁿ 1,2
cc1 ₄ + C ₉ H ₂₀	5,50	7,19	1,81	2,94	16,6	19,8	18,3
$C_{6}H_{3}(CH_{3})_{3} + C_{6}H_{14}$	6,41	5,98	3,08	2,39	23,8	19,3	21,2
$c_{6}H_{3}(CH_{3})_{3} + c_{6}H_{12}$	6,41	5,60	3,08	2,27	23,8	19,6	21,6
$C_{6}H_{3}(CH_{3})_{3} + C_{7}H_{16}$	6,41	6,45	3,08	2,40	23,8	18,1	20,6
$CC1_4 + C_6H_{12}$	5,50	5,60	1,81	2,27	16,6	19,6	17,9
$C_{6}H_{3}(CH_{3})_{3} + CCl_{4}$	6,41	5,50	3,08	1,81	23,8	16,6	19,9
$c_2 c_1 + c_9 H_{20}$	6,22	7,19	2,05	2,94	16,6	19,8	17,7
$C_{2}C_{4} + C_{6}H_{14}$	6,22	5,98	2,05	2,39	16,6	19,3	17,8
$C_2C1_4 + C_6H_{12}$	6,22	5,60	2,05	2,27	16,6	19,6	17,8
c ₂ c1 ₄ + cc1 ₄	6,22	5,50	2,05	1,81	16,6	16,6	16,5
		-					*

Wykładniki odpychania potencjału oddziaływania międzycząsteczkowego dla czystych cieczy (17) i ich ekwimolarnych roztworów (13)

Tabela IV

Porównanie obliczonych prędkości w_{1,2} wzpr (18) z wartościami zmierzonymi w ekwimolarnych roztworach

Roztwór	r _{0,1} [A ⁰]	r _{0,2} [A ⁰]	$w_1\left[\frac{m}{s}\right]$	w2[m/8]	$w_{1,2}\left[\frac{m}{s}\right]$ obli- czone	w _{1,2} [m/s] eksp.
cc1 ₄ + c ₉ H ₂₀	5,50	7,19	937	1225	1081	1060,5
$C_{6}H_{3}(CH_{3})_{3} + C_{6}H_{14}$	6,41	5,98	1355	1100	12 19	1221,4
$c_{6}H_{3}(CH_{3})_{3} + c_{6}H_{12}$	6,41	5,60	1355	1276	1317	1303,2
$C_{6}H_{3}(CH_{3})_{3} + C_{7}H_{16}$	6,41	6,45	1355	1150	1244	1240,0
$CC1_4 + C_6H_{12}$	5,50	5,60	937	1276	1082	1063,0
$C_{6}H_{3}(CH_{3})_{3} + CCl_{4}$	6,41	5,50	1355	937	1124	1129,2
$C_2C1_4 + C_9H_{20}$	6,22	7,19	1052	1225	1138	1113,7
$C_2C_4 + C_6H_{14}$	6,22	5,98	1052	1100	1075	1040,0
$C_2Cl_4 + C_6H_{12}$	6,22	5,60	1052	1276	1148	1119,5
$C_2Cl_4 + CCl_4$	6,22	5,50	1052	937	995	996,0

Prędkości ultradźwięków w badanych ekwimolarnych roztworach spełniają relacje (18), jak to widać z danych tabeli IV. Wyliczając wykładniki odpychania n_{1,2} z teorii Kuczery-Opilskiego, należy korzystać ze wzoru (19). Wyliczone z tego wzoru wartości wykładników odpychania przedstawione są w tabeli V.

