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‘random VIBRATIONS OF CYLINDRICAL SHELL
DUE TO AH EXOITA.TION WITH VARYING FREQUENCY

The problem of random forced vibrations in elastic closed cylindrical
shelle of finite length has been discussed in this paper. Loading of that
system is defined as a radial axisymmetric random field with a uniformly
varying frequency. Nonstationary responses for variances of shell displa-
cements have been determined analytically and numerically. As a result of
calculations within certain intervals of time resonance levels of displa-
cement variances have been observed.

Introduction

Many shell structures are subjected to excitations which are of random
nature. As examples can be used aircraft and missile structures subjected
to acoustic and aerodynamic loads.

In many applications, the response of such continuous systems will be
3trongly time - dependent, especially in these cases, when the excitation
is a nonstationary random process, in particular a process with time-va-
rying frequency.

Vibrations of the systems excited by loading with varying frequency
have been studied by Lewis [4], Filipow [5] and Stronge [6] out with app-
lications to one-degree of freedom of the dynamical system. Tylikowski
was dealing in his paper £7] with the random vibrations of a linear sy-
stem with one-degree of freedom excited by a force being a stochastic pro-
cess with uniformly varying frequency.

In this paper has been made an extension of analysis for such continu-
ous system like cylindrical shells of finite length under excitation
which is a nonstationary homogeneous random field. It is assumed that the
cylindrical shell is subjected to an action of a distant acoustic random
field with uniformly time - varying frequency.

Formulation and Solution Method

The well-known equilibrium equations of Donnell [l1j, B] for thin-wa-
lled circular cylindrical shells are:
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where for the sign convention and shell theory the following symbols are
being used

R - radius of middle surface of cylindrical shell

E - modulus of elasticity of ahell material

h - shell thickness

V - Poisson’s ratio

u,v,w- shell displacements iIn the x,y,z directions

c - density of 3hell material

é, X - coordinates in longitudinal direction

P,V - dimensionless coordinates in circumferential direction

X,Y,Z- loads in longitudinal, circumferential and radial directions respe-
ctively

Solutions of displacements for any loads and particular boundary con-
ditions can be made by means of determining of Green’s functions.

The system is assumed to be at rest for fime t<0, with less than cri-
tical damping.
Under assumplion that X =Y =0,

@)
(loads in longitudinal and circumferential directions are zero respective-

ly, 8 is an external damping coefficient, g 1is a radial loading of the
shell) the solution of displacements can be written as

u@g, ¥, © a™.x.-P.v.t.T)
v(E, f, © G M(1,x,<P,V,t,TT) .
w(é, 1) _Gj1>(é,x,<P,Y,t,T)_

- q(x,V, ir)dxd YdTT. ®
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The Green’s functions Gj]j(8,x,f,V,t,1T) are the respective displace-
ments at »j°P-t due to a unit radial load acting at x.V.V and for the sim-
ple supports at the ends of the closed shell of finite length (1=0 and
1=1) are given as follows
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are natural frequencies of the shell
m,n are integers
172 for m>1 n=20
X = n

mn
1 for 1 n>1

1 = L/R 1is a dimensionless length of shell
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4 *v j;an and Gw En are the polynomials, obtained from system
of equations (1), of the form

= YERE /Vm2g2 . 2p . lrgmhgp
*V ik - - n »2>n-yipE~™4 n V5)

*. LI <4 F *72)2-

Making use of a well-known formulae of correlation theory, we can de-
termine the principal characteristics of a random field at a given point.

Assuming that the mean values of displacements at any point are aero,
let us calculate furthermore second correlation functions of displace-
ments providing a characteristic of variances and then dispersions.

Multyplying both sides of equations (J), written for different argu-
ments in either case, and averaging, Wwe obtain
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where
K~ )~ >\2»"2>"t2) is the correlation function of respective dis-
placements

KagvxJi'fl .M x2"IB» "2~ iB the correlation function of radial loads
of the cylindrical shell

and 3 is the shell surface.
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Let ue assume furthermore, that the cylindrical shell is loaded axi-
symmetrically by a nonstationary homogeneous random field which may be a
result of an action of pressure of a distant acoustic field with unifor-
mly time-varying frequency. The wave surfaces are considered as the para-
llel planes and it is assumed that the planes are perpendicular to the
longitudinal shell axis Xx.

This is illustrated in Fig 1.

Thus the angle of the wave vector to x - axis is $== 3T/2. Random field
defined in this way can be approximated by a sum of uncorrelated harmo-
nics with random amplitudes A.U and phases 83 and takes a form

sin
q(x,t) = — 4 =)= ———— X + 5N Q)

where c is sound velocity and #®j is a coefficient determining space-chan-
ge of a random field. It is assumed furthermore that Aj and 6- are
uncorrelated random variables and there has been given a probability den-
sity function of amplitudes g(A_,) and constant probability density func-
tion of phases s(6”) iIn the section [0,2%] by means of the formula

g(v =bz [H(V -~ " 207

where H(-) is the Heaviside"s distribution.
The mean value of that random field equals zero and the correlation
function takes a form

Qg K1> AM»X2*F A2A = cos Chj “ApAn x2M .