Tabela V

Roztwór	$-\frac{1}{w_1}(\frac{\partial w_1}{\partial T})_p$	$-\frac{1}{w_2}(\frac{\partial w_2}{\partial T})_p$	а ₁ . 10 ³	α ₂ .10 ³	w _{1,2} [m////////////////////////////////////	ⁿ 1,2
CC1 ₄ + C ₉ H ₂₀	3,404	3,371	1,23	1,02	1060	17,9
с ₆ н ₃ (сн ₃) ₃ +				5		
+ C ₆ H ₁₄	3,217	4,335	0,81	1,35	1221	21,4
с ₆ н ₃ (сн ₃) ₃ +						
+ ^C 6 ^H 12	3,217	3,911	0,81	1,20	1303	21,3
с ₆ н ₃ (сн ₃) ₃ +						
+ ^C 7 ^H 16	3,217	3,730	0,81	1,24	1240	20,4
$CC1_4 + C_6^{H}12$	3,404	3,911	1,23	1,20	1063	17,6
с ₆ ^н ₃ (сн ₃) ₃ +			- 0			
+ CC1 ₄	3,217	3,404	0,81	1,23	1129	19,9
$C_2C1_4 + C_9H_{20}$	2,795	3,371	1,01	1,02	1114	17,8
$C_2Cl_4 + C_6H_{14}$	2,795	4,335	1,01	1,35	1040	17,4
$C_2C1_4 + C_6H_{12}$	2,795	3,911	1,01	1,20	1119	17,4
$c_2 c_4 + c c_4$	2,795	3,404	1,01	1,23	996	16,7

Wartości wyliczonych ze wzoru (19) wykładników odpychania nie

V. Wnioski

1. Prędkości ultradźwięków w badanych skwimolarnych roztworach niepolarnych cieczy spełniają relację:

$$\frac{\mathbf{r}_{1,2}}{\mathbf{w}_{1,2}} = \frac{1}{2} \left(\frac{\mathbf{r}_{1}}{\mathbf{w}_{1}} + \frac{\mathbf{r}_{2}}{\mathbf{w}_{2}} \right),$$

co według Opilskiego [14] wskazuje na niezależność prędkości dźwięku od sposobu uporządkowania cząsteczek, składników roztworu.

2. Wzór Lichtenthalera (13) i wzór Kuczery-Opilskiego (19) dają wykładniki odpychania cząsteczek różnego rodzaju n_{1,2} zgodne co do wartości w przypadku, gdy spełnione są relacje (18). Widać to z danych tabeli VI.

Tabela VI

wartosei wykładnikow odpysnania cząsteczek lożnego lodzaju									
Roztwór	ⁿ 1,2 (13)	ⁿ 1,2 (14)	$\frac{\Delta n_{1,2}}{n_{1,2}}$. 100%						
$ccl_4 + c_9H_{20}$	18,3	17,9	2,2						
$C_{6}H_{3}(CH_{3})_{3} + C_{6}H_{14}$	21,2	21,4	0,9						
C ₆ H ₃ (CH ₃) ₃ + C ₆ H ₁₂	21,6	21,3	1,4						
$C_6H_3(CH_3)_3 + C_7H_{16}$	20,6	20,4	0,9						
$CC1_4 + C_6H_{12}$	17,9	17,6	1,7						
$C_{6}H_{3}(CH_{3})_{3} + CCl_{4}$	19,9	19,9	0						
$C_2Cl_4 + C_9H_{20}$	17,7	17,8	0,6						
$C_2 C_4 + C_6 H_{14}$	17,8	17,4	2,2						
$C_2C_4 + C_6H_{12}$	17,8	17,4	2,2						
C ₂ Cl ₄ + CCl ₄	16,5	16,7	0,6						

Porównanie wyliczonych ze wzorów (13) i (14) wartości wykładników odpychania cząsteczek różnego rodzaju

Wpłynęło do Redakcji w kwietniu 1974 r.

LITERATURA

 [1] Soczkiewicz E.: Uogólniony potencjał Lennarda-Jonesa a akustyczne wła-ściwości cieczy. Dysertacja IPPT PAN, Warszawa 1973. [2] Soczkiewicz E.: J. Phys. GB A5, L31 (1972). 3 Soczkiewicz E.: Archiwum Akustyki 7, z. 3/4, 311 (1972). [4] Kuczera F.: Prim. ultraak. k issled. weszcz. 16, 61 (1962). 5 Kuczera F., Opilski A., Szyma S.: Proc. Third Int. Cong. on Acoustics, 185, Stuttgart 1959. [6] Kuczera F.: Postępy Akustyki 8, no. 1, 173 (1957). 7 Depeyre D.: J. Chim. Phys. 66, no. 10, 1956 (1969). [8] Moelwyn-Hughes E.: Physical Chemistry, Pergamon Press, Oxford 1961. 9 Moelwyn-Hughes E.: J. Phys. Chem. 55, 1246 (1951). [10] Girszfelder D., Kertis C., Berd P.: Molekularnaja teorija gazow i żidkostej, Izdat. Inostr. Lit. Moskwa, 1961. Lichtenthaler R.: Ber. Bunsenges. Physik. Chem. 75, no. 5, 11 Strein K., 492 (1971). [12] Strein K.: Präzisionsmessungen des zweiten Virialkoeffizienten von 300°K bis 500°K zur Bestimmung zwischenmolekularer Potentiale, Dis-sertation, Heidelberg, Ruprecht-Karl-Universitat 1971. 13 Calvin E., Reed T.: J. Chem. Phys. 14, no. 9, 3733 (1971).