where

BJ is a half of variance of Aj given by relation

Bj =\ s(A0)dA]j

is a parameter determining velocity of frequency changes of an acous-
tic source and
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After substitution of the correlation function of loading () into equ-

ations () the following relations for the variances of displacements ha-
ve been obtained»
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The time - integrals may be expressed by a tabelarized probability func-
tion with a complex argument or related to it. Denoting a real part U(2)
and imaginary part V(z) of the function

_z2 ? 2
YY) =e I ex dx,
Jo

(where z is a complex number) and introducing these functions in a polar
system, after some manipulations we can write the following expressions
for variances of displacements
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After simple modifications the above method may be applied also for the
other choice of the boundary conditions and it may be adapted to such con-

tinuous systems like beams and plates due to the random excitation with
varying frequency.

numerical Calculations and Results

In order to obtain values of variances for the physical quantities and
for avoidance of transmission of the tabelarized function W(z) to compu-
ter, the well-known series expansions of this function have been utilized.
In this paper expansions in Taylor series for small |z] and asymptotic se-

ries for great values of |z] have been used. Using the polar system the
series may be written as
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for o<2
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It is to be noted that the asymptotic series arevalid in upper com-
plex half-plane 1i.e. 0< O< % .
However the properties of functions U i V

U, -9)= U(?,0) U@, © +3) = -U(§8 ,0)
V(©, -0)=-V(?,0) VG, 0 +X) = -V(? ,0)

are giving the possibility for determiningthose functions on the rema-
ining sector. The following data were adapted for the numerical computa-

tions of the variance of radial shell displacements
2 =2.1011 [if/m2], R= 1[m], L = 3,1415D0. Q= 7800[kg/m3],
h =0,02 [m], <«=0,3.

It has been assumed that j = 1 and the following reduced value of
that variance is calculated like that

ts= t)(§2*2wh,) .
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The computations are mode for the constant values of @ = 1LI/sJ, A. =
= 0,0021 [i/m] and for a changing damping coefficient 6 = 4]5]7?10 0/s]-
The variance of radial displacement versus time and space is illustrated
in Pig 2; 3; 4; 5.

@ n

*
It has been observed that for the time tm Sp~ 3 amQ___ maxima of
variance level can be stated. These maxima are results of resonancebe
ween the transient frequency of excitation and natural frequencies ofthe

system.

Owing to the fact that the first two natural frequencies are nearly
egual (i.e. alc=5063,8 [I/s], a2Q=5064,440/s]) for time t1 2=al0,a20/3>.|
single maxima have not been observed but the joint resonance has benn
observed.

For the time t" 3 = 5071,20 O/S] by damping coefficient =

= 4*5 D/s] an influence of the thisd natural frequency of the shell is
observed. This effect is shown in Pig 2 and 3«

For 6mn = 7}100/s] effect of excitation of higher frequencies is not
observed. The level of variance is falling down with the increase of the
damping coefficient. An investigation of the variance of radial displace-
ment has been made also for a very short initial time. Prom the results
obtained (most of which have not been presented here) it is seen in Pig 6
that for this initial time the variance is oscilating. These oscilations
of a variance have a diminishing amplitude and they are result of determi-
nistic initial conditions and of the fact that in this case Kqq(Ti» =
= BM. It is seen that for a very short initial time similarly as for the
systems with one-degree of freedom the continuous systems, have vibrations
due to a constant deterministic excitation.
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Cliy-iA. HHE KOIJffiEAHHfi ItfUIHMHWECKOii 0B0JIO9KH, BOSbyjjffIAEOHE
HEPEMEHHOH RACTOTC.

Pe3»me

B paSoTe xaH aHaraa npodjieMH cjiyMaiiHux KOJiesaHUH UHjinHflpMecicoii odojiohkh
3aKOHieHHoii Xjihhh. 3a Harpy3Ky chcteiiu npHHKTO pa“HaxBHoe aKcaaji&Ho—ehmmct—
pHTOoe noxe o nepeMeHHol 'jacToioit. AHalimmecKH h >iiicjietHKO onpejiejieHo uec-
lanHOHapHy» peaKumo b BH”"e KBa”paia “HcnepcKH nepeMegeHHft oSojio~kh. Pe3yjiB-
TaioM pac”hieTOB aBxneTca pe30HaHC xBaflpaioB AHcnepcira paflHajiBHKx nepeMenieHna

HaSjiKfflaeMfctx B.neKOTopbDC  onpexejieHHHx ~Bana30Hax BpeMeHH.

DRGAITIA PRZYPADKOWE POWLOKI CYLIICDRYCZMEJ
Z POBUDZEKIEM O ZMIEHKEJ CZESTOTLIWOSCI

Streszczenie

W pracy przeanalizowano problem drgan przypadkowych powkoki cylindrycz-
nej o skonczonej dtugosci. Obcigzenie ukdadu przyjeto jako promieniowe o-
siowo-symetryczne, pole o zmiennej czestotliwosci.

Wyznaczono analitycznie i numerycznie niestacjonarng reakcje w postaci
wariancji przemieszczen powlkoki .

Rezultatem obliczen jest obserwacja w pewnych przedziatach czasu po-
zioméw rezonansowych wariancji przemieszczen promieniowych.
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