- [14] Opilski A.: O warunkach stosowalności reguły Rao dla roztworów (nie publikowane).
- [15] Landolt-Börnstein, Zahlenwerte und Funktionen aus Naturwissenschaften und Technik 6 Auflage Bd. II 5a, Springer-Verlag, Berlin 1967.
- 16 Thomaes G.: J. Chim. Phys. <u>49</u>, 232 (1952).
- [17] Atoji M., Lirscomb W.: J. Chem. Phys. 21, 1480 (1953).
- [18] De Rocco A., Hoover W.: J. Chem. Phys. <u>36</u>, no. 4, 916 (1962).
- [19] Lichtenthaler R.: Ber. Bunsenges. Physik. Chem. 73, 1041 (1969).
- [20] Schram B.: Ber. Bunsenges. Phys. Chem. 73, 1045 (1969).
- [21] Lichtenthaler R., Schafer K.: Ber. Bunsenges. Phys. Chem. <u>73</u>, no. 1, 42 (1969).
- [22] Prigogine I., Defay R.: Chemische Thermodynamik 170, Veb. Deutscher Verlag fur Grundstoffindustrie, Leipzig 1962.
- [23] Kuczera F., Opilski A.: Prim. ultraak. k issled. weszcz. <u>11</u>, 99 (1960).

<u>МЕЖДУМОЛЕКУЛЯРНЫЕ ВЗАИМОДЕЙСТВИЯ ТИПА ЛЕННАРДА-ДЖОНСА</u> В СЛУЧАЮ МОЛЕКУЛ РАЗЛИЧНОГО ВИДА

Резюме

Описывая междумолекулярные взаимодействия в жидкостиях при помощи обобщенного потенциала Леинарда-Джонсе, учли возможность расчёта показателей степени п_{1,2} отталкивания различного вида молекул, зная показатели степени отталкивания п₁ и п₂ молекул одинакого вида. При этом доказано, что правило смешивания показателей степени получённые Лихтентхалером из концепции олонстого потенциала шарообразно-симетричного, даёт результаты согласные с полученными при помощи акустического метода из формулы Кучеры-Опильского в олучае, когда выполнены следующие зависимости между молекулярными расстояниями и скоростями распространения ультразвуковых воли:

$$r_{1,2} = \frac{1}{2}(r_1 + r_2); \quad \frac{r_{1,2}}{w_{1,2}} = \frac{1}{2}(\frac{r_1}{w_1} + \frac{r_2}{w_2})$$

LENNARD-JONES TYPE OF MOLECULAR INTERACTIONS IN THE CASE OF MOLECULES OF VARIOUS SORTS

Summary

Describing molecular interactions in a liquid by means of the generalized Lennard-Jones potential, we have considered the possibility of calculating the repulsion exponent powers of molecules of various sorts. We based it on the knowledge of exponent powers n_1 and n_2 , of molecules of the same sort. There was shown also, that the mixing rule of exponent powers, obtained by Lichtenthaler from the conception of the spherical symmetry shell potential, gave consistent results with those obtained by means of the acoustical method from Kuczera-Opilski's formula in the case the following dependences between intermolecular distances and velocities of ultrasonic waves propagation were fulfilled:

$$r_{1,2} = \frac{1}{2}(r_1 + r_2), \quad \frac{r_{1,2}}{w_{1,2}} = \frac{1}{2}(\frac{r_1}{w_1} + \frac{r_2}{w_2})$$